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Abstract

Thanks to nowdays technology advancement, a large amount of data are
generated frommany different fields ranging from economy, healthmonitoring,
communications, trasportation management, or robotics. While analyzing this
kind of data, one of the main problem is to identify relevant or recurrent tem-
poral patterns and recognize anomalous one. For instance: a relevant change
in the trend of social and economic indicators is fundamental for policy mak-
ers investment decisions; the reduction of the speed of multiple vehicles can
identify a traffic congestion; the changing of the movement patterns of a person
can identify the behavioral shift in her/his daily activities; when applied to a
sleep monitoring it can help to understand the sleep quality and its progres-
sive degeneration due to subject’s disease. While facing the analysis of such
data, there are numerous levels of complexity i.e. the high dimensionality, the
hard-to-represent dynamics underlying an observed phenomenon, and the def-
inition of a similarity measure aimed at work with different dynamics without
explicitly modelinging them, since such model may work only under the as-
sumption formulated by the designer. In order to tackle those issues, we exploit
a biologically-inspired computational approach based on stigmergy. In biology,
stigmergy is a form of indirect communication and coordination used by social
insects. Specifically, each individual releases a pheromone mark in a shared
environment while performing a specific action (e.g. carrying a piece of food).
At the same time, its behavior is affected by the pheromones perceived in the
environment (e.g. following the pheromones trail towards the source of food).
In that way, subsequent actions tend to reinforce and build on each other, lead-
ing to the spontaneous emergence of coherent, apparently systematic activities.
Finally, this indirectly coordinated activity has a defined temporal extension
since the pheromones, given their volatility, evaporate over time. This effect
is counteracted only if many pheromones are subsequently deposited in prox-
imity with each others (thus they aggregate), resulting in the appearance of a
stable pheromone trail in correspondence of this regular depositing activity.

In computer science, stigmergy can be employed as a dynamic, agglom-
erative, computing paradigm able to embody both spatial and temporal do-
main. Computational stigmergy focuses on the low level processing, where in-
dividual samples are augmented with dynamic micro-structure to enable their
spatio-temporal aggregation. Such aggregation summarizes micro and macro-
dynamics in data, allowing the computation of a degree of similarity between
different dynamics. Finally, this approach is specialized for each case study,
by employing an adaptation mechanism based on a evolutionary algorithm.
Here, different applications of computational stigmergy are studied, showing
the feasibility and the capability of such approach to be adopted in heteroge-
neous fields. Moreover, at the final stage of the architecture development, we
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compare the proposed approach with state-of-art techniques on classification
task.

Stigmergy is also used as a self-organization mechanism that can be fruiti-
fully exploited in the context of swarm robotics. Swarm robotics systems have
the potential to shape the future of many applications, e.g. targeted material
delivery, precision farming, and distributed target search. In this contexts, a
virtual representation of the pheromone is used to steer the swarm toward the
most convenient part of the scenario, e.g. the area with the higher probability to
have the presence of target or material to carry. Here, different applications of
stigmergy-based swarm coordination are presented, showing the convenience
of such approach both with distributed target search via UAVs and distributed
material collection via robot.
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Chapter 1

Introduction and Motivation

We are all familiar with natural swarms. The word swarm brings to mind images of
large groups of social animals (e.g. ants, bees, flocks, or wolves) inwhich eachmem-
ber performs a simple role, but their interaction results in a collectively intelligent
behavior as a whole.

The principle on which these behaviors are based is known as Swarm Intelli-
gence (SI). According to the SI approach, each individual of the swarm should: (i)
act with a certain level of autonomy (ii) perform only local sensing and communi-
cation; (iii) operate without centralized control or global knowledge, and (iv) coop-
erate to achieve a global goal. When applied, SI approaches provide many benefits,
such as: (i) robustness, for the ability to cope the loss of individuals or noisy inputs;
(ii) scalability, since the swarm does not degrade its performance by increasing its
size; (iii) flexibility, thanks to the ability to cope with a broad spectrum of differ-
ent environments and tasks. Given these benefits, there is an increasing interest in
exploiting the SI approaches to handle the numerosity and complexity of data and
agents (i.e. sensors, interfaces, and actuators), due to the adoption of the pervasive
computing paradigm. As an example, the application of swarm principles to mul-
tiple robots results in the swarm robotics paradigm, whereas in computer science
’swarm intelligence’ refers to a set of well known biologically inspired algorithms.

Among the many SI metaheuristics, in this work we will focus on the collective
behaviors of social insects which (i) correspond to the largest research corpus both
theoretically and experimentally; (ii) are based on principles which are widely com-
mon in many other animal species (Garnier et al. , 2007).

The emergence of such complex behavior provides the swarm with a certain de-
gree of self-organization, which is employed to achieve goals that are far beyond
the aggregation of the capabilities of each individual. As an example, a colony of
African termites consists of millions of tiny (1–2 mm long) and completely blind
individuals, that are able to build complex mounds up to 30 m of diameter and a
height of 6 meters (Grassé, 1984). Similarly, the ant colony is able to find the shortest

3



4 Introduction and Motivation

path to a food source despite having no global knowledge of the search area nor a
leader or a coordinator. The overall mechanism behind this capabilities is known as
Stigmergy (Theraulaz & Bonabeau, 1999).

The word stigmergy comes from two Greek words: stigmawhich means “mark”,
and ergon which means “action”. Specifically, the action is the fundamental pro-
cess that produces a change in the state of the environment (e.g. by leaving a mark)
(Heylighen, 2015). Whereas, the agent is the performer of an action, whose perfor-
mance depends on the state of the surrounding environment. This process can be
deterministic or stochastic, i.e., it can happen with a certain probability. Finally, in
a multi-agent system, multiple actions coexist, and can inhibit or balance with each
other resulting in a pseudo-stable configuration of the system. The environment
has the fundamental role of being a shared media in charge of the communication
among the agents (Parunak, 2005). Moreover, the environment can maintain a sort
of short-termmemory of the action performed by agents by aggregating subsequent
marks in a structure named trail.

Parunak in (Parunak, 2005) distinguishes four categories of stigmergy, according
to two binary features: (i) the mechanism enabling the exploitation of the environ-
ment to communicate allows to distinguish betweenmarker-based stigmergy, which is
based on the releasing of a mark in the environment, and the sematectonic stigmergy,
which uses the behavior exhibited by close agents as a stimuli; (ii) if the dimension
of the signal is a scalar, we talk about quantitative stigmergy, qualitative stigmergy oth-
erwise.

To facilitate the understanding of the biological metaphor taken as a reference in
this work, it follows few biological examples of markers-based stigmergy.

While performing a collective foraging task, ants exploit the presence of pheromones
tomark the path between a source of food and the nest. Moreover, different pheromones
are used to foster or inhibit the activities of the colony. This is referred as qualitative
marker-based stigmergy.

The nest building process performed by the termites is an example of quantitative
marker-based stigmergy since the termites pile the mud-ball together by following the
gradient (thus, a continuous quantity) of the pheromone trail.

Finally, another example of quantitative marker-based stigmergy occurs with hu-
mans, i.e. the behavior of the trade market. Here, the amount of transactions aimed
at buying and selling a product (the actions) affects the value of the product itself
(i.e. leave a trace in a shared market). Moreover, the value act as a stimulus for
following transactions (Heylighen, 2015).

Withmarker-based stigmergy (stigmergy, for brevity), each individual releases a
pheromone mark while performing a specific action (e.g. carrying food to the nest).
On the other hand, the individuals that perceive the pheromones adjust their behav-
ior accordingly (e.g. follow the pheromone trail toward the source of food). Since
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pheromones evaporate over time, only subsequent actions build and reinforce on
each other, resulting in a collective self-organized behavior. This mechanism can be
reproduced, extended and employed in applications such as swarm robotics (Bram-
billa et al. , 2013a) and data analysis (Ramos et al. , 2002). Indeed, robots, UAVs and
evendata samples can be providedwith simple interactions aimed at self-organizing
a collective task (Cimino et al. , 2015c) or unfold structure (such as pattern) in data
(Cimino et al. , 2015b).

1.1 SI for computation: Computational Stigmergy

The recent adoption of pervasive technologies in fields such as the economy, health
monitoring, communications, and transportationmanagement, has generated a large
amount of data with the promise of providing better and strategic insights about
each one of these application contexts. The analysis of the dynamics folded in this
kind of data usually employs two types of models: (i) the knowledge-based model,
explicitly designed as logical or mathematical rules, and determined by a domain
expert; (ii) the data-driven model, in which the model is derived from prototypi-
cal data via machine learning. Specifically, knowledge-based models belong to the
cognitivist paradigm (Vernon et al. , 2007). In this paradigm, the system aimed at
analyzing the data has to be designed according to the model provided by an ex-
pert in the field, who translates his/her knowledge about that specific domain into
a set of rules that can be exploited by an information processing system. However,
a knowledge-based approach is highly context-dependent and hardly scalable. On
the other hand, data-driven models are easier to adapt to different context or case
study and more robust with respect to noisy and unexpected inputs. The data-
driven approach discussed in this work takes inspiration from the emergent behav-
ior of the ant colony, i.e. employ the principle of stigmergy to offer a model-free
computational approach, characterized by adaptation and self-organization of data
(Cimino et al. , 2015b).

One of the first applications of stigmergy in computer sciencewere the approaches
known as ant algorithms (Dorigo et al. , 2000), which have been used in solving sev-
eral computational problems, such as the traveling salesman problem, structural
engineering, digital image processing, scheduling problem, and routing (Mohan &
Baskaran, 2012). Among themany application, only few research works address the
exploitation of the paradigm of stigmergy to pattern analysis (Ramos & Almeida,
2004). As an example, in (Brueckner & Parunak, 2002) authors propose a stigmergy-
based approach aimed at detecting patterns and applies it to the classification of
synthetic images. However, the authors focused only on spatial patterns. On the
other hand, our approach exploits both spatial and temporal dynamics, because it
intrinsically embodies the time domain. Finally, our approach overcomes the ex-
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plicit top-down domain-dependent modeling of the dynamics folded in the data
under analysis. Indeed by using computational stigmergy, these dynamics sponta-
neously arises from the interactions between data sample and can be describedwith
a domain-independent spatiotemporal logic (details in Chapter 3).

1.2 Environment Exploration with SI
Nowadays, unmanned vehicles (e.g. cars, robots, drones) are more and more ex-
ploited as a novel infrastructure together with new technologies (e.g. IoT, 5G) to
build a cybernetic senseable, programmable, and actuable ecosystem.

In this vision, an increasing number of serviceswill be provided in an autonomous
and distributedmanner. However, given the scale of the problem both structure and
control logic may result in a high cost in terms of design, construction, and mainte-
nance. Especially if the solution is modeled as a centralized system, since a single
hardware or software fault may affect the whole service. Hence, to solve problems
cooperativelywhilemaintaining reliability and scalability, application designers are
investigating the behavior-based solution belonging to swarm intelligent paradigm
(Steels, 1990), with a specific focus on swarm robotics applications.

Themain inspiration for a swarm of robots/UAVs comes from the observation of
social animals, such as insects, birds, and fish, that exhibit a collective intelligence,
i.e. achieve complex goals through simple rules and local interactions and no cen-
tralized control (Brambilla et al. , 2013a). By providing a swarm of robot/unmanned
vehicles with these capabilities we are able to create an autonomous detection/dis-
posal/delivery service (D’Andrea, 2012). As an example, UAV swarm can offer great
potential in search and rescue operation since they can perform tasks in highly in-
hospitable environments, providing a quick “survey” of the area, and better inves-
tigate only key locations that provide some circumstantial evidence (Cimino et al. ,
2016). As another example, swarms of robots are becoming more and more impor-
tant as a part of industrial activities such as warehouse logistics (D’Andrea, 2012;
Liu et al. , 2017).

In this context, many works in the field employ stigmergy as a coordination
mechanisms of the swarm. As already specified, stigmergy is a fundamental swarm
coordination mechanism, based on the release of information in the environment in
the form of pheromone marks (Sauter et al. , 2005a). The pheromone is a volatile
substance that diffuses locally, stays temporarily, and affects other individuals be-
havior if perceived (Parunak et al. , 2002). However, it may be very hard and costly
to equip the swarms of robots/UAVs with the capability of producing a physical
mark in the environment (i.e. with a physical substance) in which the task takes
place (Kuyucu et al. , 2015). For this reason, most of the works in the field use sim-
ulated (i.e., virtual) pheromones. In a distributed environment, a pheromone map
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of the search space can be maintained and made available for drones as a “remote
brain” capability (Ermacora et al. , 2013) or stored locally via a properly “writable”
environment (Johansson & Saffiotti, 2009).

For example, clustering tasks have been modeled with ant behavior like strate-
gies (Holland & Melhuish, 1999). The authors in (Valckenaers et al. , 2007) applied
stigmergy to model the problem of control and coordination in a manufacturing en-
vironment. Stigmergy has also been applied for the control of coordination of aerial
drones (Sauter et al. , 2005a).

In this context, many SI approaches have been used or combinedwith stigmergy
to provide the swarm with an autonomous coordination mechanism aimed at the
exploration of an area while detecting and/or collecting objects.

As an example, in (Wagner et al. , 2008) authors provide a mechanism similar
to cellular automata, in which robots coordinate their exploration according to the
environment local status, seen as a grid. In (Dasgupta et al. , 2009) the proposed
strategy employs the Reynold’s flocking model so as to divide the robots into teams
and explore the area. This solution allows the swarm to adjust its configuration (i.e.,
change dynamically the team membership of an individual) according to the con-
straints of the environment (e.g. obstacle presence, area overcrowding). In (Wang
et al. , 2011) Particle SwarmOptimization is used to balance the exploration of nearby
subareas and to disperse the robots in order to avoid redundancy coverage. How-
ever, among the many metaheuristics for environment exploration (Brambilla et al. ,
2013a; Parker, 2003; Tan & Zheng, 2013) flocking (Cimino et al. , 2015b) and foraging
(Zedadra et al. , 2015) seem to be the most widely exploited.

To briefly introduce the fundamental concepts about flocking and foraging strat-
egy (more details and comparison with other works in Chapter 2), we present their
ontologies. An ontology is a structured definition of basic concepts and relations
among them (Siegemund et al. , 2011). In Fig. 1.1(a) we shows the ontology of for-
aging task (Steels, 1990), in which each individual starts its exploration of the envi-
ronment from the nest, by randomly moving in the environment. The environment
contains food which is collected by the individuals in the nest once it is found (Fig.
1.1(b)).

In Fig. 1.2(a) we show the ontology of a flocking agents, here called boids (as in
the literature), which is based on three features: separationwith respect to the closest
flockmates to avoid collision and overcrowding, alignmentwith the flock, and cohere
to avoid dispersion of the flock during the collective flight(Reynolds, 1987a). Flock-
mates are determined according to different radiuses for each rule, as represented
in Fig. 1.2(b).
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Figure 1.1: (a) Foraging ontology. (b) Illustration of the foraging task.

Figure 1.2: (a) Flocking agents ontology. (b) Illustration of separation, alignment,
and cohere rules.

1.3 Adaptation with SI

Optimization problems can be solved by means of search methods, i.e. by trying
out multiple attempts until a satisfactory result is obtained. In this context Swarm
Intelligence (SI) methodologies have been applied to implement searchmechanisms
to address problems that cannot be modeled by means of exact and analytical tech-
niques (Kachitvichyanukul, 2012). Indeed, each case employs different quality met-
rics. Then, an optimization method using a “black box” approach, which is not
based on formal properties of the quality function, may be effective. SI approaches
can find near-optimal solutions by iteratively trying to improve a population of can-
didate solutions with regard to a given measure of quality, or fitness. Solutions
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are improved by means of stochastic transformation mechanisms inspired by bi-
ology, such as reproduction, mutation, recombination, selection, survival, swarm,
and movement, in an environment whose dynamics are represented by the quality
measure.

SI optimization methodology is based on three fundamental processes: the gen-
eration of the initial population, the evaluation of the fitness value and the gener-
ation of a new population. At first, the members of the population are initialized
randomly or injecting some initial solutions. Each member represents a solution
to the problem. The second step, the members are evaluated by means of a fitness
function. The fitness is ameasure of goodness of the solution and it is aimed at com-
paring two members of the population and selecting which one is better. The third
key process is the generation of a new population via the perturbation of the current
population and the selection of the best candidates. The second and the third step
iterate until a stop condition is met. There are twomain categories of stop condition:
(i) static, e.g., a fitness value to reach, a number of generations to compute, etc.; (ii)
dynamic, e.g., a percentage of improvement of the fitness between generations, con-
vergence of the population members, and so on. In general, all SI approaches have
(at least) two parameters to be set which are the number of members of the popula-
tion and the stop condition, which usually is the number of generation to compute.
Since the mid-sixties, many SI approaches have been proposed, and many efforts
have also been devoted to comparing them. In the last decade, three SI approaches
attracted themost of the attention: Genetic Algorithm (GA) (Holland, 1992), Particle
Swarm Optimization (PSO)(Poli et al. , 2007), and Differential Evolution (DE) (Storn
& Price, 1997).

GA (Holland, 1992), takes inspiration from the natural selection of genetic fea-
tures during the reproduction of a living organism. In GA a member of the pop-
ulation is represented as a chromosome. The fitness value is used to rank the in-
dividuals of a given generation, whereas the members of the next generation are
computed by means of three steps: selection, crossover, and mutation. Firstly, the
chromosomes are selected to become the parents of the new generation according
to their rank; secondly, the chromosomes of the selected parents are combined by
means of the crossover process to generate a new chromosome. Finally, some mod-
ification is injected in the new chromosome by means of the mutation process to
increase diversity and avoid stagnation.

In PSO (Poli et al. , 2007), a member is a particle and the population is a swarm
of particles. The particle has a position, a velocity, and the historical best position.
The position represents a solution in the search space of the problem, the velocity
describes the particle movement, and the best position represents the best solution
visited by the particle. The quality of the solution (thus, the quality of the position)
is computed with the fitness function. The best position among all the individuals’
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best position is referred as the best position of the swarm. Initially, the position and
the velocity of each particle in the swarm is chosen randomly. The next position
depends on its current position and velocity. According to the fitness of the new po-
sitions, the individual best and/or the swarm best positionmay be updated. Finally,
depending on these best values, the velocity for each particle is updated.

DE (Storn&Price, 1997) considers amember of the population as aD-dimensional
vector (also known as genotype), in which D is the dimensions of the search space.
During each generation, the creation of new vectors follows three steps: mutation,
crossover, and selection. In the mutation, three randommembers of the population
are combined to obtain a mutant vector. Then, the crossover operator is applied be-
tween the candidate member and the mutant vector, generating the trial vector. The
crossover is a random selection in which each element of the trial vector is taken
from the candidate or the mutant. Finally, by means of the selection, a comparison
between the candidate and the trial vector is computed, i.e. their fitness values are
compared. The best one passes to the next generation, while the other is discarded.

Table 1.1 (Kachitvichyanukul, 2012) summarizes the qualitative properties of the
three algorithms. The key difference is in the mechanism used to produce the new
generation of individuals. In GA, the members of the population need to be ranked
according to the fitness value and the best members are more likely chosen as par-
ents of the newgeneration. For this reason, GA tends to produce solutions in clusters
around some “good” solutions. Moreover, because of the ranking, the time to com-
pute all the generation scales nonlinearly with the number of members of the pop-
ulation. In PSO, the new position of the particle is generated with the old position
and the velocity. Thus, the particle can end in every possible location of the search
space. In addition, the best particle found by the swarm influences the update step
of the velocity that can lead to a premature convergence of the algorithm. DE has
a similar exploration capability of PSO because the generation of the new solution
is computed from (at least) three random members of the population. Moreover,
the best member of the population does not take part in the generation, thus the
algorithm does not suffer from premature convergence.

Table 1.1: An excerpt of the properties of the algorithms GA, PSO, and DE.

Authors in (Vesterstrom&Thomsen, 2004) comparedDE, PSO and a Simple Evo-
lutionary Algorithm (SEA) on a set of 34 benchmark problems, including unimodal
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and multimodal functions with correlated and uncorrelated variables, a problem
with plateaus, and two noisy problems. Problem dimensionality varied from 2 and
30, and an extension to 100-dimensionality was provided to assess the performance
on more difficult problems. Authors reported DE as the best performing algorithm,
even considering that DE has slower convergence in the two noisy problems. More-
over, DE stagnates in a sub-optimal solution (the same problem occurred for PSO)
in one of the benchmark function. As pointed out by the authors, such problems
can be solved modifying the DE strategy or adjusting its parameters. In general,
DE is robust and able to reproduce the same results consistently over many trials,
in particular for 100-dimensionality problems. It is apparent from the previous dis-
cussion that DE is a simple, robust, fast and efficient adaptive scheme for global
optimization. In addition, it has few parameters to set, and the same settings can be
used in different problems. For this reason, it was selected to design the adaptation
subsystem.

Fig. 1.3 shows the DE ontology. Briefly, candidate solutions to the parameteri-
zation problem play the role of individuals in a population. Each individual mutates
and mates with its peer generating a new one, characterized by its own genotype.
Each genotype generates a specific behavior of the solution, which corresponds to a
phenotype that fits differently according to the scenario. Such fitness is the basis for
the objective function.

Many variants of the DE algorithm have been designed, by combining differ-
ent structure and parameterization of mutation and crossover operators (Mezura-
Montes et al. , 2006a),(Zaharie, 2007). We introduce them according to a classic DE
taxonomy, i.e. as DE/x/y/z, where:

• x defines the base choice (v1) of the mutant vector (vmutant) between (i) rand,
random vector, which explores more, but requires more generations to con-
verge; (ii) best, the best population individual, which converges faster, but risks
to be trapped in local minima; and (iii) rand− to− best, a combination of the
above strategies (i.e. the weighted sum of F).

• y is the number of differences in the mutation carriers, i.e. 1 means vmutant =

v1 + F · (v2− v3) , whereas 2means vmutant = v1 + F · (v2 + v3− v4− v5)where
v2, ..., v5 are always random.

• z is the type of crossover, i.e. (i) bin (binomial), in which CR is the probability
that an element of the vector is taken from the target or from the mutant vec-
tor; or (ii) exp (exponential), in which, starting from a random element of the
vector, the mutation proceeds sequentially in a circular manner. It stops with
probability CR after each item, or if you changed all the elements.
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Figure 1.3: (a) Differential Evolution Ontology. (b) Illustration of mutation and
crossover.

Manyworks in the field tried to compare these different versions. As an example,
in (Mezura-Montes et al. , 2006b) authors concluded that the binomial crossover out-
performs the exponential in almost every experiment. Moreover, DE/best/1/bin
is a competitive DE variant for a wide set of benchmark problems. In (Zaharie,
2007) the authors explored the performance of DE with binomial and exponential
crossover by varying the crossover rate CR. Specifically, the Crossover Rate CR ∈
[0, 1] represents the probability to pick an element from the target or the mutant
vector during the crossover operation; the other parameter exploited by DE is the
differential weight F ∈ (0, 2], i.e. the scaling factor between the mutant vectors gen-
eration (Fig. 1.3b). In any case, there does not seem to be any agreement in the
literature on the versions and optimal parameterization of DE since each case study
can be characterized by specific peculiarities (Das & Suganthan, 2011), thus further
investigation in this direction should be done.

Finally, the DE approach is further detailed by means of pseudocode. In DE a
solution is represented by a real K-dimensional vector. DE starts with a randomly
generated population of N candidate solutions, i.e. P(0). At each iteration t and for
each genotype p(t)

i of the current population P(t), a mutant vector m is created by
applying the mutation of randomly selected members. Then, a trial vector p∗i is cre-
ated by crossover of m and p(t)

i . Subsequently, the population is modified according
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Algorithm 1: Differential Evolution Algorithm
function DifferentialEvolution(SearchSpace)
t = 0;
P(0) = initializePopulation();
for each genotype p(0)

i in P(0) do
M(0)

i = genotypeToIndividual(p(0)
i );

f(0)i = computeFitness(M(0)
i , SearchSpace);

do
for each genotype p(t)

i in P(t) do
m = generateMutant(P(t), p(t)

i );
p∗i = binomialCrossover(p(t)

i , m);
M∗i = genotypeToIndividual(p∗i );
f ∗i = computeFitness(M∗i , SearchSpace);

for each genotype p(t)
i in P(t) do

if ( f ∗i < f (t)i ) then
p(t+1)

i = p∗i ; f (t+1)
i = f ∗i ;

else
p(t+1)

i = p(t)
i ; f (t+1)

i = f (t)i ;

f (t+1)
min = min{ f (t+1)

1 , ..., f (t+1)
N };

t = t + 1;
while (terminationCriterion( f (t)min,t) = false);
return genotypeToIndividual(p(t)

min);

to the best fitting vector between the fitness of the trial vector ( f ∗i ) and the fitness of
the initial genotype ( f (t)i ). When the termination criterion is true, the vector charac-
terizing the solutionwith the best fitness (i.e. the shortest search time) in the current
population is considered as the optimal problem solution.

As already specified, DE itself has at least two hyperparameters: the scaling fac-
tor Fε[0, 2] from which results the mutant vector, and the crossover probability CR.
The smaller CR, the higher probability of producing a vector that is more similar to
the target vector rather than to the mutant vector. More formally, in the following
we define the mutation and the crossover operators, respectively.

1.4 Thesis Outline

This dissertation has five Chapters: In Chapter 1 themotivations and background of
the study are introduced. In Chapter 2 a literature review is presented. Specifically,
the topics addressed are (i) an overview of the similarity measures for temporal pat-
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Algorithm 2: Mutant vector generation
function generateMutant(P(t), p(t)

i )
p′ = randomExtraction(P(t) \{p(t)

i });
p′′ = randomExtraction(P(t) \{p(t)

i , p′});
p′′′ = randomExtraction(P(t) \{p(t)

i , p′, p′′});
return p′ + F· (p′′ - p′′′);

Algorithm 3: Binomial crossover
function binomialCrossover(p(t)

i , m)
k = randomInteger(1, K);
for each j-th gene p(t)j,i in p(t)

i do
if (randomReal(0,1) < CR) or (j = k)) then

wj = mj;
else

wj = p(t)j,i ;

return w;

terns; (ii) urban traffic congestions estimation; (iii) pattern analysis in urban mobil-
ity (iv) behavioral analysis via physiological signals; and (v) Swarm Intelligence ap-
proaches for distributed target detection, anddistributedmaterial disposal. Chapter
3 presents the Stigmergy-Based Architecture for temporal pattern analysis; more-
over, its possible configuration according to the current application are discussed.
Chapter 4 presents the provided applications in subsections, each one of them for
a specific topic and application. Each subsection present the problem statement of
the current application(s), the design of the proposed solution, and the obtained
results. In Chapter 5 the conclusions of the study are drawn.



Chapter 2

Related work

In this section, a review of the research addressing the characterization and the en-
hancement of temporal dynamics is presented. Specifically, the review is presented
by starting from a general view of the characterization of the temporal dynamics in
data and then specializing the review of the literature on the applications covered
during the Ph.D.

2.1 Similarity Measures for Temporal Pattern

A time series is a collection of chronologically ordered observation, regarding the
same phenomenon, thus considered as a whole set rather than an aggregation of
samples (Fu, 2011). The analysis of the time series has the purpose of identifying
trends, cycles, and seasonal variances to aid in the forecasting of a future event.
A fundamental mechanism to recognize trends and their variances is the ability to
properly compare different time series. One of the main problems in this kind of
analysis is due to the fact that time series are subjected to distortions such as noise,
offset translation, scaling (amplitude or longitudinal), linear drift and discontinu-
ities (Keogh & Kasetty, 2003). For these reasons, usual techniques relying on exact
matchmaking can’t be adopted, and approximate techniques have to be considered.
However, the similarity measure should be consistent with the intuitive notion of
shape and provide the some fundamental properties (Esling & Agón, 2012), i.e. it
should (i) provide recognition of perceptually similar objects, even though they are
not mathematically identical; (ii) be consistent with human intuition; (iii) empha-
size the most salient features on both local and global scales; (iv) allows to identify
or distinguish arbitrary objects, that is, no restrictions on time series are assumed,
and (v) robust with respect to distortions (Keogh & Kasetty, 2003).

In general, it is possible to distinguish between 4 categories of similarity mea-
sures for time series (Esling & Agón, 2012).

15
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• The edit-based distances compare two time series according to the minimum
number ofmodifications (insertion, deletion, and substitution) needed to trans-
form one series into another one. As an example, the Longest Common Subse-
quence (Das et al. , 1997) allows having unmatched elements while measuring
the cost to transform a time series to another without changing the sequence of
the elements. Thus, it can handle the presence of the outliers (discontinuities)
since the editing cost will not be incremented due to them. The Edit Distance
on Real Sequence (EDR) (Chen et al. , 2005) assigns a certain edit cost if the
difference between two elements is greater than a given threshold. Then, ac-
cording to the gap between the two time series, an alignment cost is added. Fi-
nally, the Edit Distance with Real Penalty (ERP) (Chen &Ng, 2004) is a version
of the EDR in which there is no threshold, and the alignment cost is measured
by using the Euclidean distance.

• The feature-based distances extracts a set of features (descriptor) from a cou-
ple of time series and compute a similarity/distance measure between them.
A common descriptor is the coefficients from the Discrete Fourier Transform
(DFT) (Shatkay&Zdonik, 1996) or theDiscreteWavelet Transformation (DWT)
(Chan & Fu, 1999). Indeed, Vlachos et al. (Vlachos et al. , 2005) present a com-
bination of period-gram and autocorrelation functions which permits the se-
lection of the most important periods of a series. Papadimitriou et al. (Pa-
padimitriou et al. , 2006) propose a tracking of the local correlation extending
Vlachos (Vlachos et al. , 2005). Janacek et al. (Janacek et al. , 2005) show that a
likelihood ratio for DFT coefficients outperforms the Euclidean distance. Con-
cerning symbolic representations, Mannila and Seppnen (Mannila & Seppä-
nen, 2001) use random vector to represent symbols in a time series. Thus, the
sum of the vectors weighted by the temporal distance is the representation
of a sequence of symbols. Instead, Flanagan (Flanagan, 2003) uses weighted
histograms of consecutive symbols as features.

• The structure-based similarity aim at finding a higher-level structure in the time
series and then to compare them on a more global dimension. Popular ap-
proaches use Hidden Markov Model (HMM) with continuous output values
or ARMA models (Xiong & Yeung, 2004). Ge and Smyth (Ge & Smyth, 2000)
combine HMMs and piece-wise linear representation. Bicego et al. (Bicego
et al. , 2003) use the similarity-based paradigm where HMM is used to de-
termine the similarity between each object and a predetermined set of other
objects. Keogh et al. (Keogh et al. , 2004) define a distance measure based on
the Kolmogorov complexity called Compression-Based DissimilarityMeasure
(CDM). The underlying idea is that concatenating and compressing similar se-
ries should produce higher compression ratios than when doing so with very
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different data. This approach appears particularly efficient for clustering; it
has been applied to fetal heart rate tracings (Santos et al. , 2006). Similarly,
Degli Esposti et al. (Degli Esposti et al. , 2009) propose a parsing-based simi-
larity distance in order to distinguish healthy patients from hospitalized ones
on the basis of various symbolic codings of ECG signals. By comparing the
performances of several data classification methods, this distance is shown to
be a good compromise between accuracy and computational efforts.

• The shape-based distances compare the overall shape of the time series. These
have been the most widely used measures for time series analysis. Among
them, the Euclidean distance results to be easy to implement, fast to compute
(linear) , and parameters-free. On the other hand, the Euclidean distance offer
a fixed one-to-onemapping between points of two time series. Thus, it is sensi-
tive to distortions such as offset translation and temporal drift. The same issue
occurs with theMinkoski distance, i.e. the generalization of the Euclidean dis-
tance. Another measures employed for the similarity among time series is the
Pearson’s correlation coefficient (the closer to 1, the higher the similarity). The
Short Time Series distance, STS, is the sum of the squared difference of the
slopes of the two time series. The main advantage of this measure in compari-
son with the previous is that it embodies the temporal information of the time
series. The more popular shape-based distance measure is the Dynamic Time
Warping (DTW) (Berndt & Clifford, 1994). DTWmeasure the distance by con-
sidering the best alignment between two time series, by stretching them along
the temporal dimension up to of a given amount (the time window). Thus, its
robust to distortions such as the temporal shift. The Frechet distance (Driemel
et al. , 2016) is a shape-based distance typically explained as the relationship be-
tween a person and a dog connected by a leash walking along the two curves
and trying to keep the leash as short as possible. The maximum length the
leash reaches is the value of the Frechet distance.

In the end of the day, there is no unique choice when it comes to compare differ-
ent time series. In general, the most adequate similarity measure highly depends on
the nature of the data to analyze as well as the required application-specific prop-
erties. According to them some guidelines can be drawn, as suggested by Esling
et al. (Esling & Agón, 2012): (i) If the time series are relatively short and visual
perception is a meaningful description, shape-basedmethods seem to be the appro-
priate choice; (ii) Feature-based methods seem more appropriate when periodici-
ties are the central subject of interest and causality in the time series is not relevant;
and (iii) if the time series are long and little knowledge about the structure is avail-
able, structure-based approaches have the advantage of being a more generic and
parameter-free solution for the evaluation of similarity; Evenwith these general rec-
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ommendations, the accuracy of themeasure chosen has to be evaluated case by case.
This evaluation is commonly performed within a 1-NN classifier framework. It has
been shown by Ding et al. (Ding et al. , 2008) that, despite all proposals regard-
ing different kinds of robustness, the forty year old DTW usually performs better.
Thus, in the studies presented in this thesis DTW distance is often employed as a
competitor of the presented stigmergy based similarity measure.

2.2 Behavioral Analysis via Physiological Signals

The human behavior can be considered as the collection of every physical action
and observable condition associated with an individual. In the literature, many
studies have recently proved that is possible to distinguish among different human
activities, as well as evaluate user’s physical condition, through wearable device
and data-driven classification techniques (Abbate et al. , 2012). As an example, in
(Bonomi et al. , 2010) 30 healthy subjects have been monitored for 14 days, using:
(i) a triaxial accelerometer for movement registration to calculate the activity counts
per day; (ii) a laboratory equipment (indirect calorimetry) to calculate the total en-
ergy expenditure in free living conditions; (iii) a respiration chamber to measure
during an overnight stay the sleeping metabolic rate. The activity energy expendi-
ture and the physical activity level are determined from total energy expenditure
and sleeping metabolic rate. A direct linear association was observed between the
activity counts per day and the physical activity level. A multiple-linear regression
model predicted 76% of the variance in total energy expenditure, which is a very
high accuracy for predicting free-living energy expenditure. (Guiry et al. , 2014)
gathered samples from 10 subjects, each equipped with a smartphone and a smart-
watch, exploiting all available sensors (tri-axial accelerometer, tri-axial magnetome-
ter, tri-axial gyroscope, GPS, light and pressure sensors). Subjects were asked to
perform specific physical activities during three different gathering phases. In the
proposed approach, data samples are first preprocessed via Principal Component
Analysis. Subsequently, the data set is used to classify the physical activities, by
using five well-known learning algorithms: C4.5, CART, Naïve Bayes, Multi-Layer
Perceptrons and Support Vector Machines. Results show that the system correctly
classifies the activities with a percentage of 95%when using a smartphone and 89%
when using a smartwatch. (Parkka et al. , 2007) estimate the intensity of physical ac-
tivity attaching accelerometers and gyroscopes to ankle, wrist and hip. The results
are compared to metabolic equivalent measures obtained by means of a portable
system used for testing cardiopulmonary exercise. Experiments are made with 11
subjects carrying out everyday tasks, including ironing, vacuuming, walking, run-
ning, and cycling on exercise bicycle (ergometer). The authors have calculated a
linear correlation between accelerometers signals and metabolic equivalent up to
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0.86. (Zhu et al. , 2015) estimate physical activities energy expenditure using wear-
able devices in different activities: walking, standing, climbing upstairs or down-
stairs. More specifically, a Convolution Neural Networks is used to automatically
detect important features from data collected from triaxial accelerometer and heart
rate sensors. The results are compared with the state-of-the-art of linear regression
and artificial neural networks applied to specific activities, obtaining a mean square
error of 1.12 which is about 35% lower than existing models.

However, when the study involves the sleep quality assessment some of the
above proposed techniques are no longer valid since they are too intrusive and
may alter the sleep behavior of the subject. For this reason many of the studies
refer actigraphy, and wearable devices in general, as an alternative to well known
polysomnography, since they can provide similar insights if applied with the due
restraint. Specifically, to evaluate the sleep quality independently of the used tech-
nology, we found in literature two main approaches. The first approach is based on
measure metrics such as the time taken to initially fall asleep (sleep onset latency,
SOL), time awake overnight after sleep onset (wake after sleep onset, WASO), and
total sleep time (TST). When all these metrics are evaluated, an accurate assessment
of the person’s sleep efficiency (SE) can be made. SE is an overall measurement of
a person’s sleep quality and it simply is a ratio of the time spent asleep (TST) to
the amount of time spent in bed (SOL + WASO + TST). This method is based on
metrics used by sleep clinicians to infer if the patients do not suffer sleep problems
(Frankel et al. , 1976). The other approach is based on the classification of the sub-
jective quality ratings. The quality ratings are usually captured with self-reports via
paper-based surveys and diaries. Examples include the Sleep TimingQuestionnaire
(Monk et al. , 2003) and the Epworth Sleepiness Scale (Johns, 1991). A complemen-
tary approach involves keeping a sleep diary. While tedious to collect, a diary-based
approach has proven to be reliable (Bootzin & Engle-Friedman, 1981). Indeed, in
(Espie et al. , 1989), the authors demonstrate that daily self-report is a valid index of
sleep disturbance. Sleep diaries have also been found to be reliable for bedtime and
wake-time estimates via actigraphy (Wilson et al. , 1998) and ambulatory electroen-
cephalographic monitoring (Maquet, 2001). Nevertheless, data collected via diaries
usually present a high level of uncertainty, thus requiring adaptation. A novel trend
of work investigates explicit integration of machine learning algorithms into the
data collection process to accomplish adaptation. For example, machine learning
methods are deployed in (Huang & Oviatt, 2005) to achieve on-line adaptation to
users’ multimodal temporal thresholds within a human computer interaction appli-
cation framework. Some other work studies application of reinforcement learning
to adaptive fusion systems to perform dynamic data reliability estimation (Ansari
et al. , 1996), (Hossain et al. , 2009). A recent work also proposed using kernel-based
learningmethods to achieve adaptive decision fusion rules (Fabeck&Mathar, 2008).
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Machine learning techniques can improve the objectivity and reliability of the obser-
vations. However, since signal morphology vary widely between people, the use of
machine learning algorithms frequently implies a careful tuning of their structural
parameters. Unfortunately, this tuning is often a “black art” requiring expert expe-
rience, rules of thumb, or sometimes brute-force search (Snoek et al. , 2012). There
is therefore great appeal for approaches aimed to save the effort required in model
parameterization and management.

2.3 Traffic Congestion Estimation

Taking into account the technology involved in traffic state estimation, a number of
methods have been developed. In (Tabibiazar & Basir, 2011) probe-vehicle data is
used to determine kernel-based traffic density estimation. The method first models
the traffic data with Gaussian density (centered in the sample position with prede-
fined mean and variance) to extract the kernel parameters. Then, distance between
their localized cumulative distributions is measured and optimized, in order to ex-
tract the weights of Gaussian kernels in the estimated distribution function. The
approximation density function by optimized kernels’ weights is finally used to es-
timate the mobile vehicles density in a specific time and space. In (Kong et al. , 2009)
the traffic flow is analyzed by means of GPS and GIS integrated system. In this
approach roads are split up into segments, and mean car speed in it is estimated
using loop detectors and taxi as probe vehicles, therefrom an approach based on
Federated Kalman Filter and D-S Evidence Theory is used, to join such data. Fi-
nally, authors propose a curve-fitting method aimed to estimate mean speed in a
urban road. It uses least-square method in order to fit data coming from GPS. In
(Kong et al. , 2013) the authors pursue a road-segment average traffic velocity es-
timation, achieved through two different approaches: vehicle tracking and curve-
fitting. Experiments show how a tracking-based method usually bears higher esti-
mate accuracy but slower operational speed with respect to a model-fitting method.
In (Chen et al. , 2007) two subsequent GPS samples are used to define a vehicle
track by means of the A* algorithm. The combination of tracks velocities passing
through the road segment determines the average velocity of the current segment.
In (Zhao et al. , 2011) an algorithm is proposed to estimate the traffic flow state by
using the minimum GPS samples via a curve fitting method. The algorithm takes
into account sample frequency, the road type, and the road section length. A spa-
tial and temporal classification of road traffic state based on GPS data is proposed
in (Yoon et al. , 2007). Spatial classification aims to represent steady traffic, while
temporal classification reflects traffic speed. Authors use GPS samples to calcu-
late vehicles delay distribution over a road segment in order to classify the traf-
fic. Time-location data is converted to spatiotemporal data and then classified us-
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ing threshold-based quadrant clustering. Authors compare quadrant classifier with
maximum likelihood and maximum a priori classifiers. Traffic management sys-
tems are characterized by huge volumes of data that need to be timely analyzed
(Big data) for detecting unfolding congestion. Multi-Agents-Systems (MASs) are a
promising architecture that decompose the computation among several subsystems,
each operatingwith partial autonomy and local awareness in decentralizedmanner.
More specifically, Swarm Intelligence is a biologically-inspired paradigm according
to which self-organization and complex behavior can be realized by MASs com-
posed by agents characterized by simple behavior (Dorigo et al. , 2014). In MASs,
coordination between agents can occur in direct or indirect manner. The former
is less scalable due to the overload of communication, while the latter works bet-
ter with massive amount of agents. In the literature, stigmergy is a biologically-
inspired pattern of indirect coordination. With stigmergy, each agent leaves a sign
in a shared environment and stimulates the performance of a subsequent agent’s
action. In (Kurihara et al. , 2009) traffic congestion forecast is realized via stigmergy.
Here vehicle flow is measured via fixed on-road sensors and traffic-density is pro-
cessed via digital pheromone. Another type of service is the recommendation of a
path to avoid congestion. In (Bedi et al. , 2007) the authors proposed the DSATJ sys-
tem, which computes alternative optimum path to avoid traffic jam. Here, digital
pheromone evaporation and deposit on a virtual space mapping the roads is man-
aged. The traffic jam is detected via upper bound on the pheromone value. More-
over, diversion of traffic on the roads which had been jammed was represented by
normalization of pheromone. While this approach takes advantage fromdistributed
computation that characterizes MAS, it requires that every vehicle involved in the
analysis declares its destination and starting point. In (Caselli et al. , 2015) a traffic
lights control system based on swarm intelligence is presented. Here, control meth-
ods are divided into macroscopic and microscopic levels, and are based on stigmer-
gic evaluation of traffic flow, by using pheromones deposits characterized by evap-
oration/diffusion dynamics. In (Ito et al. , 2012) the authors assume the following
types of stigmergy: long term, short term, and anticipatory. Themain differences lie
in how and when the vehicles’ position information is stored. Long term stigmergy
is archived in a central storage, and provides stochastic traffic congestion informa-
tion to vehicles. Short term stigmergy occurswhile vehicles are sharing current data,
and drivers can choose their routes more dynamically, on the basis of such real time
information. Anticipatory stigmergy implies that vehicles can declare their desti-
nation, in order to distribute pheromones in advance and use them during routing
task. Here, aprioristic knowledge on the phenomena is then required. The authors
conducted several simulations on traffic analysis to compare the effectiveness of the
different kinds of stigmergy. The results demonstrate that only if the traffic network
is static, the combination of long term and short term stigmergy overcome the other
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kinds of stigmergy. While in (Ito et al. , 2012) the road is considered as a monolithic
structure, in (Narzt et al. , 2010) roads are divided into segments.

2.4 Pattern Analysis in Urban Mobility

The increasing volume of urban human mobility data arises unprecedented oppor-
tunities to monitor and understand crowd dynamics. Identifying events which do
not conform to the expected patterns can enhance the awareness of decision mak-
ers for a variety of purposes, such as the management of social events or extreme
weather situations (Sagl et al. , 2012). For this purpose GPS-equipped vehicles pro-
vide a huge amount of reliable data about urban human mobility, exhibiting corre-
lation with people daily life, events, and city structure (Veloso et al. , 2011). The ma-
jority of the methods approaching the analysis of vehicle traces can be grouped into
three categories: cluster-based, classification-based, and pattern mining-based; whereas
the main application problems include the hotspot discovery, the extraction of mo-
bility profiles, and the detection and monitoring of big events and crowd behavior
(Mazimpaka & Timpf, 2016). In this context, the wide availability of taxi trip data
has produced a significant number of works aimed to mine urban dynamics by ex-
ploiting this kind of data. For example, in (Kuang et al. , 2015) the authors use a
Multiscale Principal Component Analysis to analyze taxi GPS data in order to de-
tect traffic congestion. In (Peng et al. , 2012) the authors use non-negative matrix
factorization (NMF) algorithm to decompose taxi activity levels and extract three
basic patterns. Those patterns represent respectively: (i) commuting between home
andworkplace, (ii) business traveling between twoworkplaces, and (iii) leisure trips
from or to other places. Furthermore, authors model the relative daily deviation of
the traffic flow in each category. In (Zhang et al. , 2015) authors analyze taxi traces in
order to model the typical pattern of passenger flow in an urban area; by applying
this model authors were able to compute the probability that an event happened,
and measure the impact of the event by analyzing anomalous patterns in passen-
ger flow via Discrete Fourier Transform. An Interactive Voting-based Map Match-
ing Algorithm is used in (Pan et al. , 2013) to map GPS trajectories. This mapping
is aimed to characterize typical drivers’ behaviors and discover abnormal ones. Fi-
nally, the authorsmine the cause of the anomaly by checking data gathered by social
networks.

One of the main issues concerning the analysis of this kind of data is their di-
mensionality. Many approaches handle it by focusing on specific areas (hotspots)
whose high concentration of events or samples can summarize the most relevant
dynamics occurring in data (Hu et al. , 2014). In the literature, urban hotspots are
typically divided in two categories: (i) regular and (ii) occasional. Areas compris-
ing many points of interest such as movie theaters, commercial buildings, hospi-
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tals, schools, colleges, etc. are prime examples of regular hotspots. Occasional
hotspots are those areas where any incident has taken place. An incident is de-
fined as an unexpected event that temporarily disrupts the mobility flow, e.g., car
crash, marathon, VIP passing area, etc. However, the most of the studies firstly
consider regular hotspots. Li. et al (Li et al. , 2012) proposed and developed an
improved auto-regressive integrated moving average (ARIMA) for detecting urban
mobility hotspots using taxi GPS traces; moreover, the patterns of pick-ups occur-
ring in these city locations are extracted and analyzed. Other works, such as the
one from Makrai (Makrai, 2016), provide a statistical approach for the detection of
hotspots inNewYorkCity bymeans of a distributed environment. Authors in (Keler
& Krisp, 2016) use OPTICS in order to exploit taxi drop-off positions, extracting
hotspots from density-connected point clusters. Cluster results are then assigned
as daily taxi drop-off hotspots. Recently, Lu et al. (Lu et al. , 2016c) developed a
monitoring system performing spatiotemporal analysis on taxi trip data to find sea-
sonal hotspots. This result is achieved by using DBSCAN clustering algorithmwith
pick up and drop-off locations every fixed amount of time. However, due to the
complexity of mobility data, the modeling and comparison of their dynamics over
timeremain hard to manage and parametrize (Castro et al. , 2013).

2.5 Distributed Target Detection with Swarm of UAVs
According to (Senanayake et al. , 2016), target search is the discovery of targets lo-
cated in an unstructured environment, with no prior knowledge about their location
and about the obstacles layout. The quality of the process can be measured bymini-
mizing the overall time needed for completing the mission. A target search mission
with swarms of robots (agents) can be defined according to (i) the number of targets
and agents; (ii) the mobility of targets; (iii) the complexity of the environment; (iv)
the prior knowledge about the target; (v) the type of swarm coordination.

Several research has been developed in the field, considering various problem
setups when addressing the problem of target search. Such works either describe
working systems, or focus on a single specific challenge to be studied. Thus, some
systems have been deployed and tested in real-life scenarios, while others remain
theoretical approaches. Among the proposed systems some approaches are tailored
to suit requirements of a specific kind of event and are therefore domain specific. A
recent survey (Zhang & Mehrjerdi, 2013) attempted to discuss the qualitative dif-
ferences among the approaches using a taxonomy. For the sake of brevity, in this
subsection some relevant works in the field are briefly summarized, discussing dif-
ferences and similarities with our approach.

Table 2.1 shows a structured view of the techniques for coordinating swarms
of UAVs according to (Gazi & Passino, 2011). Specifically, the formation control fo-
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cuses on the spatial arrangement of the UAVs, and it can be distinguished as Virtual
Structure, Leader Following or Flocking. Virtual Structure represents the formation by
means of the reference points of a basic geometric structure (Krick et al. , 2008). It
is useful when constraints on the mutual distance between UAVs should be man-
aged (Zhang & Mehrjerdi, 2013). However, when obstacles are present, complex
and multiple maneuvers are needed to recover the predefined arrangement. With
Leader Following the drones keep a relative distance and angle from a leader, which
has a higher awareness of the search field or a better equipment (Qiu &Duan, 2017).
However, the leader can easily become a point of failure of the entire swarm due to
its control (Dang & Horn, 2015). A more flexible schema is Flocking, which is still
based on mutual distances among drones, but with a dynamic rearrangement ca-
pability based on: (i) maintaining the heading of flockmates, (ii) avoiding collisions
and (iii) attempting to remain in range between them (Reynolds, 1987a), (Hauert
et al. , 2011), (Cimino et al. , 2015c), and (De Benedetti et al. , 2017).

A Trajectory Following strategy aims at determining the path toward the targets
by defining the swarm collective motion explicitly (Viguria et al. , 2010), or by us-
ing macroscopic rules such as the artificial potential (Qu et al. , 2015),(Luo & Duan,
2013). However, it requires the knowledge of the scenario layout in order to steer the
swarm. Thus, it is not suitable for our research purpose. Similarly, with approaches
based on Swarm Aggregation the ultimate goal of aggregation is to form a single ag-
gregate that contains all the agents in a specific known location (Wilson et al. , 2012),
(Soysal & Şahin, 2006).

Stigmergy is a mechanism aimed at achieving swarm coordination in collective
tasks, such asSocial Foraging. Specifically, each agent of the swarm releases a pheromone
mark in a shared medium while performing a given action. The pheromone acts as
a stimulus, i.e. other agents that perceive it will follow the pheromone trail toward
the area where the target is located (Chi et al. , 2014), (Sauter et al. , 2005b), (Cimino
et al. , 2016).

In theDistributed Agreement or Consensus, the agreement in the swarm is achieved
if the variables of interest of all drones converge to the same value. These variables
can represent the state of the agent, e.g. its heading or its current behavior (Kurdi
et al. , 2016), or the state of the overall scenario, e.g. the nature of the targets (Han &
Chen, 2014). A consensus-based approach for collaborative UAVs search provides
an evident advantagewhen dealingwith uncertainty about the target detection pro-
cess (Sharma et al. , 2010). However, this situation is out of the scope of this paper.

The Swarm Tracking problem is based on the generalized pursuit-evasion prob-
lem for multi-agent systems. It assumes the existence of a moving target which is
trying to evade the capture by the agents (Lee et al. , 2010), (Cui et al. , 2016), (Mi-
naeian et al. , 2016). This research does not fit our requirements, since we assume
that targets are static.
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Table 2.1 summarizes the above presented taxonomy, which is provided accord-
ing to (Yan et al. , 2013), (Senanayake et al. , 2016), and (Gazi & Passino, 2011).

Table 2.1: Characterization and qualitative comparison of the approaches aimed at
coordinating a swarm of UAVs.

APPROACH MAIN ADVANTAGES MAIN DISADVANTAGES
Formation Control:
Virtual Structure
(Krick et al. , 2008)
(Zhang & Mehrjerdi,
2013)

Consistent swarm perfor-
mance in clear search space

Complex management of obsta-
cles. Limited flexibility and scal-
ability

Formation Control:
Leader Following
(Qiu & Duan, 2017)
(Dang & Horn, 2015)

Flexible formations. No
apriori knowledge of the
search field layout

Single point of failure (the
leader). No feedback from the
followers to the leader to adjust
the formation

Formation Con-
trol: Flocking
(Hauert et al. , 2011)
(De Benedetti et al. ,
2017) (Cimino et al. ,
2015c)

Dynamic formations rear-
rangement. No apriori
knowledge of the search
field layout

Poor predictability of the overall
swarm behavior

Trajectory Following
and Artificial Poten-
tial (Qu et al. , 2015)
(Luo & Duan, 2013)

Efficient building of the
search path

Easy to fall into local minima.
Path or potential fields are
explicitly defined according to
search field layout

Swarm Aggregation
(Wilson et al. , 2012)
(Soysal & Şahin,
2006)

Predictable swarm perfor-
mance

Requires the apriori knowledge
of the targets positions. May
require the synchronization
among agents

Stigmergy (Sauter
et al. , 2005b) (Chi
et al. , 2014) (Cimino
et al. , 2016)

No apriori knowledge of
the search field layout

Poor predictability of the overall
swarm behavior

Distributed Consen-
sus (Kurdi et al. , 2016)
(Sharma et al. , 2010)

Handle uncertainty in tar-
get detection High communication rate

Swarm Tracking (Mi-
naeian et al. , 2016)
(Lee et al. , 2010)

Handle mobile target Complex scalability, especially
with multiple targets

According to the characterization provided in this literature review, flocking and
stigmergy should properly fit an autonomous targets search in unknown environ-
ment, thus further investigation in this direction is addressed.
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2.6 Swarm of Robot Coordination

The potential of robot swarms has been acknowledged as one of the ten robotics
grand challenges for the next 5-10 years that will have notable socioeconomic im-
pact (Yang et al. , 2018). Indeed, nowadays swarms of robots are starting to become
an important part of industrial activities such as warehouse logistics (D’Andrea,
2012; Liu et al. , 2017). However, many important aspects of robot swarms which
would need to be considered in realistic deployments are either underexplored or
neglected (Castello et al. , 2016). The are two main reasons (Yang et al. , 2018): The
first one is due to scalability issues. As the size of the swarm increases, the num-
ber of interactions grows exponentially, and tools to analyze them more precisely
are lacking. Second, and foremost, because there is no consensus on how to design
systems that include perception, action, and communication among large groups
of robots. Currently, one of the main study areas of swarm robotics systems is on
foraging behaviors. Foraging is the set of actions to explore and collect objects or
information scattered in an environment. Foraging tasks can be projected to more
complicated problems (e.g., exploration vs exploitation trade-offs, consumer and
producer models, etc.), and currently they are one of the main benchmarks to eval-
uate swarm robotics systems (Lu et al. , 2018). Applications of swarm robotics for-
aging are wide-ranging from carrying objects and tokens to specific target locations
(Dorigo et al. , 2005; Castello et al. , 2016) to rescuing natural disaster victims (Pay-
ton et al. , 2005). The similarity among these examples is that robots always leave
from and return to a common central location (e.g., nest, headquarters, etc.). Central
Place Foraging (CPF), as it is called, is in fact the most studied foraging approach
in the field (Winfield, 2009; Brambilla et al. , 2013b; Castello et al. , 2016). Although
CPF provides good results in simple missions and indoor scenarios, the overall per-
formance (e.g., tokens collected, packages delivered, etc.) of the swarm decreases
when the size of the scenario or the number of robots grow (Lu et al. , 2016b; Zia
et al. , 2017). Due to this phenomenon, CPF-based systems might be inadequate for
deployment in larger, more dynamic areas such as big cities or vast urban environ-
ments (Salvini, 2018). However, one possible solution to this issue could beMultiple
Place Foraging (MPF). MPF is a bio-inspired problem (Schmolke, 2009) that relies
on multiple nests rather than one central depot. Nests are scattered across the area
and each robot inside the swarm can change its correspondent nest depending on
its location and energy status (Lu et al. , 2016a, 2018). One of the main coordination
mechanisms to steer the swarm is stigmergy (Zedadra et al. , 2015). With stigmergy,
pheromones are released in a shared environment and are used as a type of indirect
communication. Theoretically, CPF and MPF have a very similar set of parameters
(Lu et al. , 2016a,b). However, MPF-based research has not been conducted outside
simplistic scenarios (Halasz et al. , 2007; Berman et al. , 2008) and therefore further



2.6 Swarm of Robot Coordination 27

studies are required to test its feasibility.





Chapter 3

Design

The computational approach aimed at matching time series presented in this study
is called Stigmergic Receptive Field (SRF). This is designed to provide a general pur-
pose measure of similarity for spatio-temporal dynamics occurring in the analyzed
data. Figure 3.1 illustrates the architecture of an SRF, which is made of six main
subsystems, i.e., clumping, marking, trailing, similarity, activation, and adaptation.
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Figure 3.1: Architecture of a Stigmergic Receptive Field.

Input samples are firstly treated by the Clumping process. It is aimed to reduce
microfluctuation in data while highlighting the dynamics occurring in correspon-
dence of relevant information levels. In correspondence of each clumped sample,
a mark (i.e. a trapezoid) is released in a bidimensional virtual environment by the
Marking process. The Trailing process aggregates the marks in proximity with each
other in the trail, whose intensity decreases with time. Thus, only mark subse-
quently deposited in proximity with each other’s results in a consistent trail, which
can be considered as a short-term memory summarization of the spatiotemporal
dynamism occurring in data. Both time series (d(k), d̄(k)) provided to the SRF un-
dergo these processing stages independently until the Similarity process compares
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their trails. Finally, the Activation process enhances only relevant similarity values
whereas decrease the irrelevant ones.

The proposed mechanism works if structural parameters are correctly adapted
for the given application context. Determining such correct parameters is not a sim-
ple task since different indicatorsmay have different dynamics. For this purpose, we
adopt a tuning mechanism based on the DE. In the next subsections, each module
and subsystem is precisely described, by using a pilot data sample. In the following
paragraph each of these modules is detailed.

3.1 Clumping, Unbiasing, Activation

At the input/output interfaces of a module, the input/output data may be treated
with an S-shaped function. This is used for a better efficiency and alignment of the
processing layers. Moreover, it let an input signal to reach a certain level before a
processing layer passes it to the next layer, and allows a better distinction of the crit-
ical phenomena during unfolding events, with a better detection of the progressing
levels. In Fig. 3.2 the effect (bold line) of the S-shape function on a real value time se-
ries (dotted line) is shown; here, every sample greater (lower) than a given threshold
(i.e. 0.5) is enhanced (decreased).

Figure 3.2: Example of application (bold line) of an S-shape function to an time series
(dotted line).

The S-shaped function can be implemented by means of 2 functions:

• An S-shaped function (Eq. 3.1), parametrized with the parameters α and β by
means of which the input values smaller (larger) than (β− α)/2 are lowered
(raised); values smaller (larger) than α (β) assume the minimum (maximum)
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value, i.e., 0 (1).

0, x ≤ α

2 · (x− α)2

(β− α)2 , α ≤ x ≤ (α + β)

2

1− 2 · (x− α)2

(β− α)2 ,
(α + β)

2
≤ x ≤ β

1, ≥ β

(3.1)

(3.2)

(3.3)

(3.4)
(3.5)

• A Sigmoidal function (Eq. 3.6) in which α β correspond to the sigmoid inflec-
tion points (αa,βa).

f (x, αa, βa) =
1

(1 + e−αa(x−βa))
(3.6)

According to the phase of the data processing in which this module is used, its
aim, and so its name, will differ:

• Clumping: it is used at the initial phase of the data processing in order to un-
dergo the input data to a soft discretization with respect of a number of lev-
els; the levels correspond to the relevant ranges of values for the analysis (e.g.
noise/relevant/outlier or low/medium/high). The number of S-shaped func-
tions here corresponds to the number of levels.

• Unbiasing: it can be used in between of the data processing phases, in order to
treat the semi-processed data and enhance (neglect) the relevant (insignificant)
values, i.e. higher (lower) than a given threshold.

• Activation: it is used at the end of the data processing phases, in order to en-
hance (neglect) the relevant (insignificant) output values, i.e. higher (lower)
than a given threshold.

3.2 Marking and Trailing

The Marking takes a clumped sample dc(k) of a normalized input time series d(k),
and releases a mark in a marking space whose codomain is called intensity (Cimino
et al. , 2015b). The mark has five structural attributes: the center position pc, the
intensity I, the mark top, and bottom width, and the mark evaporation δ. The mark
shape is a trapezoid, whose parameters allows to generalize both a rectangle (i.e.
a mark with a uniform surface) and a triangle (i.e. a mark with the maximum in-
tensity only in the position of the deposits). In Fig. 3.3 (a) shows, in thick line, we
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depict the mark released in correspondence of a sample, with top width equal to
zero (i.e. a triangle) and a bottomwidth equal to ε. The Trailing process handles the
aggregation of multiple marks (i.e. the summation of their intensities) in the trail
while the evaporation keeps decreasing the contribution (i.e. the intensity) of each
subsequent deposit (Fig. 3.3 (b)). The parametrization of themarks enables their ag-
gregation in the trail, given their spatial proximity (i.e. the mark width) and deposit
frequency (i.e. the mark evaporation), providing the analysis with an information
spatiotemporal granulation.

Figure 3.3: Example of a mark before and after the evaporation (a), and a trail ob-
tained by depositing 3 marks (b).

3.3 Similarity

The Similarity process compares two trails (T1, T2) using the Jaccard coefficient (Peng
et al. , 2016) as defined in Eq. 3.7. The resulting value ranges from 1 (identical trails)
to 0 (completely different trails).

S =
|T1 ∩ T2|
|T1 ∪ T2|

(3.7)

We adopt the notions of intersection and union from the fuzzy logic, thus the
intersection of the two trails is their element-wise minimum, whereas their union is
represented by the array of their element-wise maximum (Fig. 3.4).

3.4 Adaptation

In order to have an effective similarity computation, i.e. computing it in accordance
with the features we are looking for in the time series, the SRF should be properly
parameterized. For example, low trail evaporation causes early activation, whereas
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Figure 3.4: The comparison of 2 trails by means of the Jaccard similarity.

high trail evaporation generates a trail consisting of the latest marks only, and pre-
venting trail reinforcement. Specifically, the SRF parameters are: (i) the clumping
inflection points αc1, βc1, ..., αcn, βcn; (ii) the mark top and bottom widths εt, εb; (iii)
the evaporation δ; and (iv) the activation inflection points αa, βa. The SRF parame-
ters are adjusted by the Adaptation process. It uses the Differential Evolution (DE)
algorithm (Cimino et al. , 2015b), in order to minimize Mean Square Error (MSE, Eq.
3.8), which is computed as the difference between desired (a′(h∗)) and actual (a(h∗))
output value on a training set of N labeled couples of time series ({a(k∗), a′(h∗)}).

Fitness = ∑N
i=1(|a(i∗)− a′(i∗)|2)

N
(3.8)

3.5 From the SRF to the Stigmergic Perceptron
Let us suppose to have a pure form time series which embodies a behavioral class
(i.e., an archetype). The SRF candetect this specific behavior in the actual time series,
by processing it together with the archetype, once the SRF has been specialized to
unfold the features of the archetype itself (via adaptation). A set of SRFs aimed to
recognize these archetypes can be arranged into a connectionist topology, obtaining
a Stigmergic Perceptron (SP) (Alfeo et al. , 2018). By forming a linear combination of
the SRFs outcomes, the Stigmergic Perceptron provides an assessment of the current
behavior of the input time series among all the classes provided.

Specifically, the output of the SP is calculated as the average of the SRFs enumera-
tions (represented as 1-to-Nwhere N is the number of archetypes in our application
case) weighted by their output similarities (Eq. 3.9). The SP output is called activity
level and is defined between 0 and N (i.e., the number of archetypes).

ActivityLevel = ∑N
i=1(a(i) ∗ i)

∑N
i=1(a(i))

(3.9)

In order to prevent multiple activations of SRFs in the same SP, in this configu-
ration their Adaptation process is a two phases procedure: (i) the Global Training
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Figure 3.5: The architecture of a Stigmergic Perceptron.

phase is aimed to provide a suitable interval for each SRFs parameters according to
their sensitivity; specifically, the interval for the evaporation rate, that is the most
sensitive SRF parameter, is determined considering the narrowest interval includ-
ing the fitness values above the 90th percentile, while the intervals for the other pa-
rameters can be provided according to the application domain constraints; (ii) the
Local Training phase is aimed to find the optimal values for every parameter and
each SRF by exploiting their Adaptation process and the interval determined in the
Global phase; the training set for each SRF is made by half signals belonging to its
behavioral class, and half belonging to the behavioral classes of adjacent SRFs.

Assuming to split a long time series according to a time window and pass them
to a properly trained SP, this will transform the sequence of shorter time series in
a new time series of archetypal similarity, that can be considered as a higher level
characterization of the dynamics occurring in the time series.

Being a time series, even the SP output can be treated with the SRF providing a
higher level similarity that can be profitably exploited by clustering techniques (see
Chapter 4).

3.6 Bidimensional Stigmergy

What has been presented so far allows computational stigmergy to work with one-
dimensional dynamics (real values time series). However, the same mechanism of
aggregation and evaporation can be proposed in themultidimensional (for example
in the two-dimensional) space in order to detect or enhance the dynamics of space-
time on areas or planes.
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Figure 3.6: The stigmergic aggregation in a bidimensional space.

During each step of the analysis, samples corresponding to a given time slot are
provided to the system and processed by a four-stages procedure. At the beginning,
the Smoothing process removes irrelevant samples’ values andhighlights significant
ones (Fig.3.6b)), by treating them with a sigmoidal function (Eq. 3.6). The marking
process releases a mark in a tridimensional spatial environment in correspondence
of each smoothed sample position (Fig.3.6(c)). Each mark is defined by a truncated
cone with a given width and an intensity (height) equal to the sample value. The
marks aggregate form the trail, whose intensity is subject to evaporation, i.e., the trail
intensity is decreased by a constant value δ at each step of the analysis (Fig.3.6(d)).
Eq. 4.12 describes the trail T at time instant i.

Ti = (Ti−1 − δ) + Marki (3.10)

This approach produces a two-dimensional stigmergic trail which, just as in the
one-dimensional case, unfold and summarize the spatiotemporal dense pattern in
data. Indeed, it has been used to unfold hotspots in taxi activity and characterize
the mobility of group of users (see Chapter 4).

A completely different application based on two-dimensional stigmergy is the
exploration of unknown environments via swarms of drones. Here, the stigmergic
trail acts as a short-termmemory of the recently found targets in the search area. By
following the trail other drones are pushed toward the part of the scenario with the
higher probability of target presence.

During the Ph.D.many arrangements the above presented architecturalmodules
has been tested, with different aim according to the application considered.

In order to highlight the benefits provided by our approach, the following chap-
ter summarizes those applications and the obtained results.





Chapter 4

Applications

In this Chapter each application of the methodology presented in the former chap-
ter is detailed. The arrangement of the applications is chosen according to their
field. Specifically, we start with the problem of assessment of trend in technological
indicators, it follows the applications concerning the behavioral analysis via physio-
logical signals, then the applications targeting the event detection in urbanmobility,
and finally the application on the coordination of swarm of robots and UAVs.

4.1 Assessing the Trend of Innovation Indicators

Problem Statement

After years of economic crisis and the resulting reduction of resources available for
research and development investments, Smart Specialization has immediately be-
come a very relevant concept to get these two questions answered (Bellini, 2016).
It represents an important chance for a progressive economical restart. In order to
develop a policy prioritization logic to foster regional growth is important to have
a deep knowledge of the potential evolutionary pathways related with the existing
dynamics and the structures at regional level (McCann & Ortega-Argilés, 2015).

With this in mind, each region should initiate this process using knowledge-
based sectors as points of reference where it already has a coherent "critical mass"
or, at least, capabilities that refer to potential exploitable through right and targeted
investment. On this line, the European Commission has established a program la-
belled ‘Smart Specialization’, consisting in a set of policies and guidelines aimed
to promote the efficient and effective use of public investment in research and de-
velopment (R & D). Smart Specialization is defined as “an industrial and innova-
tion framework for regional economies that aims to illustrate how public policies,
framework conditions, but especially R & D and innovation investment policies can
influence economic, scientific and technological specialization of a region and con-
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sequently its productivity, competitiveness and economic growth path. It is a logi-
cal continuation in the process of deepening, diversifying and specializing of more
general innovation strategies, taking into account regional specificities and inter-
regional aspects, and thus a possible way to help advanced economies (as well as
emerging economies) to restart economic growth by leveraging innovation led /
knowledge-based investments in regions” (Perianez-Forte & Cervantes, 2013). The
long term aim of this work is exploring whether - and to what extent - different
policies of ‘technological specialization’ and ‘technological diversification’ pays off
in term of wealth creation at regional level. Then, we want to provide policy makers
with computerized support in the analysis of innovation-relevant trends (Jin et al. ,
2014).

Proposed Approach
It is known that diversification and specialization of patents applied in a regionmea-
sure the Innovation of the region itself. Thus, it is important for a policy maker to
analyse trends of innovation, to properly address the investments. Such trends can-
not be directly sensed nor associated to the innovation. For this purpose, there are
three important indicators which quantify innovation: specialization (S), related va-
riety (R), and unrelated variety (U). The study of such Trends by the Policy Maker is
fundamental to recognize scenarios of interest, i.e., the ways in which special situa-
tions may develop. Example of scenarios of interest are: (i) R or U decreases, while
S increases; (ii) R or U decreases, while S is stable; (iii) R or U increases, while S is
stable;(iv) R or U increases, while S increases. The problem is to detect variations of
an indicator in terms of increase, decrease or stability.

Toproperlymove into that direction, we start looking at this problemby analysing
the trends of the aforementioned indicators for 268 EU-27 regions over 35 technolog-
ical domains in the period 1990-2012, in order to obtain a model that can efficiently
recognize significant event. Indeed, according to the region history and characteri-
zation the same indicator behavior may be significant in one region and not in an-
other. For this purpose, we have designed an approach based on SRF.

In Fig. 4.1 we show the architecture of the approach used to analyze those trend.
Specifically, at the input/output interfaces of each subsystem, an unbiasing module
is used for a better efficiency and alignment of the processing layers. This lets an in-
put signal to reach a certain level before a processing layer passes it to the next layer,
and allows a better distinction of the critical phenomena during unfolding events,
with a better detection of the progressing levels. Themarking subsystem transforms
input data into marks, whereas the trailing subsystem aggregates and evaporates
marks as a track in the stigmergic space. The prototyping subsystem provides a sim-
plified version of the track. It is a vehicle of abstraction, leading to the emergence
of high-level information. The dissimilarity subsystem evaluates the difference be-
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Figure 4.1: Architectural overview of our data analysis system based on Stigmergy.

tween consecutive prototypes in order to extract trend information of the indicators.
The proposed mechanism works if structural parameters are correctly adapted for
the given application context. Determining such correct parameters is not a simple
task since different indicators may have different dynamics. For this purpose, we
adopt a tuning mechanism based on the DE (version DE/1/rand-to-best/bin).

Obtained Results

The case study is based on a data set that contains the three annual indicators S,
U, R, monitored for 15 years for 200 European Regions. The dataset contains 9000
samples. For each year we grouped regions via k-nearest neighbour algorithm. For
each group we computed the annual mean µ and the standard deviation σ. We
also determined that the resulting indicator samples are well-modelled by a normal
distribution, using a graphical normality test. Finally, monthly samples have been
derived considering normal distribution with mean and variance µ/12 and σ2/12,
respectively. To choose the best value of CR and F, we first performed trials with
CR in [0.3, 0.6, 0.9] and F in [0.4, 0.6, 0.8]. For each experiment, 5 trials have been
carried out, by using the 20% of the dataset as a training set, and the remaining
80% as a testing set. We also determined that the resulting MSE samples are well-
modelled by a normal distribution, using a graphical normality test. Hence, we
calculated the 95% confidence intervals. Table 4.1 shows the results in the form
“mean ± confidence interval”. The best performance has been with CR=0.6 and
F=0.6.

In order to assess the effectiveness of the approach, we adopted a 5-fold cross-
validation. Indeed, each evaluation is also dependent on the data points, which
end up in the training and test sets. For each trial, the training and test sets consist,
respectively, of randomly extracted 20% and 80%of the original data. We carried out
each trial 5 times. Table 4.2 summarizes, for indicator U, the results in terms ofmean
and standard deviation of the MSE for each trial. The low values of the MSE, for all
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Table 4.1: 95% confidence interval of the MSE for the best setting of differential
weight (F) and crossover rate (CR).

trials and for both training and testing sets, highlight the effectiveness of the system
in terms of both performance and generalization properties. We replicated the same
experiments and achieved similar performances for the other indicators. Finally, to
highlight the great benefits of the adaptation subsystem, we also computed theMSE
for the worst case of Table 4.1 (i.e., Trial 5), by using manual adaptation: this results
in an MSE of 0.106, which is very higher than 0.022.

Table 4.2: MSE (mean± confidence interval) for each trial extracted via 5-fold cross-
validation, averaged over 5 repetitions.

Trial Training Set Testing Set
1 0.011 ± 0.010 0.018 ± 0.004
2 0.010 ± 0.010 0.020 ± 0.003
3 0.009 ± 0.006 0.020 ± 0.008
4 0.008 ± 0.008 0.020 ± 0.005
5 0.010 ± 0.007 0.022 ± 0.008

The experimental results show that using 20% of the data set as training set to
recognize trends ranging from -1 to 1, the system achieved an MSE of 0.02. Thus,
the proposed system appears to be profitability used to detect the trends of three
different patent-based indicators.
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4.2 Assessment of Sleep Quality

Problem Statement

One of themost importantmarkers of a healthy lifestyle is represented by the quality
and quantity of sleep. These factors directly affect the waking life, including pro-
ductivity, emotional balance, creativity, physical vitality, and the general personal
health. Indeed, poor long-term sleep patterns can lead to a wide range of health
related problems, such as, high-blood pressure, high stress, anxiety, diabetes and
depression (Chen et al. , 2013). In this context, the monitoring of sleep patterns be-
comes of major importance for various reasons, such as the detection and treatment
of sleep disorders, the assessment of the effect of different medical conditions or
medications on the sleep quality, and the assessment of mortality risks associated
with sleeping patterns in adults and children (Metsis et al. , 2014). Traditionally,
the Polysomnographic (PSG) recordings have been widely used in order to infer the
sleep quality (Åkerstedt et al. , 1994). In this regard, the quality measure is usu-
ally captured with self-reports via paper-based surveys and diaries that, although
being difficult and tedious to be collected, represent a reliable source of informa-
tion (Bootzin & Engle-Friedman, 1981). Nevertheless, sleep diaries can be affected
by cognitive bias related to the subject’s sleep perception.

In recent years, because of the development of ubiquitous technology in health
care, the research effort involving non-invasive sensors to assess and report sleep
patterns is actively progressing. A relevant source of information on sleeping is
represented bymotion data coming fromworn inertial sensors (i.e., accelerometers)
embedded in smartphones or wristbands (Ong & Gillespie, 2016).

While commercially available activity trackers based on wearable devices can be
considered valid formeasuring sleepphases andheart rate (HR) during sleep (deZam-
botti et al. , 2016), there exist many sleep analysis algorithms that, exploiting smart-
phone sensors only, have not been validated by scientific literature or studies (Ong
& Gillespie, 2016). This is even more evident when considering long-term analysis.
Many people track their sleep through mobile and wearable technology, together
with contextual information that may influence sleep quality, like exercise, diet, and
stress. However, there is limited support to help people make sense of this wealth
of data, i.e., to explore the relationship between sleep data and contextual data. In
(Liang et al. , 2016), authors try to bridge the gap between sleep-tracking and sense-
making through the design of a web-based tool that helps individuals understand
sleep quality. However, an automatic tool able to monitor the sleep over the long
period and give a user-tailored quality measure is still missing.

Indeed, most sleep scoring algorithms provide a threshold based analysis of sub-
ject’s activeness during the whole night. Unfortunately, due to peculiarities of each
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subject’s sleep, same thresholds cannot be effective for any user nor exhaustive for a
sleep behavior analysis. As an example, same rem sleep ratio values can be obtained
with nights characterized by different number and duration of Rem-NonRem cycles,
which is an important behavioral difference. In contrast with more traditional scor-
ing algorithms, novel machine learning approaches can provide greater accuracy
due to their ability to generate nonlinear classification borders (Sadeh, 2011); more-
over, they can improve the objectivity and reliability of the observations (Khaleghi
et al. , 2013). On the other hand, the use of machine learning techniques often re-
quires a careful tuning of their structural parameters, which can be provided by
employing an expert in the field or even via brute-force search (Snoek et al. , 2012).

Proposed Approach
In this work, we present an automatic tool for monitoring sleep behavior that uses
a commercially-available smartwatch, in order to sample heart rate and wrist in-
ertial data, and a novel detection technique based on stigmergic receptive fields
(SRFs). The SRF transforms an input time series into a stigmergic trail and provides
a (dis-) similarity measure against another signal trail. The dissimilarity measure is
parametrically adapted according to sleep quality annotations on a set of reference
nights. In order to prove the adaptation capability of our approach we test it on 7
different subjects (from now on referred as subject A, B, ..., G).

The proposed solution employs a smartwatch to gather subjects’ physiological
and inertial data, i.e. heartbeat rate and wrist acceleration. The smartwatch em-
beds a heart rate monitor based on an optical sensor to detect peaks in blood flow.
Thereafter it computes the heart rate over an interval of time established by the con-
structor, i.e. 1 second. The accelerometer embedded in the smartwatch measures
both static (due to gravity) and dynamic acceleration on the three axes, sampling
them at 10 Hz. These signals are splitted in time windows (1 minute each, partially
overlapping) and normalized between 0 and 1. Moreover, the acceleration signals
are summarized by the standard deviation of the accelerationmagnitude, by nowon
referred only as acceleration. Both acceleration and heart rate signals are processed
in order to derive an assessment of subjects sleep quality, which to be compared
with respect to a sleep quality ground truth.

The ground truth is obtained from early sleep quality evaluation, provided by
the subject as a Perceived Sleep Quality (PSQ) score annotated on a sleep diary. PSQ
is scored as Normal (N) or Abnormal (A). Due to possible human misperception of
sleep quality, we support the ground truth extraction from the sleep diary using
a Sleep Stage Estimator (SSE): a software aimed to analyze user sleeping behavior
based on physiological parameters (Bernardeschi et al. , 2016). The SSE provides a
Computed Sleep Quality (CSQ) score based on an estimation of wake, REM, and
NREM stages and their occurrence during the night.
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Finally, the resulting CSQ and PSQ scores are compared: any night log whose
computed scorematches the perceived sleep quality becomes an entry of the ground
truth nights set. System assessment performance will be evaluated using signals
collected during these nights, in order to assess sleep quality. More in details, the
assessment error will be computed as the mean square distance between sleep qual-
ity assessment and PSQ for each night.

Let us consider a single time series. What is actually interesting is not the con-
tinuous variation of the raw samples over time, but the transition from one type of
behavior to another. For example, from bradycardia to tachycardia or from still wrist
to moving wrist. Each type of behavior should be general and reusable for a broad
class of subjects. More formally, each type is called archetype and is a pure form
time series fragment representing a behavioral type of activity potentially occurring
in a given time window. Thus, in this work we exploit the Stigmergic Perceptron
to assess the current signal behavior (among the one provided as archetype) and a
futher SRF to distinguish the regular from the anomalous collection of behaviors.

More specifically, Figures 4.2 and 4.3 show ten and six archetypes describing
heart rate and arm motion. Here, ordered by increasing intensity, we present each
archetype together with the corresponding stigmergic trail. For the heart rate signal
we have: (Figure 4.2a) Bradycardia, that represents the lower heart rate activity level,
which is exhibited during early deeper NonRem sleep phase; (Figure 4.2b) Episodic
Burst, which depicts a single spike of the heart rate activity, a brief and sudden
increase of the heart rate; (Figure 4.2c) Lowering, which usually characterize the
deepen of the sleep in which the progressive drop of heart rate activity occurs; (Fig-
ure 4.2d) Irregular Bradycardia, instead, represents mostly high but irregular heart
rate activity characterizing full REM sleep phase; (Figure 4.2e) False Lowering and
(Figure 4.2f) False Rising depict long-lasting irregularities in heart rate behaviour;
(Figure 4.2g)Irregular Tachycardia, that represents mostly low but irregular heart
rate activity characterizing early REM sleep phase; (Figure 4.2h) Rising, which rep-
resents the progressive increase of heart rate activity characterizing the transition
to REM sleep phase; (Figure 4.2i) Episodic Drop, that represents a single brief drop
of the heart rate activity; (Figure 4.2l) Tachycardia, it represent the higher heart rate
activity.

On the other hand for wrist motion we have: (Figure 4.3a) Still, which represents
the complete paralysis characterizing REM sleep phase; (Figure 4.3b) Short Move,
that depicts a brief and isolatedmovement; (Figure 4.3c) IntermittentMotion, which
represents the occurrence of somemovements characterizing early sleep phase; (Fig-
ure 4.3d) Long Pause that depicts long-lasting stop of wrist motion; (Figure 4.3e)
Awakening, representing a sudden and steady increase of wrist motion, usually oc-
curring during transitions from sleep to wake phase; (Figure 4.3f) Awake, in which
the high occurrence of wrist motion probes the awakens of the subject.
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Figure 4.2: Heart rate archetypes.

As an example, in Figure 4.4 we show the outcome of the SP obtained by pro-
cessing the heart rate time series in the time window corresponding to minute 318
of subject B. The SP processes this signal segment producing a value of 0.7778 as
activity level. Indeed, the highest similarity detected by the SP is produced by the
eighth SRF (i.e., the “Rising") while a minor activation comes from the seventh one.
Thus, obtained activity level measure (i.e. 0.7778) describes the assessment of signal
behavior asmostly similar to the one expressed by Rising archetype and secondly by
the “Irregular Tachycardia” archetype. Figure 4.4, we show the actual Heart Rate
Signals (bold line) together with the signal characterizing the “Rising” Archetype
(gray dotted line).

In order to supply a clustering process, the second-level SRF is trained to dis-
tinguish similar and dissimilar signals, belonging to the cluster of normal sleep and
abnormal sleep. Thus, a training set is provided selecting M (e.g. 5) nights of known
sleep quality from the ground truth. The target similarity for a couple of similar or
dissimilar nights is assumed to be 1 or 0, respectively.

The similarity between pairs of signal generates a similaritymatrix, which is then
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Figure 4.3: Arm motion archetypes.

Figure 4.4: The processing of the heart rate time series in the time window corre-
sponding to minute 318 of subject B.

processed by a fuzzy relational clustering technique (Cimino et al. , 2006). The fuzzy
clustering generates, for each night, a membership degree to each sleep quality. In
particular, let us consider the membership to the Normal sleep cluster to generate a
normality index for each sleep night.

Finally, the Normality index obtained by Heart Rate and arm motion are com-
bined via a weighted sum, obtaining an overall Sleep Quality Assessment. Sleep
Quality Assessment is defined as a real value between 0 (Abnormal) and 1 (Normal).
The weights are generated by minimizing the assessment error via Least Square
Method (Hager, 2012). An interesting property of the proposed approach is that
the provided mapping is not explicitly modeled at design-time but achieved by the
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system in order to meet subject behavioral peculiarities.
The overall system architecture is shown in Fig. 4.5.

Figure 4.5: The overall signal processing architecture.

Obtained Results

The system analyzed data collected in 20 nights by seven subjects: a man aged 72
(subject A), a 22 year old student (subject B), a woman aged 88 affected by arterial
hypertension (subject C), a 36 years old man (subject D), two 21 years old students
(subject E and G), and a man aged 30 (subject F). Their perceived sleep quality has
been used togetherwith the sleep stage estimator, to extract the sleep quality ground
truth (i.e. the nights characterized by a reliably known sleep behavior).

To show the effectiveness of our approach, we present the difference between
the target and the calculated normality index for both the DTW distance and the
SRF stigmergic similarity, for each subject and for each sleep night. We measure the
performance obtained by using the SRF based approach in terms of assessment, by
employing the Mean Square Error computed on the Normality Index Error values.
Table 4.3 shows the Mean Square Error for both approaches, highlighting how the
SRF based approach outperforms the DTW distance.

In order to test our system in terms of percentage of correctly classified nights
(i.e. accuracy), we approximate the assessment of each night to its nearest integer
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Table 4.3: Mean Square Error in sleep quality assessment via DTW and SRF-based
approach.

Approach Subject Mean Std
A B C D E F G

DTW 0.247 0.059 0.176 0.138 0.243 0.251 0.196 0.187 0.070
SRF 0.195 0.052 0.120 0.112 0.212 0.238 0.185 0.159 0.066

and compare it with target night classification. To this end, we compare our ap-
proach with state of the art classifiers, besides the DTW approach. In particular, we
exploited the WEKA data mining software (Hall et al. , 2009) to select the best per-
forming classifiers among the four most used families of learning schemes used in
literature for similar scenarios: Bayesian frameworks, function-based (e.g., logistic
regression, multilayer perceptron, SGD, SMO, etc.), rule-based, and tree-based. We
trained the systems using as features the percentage of wake time, the percentage of
rem time and the time to sleep, obtainedwith the previously introduced Sleep Stage
Estimator (Bernardeschi et al. , 2016). The comparing systems have been selected as
the best performing of each classification family using a 10 fold cross-validation over
the entire ground truth dataset. With this method, the original sample is randomly
partitioned into 10 equal sized subsamples. Of the 10 subsamples, a single subsam-
ple is retained as the validation data for testing the model, and the remaining 9 sub-
samples are used as training data. The cross-validation process is then repeated 10
times (the folds), with each of the 10 subsamples used exactly once as the validation
data. The resulting systems chosen for the comparison are:

• Bayesian: BayesNet - A Bayes Network learning using various search algo-
rithms andqualitymeasures. This algorithmconsiders two assumptions: nom-
inal values and no missing values. For estimating the conditional probability
tables of network, simple estimator and K2 search algorithm are used to run
the BayesNet (Cooper & Herskovits, 1992). This Bayes Network learning algo-
rithm uses a hill climbing algorithm restricted by the order of the variables.

• Functions: SGD - A Stochastic Gradient Descent for learning an SVM-based
linear model (Hinge loss) (Bottou, 2010). It globally replaces all missing val-
ues and transforms nominal attributes into binary ones. It also normalizes all
attributes, so the coefficients in the output are based on the normalized data.

• Rules: DecisionStump - It builds simple binary decision “stumps” (1-level de-
cision trees) for both numeric and nominal classification problems. It copes
with missing values by extending a third branch from the stump (i.e. treating
“missing” as a separate attribute value). It is highly capable of predicting the
decision with single input (Quinlan, 1986).
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Table 4.4: Accuracy obtained by each classifier for each user and their averages.

Subject SRF DTW BayesNet SGD Dec.
Stump

Dec. Table

10 Fold
Cross-
validation

- - 75.73 74.76 77.67 79.61

A 66.66 80 60 53.33 60 60
B 93.75 93.75 100 100 100 100
C 87.5 75 25 25 12.5 25
D 83.33 83.33 43.75 43.75 43.75 43.75
E 68.42 57.89 52.94 70.59 64.71 64.71
F 64.71 58.82 83.33 91.67 83.33 91.67
G 81.82 72.73 78.95 73.68 78.95 84.21
Average 78.03 74.50 63.42 65.43 63.32 67.05

• Trees: DecisionTable - Decision tables are one of the simplest machine learning
techniques (Kohavi, 1995). Basically, it consists of a hierarchical table in which
each entry in the higher level table gets broken down by the values of a pair
of additional features to form another table. The DecisionTable approach uses
the simplest method of attribute selection: Best First. It searches the space of
attributes by greedy hill climbing, augmented with a backtracking facility.

The first row of Table 4.4 shows the obtained performance for each selected clas-
sifier with the 10 fold cross-validation method. This validationmethod considers as
overall dataset (i.e. training, test and validation) the nights of all users together. Our
aim is, instead, to assess the sleep quality of each particular user independently. To
this end, we validated the comparing classifiers using as test set the night of each
user and as training set the night of the remaining users. The choice of a 10 cross-
fold validation (with respect to a 5 cross-fold) is further motivated by the fact that
the number of normal and abnormal nights is unbalanced. Therefore, to include the
expected variability in the examples of the "normal2 nights and at least examples of
"abnormal" nights, a larger training set is needed. Table 4.4 shows the accuracies ob-
tained by each classifier for each user and their averages (last row in the table). We
can see that our system, except for particular cases, performs better than supervised
classifiers even if using a smaller dataset. Furthermore, the proposed solution over-
comes the specificity of the selected classifiers (i.e. different classifiers performing
better on different users) offering a general framework for the sleep quality assess-
ment. Indeed, on average, it outperforms all the comparing classifiers: ∼ 4% more
than DTW and ∼11% more than the best performing classifier (DecisionTable).
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4.3 Measuring user’s Physical Activity Level

Problem Statement
Resistance and physiological reserves decrease in older people, resulting in a risk
of adverse health effects. This state of vulnerability is called frailty (Fontecha et al.
, 2011) and is assessed taking into account the physical activity level (PAL), among
other factors (Fontecha et al. , 2012). Nowadays, physicians detect frailty by means
of specialized questionnaires and physical tests performed in dedicated facilities.
However, the number of pre-frail elder people, which identifies a high risk of pro-
gressing to frailty, is increasing beyond the facilities potential. On the other hand,
human-driven test scores may be insufficient and inaccurate for detecting physi-
cal habits (Boletsis et al. , 2015), and can be affected by certain degree of subjectivity
(Jansen et al. , 2015). Today the great availability of general purposewearable devices
offers a new opportunity for noninvasive healthcare monitoring. Some watch-like
systems have been already developed to monitor specific user’s physical activities,
exploiting heart rate andmotion signals. Actually, much work has to be done before
such systems can be regularly managed: the detection of a specific physical activity
usually implies complex techniques, including machine learning and probabilistic
modelling. For a widespread adoption the system should be highly flexible, handle
uncertainty, and allow a personalization of what to monitor and how to notice it. In
this paper we propose to use a smartwatch to detect the physical activity level rather
than a specific physical activity. This approach can provide enough benefits to war-
rant widespread adoption. For this purpose, we studied a suitable computational
architecture with adaptive setting and configuration.

Proposed Approach
In the proposed architecture (Fig. 4.6), the time series generated by each smartwatch
sensor (i.e. heart rate, wrist motion and pedometer) are normalized between 0 and
1 and splitted in time series (6 minute each, partially overlapped). Then, each time
series is processed by a Stigmergic Perceptron to unfold its behavior with respect to
a set of 5 Archeypes, representing the most frequently appearing time series behav-
iors. Subsequently, the outputs of the three Stigmergic Perceptron are fused via a
weighted sum, in order to obtain a combined classification of the effort of each activ-
ity segment. Weight are set up via Linear Least Square Method, (Hager, 2012) using
a training set made by the multi-sensory input and the expected effort for each type
of physical activity, i.e. relaxing, walking, driving, stairs, biking, football, tennis,
and excursion (as reported on the subject’s diary). Finally, the real value represent-
ing the current activity segment PAL, it is passed to another SP aimed to analyze
physical activities as a macropattern, i.e., the daily PAL. Again, this SP computes a
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Figure 4.6: The architecture of our approach aimed at processing smartwatch sen-
sors signals.

macro-level similarity between two daily time series. An example of class is a Low
PAL Day, in which user does not perform any intense physical activity. Similarly, a
linear combination of similarities among each archetype (Low, Medium and High)
represents the daily PAL assessment.

Obtained Results

In order to prove the adaptation capability of our approach we test it with 3 differ-
ent subjects (from now on referred as subject A, B, and C). Specifically, Subject A is
a healthy and active 60 years man. He works and practises several sports. He does
not present any frailty symptom, and is not under drug therapy. His activities data
were been collected through smartwatch for a time period of 4 weeks of summer
2016. The activities performed and annotated on the diary spread from walking to
excursion. The output provided by the system as a PAL is a real number in the in-
terval [1,3], to represent any combination of the classes Low, Medium, High. In Fig.
4.8, each row comprises the samples related to a specific activity; each column rep-
resents a different PAL. On the top of each column, the activities with the expected
PAL are also included. In practice, any activity involves a different life cycle with
more or less different PALs (e.g. a recover process). In each row, the left and right
side of the box represent the first and third quartiles of the distribution, the band
inside the box is the second quartile (the median), while the ends of the whiskers
represent the maximum and minimum of the distribution.

Overall, the fitting between the expected and the calculated PALs for subject A
is good: the Mean Square Deviation over 165 time windows is 0.326. Indeed, we
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Figure 4.7: Physical Activity Levels of the Subject A over four weeks.

remark that relax, walking, virtual tennis, and stairs activities aremostly included in
the expected class. Not surprisingly, excursion and five-a-side football are partially
spread on the adjacent class, since the development of this kind of activities involves
recovery processeswith a lower physical. activity level. Similarly, the biking activity
is expected to range from medium to high PAL, depending on the speed and the
road slope. In contrast driving, which is an activity with constant PAL, is entirely
included in the Medium PAL and not, as expected, in the Low. A deep investigation
into the levels of processing shows that the most error for driving is located in the
sensor fusion. In general, depending on the traffic and anxiety levels, driving may
be an activity with high cognitive load, leading to a high heartbeat rate. In addition
wrist acceleration is constantly high.

Since the purpose of the system is to assess physical activity on a daily basis,
Fig. 5 shows the daily PAL computed by the system (white circles) along with the
expected PAL (black circles). It is computed as the average PAL of the timewindows
of the day. Here we remark that, in 21 days, there is only one misclassification, on
day 17. A deep investigation has shown that the error is derived by the driving
activity, which is relevant for day 17. We remark that other 3 days in which driving
was not the main activity are not affected by misclassification. Overall, the Mean
Square Deviation with respect to the expected daily PAL is 0.158. The system was
trained using 9 days (43%) of this data set.

In order to investigate the system behavior on older subjects, we have involved
other two subjects into the experimentation. A problem is that older subjects are
usually less active and less prone to manage a detailed diary. For this reason, we
used the training carried out with the subject A for the initial roll-out of the sys-
tem on the two subjects. The experimentation was made on three types of activ-
ity: relaxing, walking, and stairs climbing, and the diary entries were collected by
the observer during direct observation. Although the number of activities and the
gathering time are not relevant, results are very promising. More specifically, sub-
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Figure 4.8: Daily PAL assessment on subject A.

ject B is a 74 years old man. He is retired, and is not physically active. He does at
most 30 minutes of walking per day, for 5 days per week. He practises gardening,
and does not present any frailty symptom. Occasionally he had some fall (recently,
when taking the bus) without injuries. He is not under drug therapy. The data, on
14 time windows, were gathered on spring 2016. Each activity effort was classified
by subject B as Low for Relax, High for Walking and Stairs climbing. The system
performance is measured by a Mean Square Deviation of 0.0533.

Subject C is a sedentary 79 years old man. He is retired. He is not a very active
individual: he walks for less than 15 minutes per day, for 5 days per week. He peri-
odically does medical examinations, and is under drug therapy for blood pressure
and cholesterol lowering therapy. The data, on 12 time windows, were gathered on
summer 2016. The subject C classified his activity effort as Low for Relax and High
for Walking and Stairs Climbing. The system performance is measured by a Mean
Square Deviation of 0.0996. We remark that although both subjects have classified
the walking activity effort as high, which is different than subject A, the system has
correctly measured the walking. Actually, the direct observation of subjects B and C
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has clearly shown thatwalking requires some degree of physical effort for them. The
early results show that our system assesses PAL on how the activity is performed,
despite of activity type.

In this work an innovative computational architecture for broad-spectrum as-
sessment of the physical activity level of older adults is presented. The detection
strategy is founded on computational stigmergy, a bio-inspiredmechanism of emer-
gent systems, which requires a continuous data gathering through general-purpose
and non-intrusive devices, such as smartwatch. The architectural design is first pre-
sented. Then, the system experimentation is discussed on three subjects, making
possible the initial roll-out of the approach in real environments. Experimental
studies show promising results. A clinical trial could be interesting to validate the
approach.
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4.4 Traffic Congestion Estimation

Problem Statement

Urban life issues are gainingmore andmore attention thanks to the rise of the Smart
City paradigm. One of the main topics in this field is the traffic congestion man-
agement (Pellicer et al. , 2013). The main technologies employed in this field can
be grouped in two categories: roadside infrastructure and on-vehicle devices. The
former examines the traffic state via specific equipment (e.g. camera, loop detec-
tors) installed on the roadside, while the latter refers to on board Global Position
System (GPS) to portray traffic condition using vehicle distribution. Moreover, on
board GPS offers widespread traffic observation in urban scenario with respect to
roadside infrastructure, since the latter is mostly applied to highways and primary
arteries. For this reason, we consider on-vehicle GPS a requirement in our approach
as it will be used as data sources. By analyzing this data by means of our adaptive
stigmergy based approachwe aim at identifying the traffic congestion and exploring
the different configurations of DE to find the best for this application.

Proposed Approach

Wemodel a given urban street network as a directed graph. Fig. 4.9 shows an exam-
ple of the Pisa center urban street network (Italy). Here, two paths of the network
are also shown. In the dynamic view of the system, each path can be modeled as a
linear segment, because the position of each vehicle in the path can be measured by
the on-road position from the initial point of the directed path.

The input of the monitoring system is made by periodical samples of the geo-
position gv,t of each vehicle at the time t in the given urban area. An occurred traffic
congestion event Ek is characterized by spatial and temporal coordinates, which cor-
respond to congestion begin and end. Let us denote them as begin instant t ∈ [tk, t̄k]

the on-road positions of the queue head and tail can be denoted as st
k and s̄t

k.
With this characterization, the system output is made by a series of traffic con-

gestion occurring events:

EDETECTED
k ≡ {[tk, t̄k], [s

t
k, s̄t

k], ..., [st̄
k, s̄t

k]} (4.1)

Wemeasure the similarity between actual and detected events in order to design
a fitness functionwhich evaluate the system output quality. Real and detected event
share the same representation format, but their values could be different because of
detection error:

EACTUAL
k ≡ {[τk, τ̄k], [σ

τ
k , σ̄τ

k ], ..., [στ̄
k , σ̄τ

k ]} (4.2)
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Figure 4.9: The Pisa urban area with two sample paths.

Given the above definitions, a fitness function of the monitoring system is deter-
mined:

fk =
|τk − tk|+ |τ̄k − t̄k|

|t̄k − τk|
+

ī≡max(τ̄,t̄)

∑
i≡min(τ,t)

|σi
k − si

k|+ |σ̄i
k − s̄i

k|

|i, ī||σ̄i
k − σi

k|
(4.3)

Figure 4.10: Representation of the main elements of the fitness in Formula 4.3.

More precisely, Fig. 4.10 represents the main elements of the fitness function.
The absolute differences between start and end times, normalized with respect to
the time interval, is represented in the left addend, while the average absolute dif-
ferences on the head and tail of the queues, normalized with respect to the queues
length and the number of samples is represented in the right addend. It is worth
noting that fk = 0 for a perfectly detected event and that in general fk is a positive
real number. With this definition, the overall quality of the model is defined as the
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averaged fitness of all events:

Fit =
1
K
·∑

k
fk (4.4)

Indeed the system may: (i) detect an event although a real counterpart does not
occur (false positive); (ii) do not detect an actually occurred event (false negative). It
follows that to find good match between actual and detected events corresponds to
minimize Fit. The contributions of unmatched events are also entirely considered.
The overall problem is to detect all the traffic congestion events with the lowest fit-
ness.

The proposed solution exploits the modules described in Chapter 3, exception
made for the Input Activation module, specifically designed to process the vehicles
localization information and produce a representation of the velocity in our system.
For this reason, we introduce the concept of hypothetical track, which is represented
by an isosceles trapezoid placed on current vehicle position. If two hypothetical
tracks generated by the same vehicle on two consecutive position samples overlap,
then a triangular mark is released in the virtual environment, and its intensity is
proportional to the overlaps itself.

Figure 4.11: A scenario of input activation interface.

In Fig. 4.11 a scenario of two overlapping hypothetical tracks centered on the
vehicle positions is depicted. Here 1, β and 2β, are respectively height, upper and
lower bases of the hypothetical track. Moreover, γ is the distance covered by the
vehicle between pv,t−1 and pv,t. It can be demonstrated that, when the two hypo-
thetical tracks overlap, the ordinate of the cross point of their diagonal edges, called
intensity coefficient λ, is:

γv,t = min{1, 2− δ/β} ∈ [0, 1] (4.5)
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The input activation is then processed by the following architecture, composed
by the modules presented in Chapter 3. Specifically, we present together the Mark-
ing and Trailing modules, grouped as the "Stigmergic Layer". As known each mod-
ule is parametrized (see Fig. 4.13) in order to be properly adjusted to the features
of the current scenario. Finding correct setting for such parameters is not trivial,
since traffic flow and density vary with respect to the observed urban areas. Man-
ual tuning is very timeconsuming, human-intensive and error-prone. Therefore, the
adaptation (i.e. the Differential Evolution approach) is based on the evaluation of
the fitness over a training set. In Fig. 4.13, the tuning set is denoted by asterisks: it
is a sequence of (input, desired output) pairs, on the left side, together with a corre-
sponding sequence of actual output values, on the right side. In a fitting solution,
the desired and the actual output values corresponding to the same input are very
close to each other.

Figure 4.12: Overall system architecture.

However, even DE has few metaparameters to be tuned: the population size N,
the crossover probability CR and the scaing factor F. Different population sizes are
suggested in the literature (Wu et al. , 2016). Generally, a larger population size corre-
sponds to a higher probability to find a global optimum. On the contrary, a smaller
population size increases the convergence rate, and reduces the number of needed
function evaluations. Smaller populations are suitable to separable and unimodal
fitness functions, while larger populations are appropriate to multi-modal function
in order to avoid premature convergence. Population size can vary in a range of
[2n, 40n]. Based on studies in (Cimino et al. , 2015a) we set the population size to 20
members. The scaling factor F ∈ [0,2] mediates the generation of the mutant vec-
tor. F is usually set in [0.4-1) with an initial value in [0.5-0.9] (Mezura-Montes et al.
, 2006a). To choose the best value for our application, we performed trials with F
∈ { 0.4, 0.8, 1.2, 1.6, 2.0 }. About the crossover probability, larger values generate
a vector which is more similar to the mutant vector, while the opposite favors the
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target vector. In general, large CR speeds up the convergence. A good value for CR
is between 0.2 and 0.9 (Wu et al. , 2016). To choose the best value, we performed
trials with CR ∈ { 0.2, 0.4, 0.6, 0.8 } to compare the results. Finally, our aim is to
identify which variant of DE is more suitable to identify traffic congestions, among
DE/1/best/bin, DE/1/rand/bin, and DE/1/rand-to-best/bin.

Obtained Results

To prove the effectiveness of the proposed approach we developed a Java-based sys-
tem architecture. More specifically, the stigmergic environment and the adaptation
subsystem have been developed under the Repast and the Matlab frameworks, re-
spectively. Since we do not need to have a number of different traffic patterns to
analyze, we prefer to use the knowledge we have of the scenario of our interest in an
ad hoc simulator rather than using commercial solutions. Thus, a traffic simulator
based on Java and the Google Maps API has been developed to feed the system. To
generate traffic data, as a pilot urban area we considered about 8 km of the network
of Fig. 4.9. In two hours of simulation, 116 congestion events occurred.

We ran DE for 30 generations, and for each setting of CR-F-x and we repeated
the experiment for 5 times. We also determined that the resulting fitness values are
well-modeled by a normal distribution, using a graphical normality test. Hence,
we calculated the 95% confidence intervals. Table 4.5 shows the fitness, in the form
“mean± confidence interval”, for each strategy, togetherwith the considered values
of the parameters CR and F.

In all strategies, DE performance improves for higher CR and lower F. When CR
is low (0.2 and 0.4), very few elements of the mutant vector enter the trial vector.
This implies the trial vector to be very similar to the target vector (which is already a
member of the population). Therefore the crossover is pretty inefficient. F seems to
affect negatively the performance of DE when higher than 1 (1.2, 1.6, and 2.0). The
mutation process with lower values of F performs small modifications of themutant
vector, especially with the DE/1/best/bin, and this positively affects the performance
of DE. To sum up, DE operates very well with high CR (0.6 and 0.8) and low F (0.4
and 0.8). With this setting, there is a small mutation of the mutant vector, but it is
more likely that during the crossover an element of the trial is picked from the mu-
tant than the target vector. In general theDE/1/best/bin strategy performs better than
both the DE/1/rand/bin and DE/1/rand-to-best/bin. For values of F = 1.6 and 2.0, the
strategy DE/1/rand-to-best/bin has the lowest performance, while for lower values of
F (0.4 and 0.6) is better than DE/1/rand/bin and almost as good as DE/1/best/bin.
Finally, we repeated the experiment for all the strategies with the promising com-
bination of CR=0.9 and F=0.2. However, no improvement of the performance has
been detected.
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Table 4.5: Settings of the optimization parameters: (a) DE/1/best/bin, (b)
DE/1/rand/bin, and (c) DE/1/rand-to-best/bin.

In order to provide further details to the analysis, in Fig. 10 we shows the fitness
versus the number of generations for the three strategies: DE/1/best/bin with CR =
0.8 and F = 0.8; DE/1/rand/bin with CR = 0.8 and F = 0.4; DE/1/rand-to-best/bin
with CR = 0.8 and F = 0.4. We observe that for all the strategies the fitness function
gets stable under a value of 40 after a small number of generations (about 15). It is
worth noting that DE/1/best/bin improves the solution with subsequent drops and
plateaus (generation 7 and 13) of the fitness, and finally small adjustments are made
to the best member; differently, theDE/1/rand/bin, has a softer decrease of the fitness
with small improvements over all the generations; the hybrid strategyDE/1/rand-to-
best/bin shows both patterns: drops and plateaus occurred in the first generations (6
and 9), and then the fitness slowly decreases for the remaining generations.

The experiments shows that lower values of the differential weight (F≤ 0.8) and
higher values of the crossover rate (CR≥ 0.6) produce better solutions. This param-
eterization has been effective with all the three strategies: best, rand and rand-to-
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Figure 4.13: Fitness function versus generation, for DE/1/best/bin, DE/1/rand/bin and
DE/1/rand-to-best/bin strategies.

best. However, the best strategy performs better and produces solutions with lower
fitness than rand and rand-to-best strategies.
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4.5 Anomaly Detection in Urban Mobility

Problem Statement

Smarness and sustainability are two key aspects of the forthcoming transportation
systems. Smartness provides transportation monitoring and control with quali-
ties like real-time sensing and fast decision making. Sustainability aims to manage
travel demand efficiently by means of environmentally friendly strategies, provid-
ing transportation systems with policies for long-term economic suitability (Haque
et al. , 2013).

Specifically, a sustainable urban development demands adequate policy instru-
ments aimed to handle and mitigate the increasing volume of traffic congestion,
carbon emission, and air pollution. One of the most frequently used policy tools for
the measurement and evaluation of transportation sustainability performance are
indicators. Indicators can be defined as quantitative measures aimed to explain and
communicate complex phenomena simply, including trends and progress over time
(EEA, 2005). In order to provide effective measures of sustainability of transporta-
tion activities, it is essential to define indicators’ purpose and scope. During the last
two decades, a number of international initiatives addressed the development of in-
dicators aimed to achieve a more sustainable transportation on the local, regional,
and global levels, by involving both scientific community and policy-makers (Lit-
man, 2011). However, as of today, there is no standard or common agreement about
the set of indicators to be used to assess transportation sustainability. Manyworks in
the field perform an impact-based classification by employing a three-dimensional
framework based on economic, environmental, and social impacts (Dobranskyte-
Niskota et al. , 2007). The proposed indicators are in general calculated by exploiting
commonly available data sources (Litman, 2011). Thanks to the pervasive technol-
ogy supporting the smart city strategy, some of these indicators may be calculated
via big data fed by on-board or fixed sensors. As an example, the GPS-enabled vehi-
cles can provide a more comprehensive view of the factors shaping transportation
emissions and efficiency, by analyzing passenger occupancy and trip density by lo-
cation and time (An et al. , 2011). Finally, air quality monitoring systems can be used
to monitor local pollution emission((Matte et al. , 2013),(Zheng et al. , 2013)) and
noise emission (Zheng et al. , 2014a). These sources allow enhancing the precision
of the investigation, providing insights about sustainability issues on specific urban
locations and themoment in time. Among all the available sources of transportation
data for smart city application, location aware vehicles provide us the opportunity
to help urban planners and policy makers in mitigating traffic, planning for public
services and resources, and properly manage infrequent events (Liu et al. , 2012).
However, both public transportation and private vehicles provide quite predictable
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GPS traces, because they are due to predetermined routes or personal routines (i.e.
to and from work). On the other hand, GPS-enabled taxis, represent both a transit-
complementary door-to-door transportation mode and a source of real-time human
mobility information (Veloso et al. , 2011). Indeed, taxicabs play a prominent role as
a transportation mode in metropolitan areas, e.g., in New York City, over 100 com-
panies operatemore than 13,000 taxicabswith a daily demand of 660,000 passengers
(Zheng et al. , 2014a). Moreover, by continuously serving a wide diversity of passen-
gers in the city, taxis GPS traces can provide a detailed glimpse into motivation and
characterization of population’s urban mobility. However, regular taxicab services
becomes inefficient during urban-peak conditions, e.g., extreme weather or special
events ((Zhan & Ukkusuri, 2014), (Neuwirth, 2016)), producing unnecessary traf-
fic, pollution, energy consumption, and causing the increase of passenger’s waiting
time (Zheng et al. , 2014b). Thus, further investigation aimed at analyzing taxi-based
transportation system is needed.

With this aim we exploit taxis’ trip data provided by Taxi and Limousine Com-
mission (TLC) of New York City. All taxis of NYC are equipped with FCD (floating
car data) devices, which manage localization and card payments data, and enable
taxicab drivers and passengers to receive information from the Taxi and Limousine
Commission. FCD records include pick-up and drop-off positions, timestamp, and
number of passengers, which feed the Taxi Trip Origin-Destination (OD) dataset.
We analyze it in order to unfold urban hotspots, characterize human mobility pat-
terns, and detect anomalous occurrences.

Proposed Approach
With the aim of discovering locations characterized by high density of taxi passen-
gers activity (activity, for short), we build a bi-dimensional stigmergic trail by ex-
ploiting (as sample) the number of people being picked up or dropped off in a given
time slot and in a given location. The hotspots are determined as the overlap of
the city areas corresponding to the most relevant trails, obtained by analyzing data
corresponding to early morning (i.e., 3a.m.-8a.m.), morning (i.e., 9am-2pm), after-
noon/evening (i.e., 3pm-8pm), and night (i.e., 9pm-2am) time slots. Each hotspot
is represented by a set of coordinates that bound a city area inside a polygon. The
hotspots identified inManhattan (NewYork City) are shown in Fig. 4.14. Their loca-
tions correspond to East Harlem - Upper East Side (A), Midtown East (B), Broadway
(C), East Village - Gramercy - MurrayHill (D), Soho - Tribeca (E), Chelsea (F) and
Time Square - Midtown West - Garment (G).

The result of the hotspot identification is a set of urban areas in which the most
relevant activity dynamics occur. For each of them,we extract the activity time series
by gathering the amount of activity occurred in the hotspots during the day. The
hotspot activity time series are analyzed by means of Stigmergic Receptive Fields
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Figure 4.14: The hotspots found in Manhattan.

(SRF) arranged as a Stigmergic Perceptron. The SRF can detect a specific behavior in
the actual time series, by processing it together with an archetype corresponding to
that behavior. An example of behavioral class in our domain is “Rush-Hour” (Fig.
4.15a), which correspond to the behavior of the activity occurring in the hotspot
when people movement is at its highest rate. Other classes provided are Asleep
(Fig. 4.15g), i.e., the hotspot at its lowest activity level; Falling (Fig. 4.15f), i.e., the
transition between regular activity and its calm down; Awakening (Fig. 4.15e), i.e.,
the waking up of urban activity following a calm phase; Flow (Fig. 4.15d), i.e., the
hotspot at its operating capacity; Chill (Fig. 4.15c), i.e., the calm down of the hotspot
activity after a rush hour; Rise (Fig. 4.15b), i.e., the transition to the most intense
activity level.

In order to detect anomalous activity level patterns, we employ a further SRF
aimed to measure of the similarity between two activity levels time series gathered
in different days (Fig. 4.15h). The training set for this SRF is composed by different
(i.e., 900) couples of activity level time series whose similarity is supposed to be 1, if
they belong to the same activity level behavioral class, 0 otherwise. As an example,
an activity level behavioral class can be “Working-Day"which is a daywhose activity
is mainly affected by working routines. Other activity level behavioral classes pro-
vided in our analysis are “Entertainment-Days" (usually occurring in Fridays and
Saturdays) and “Leisure-Days" (usually occurring in Sundays).

By exploiting the SRF similarity measure we can match all the activity level time
series of the SRF’s training set and store their similarity values into a similarity ma-
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Figure 4.15: The overall processing of the activity samples.

trix. As an example, in Fig. 4.16, we show the similarity matrix obtained by ana-
lyzing patterns gathered during the year 2015. Patterns are arranged by behavioral
class, i.e., Working-Day (days 1-10), Entertainment-Day (days 11-20), and Leisure-
Day (days 21-30). Here, the similarity value obtained by matching two patterns
gathered in different days is represented by the color of the corresponding box. The
whitest the box, the higher the similarity. As expected, the similarity values appear
to be higher only with couples of days belonging to the same activity level behav-
ioral class.
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Figure 4.16: Similarity matrix obtained by analyzing patterns gathered during year
2015.

This similaritymatrix is processed by a relational clustering technique (Fig. 4.15i)
in order to group similar daily activity levels. Specifically, we employ Fuzzy C-
Means using as number of clusters the number of daily activity behaviors taken into
account in the analysis (i.e. 3). The fuzzy clustering generates, for each activity level
time series, a membership degree for each behavioral class. Based on those, we can
define a couple of measures aimed at finding the days characterized by anomalous
activity:

• By treating as a distance the membership degrees of the daily activity level
time series to each cluster, which are between 0 (not belonging to the cluster)
and 1 (completely belonging to the cluster). Specifically, the membership de-
grees un, we measure the extraneousness of current activity level with respect
to its expected cluster. The Extraneousness Index (EI) is defined as the Man-
hattan Distance between current daily activity level series d and the centroid
of the cluster in which current day is assumed to belong. In Eq. 4.6, the com-
putation case with 3 clusters is shown.

EI(d) = (|u1(d)− u1(C2)|+ |u2(d)− u2(C2)|+ |u3(d)− u3(C3)|)/2 (4.6)

• We can determine which are the most representative days for each behavioral
class by selecting the activity level time series which are closest to the corre-
sponding cluster centroid in terms of euclidean distance. An activity level time
series obtained by a typical day is expected to exhibit high similarity with re-
spect to the activity level time series obtained by the most representative days
of its behavioral class. Thus, we compute the Anomaly Index of current day d
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by exploiting the average of its similarity S(d, i)with respect to its most repre-
sentative N (i.e., 5) days, as detailed in Eq. 4.7. The Anomaly Index is defined
between 0 (typical daily behavior) and 1 (very anomalous daily behavior).

AnomalyIndex(d) = |∑
N
i=1(S(d, i))

N
− 1| (4.7)

In order to discern typical days from anomalies, an Anomaly Index threshold
for each activity level behavioral class must be defined. These thresholds have
been determined by using DE (Fig. 4.15m) in order to minimize the classifica-
tion error (i.e., the percentage of correctly classified days) over all the days of
the year under analysis, given a set of known anomalies.

Obtained Results
We analyze data provided by the Taxi and Limousine Commission of New York
City, containing details about all taxi trips occurred during 2013, 2014 and 2015 in
Manhattan. Each trip is reported with its taxi ID, number of passengers, together
with latitude, longitude, and time-stamp of pick-up and drop-off. Data have been
pre-processed in order to (i) remove missing values and (ii) discretize data in spa-
tiotemporal buckets characterized by length and width of 10 foot, and duration of 5
minutes.

For the hotspots investigation, the period under analysis comprised both Febru-
ary and June. This period has been chosen since it can capture different seasonal
behavior without being influenced by the presence of many holidays.

The activity time series extracted for each observed day has been normalized by
using the min-max procedure.

Both global and local training phases of the SP are provided with a training set
generated by applying randomspatial noise and temporal shift to the pure archetype
time series. The SP training set is composed of 70 time series (10 for each SRF),
and the expected similarity is 1 if the current time series has been generated by the
archetype on which current SRF must be specialized, 0 otherwise.

The SP outcome is processed by a further SRF, which is trained to measure ac-
tivity level time series similarity, according to the daily behavioral classes provided,
namely: (i) Working days which are expected to fall between Monday and Tues-
day, when commuters and working routines deeply affects the crowd movements;
(ii) Entertainment days, which are expected to fall on Friday and Saturday, and are
characterized by high nocturnal activity due to the nightlife; (iii) Leisure days, which
are expected to fall on Sunday, and are characterized by minor transportation us-
age. The training set is composed of 30 activity level time series, i.e., 10 time series
representing the typical patterns of each behavioral class. The target similarity of
each possible match is 1 if time series falls in the same behavioral class, 0 otherwise.



4.5 Anomaly Detection in Urban Mobility 67

Depending on the land usage of the city area underlying each hotspot, some daily
activity behaviorsmay not emerge. As an example, the Entertainment-Day behavior
is mainly caused by the presence of clubs or other entertainment-oriented business
that may attract the nightlife. Thus, the hotspots underlying a mixed usage zones
are the most promising ones for the analysis, since our aim is to characterize all the
aspects of the city life. According to official land use (publicy available at (zol, n.d.)),
each city block can be classified into the following categories: commercial, residen-
tial, industrial, transportation space, institutional, open/recreational space, parking
or vacant. By considering the distribution of these categories in each hotspot it can
be evaluated how diversified the usage of that area is, and therefore the related
amount of the mobility dynamics. Specifically (i) Hotspot A is primarily residential
and secondly institutional; (ii) Hotspot B is mainly residential and commercial; (iii)
Hotspot C is principally open space and residential; (iv) Hotspot D and E are char-
acterized by an equal distribution of almost all usage classes; (v) Hotspot F is mainly
commercial and residential, with some institutional blocks; (vi) finally, Hotspot G
presents all usage categories, with a prevalence of the commercial category. The
higher the variety of the usage of a hotspot, the better a candidate this hotspot is for
our analysis: then hotspots D and E are chosen.

For hotspot D in 2015 we firstly employed the approach based on EI. In Fig. 4.17
the EI is computed with the data regarding September and October 2015, than this
is compared with the maximum EI in the training set (red line in Fig. 4.17). Days
with an EI greater than the maximum EI in the training set are recognized as an
unexpected pattern (red spot in Fig. 4.17).

Figure 4.17: Extraneousness Index computed over days in September and October.

By repeating this procedure over the whole year 2015 we collect a number of
relevant unexpected patterns, reported in Table 4.6. Each unexpected pattern date
is shown together with their most probable cause, such as an occurred social event.

Than we experimented the approach based on the Anomaly Index. For the year
2015, Table 4.7 shows the percentage of correctly classified patterns (among the nor-
mal and anomalous classes) obtained with 5 different trials in the formmean± 95%
confidence. The classification performance is also calculated by using two well-
known time series distance measures: the Dynamic Time Warping (Taylor et al. ,
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Table 4.6: Most relevant unexpected patterns detected all over 2015.

EI Date and occurred city event
0.96 06-Sep, Labour Day celebration
0.94 24-May, Memorial Day
0.86 31-Oct, Halloween
0.83 26-Nov, Thanksgiving
0.83 28-Jun, Gay Pride
0.82 25-Dec, Christmas
0.81 01-Jan, New Year’s Eve
0.80 04-Apr, Easter (holy Saturday)
0.79 27-Jan, Winter Storm Juno (jun, 2015)
0.74 05-Sep, Labour Day celebrations
0.63 03-Jul, Independence Day
0.63 31-Dec, New Year’s Eve
0.61 15-Mar, NYC Half Marathon
0.49 24-Sep, Pope Francis in NYC (pop, 2015)

Table 4.7: Percentage of Correct Classification achieved by analyzing of hotspot D
and E during 2015, and using 3 similarity measures.

Similarity Measure Hotspot D Hotspot E
SRF 95.61 ± 0.003 94.24 ± 0.24
DTW 90.57 ± 0.134 91.80 ± 1.387

FRECHET 90.14 ± 0.537 90.52 ± 2.34

2015), and the Fréchet distance (Driemel et al. , 2016). Clearly, the SRF measure out-
performs both the DTW and the Fréchet distances.

In order to further test the assessment of anomalous patterns, the activity time
series annotated as anomaly have been annotated by a triple according to their affin-
ity with the typical pattern of each behavioral class. As an example, the tripleW|E|L
means that current time series is mostly similar to Working-Day typical pattern and
secondly to Entertainment-Days one, whereas it shows only minor similarity with
respect to Leisure-Days. With the aim for measuring the capability of our similarity
measure to generate a corresponding affinity assessment, we compute the average of
the similarity of each time series annotated as an anomaly with respect to the most
representative days of each behavioral class. Sorting them by similarity, we obtain
the triple. TheMean Assessment Error is computed as the number of non-matching
sort constraints for each pair of triples, averaged over all the set of the anomalies.
As an example, the triples W|L|E and W|E|L have just one non-matching sort con-
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straint, which is L<E, whereas both triples state that W<E and W<L.
A comparison is provided by repeating this procedure using the Dynamic Time

Warping (Taylor et al. , 2015) distance. Resulting Mean Assessment Error are equal
to 1.135 (SRF-based similarity measure) and 1.115 (DTW distance). According to
these results both methods are suitable for pattern analysis, thus we provide the
comparison of their performance in anomalous pattern detection.

Specifically, in order to compare the classification performances of our approach
with respect to DTW, we collect the percentage of correctly classified days among 5
trials. During each trial, the DE generates a new set of Anomaly Index thresholds. If
the Anomaly Index of an activity level time series exceeds the threshold, the corre-
sponding day is considered anomalous. Obtained results are presented in the form
“mean ± 95% confidence interval” in Table 4.8.

Table 4.8: Percentage of Correct Classification achieved by analyzing data gathered
during 2013, 2014, and 2015.

Year SRF DTW
2013 92.71 ± 0.321 90.57 ± 0.134
2014 96.65 ± 0.109 92.27 ± 0.106
2015 95.61 ± 0.003 91.28 ± 0.106

Based on obtained results, our approach provides an effective detection of ma-
jor anomalies. But, handling minor or potential anomalies could be more difficult.
In order to evaluate the effectiveness of our measure while handling this kind of
anomalies, we select a set of events including official holidays and days affected by
special events with documented effect on the road in (or in close proximity of the)
hotspot D. Such events could be days characterized by adverse weather condition
(e.g., Juno storm), street closure (e.g., due to the Gay Pride parade) and so on. This
set is provided for each year under analysis.

A set of ordinary days is also included. An effective anomaly measure is sup-
posed to exhibit high correlation between its value and the set (events or ordinary
days) which current day belongs to. In Fig. 4.18 the correlation obtained by using
our SRF-based measure is shown.

In order to compare obtained results in terms of correlation between events and
computed Anomaly Index, we provide it by using SRF-based approach and DTW.
In Table 4.9 we present obtained correlation coefficient for each year under analysis.

According to the provided results, our approachwas able to identify city hotspots,
characterize the daily patterns of their activity over time and detect days character-
ized by an anomaly. Our approach has been tested on real world dataset containing
all taxi trips occurred inManhattan during 2013, 2014 and 2015, for a total amount of
74GB of data. The performances of our approach ismeasured in terms of percentage
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Figure 4.18: Scatter-plot generated by considering Events, Typical Days and their
corresponding Anomaly Index.

Table 4.9: Correlation coefficient between Anomaly Index and day characterized
by events occurring in the hotspot. Comparison between SRF-based approach and
DTW.

Year SRF DTW
2013 0.8963 0.7177
2014 0.9289 0.7236
2015 0.9210 0.6828

of correctly classified daily patterns among typical and anomalous ones. Moreover,
the effectiveness in handling minor anomalies is measured by computing the cor-
relation between the Anomaly Index and the occurrence of urban events (e.g., local
parade or official holiday).

Obtained results have been compared with respect to the one achieved by an-
alyzing the activity time series with DTW. In both cases, and in every year under
analysis, our approach outperforms DTW, achieving up to 96.65 percentage of cor-
rectly classified days and 0.9289 correlation coefficient.
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4.6 Assessment of Refugees’ Integration

Problem Statement
In the context of Syrian refugee crisis, Turkey is both an effective and affected country
(Keyman, 2016). Indeed, it provides protection and facilities to more than three mil-
lion refugees; but, on the other hand, an increasing hostility is emerging in the local
Turkish communities, due to the magnitude and the duration of the humanitarian
crisis. In order to prevent the growing of societal tensions over Syrian refugees,
there is the need to formulate effective long-term integration policies (Carpi & Pı-
nar Şenoğuz, 2018). However, the formulation of an effective policy demands tools
aimed at evaluating and understanding the integration of refugees despite the com-
plexity and the width of this phenomenon. In this context, great benefits can be
provided by complementing the paper-and-pencil surveys, the interviews, and the
focus groups with big data-driven indicators (Hardy & Maurushat, 2017).

One source of data that offers great potential for this kind of analysis are informa-
tion captured from mobile phones (Gundogdu et al. , 2016), which have been used
to analyze many effects of the migratory phenomena, i.e., the ones on political elec-
tions (Altindag & Kaushal, 2017), job markets (Silm & Ahas, 2014) or on the spread
of epidemics (Tompkins & McCreesh, 2016).

In this work we analyze the Call Detail Records (CDR) datasets provided within
the D4R data challenge (Salah et al. , 2018) with the aim of unfolding which condi-
tions can contribute to the integration of refugees. Moreover, we aim at providing
some data-driven indicators of the integration of Syrian refugees in Turkey, in or-
der to allow policy makers at evaluating the effectiveness of the strategies aimed at
fostering the integration of refugees.

Proposed Approach
In order to assess the integration of refugees, it is essential to establish metrics able
to capture this phenomenon. These metrics should consider both on short (daily)
and long (bi-weekly or monthly) termmobility and calling behavior of refugees and
locals. Indeed, many works in the literature (Singh et al. , 2015) highlight the im-
provement obtained by including individual’s mobility and behavior in the model,
with respect to pure statistical one. It follows the list of the metrics we propose for
our analysis:

• Residential Inclusion by District (RI): we can assume that most of the calls dur-
ing the night and early morning hours come from people’s homes. Indeed,
based on this assumption many works in the field of the CDR analysis infer
the location of an individual’s home as the place from which he/she mostly
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call between 8 pm and 8 am (Alexander et al. , 2015). Thus, by observing the
percentage of callsmade by refugees between 8 pmand 8 amper antenna a ∈ d
is possible to assess the coexistence of resident locals and refugees in a given
the districts d and a given month m. This metric is defined between 0 (no res-
ident refugees’ in the district) and 1 (only resident refugees’ in the district).

RId,m =
|callsa,m(R)|a∈d

|callsBS,m(R) + callsa,m(L)|a∈d
(4.8)

• District Attractiveness (DA): A district is considered attractive if the flow of peo-
plewhomove to it is on average higher than the flowof peoplewhomove from
there in a givenmonth (i.e. the people netflux). As for the assumptions used in
the RI metrics, a person resides in a given district and month if that district is
the most recurrent location fromwhich he/she makes calls between 8 pm and
8 am. Specifically, given residentRe f ugeed,m = {R|r : homer(m) = d} i.e. the
set of the refugees who live in the district d during the month m, the District
Attractiveness is defined as:

DAd,m = |residentRe f ugeed,m+1| − |residentRe f ugeed,m| (4.9)

• Refugee’s Interaction Level (IL): it is defined as the percentage of phone calls to-
ward localsmade by a given refugee in a given period. It represents howmuch
the refugee is socially connected to the locals (Blumenstock& Fratamico, 2013),
i.e. 0 means no calls toward locals and 1 means only calls toward locals. Each
level is defined as a range of 20% within this scale.

ILr =
|callsr→L|

|callsr→L|+ |callsr→R|
(4.10)

• Refugee’s Calling Regularity (CR): let us consider the time series of the call fre-
quency (i.e. the calling pattern) made by each individual. Specifically, we
build the calls pattern as the number of phone calls made by a person in a
given hour of the day during a period of time. We normalize this amount
with the average number of calls per hour in order to be comparable despite
the different amount of calls made by each person. The period of time taken
into account can be monthly or bi-weekly. In general the calling pattern may
be due to several factors, e.g. daily routines, habits, or working schedule.

Even if it is not possible to determine which component has a predominant
role in generating a specific calling pattern, we can assume that similar rou-
tineswillmost likely generate similar calling patterns. Moreover, routines sim-
ilarity is often linked to integration (Jansen et al. , 2006). Thus, the similarity
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Figure 4.19: Calling patterns representation.

between the calling patterns of locals and refugees, may be a proxy of inte-
gration. As an example, each refugee that is employed is supposed to have
a calling pattern (thus, a daily routine) similar to the average calling pattern
of the locals, since they are mostly employed (Almaatouq et al. , 2016). In this
context, themore a refugee’s calling pattern CPr is similar to the average local’s
calling pattern LCP the more it is considered regular. The similarity between
two calling patterns is computed (Eq. 4.11) as their cosine similarity (Dong
et al. , 2015). This metric is defined between 0 (completely different calling
pattern w.r.t. locals) and 1 (identical calling pattern w.r.t. locals).

CRr =
CPr · LCP

||CPr|| · ||LCP|| (4.11)

• Refugee’s Mobility Similarity (MS): by collecting the locations of each call oc-
curred during the day we can build the daily trajectories of an users’ mobil-
ity. The similarity of the trajectories of refugees Tr and locals Tl implies the
sharing of some urban space at the same time and may affect (or be affected
by) the integration of the refugees (Hebbani et al. , 2017). The computation
of this similarity is based on the principle of stigmergy. Stigmergy is a self-
organization mechanism used in social insect colonies (Marsh & Onof, 2008).
Basically, individuals in the colony affect each other behavior by marking a
shared environment with pheromones when a specific condition occurs (e.g.
the presence of food). The pheromone marks aggregate with each other in the
trail if they are subsequently deposited in proximity to each other, otherwise
they evaporate and eventually disappear. Thus, the resulting pheromone trail
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steers the whole colony toward the region in which the condition above (e.g.
the discovery of food) occurs consistently.

This pheromone-like aggregation mechanism can be employed in the context
of data processing, providing self-organization of data (Vernon et al. , 2007)
while unfolding their consistent spatio-temporal dynamics. By exploiting com-
putational stigmergy, each sample of the trajectory is transformed in a digital
pheromone deposits (i.e. mark) and released in a three-dimensional virtual
environment in correspondence of each sample coordinate and time of appear-
ance. Marks are defined by a truncated conewith a givenwidth. Marks aggre-
gate in the stigmergic trail, which is characterized by evaporation (i.e. temporal
decay δ). The evaporation may be counteracted if marks are frequently re-
leased in proximity to each other, due to their aggregation, whereas isolated
mark progressively evaporates and disappear. Eq. 4.12 describes the trail at
time instant i.

Ti = (Ti−1 − δ) + Marki (4.12)

Since only consistent spatio-temporal dynamics in data generate a stable pheromone
trail, the trail itself can be considered as a summarization of these dynamics.
By matching trails, we provide a general similarity measure for spatiotempo-
ral trajectories. The similarity between trails is obtained by using the Jaccard
similarity (Niwattanakul et al. , 2013), i.e. the ratio between the volume of the
intersection and the union of the stigmergic trails (Fig.4.20).

The similarity of the spatiotemporal trajectories of refugees TR and locals TL
(Eq. 4.13) is defined between 0 (completely different trajectories) and 1 (iden-
tical trajectories).

MSR,L =
|TR ∩ TL|
|TR ∪ TL|

(4.13)

Since our investigation includes an analysis ofmobility, call behavior, and district
characterization it is necessary to focus our research in areas that ensure (i) an high
calling activitymade by refugees. Indeed, in order to have representative behavioral
models we have to avoid areas characterized by sparse data; and (ii) a good spatial
resolution, which means an high density of antennas, since the granularity of the
trajectories will be determined by this; in fact, with few antennas in the area under
investigation, all trajectories will be roughly similar; and (iii) high number and di-
versification of districts per area; indeed, the district-based metrics can explain the
settlement choice of each refugee. This effect is especially noticeable in the presence
of many different districts close to each other since this allows refugees to move
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Figure 4.20: Phases of the mobility similarity computation. We represent the trails
obtained from the deposit of 4 consecutive samples (A1, A2, A3, A4 and B1, B2, B3, B4)
of the trajectories (A and B), their intersection and their union, which are used to
compute their similarity

from one district to another according to their socio-economic integration level and
its change in time. Therefore, our analysis focus on the cities of Istanbul, Ankara
and Izmir, since they have the larger density of antennas and the larger calling ac-
tivity made by refugees. In addition, Istanbul’s metropolitan area alone consists of
69 districts with a variety of different characteristics (e.g., different housing costs or
job opportunities). For this reason, the district-wise analyses focus on Istanbul.

Obtained Results

In order to verify if the Calling Regularity can be actually used as an integration
proxy, we analyze the relationship between the Interaction Level and the calling
regularity of each refugee in Istanbul. In order to have a reliable model of the calling
pattern, we select the refugees with an average amount of calls per day equal or
greater to 2. We compute the Pearson correlation coefficient between the average of
the Calling Regularity of the refugees and their Interaction Level. In Fig. 4.21 the
distribution of the resulting correlation coefficients is shown.

It is evident that the Interaction Level and the Calling Regularity are strongly
and positively correlated, providing us with the insight that refugees that exhibit
greater interaction with locals have also daily routines which are similar to them.
This result comforts the findings of other studies in the field (Jansen et al. , 2006)
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Figure 4.21: Boxplot of the correlation coefficient between Calling Regularity and
the Interaction Level for each period in Istanbul.

and allows us to promote this measure as a metric for integration that should be
taken into consideration by policy makers, at least in the case of Syrian refugees in
Turkey.

Given the possibility of using Calling Regularity as an integration metric, we try
to use it to obtain more insights at the district level. Specifically, we analyze the
relationship between the District Attractiveness, the Residential Inclusion and the
Calling Regularity of the refugees in each district of Istanbul according to the cost
of living in the district itself. As an indicator of the cost of living per district, we
consider the average rent cost per square meter in each district during 2016 (the
data owner is an online housing website that would like to stay anonymous).

Firstly, we assess the impact of the presence of refugees on the attractiveness of a
district. In order to do so, we compute the correlation between each district’s yearly
(i.e. averaged over 2017) Residential Inclusion (RI) and the District Attractiveness
(DA). Figure 4.22 shows the correlation matrix obtained with the yearly RI and DA
per district.

With a correlation coefficient equal to 0.494 and a P-value of 0.0016 we can con-
sider RI and DA significantly and positively correlated. This means that refugees
are more likely to move and stay in districts with a greater the number of refugees.

Pushing the investigation on a more fine level (i.e. Monthly-wise) we focus on
the relation between the RI of a given district and month and the average CR of the
refugees living in that district during that month. In order to work with representa-
tive calling patterns the CR is computed with refugees having at least 100 calls and
settled in Istanbul for at least half of the whole year. Figure 4.23 shows the boxplot
obtained with the correlation coefficients computed between the RI of each district
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Figure 4.22: Correlation matrix obtained with the yearly RI and DA per district. On
the diagonal the distribution of the average RI and DA respectively, whereas the
others are the bivariate scatter plots with a fitted line.

and month and the average CR of the refugees living in that district during that
month.

According to the results in Figure 4.23, even though its strength may vary from
case to case, the RI in a given month and district appear to be positively correlated
with the CR of the refugees living in that district during that month. In other words,
the districts with the highest Residential Inclusion of refugees are also the districts
where the routine of the refugees is more similar to the locals. This suggests that a
minimumnumber of refugees per area is required for the dynamics of integration to
be triggered, as suggested in (McIsaac, 2003). To understand the order of magnitude
of the amounts we are talking about we analyze the distribution of RI by month and
district. It is evident that many districts have a low RI, thus depicting a scenario of
minor coexistence of refugees and locals in most of the districts. Moreover, in the
few districts (and months) with higher RI, the RI value never exceeds 50%. Thus,
the more evenly distributed the residents (locals and refugees in an area) are, the
greater the similarity between the routines of locals and refugees.

Finally, we include the cost of living in a certain district in the analysis. The last
results show that the Calling Regularity can be considered a proxy for social inte-
gration. However, the Calling Regularity may be even linked to the employment
of a refugee. Unfortunately, it is not possible to verify directly this implication due
to the lack of details about refugee employment, since they are often employed in
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Figure 4.23: Boxplot of the correlation between RI of a given month and district and
the average CR of the refugees living in that districts during that month.

the informal sector (Del Carpio &Wagner, 2015). Yet, it is possible to study this im-
plication according to the social and economic characteristics of the location where
refugees live. Indeed, depending on their economic well-being and the level of in-
tegration, migrants and refugees may choose different settlement solutions (Fawaz,
2017). For example, only an individual who has enough economical resources (e.g.
who has some kind of job) can afford to live in an area that offers better opportuni-
ties. On the other hand, those who are not integrated and/or not working often find
themselves socially isolated from the locals and relegated to poor neighborhoods.

In order to provide additional insights into this, we exploit the average rent cost
per square meter in a given district in the year 2016 as an indicator of the cost of
living for that specific district. Specifically, we compute the correlation between the
cost of living in a given district and the average CR of refugees living in that district
(Fig. 4.24).

With a correlation coefficient equal to 0.5 and a P-value equal to 0.003, the aver-
age CR of refugees living in the district exhibits a significant and positive correlation
with the cost of living in that district. Thismeans that, although itmay be influenced
by some factors not detectable by the data under analysis, the CR is a proxy for the
daily routine similarity and for the economic capacity of refugees (i.e. the ability to
meet a certain cost of living), thus it is a tool able to capture both necessary condi-
tions occurringwith the employment of refugees. For this reason, thismetric should
be taken into account when dealing with the problem of integration of refugees be-
cause having a job is one of the first promoter of refugees’ integration (Bakker et al.
, 2016), but is also hard to analyze it since the refugees’ employment often happen
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Figure 4.24: Correlation matrix obtained with the average CR in a district and the
cost of living per district. On the diagonal the distribution of the average CR and
cost of living respectively, whereas the others are the bivariate scatter plots obtained
with these variables together with the fitted line.

in the informal sector (Balkan & Tumen, 2016).
Another fundamental driver of integration can be the sharing of urban spaces

with the locals (Madanipour, 2015). However, its positive contribution in the inte-
gration dynamics it is not obvious. Indeed, it can allow the progressive integration
in the social structure of the hosting city. However, on the other hand the shared ur-
ban areas may not be easily defined and perceived as a safe space (Lyytinen, 2015)
thus leading to the occurrence of social friction in those areas.

In order to understand the contribution of sharing the same urban spacewith the
locals, we analyze the relationship between the Mobility Similarity and the Interac-
tion Level on a daily bases. Specifically, we create the cumulative trajectories of the
group of refugees with a given Interaction Level, i.e. the stigmergic trails obtained
with all the samples of the people in that group. Then, we compute the Mobility
Similarity with the cumulative trajectories obtained with an equally sized group of
locals.

We collect the Pearson correlation coefficients between the Interaction Level of
each group and the resultingMobility Similarity. We repeat this proceduremultiple
times by randomly subsampling the people for each group larger than the smallest
one. In Fig. 4.25 we present the distribution of the obtained correlation coefficients
by means of boxplots. It is evident that in the 3 cities analyzed the Mobility Simi-
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larity is strongly correlated with the interaction level. Indeed, the 95% confidence
interval of the correlation coefficients results as 0.91± 0.01 in Istambul, 0.83± 0.06
in Ankara, and 0.92± 0.04 in Izmir.

Figure 4.25: Boxplot of the correlation coefficients between the Mobility Similarity
and the Interaction Level, over multiple trials with subsampling. The cases of Istan-
bul, Ankara and Izmir.

On the basis of the obtained results, it is possible to claim that the more the
refugees have interactions with locals, the more they share urban spaces with the
locals. This allows us to say that sharing of urban spaces is a positive factor in the dy-
namics of integration of refugees. Thus, the policies designed to improve refugees’
integration should take into account Mobility Similarity to assess their impact.

Since we have seen that Mobility Similarity and Interaction Level are able to cap-
ture the integration of refugees, we now attempt to use them to study the effects
of the events that are certainly caused or can cause the disruption of refugees’ in-
tegration: the occurrence of social frictions. In order to look for the features that
characterize a social friction, it is necessary to start with few examples of publicly
known social frictions. Specifically, we collect a set of such events and we compare
the Mobility Similarity and Interaction Level in 2 weeks before and after each event.
We have found a number of occurrence of such events by searching for them over
the internet. These are summarized in Table 4.10.

Once these events have been identified, we study the impact of these social fric-
tion by calculating the Mobility Similarity (with repeated trials according to the
methodology described in the last section) and the percentage of calls made toward
the locals, according to the Interaction Level of the refugees. Finally, we present the
ratio betweenMS and the percentage of calls in the two weeks before and after each
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Date Location Source
March 6 Izmir (fri, 2018a)
April 12 Istanbul (fri, 2018c)
May 15 Istanbul (fri, 2018d)
May 16 Istanbul (fri, 2018b)

Table 4.10: Dates and locations of the social friction events taken into account.

event. If this ratio is greater than 1, it indicates that after the event, the integration
measure taken into consideration has decreased.

Figure 4.26: Ratio between the Mobility Similarity and the percentage of calls made
toward refugees, 2 weeks before and after each social friction. The ratio is presented
according to the IL of the group of refugees.

It is apparent that the social friction affects the behavior of the refugees by re-
ducing the amount of shared urban space with the locals (i.e. lowering the Mobility
Similarity after the event). Moreover, in terms of calls made toward locals, the so-
cial friction event affects the group of refugees with lower level of interaction with
locals way more than the more integrated groups. Indeed, on average, they exhibit
a lower percentage of calls made toward locals and a greater variability. Indeed, the
quartiles of the percentage of calls made toward locals are arranged as [0.55, 1.05,
1.41] with the refugees with the lower Interaction Level, whereas are [0.98, 0.99, 1]
with the refugees with the greater Interaction Level. Here, even theMS results more
affected in the group of refugees with lower Interaction Level, who tend to be more
segregated after the social friction event. Indeed, the median of the distribution of
the ratios obtained with the Mobility Similarity with the lower and greater Interac-
tion Level are respectively 5.31 and 3, which means that the Mobility Similarity of
the refugees with lower Interaction Level decreased 77% more with respect to the
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refugees with greater Interaction Level. Based on the obtained results, the proposed
metrics are able to capture the effect of a social friction and should be taken into ac-
count when addressing application such as attempting to identify or measure the
impact of social friction events.

In conclusion, the metrics proposed in the study should be considered when
assessing the integration of refugees due to the results obtained, i.e. (i) Mobility
Similarity and Calling Regularity are positively and significantly correlated with
the level of interaction between refugees and locals, and have proved to offer great
potential as measures of the integration related phenomenon with different appli-
cations; (ii) the integration is fostered by the simultaneous presence of refugees and
locals who reside in the same area in a fair amounts; (iii) the Calling Regularity is
also a proxy for refugee’s economic capacity, which can imply refugee’s employ-
ment, and (iv) both Mobility Similarity and the amount of calls made toward the
locals are affected by events such as social friction involving refugees; however, the
behavior of less integrated refugees appears to be significantly more affected by this
kind of events.
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4.7 Distributed target detection with swarm of UAVs
In the context of the coordination of UAVs’ swarm we consider the problem of dis-
covering static targets in an unstructured environment and minimizing the total
time spent to discover targets. The main motivation for this study comes from the
request to deal with circumstances where the target and the space of exploration
are poorly specified, and the coordination strategy is autonomous, robust, resilient,
and adaptive. Indeed, the current UAVs hardware and the available flight control
software can offer good solutions to problems inmany fields. However, the software
available for coordinating the exploration ofUAVs swarms is not sufficientlymature:
limited flexibility, complex management and application-dependent design are the
main issues to solve. We address these issues proposing a swarm coordination al-
gorithm that is adaptive to different circumstances, combining three biologically-
inspired processes: Stigmergy, Flocking and Evolution. Specifically, during our
study we were able to simulate the proposed solution and test:

• The robustness with respect to error in the target sensing procedure

• The behavioral adaptation of the swarm to the search scenario

• The improvement provided by considering the technological characteristics of
the drone in its behavioral model

Each one of the above reported characteristics has been the object of a research
work, summarized in the following paragraphs. The swarm exploration algorithm
has been implemented using NetLogo, a leading simulation platform for swarm in-
telligence (Net, 2017) and Matlab, an algorithmic development framework, for the
evolutionary algorithm(Mat, 2017), respectively. Fig. 4.27 shows the six search sce-
narios that have been considered. Each of them is included in a squared area of 200
meters side length, the targets are represented by "x". More specifically:

(a) The Illegal Dump scenario is based on theAbusive TrashMap in Paterno (Sicily),
and is composed by 140 trees, 19 differently-sized buildings, 11 groups of targets
with an average of 4 targets per group (Tra, 2017).

(b) The Field scenario is a synthetic scenario made by 5 clusters of targets scattered
over the area, with about 10 targets per group. There are no obstacles, 80 total
drones arranged into 4 swarms, represented by triangular forms, and are placed
at the antipodes of the area. Cluster of dots represent targets. There are neither
obstacles nor buildings.

(c) The Forest scenario represents a synthetic reconstruction of spread targets in a
stand of timber. Here, 20 targets, 400 trees (single obstacles), 80 total drones,
arranged into 4 swarms, have been initially placed at the antipodes of the area.
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(d) Urban Mine scenarios is derived from real-world examples of areas near Sara-
jevo, in Bosnia-Herzegovina, with landmine objects, selected frompublicly avail-
able data (See, 2017). It is made by 40 targets, 59 trees and 28 buildings.

(e) The Urban scenario is characterized by two clusters of 110 total targets placed on
two sides of 7 total buildings (represented by an area filled with single obstacles
side by side). 40 drones, arranged into 4 swarms, are placed at the antipodes of
the area, with no trees at all.

(f) The Rural Mine is derived from real-world examples of areas near Sarajevo, as
well as Urban Mine (See, 2017). It is composed by 28 target, 281 trees and 3
buildings.

Figure 4.27: Search task scenarios.

Robustness
In recent years, several research groups are working on new procedures and tech-
nologies to operate andmonitor complex scenarios. Two specific areas include search
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and rescue and environmental monitoring. The remote/proximal sensing data ob-
tained using mini-UAVs were validated in several environmental monitoring mis-
sions with complex scenarios as reported in previous research; these include: use
of thermal imagery to monitor landfills (Lega & Napoli, 2008), surface waters con-
tamination (Lega & Napoli, 2010) and to detect illegal dumping (Lega et al. , 2012).
The detection, identification and localisation of a target are key elements in all the
above operations. Groups ofmini-UAVs equippedwith self-localisation and sensing
capabilities offer new opportunities; indeed, groups of mini-UAVs can explore clut-
tered outdoor environments, where access to conventional platforms is inefficient,
limited, impossible, or dangerous. In this context, the swarming drones could be
also considered as single array of sensors configured to the measure of a host of
environmental parameters. In search and rescue tasks, for example, a more effec-
tive approach is to achieve a quick “survey” of the area to identify key locations
as quick as possible. This exclusion process enables organisers to rescan the key
locations that provided some circumstantial evidence. In this context, the quality
of the sensing has also a direct impact on the overall mission performance (Bertuc-
celli & How, 2005). Therefore, an important aspect of the swarm coordination is the
possibility to require a sufficient number of redundant samples of the target to reli-
ably classify it as “detected” or “undetected”. A cooperative approach that exploits
drones sensing, minimizes the error in target recognition, moreover swarm intel-
ligence methodologies can be investigated to solve problems cooperatively while
maintaining scalability (Bethke et al. , 2007). Indeed, we propose a solution based
on two swarm intelligencemethodologies, Flocking and Stigmergy. Stigmergy, is an
indirect coordination mechanism based on the release/perception of pheromones
in a shared environment. specifically, a drone releases a particular amount of virtual
pheromone in correspondence of the location of the sensed possible target, whose
diffusion acts as an attractive potential on neighboring drones. To be attracted by
pheromone trails, the available drones should be spatially organized into flocks.
Flocking behavior allows the collective exploration of an environment by arranging
the UAVs into flexible groups; it is an emergent effect of individual rules based on
alignment, separation and cohesion (Reynolds, 1987b). As an effect of pheromone
attraction, other drones can confirm the possible target through repeated sensing,
and can surround the detected location in order tomap thewhole distribution. Thus
a considerable amount of pheromone is aggregated for each possible target. Once
a predefined number of drones confirmed the sensing of the possible target, it is
definitively considered to be a true target. To model the sensing error we employ
the notion of degradation of the sensing quality as a function of the proximity to
the target: as the proximity increases, the sensing may generate an altered measure
resulting in a wrong detection.

For the sake of simplicity, the environment is considered as a two dimensional
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space. Indeed, it could be inefficient and unreliable to have more than one drone on
the same location. In the worst case, drones could interfere with each other degrad-
ing the performance even more. From a model design perspective the environment
is considered subdivided in cells (corresponding to 1 square meter) and the imper-
fect sensing probability is uniformly distributed in the cells surrounding the target
(Fig. 4.28).

Figure 4.28: Imperfect sensing model.

The environment is mapped in the virtual environment in which the virtual
pheromones are released/perceived by the drones. Specifically, the digital environ-
ment manages the aggregation, diffusion, and evaporation of the pheromones map.
It can be seen as lattice of cells. When a single pheromone (intensity I) is released: (i)
it is added to the underlying map; (ii) it is progressively diffused to the nearby cells,
with a constant diffusion rate δ ∈ [0,1]; (iii) it is subsequently evaporated, decreasing
its intensity over time by the constant rate ε ∈ [0,1]. More formally, the pheromone
intensity is the output of a scalar function p(x,y)(t), released at the instant t on the
cell (x, y), and characterized by the dynamics:

p(x,y)(t) = ε ·
[
(1− δ) · p(x,y)(t− 1) + ∂p(x,y)(t− 1, t) + ∂d(x,y)(t− 1, t)

]
(4.14)

where (1− δ) · p(x,y)(t− 1) is the pheromone amount remaining on the cell (x, y)
after diffusion to nearby cells, whereas ∂p(x,y)(t1, t2) is the additional pheromone
released on the cell (x, y) in the interval (t1, t2), and ∂d(x,y)(t1, t2) is the additional
pheromone diffused from all the nearby cells to the cell (x, y) in the interval (t1, t2).
The total amount is also multiplied by ε to take into account evaporation. The dif-
fused pheromone can be formally calculated in the interval (t− 1, t) as:

∂d(x,y)(t− 1, t) =
δ

8
·

1

∑
i=−1

1

∑
j=−1

p(x+i,y+j)(t− 1) (4.15)

since each of the 8 neighbor cells propagates the portion δ of its pheromone to the
cell (x, y) at each update cycle.

Fig. 4.29(b) illustrates the dynamics of pheromone release: after initial release
(t=1) it is first diffused (t=2, 3, etc.) and then evaporated (t=20 and 25). Fig. 4.29(c)
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shows the pheromone sensing and acting dynamics: here, the social insect called
agent for concept abstraction follows the direction of major intensity.

Figure 4.29: (a) Ontology of the attractive pheromone exhibited by ants in foraging
process. (b) Illustration of the pheromone release dynamics. (c) Illustration of the
pheromone sensing and acting dynamics.

On the other hand, the drone behavior is structured into a prioritized logic,
where each priority level implements one basic behavior, or role. At each update
cycle, or tick, the role assumed by the drone is a consequence of the environmental
sensing. In descending order or priority, the roles are: obstacle avoider, pheromone
follower, flockmate and explorer. Specifically, every tick period, the drone performs:
(i) the target detection, in which case it releases pheromone controlled by StigDiffu-
sion and StigEvaporationRate parameters; (ii) the obstacle avoider, i.e. if a close object
is detected, within the ObstacleVision radius, the drone points toward a free direc-
tion, when available, and moves forward; (iii) if there are no close objects detected,
the drones play the tracker role: it tries to sense pheromone within the Olfaction
radius and, if detected, points toward the pheromone peak. (iv) if pheromone is
not detected, the drone plays the flockmate role: it tries to detect surrounding drones
within the FlockVision radius, in order to stay in the flock. Finally, (v) if there are no
surrounding drones, as an explorer it performs a random turn within the WiggleVar
angle, and then moves forward. The resulting behavior is depicted in the snapshot
in Fig. 4.30.

Each one of this behavior is modeled and parametrized. The parametrization is
performed in three phases: early analysis, under the assumption of reliable sensing
(that is, sensing error probability and sensing redundancy set to 0.1 and 1, respec-
tively); parameter sensitivity analysis on representative scenarios, by evaluating the
uncertainty in the output for each parameter; finally, accurate setting on each of the
most sensitive parameters, via a bisection method to find the value minimizing the
time needed to find 95% of the targets (the search time). For the reader’s conve-
nience, Table 4.11 summarizes the main structural and behavioral parameters of the
model, with their range and choosen values.

The proposed approach is experimented in the Field, Dumps, Urban and Urban
Mine scenarios. To carry out the experiments under the requirement of imperfect
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Figure 4.30: A simulation snapshot with flocks, targets and pheromone deposit.

Name Description Range Set value
DroneVel Drone horizontal speed (0, 15) 1
WiggleVar Drone max rand-fly turn angle (0, 18) 150
ObstacleVision Drone object sensing distance (0, 5) 2
FlockVision Flock visibility radius (0, 50) 7
MinimumSeparation Flock mobility distance (0, 5) 3
MaxSeparateTurn Flock separation angle (0, 18) 30
MaxAlignTurn Flock alignment angle (0, 18) 20
MaxCohereTurn Flock cohesion angle (0, 18) 5
Olfaction Pheromone sensing distance (0, ∞) 1
StigIntensity Pheromone release intensity (0, ∞) 40K
StigDiffusion Pheromone diffusion rate (0, 1) 0.85
StigEvaporation Pheromone evaporation rate (0, 1) 0.05
SensingError Sensing error probability (0, 100) {0.1,1}
Redundancy Sensing Redundancy (0, ∞) {1,3,5}

Table 4.11: Behavioral parameters of the presented swarm coordination solution.

sensormodel, a sensing error probability in the interval [0.1, 1] percentwith uniform
distribution has been added. Then, the search time has been evaluated by requiring
a prefixed number of repeated measures of the targets in the termination criterion,
that is, sensing redundancy values 3 and 5.

To assess the effectiveness of the proposed approach, the performance of the
model has been evaluated on three approaches: Random Fly (“R”), Stigmergic ap-
proach (“S”), Stigmergic and Flocking aproach (“S+F”) and 3 redundancy values (in
parenthesis). For each experiment, 10 trials have been carried out. It has been de-
termined that the resulting performance indicator (i.e. the search time) samples are
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well-modeled by a normal distribution, using a graphical normality test. Hence, the
95% confidence intervals have been calculated. Table 4.12 summarizes, for each sce-
nario, the characteristics and the results in the form “mean ± confidence interval”.
The results confirm that the use of stigmergy speeds up the target search process in
any scenario. Moreover, results become even better in combination with flocking.

Table 4.12: Characterization and performances obtained for each scenario.

Field Dumps Urban Urban Mines
# targets 50 30 110 40
# clusters 5 3 2 40
# trees 0 100 0 54
# buildings 0 0 7 28
# drones 80 80 40 25
R (1) 2,604 ± 248 2,252 ± 212 2,340 ± 229 651 ± 55
S (1) 1,383 ± 126 1,297 ± 102 1,748 ± 188 560 ± 49
S+F (1) 1,078 ± 106 1,009 ± 141 1,259 ± 102 487± 29
R (3) 4,161 ± 269 3,993 ± 266 3,688 ± 286 944 ± 55
S (3) 1,758 ± 151 1,513 ± 116 2,089 ± 197 707 ± 84
S+F (3) 1,484 ± 147 1,289 ± 135 1,861 ± 166 594 ± 34
R (5) 6,173 ± 361 6,163 ± 399 4,647 ± 271 1,167 ± 51
S (5) 2,109 ± 246 2,208 ± 208 2,488 ± 280 770 ± 93
S+F (5) 1,591 ± 136 1,823 ± 233 2,102 ± 151 726 ± 32

To better highlight the scalability of our approach against redundancy, Fig. 4.31
shows the completion time for redundancy 1, 3 and 5, for each scenario. Here, it is
apparent that Stigmergy introduces a significant improvement of trend over Ran-
dom Fly, both alone and combined with flocking behavior.

Provided results prove the benefits of both stigmergy and flocking, in terms of
tolerance to errors and scalability for increasing redundancy requirements. How-
ever, the overall mechanism can be better enabled if structural parameters are cor-
rectly tuned for the given scenario. Determining such correct parameters is not a
simple task since different areas have different features. Thus, an appropriate tun-
ing to adapt parameters to the specific search area is desirable to make the search
more effective.

Adaptation
In this work we addressed the issues of providing an effective parametrization by
proposing a swarmcoordination algorithm that is adaptive to different circumstances.
This is obtained by combining three swarm intelligence processes: Flocking, Stig-
mergy, and Evolution (FSE). Stigmergy is a reliable mechanism for generating au-
tonomous swarm coordination. Basically, a mark is realized in the form of virtu-
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Figure 4.31: Completion time against redundancy, for each scenario and with dif-
ferent approaches: Random Fly (dotted line), Stigmergy (dashed), and Stigmergy +
Flocking (solid).

alized pheromone, released in the corresponding position of the target just found.
Such pheromones diffuses to be sensed by other drones and acts as an attractive
potential on neighboring drones (Ermacora et al. , 2013). While unknown targets
are discovered, additional pheromone is released by flock members, thus enabling
an incremental positive feedback up to completion of all targets in the proximity of
the initial target. After a certain time the pheromone intensity cannot be reinforced,
and in practice disappears. The implementation of the virtual pheromone dynam-
ics and of the virtual environment is based on the same model presented in the last
paragraph. Furthermore, to reduce multiple explorations of the same zone, two ad-
ditional coordination mechanisms are used: (i) olfactory habituation (Glanzman,
2011) and (ii) repulsive pheromone (Amrein, 2004). In essence, (i) a drone releases
a repulsive pheromone where it does not sense a target, and (ii) a drone becomes
unable to sense pheromone while moving in locations saturated by pheromones.

The available drones are spatially organized into a number of flocks. Flocking
behavior is an effect of local rules based on alignment, separation and cohesion
(Reynolds, 1987b). With respect to the original flock model presented in Chapter
1, we have verified that: (a) the cohere is not suitable for drones moving between
many obstacles; (b) the separation can be better exploited with an area different
than circular, as represented in Fig. 4.32.

Results in (Alfeo et al. , n.d.) prove the benefits of the combined strategy of stig-
mergy and flocking and raise the need of an appropriate adaptation of the stigmergy
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Figure 4.32: Flocking agent procedures for drones: search area, separate and align-
ment.

and flock parameters to the specific search area. For example, an area with a high
density of obstacles can be efficiently explored via small flocks. In general great
benefits may be provided by adjusting each swarm behavioral parameter to a given
search scenario. Table 4.13 summarizes the parameters to adapt for each search sce-
nario.

Table 4.13: Description of the parameters of the FS algorithm

Parameter Description (unit measure)
droneVel Drone horizontal speed (m/s)
wiggleVar Drone max rand-fly turn angle (◦)
obstacleVision Drone object sensing distance (m)
flockVision Flock visibility cone radius (m)
minimumSeparation Flock separation distance (m)
maxSeparateTurn Flock separation turn limit (◦)
minFlockAngle Flock separation front cone (◦)
maxAlignTurn Flock alignment turn limit (◦)
stigIntensity Pheromone release intensity
stigDiffusion Pheromone diffusion rate on surrounding cells (%)
stigEvaporation Pheromone evaporation rate (%)
olfaction Pheromone sensing distance (m)

For the parameters adaptationwe adopt an evolutionary computation technique,
which improves the parameters with regard to a given measure of quality. Evolu-
tionary computation has the advantage of making no assumptions about the prob-
lem being optimized, thus avoiding to bias the underlying mechanisms. It is based
on a population of candidate solutions, iteratively improved via mechanisms in-
spired by natural evolution, such as mutation, selection, and crossover. Specifically,
we adopted theDifferential Evolution (DE) algorithm, which is one of themost pow-
erful stochastic real-parameter optimization algorithms (Das& Suganthan, 2011). In
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essence, DE operates through conventional operators of evolutionary computation,
except that it perturbs the current population via scaled differences of randomly
selected members.

As specified, to exploit DE we need to define a metric of quality of the swarm
task, i.e. the fitness of the solution. The fitness can be defined as following. Given
a simulated scenario Σ, made of: (i) simulation instants of time t εN+; (ii) a set of
drones {Di}, each drone having a dynamic position (xt, yt)Di; (iii) a set of targets
τεT, each target having a fixed position (x, y)τ. The set of targets already found
TF(t) ⊆ T, at a given instant of time t, is the set of targets for which it exists a
time t′ ≤ t and a drone d such that the drone’s position corresponds to the target’s
position:

TF(t) = {τ|∃Di, ∃t′ ≤ t : (xt′ , yt′)Di = (x, y)τ} (4.16)

The fitness of the simulated scenario Σ is the minimum instant of time for which
TF(t) has cardinality greater than or equal to 0.95 of the cardinality of T:

fitness(Σ) = mintεN+{t : |TF(t)| ≥ 0.95 · |T|} (4.17)

From an implementation point of view, the fitness is the results of the execution
of a simulated search task, done in accordance to the drone behavior, executed on
each drone until the search is over (i.e. 95% of the targets are found) as detailed in
the following.

In the FS algorithm, each drone periodically carries out a target check on its lo-
cation. If there is an unknown target, it releases an amount stigIntensity of attrac-
tive pheromone on its location. If no target is found, the drone releases repulsive
pheromones. Subsequently, if there are drones or objects within obstacleVision ra-
dius, then the drone turns away. If there are attractive pheromones within olfaction
radius, the drone turns toward the maximum amount of it. If drone is located at the
maximum, it is subject to olfactory habituation. When there are no pheromones,
if the drone detects flockmates in a separation area, it slows down and turns away
from them (at most by maxSeparateTurn).

The separation area is created by union of a circular area of radius minimumSep-
aration around the drone, with a conical area in front of the drone, sized by min-
FlockAngle and flockVision. If there are no flockmates found in this area, the drone
steers towards the drones in a larger circular area (with radius flockVision) by a quan-
tity within maxAlignTurn. Subsequently, if neither drones, nor pheromones, nor ob-
stacles are found, the drone steers towards the minimum of repulsive pheromone, if
available, otherwise randomly. Finally, it moves forward. More formally, the part of
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the FS algorithm can be summarized by the pseudocode presented in the following
algorithm.

Algorithm 4: Coordination algorithm based on Flocking and Stigmergy
function executeFS(Swarm, Obstacles,

Targets,AttractivePheromones,RepulsivePheromones)
tick = 0; cardTF = 0; cardT = count(Targets) ;
do

for each drone Di in Swarm do
if (Di.position in Targets) then

markTargetAsFound(Targets, Di.position); cardTF = cardTF + 1;
releasePheromone(AttractivePheromones, Di.position);

else
releasePheromone(RepulsivePheromones, Di.position);

if (Di.obstacleVision() intersects Obstacles) then
turnDrone(Di.heading);
else if (Di.olfaction() intersects AttractivePheromones) then

turnDroneTowardsMax(Di.heading,AttractivePheromones);
else if (Di. f lockmates in Di.separateArea()) then

turnDroneWithin(Di.heading, maxSeparateTurn);
else if (Di.heading != Di.flockmates().meanHeading) then

turnDroneWithin(Di.heading,maxAlignTurn);
else if (Di.olfaction() intersects RepulsivePheromones) then

turnDroneTowardsMin(Di.heading,RepulsivePheromones);
else turnDroneWithin(Di.heading, wiggleWar);

moveForward(Di.pos,Di.heading,Di.vel);
evaporatePheromone(AttractivePheromones,RepulsivePheromones);
tick = tick + 1;

while cardTF < 0.95 · cardT;
return tick;

To make realistic assumptions, some requirements and constraints of sensors
and drones have been studied, such as the time limit and drone velocity. In (Neu-
mann et al. , 2013) gas detection is provided via drones using a 1Hz rate sensor. In
(Rodriguez et al. , 2014) drones to detect mines using image recognition through
camera allow to have 80% recognition precision flying at 2.2 m/s. To fit among
different needs of each scenario and to raise the precision of our recognition, the
drone velocity is set to 1 m/s. Assuming a drone battery life of 25 minutes, the fly
time is actually lower, due to the time needed to return to the place where drones
are gathered (Ermacora et al. , 2013). Regarding the evolutionary approach, in this
work, we refer to (Das & Suganthan, 2011) and use the most common DE variant,
called "DE/rand/1/bin" according to a naming convention known as "DE/x/y/z".
In this convention, "DE" stands for differential evolution, "x" the base vector to be
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perturbed, "y" is the number of difference vectors considered for perturbation of "x",
and "z" the type of crossover being used. Thus, the used variant is characterized by
a perturbation with randomly ("rand") selected members, only one ("1") weighted
difference vector, and a binomial ("bin") crossover used in conjunction. Apart from
the DE variant, somemeta-parameters must also be chosen. Specifically, in the opti-
mization process, the differentialweight F belongs to [0, 2], andmediates the genera-
tion of the mutant vector. The component of a child vector is taken with probability
CR from the mutant vector and with probability 1-CR from the target vector. In
(Cimino et al. , 2016) an early application of DE is studied and proposed to parame-
terize the coordination of a group of droneswhose schema is obtained by employing
flocking and digital pheromones. The provided results reveal as good value for CR
and F are respectively 0.5 and 0.7.

To obtain the best performance algorithm, we have experimented a number of
variants of the proposed approach. More specifically: (i) in the FASCSAE algo-
rithm, Flocking includes align, separation and cohere, Stigmergy includes attractive
pheromone and finally Evolution is also available; (ii) in the FASSAE algorithm the
cohere (Reynolds, 1987a) has been removed from Flocking; (iii) In the FASSSAE the
scatter procedure (Fig.3b) has been incorporated into the separate flocking proce-
dure (Cimino et al. , 2016); (iv) in the FASSSARE the repulsive pheromone has been
also added (Cimino et al. , 2015c); (v) in the FASSSAROE, to further speed the search,
the olfactory habituation procedure has been added. Table 4.14 shows the perfor-
mance of the different variants, in terms of 95% confidence interval over 10 trials of
completion time (ticks) on each scenario.

Table 4.14: Performance of different variants of the FSE algorithm.

Version Dump Field Forest Rural Mine Urban Urban Mine
FASCSAE 1043± 133 791± 109 569± 157 1658± 247 933± 218 1595± 296
FASSAE 895± 179 507± 58 425± 36 1693± 276 818± 176 1356± 191
FASSSAE 866± 205 546± 101 416± 76 1030± 123 932± 122 880± 59
FASSSARE 743± 45 511± 37 400± 28 981± 94 720± 56 878± 53
FASSSAROE 638± 33 356± 47 331± 25 783± 84 562± 33 846± 74

Results in Table 4.14 clearly shows that the different variants give an incremental
improvement of performance. Considering the average performance over all scenar-
ios, the improvement from the first to the last variant is 47% in all scenarios. Table
4.15 shows the adaptive capability of the FASSSAROE algorithm.

As a final outcome, a performance comparison with previous approaches based
on flocking and stigmergy is presented in Table 4.16, namely Basic S+F (Cimino et al.
, 2015c) and Adaptive S+F* (Cimino et al. , 2016).
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Table 4.15: Performance before and after the Adaptation

Scenario Before Adaptation After Adaptation
Dumps 1132 ± 122 927 ± 71
Field 1149 ± 162 500 ± 55
Forest 1189 ± 128 515 ± 65
Rural Mine 1029 ± 59 947 ± 57
Urban 1224 ± 198 644 ± 51
Urban Mine 1228 ± 99 1109 ± 67

Table 4.16: Performance comparison with other approaches in the literature.

Scenario Basic S+F (Cimino et al. , 2015c) Adaptive S+F* (Cimino et al. , 2016) FSE approach
Dump 934 ± 216 757 ± 112 638 ± 33
Field 589 ± 86 582 ± 121 356 ± 47
Forest 602 ± 124 593 ± 146 331 ± 25
Rural Mine 1530 ± 225 1123 ± 116 783 ± 84
Urban 890 ± 93 666 ± 100 562 ± 33
Urban Mine 1704 ± 225 1025 ± 76 846 ± 74

Enhancing the behavioral model by including the UAVs
technological capability

In this work the swarm behavior is modeled considering and comparing two differ-
ent paradigms, namely biological behavior, which mimics social animal metaheuris-
tics (exploited in last paragraphs), and computational behavior, which considers the
enhancements obtained by exploiting UAVs configuration and information technol-
ogy. Our aim is to verifywhether some enhancements allow a reduction of complex-
ity and a more effective optimization of the structural parameters. As an example,
the digital environments can allow a specialization of biological models able to sim-
plify both mechanisms and dynamics and then the research space. Nevertheless,
this computational behavior should keep the essential benefits of the original bio-
logical behavior.

Specifically, the computational behavior expands the biological behaviorwith the fol-
lowing possible improvements:

(i) computational stigmergy: since the digital pheromone is maintained in a virtual
space, called pheromone map, it can have an instant diffusion, to immediately
propagate the environmental information to nearby UAVs; furthermore, a lin-
ear evaporation and a streamlined shape (Fig. 4.33(d))allow a better control of the
aggregated pheromone potential;
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Figure 4.33: Computational Stigmergy. Pheromone Release (a), Pheromone sens-
ing/attraction (b), Olfactory habituation (c), Pheromone Mark Implementation (d)

(ii) computational flocking: the simultaneous localization and mapping technology
allows different-scaled flocking, ranging from visually-based flocks to large-
scale localization-based formations, across physical barriers.

(iii) computational sensing/actuation: long-range sensing allows detection of remote
targets and obstacles; as a consequence, computational pheromone can be re-
leased on a target remote with respect to the UAV position (Fig. 4.33(a)); more-
over, a UAV can accelerate, decelerate and keep cruise speed while obstacles
are not detected. Finally, olfactory receptors can decrease in sensibility over
time to prevent overstimulation (olfactory habituation).

Given the reported characteristics, the behavioral parameters of the computa-
tional model are summarized in Table 4.17.

Table 4.17: Stigmergy and Flocking parameters.

Procedure Parameter Name Measure
Stigmergy MarkTopRadius cells
Stigmergy MarkBottomRadius cells
Stigmergy MarkIntensity unit
Stigmergy EvaporationRate ratio
Stigmergy OlfactoryHabituationTime ticks
Stigmergy OlfactionRadius cells
Flocking FlockAngle degree
Flocking SeparationRadius cells
Flocking MaxSeparationTurn degree
Flocking AlignRadius cells
Flocking MaxAlignTurn degree
Flocking CohereRadius cells
Flocking MaxCohereTurn degree
Flocking MaxRandomTurn degree

To have a more realistic simulation we take into account UAVs cruise speed, ac-
celeration, angular velocity, battery duration, UAV size, and sensing. These charac-
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teristics have been set considering the technical specifications of the UAV possibly
used in the provided scenarios. Specifically, for the scenarios Dump, Field and For-
est, the UAV used is DJI Inspire 2 with Zenmuse X5S video camera (Cruz et al. ,
2016), DJI2+X5S vc for short. For the scenarios Rural Mine, Urban and Urban Mine,
the UAV is equipped to detect gas and landmines (Gade & Moeslund, 2014) such
as the DJI Inspire 1 with Zenmuse XT thermal camera (Chiaraviglio et al. , 2016),
DJI1+XT tc for short. Table 4.18 summarizes all structural parameters.

Table 4.18: Structural parameters of the UAV models.

Parameter Name Measure DJI2+X5S vc DJI1+XT tc
Max Speed m/s 26 22
Cruising speed m/s 3 3
Max Acceleration m/s2 4 4
Max Angular velocity degree/s 150 150
Endurance time s 1620 1080
UAV size m 0.6 0.6
Sensing radius m 2 4
ObstacleVision m 3 3
ObstacleVisionAngle degree 15 15

By considering the UAV camera pointing downwards, it is possible to calculate
the radius of a circular sensing area (Sensing Radius). Moreover, we consider a UAV
flight altitude of 3 meters, to navigate under the canopy or in a cluttered environ-
ment (Israel, 2011). AUAV cruising speed no higher than 3 m/s is assumed to ensure
a good target recognition performance (Rodriguez et al. , 2014).

Finally, in order to investigate the performance and the properties of the pro-
posed approach, we propose a set of quality measures :

(i) Effectiveness: since battery duration is a critical feature of current UAVs, a mea-
sure of themission effectiveness is the average completion time, i.e. the average
time to find the 95% of the targets.

(ii) Efficiency: the efficient swarm carries out a quick survey of the scenario (ex-
ploration) and an in-depth search of areas characterized by targeted cells (ex-
ploitation). The trade-off between exploration and exploitation is the target
search efficiency. Formally, let v(x,y) be the number of visits that the cell (x, y)
of the environment has received during the mission, and dt(x,y) the distance of
(x, y) from the closest target. Thus, we expect that for an efficient search v(x,y)
is large/small for cells that are close to/far from a target. In other terms, the
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average ratio between v(x,y) and dt(x,y) is high:

SearchE f f iciency =
1
n
·
√

n

∑
x=1

√
n

∑
y=1

vx,y

dt(x,y)
(4.18)

(iii) Scalability: By increasing the number of UAVs the search time is expected to be
lower, due to the additional resources. However, the search time can be nega-
tively affected by the number of path deviations caused by collision avoidance
between many UAVs. The average search time over repeated trials, calculated
for increasing numbers of UAVs, provides a scalability measure.

(iv) Adaptive cooperation: on average it is expected that: (a) stigmergy attractsmainly
flock mates, i.e., the average flock size and the pheromone size should be sim-
ilar; (b) a scenario with isolated/aggregated targeted cells determines smal-
l/large flocks; (c) obstacles determine flock fragmentation. To measure such
effects, the following measures should be compared: (i) the (average) width of
flocks, i.e. the (average) maximum distance between two flock mates; (ii) the
average number of isolated UAVs, i.e. UAVs not belonging to any flock; (iii) the
average number of non-flock mates attracted by a pheromone deposit (flock dy-
namism). Suchmeasures are based on a procedure able to dynamically identify
the flock composition. For this purpose, we adopt a well-known density-based
clustering algorithm, DBSCAN. specifically, an agent p is a core agent if at least
minPts agents are within distance ε of it. Such agents are said to be directly
reachable from p. An agent q is reachable from p if there is a path p1, ..., pn

with p1 = p and pn = q, where each pi+1 is directly reachable from pi and all
the agents on the path are core agents. If p is a core agent, then it forms a flock
together with all agents that are reachable from it.

By exploiting the maximum distance of flockmate’s interaction (i.e. the Coher-
eRadius) as ε we are able to generate clusters that correspond to the arrange-
ment of the UAVs in the flocks. Specifically, a group of directly reachable UAVs
are considered a flock, while the ones classified as noise are considered single
UAVs (i.e. not belonging to any flock).

For each measure, we present the 95% Confidence Interval (CI) over 5 repeated
trials. Table 4.19 shows the mission duration for different computational sensing ra-
diuses (abbreviated as Sens.Radius in the tables), assuming the computational actu-
ation, i.e., remote sensing and remote pheromone release. Here, the enhancement
provided by computational sensing and actuation is apparent. Table 4.20 clearly
shows the same experiment assuming the biological actuation, i.e., remote sensing
and local pheromone release. Comparing Table 4.19 and Table 4.20 it is apparent
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that the complete computational sensing and actuation sensibly improves perfor-
mance.

Table 4.19: Mission duration with computational sensing and actuation.

Scenario Sens.Radius 2 Sens.Radius 6 Sens.Radius 15
Dump 363.2 ± 102.6 238.4 ± 115.9 108.6 ± 42.8
Field 115.4 ± 45.7 52.8 ± 7.5 35.4 ± 1.41
Forest 334.8 ± 73.3 181.2 ± 88.0 123.2 ± 25.04
Rural Mine 195.8 ± 49.6 111.8 ± 68.5 38.6 ± 2.42
Urban 801.6 ± 310.7 727.8 ± 511.8 286.2 ± 179.1
Urban Mine 303 ± 85.7 160 ± 43.89 100.2 ± 23.46

Table 4.20: Mission duration with computational sensing.

Scenario Sens.Radius 2 Sens.Radius 6 Sens.Radius 15
Dump 440.6 ± 192.58 234.2 ± 129.8 245.2 ± 91.4
Field 139.8 ± 66.4 61.2 ± 15.9 49.2 ± 11.59
Forest 372.4 ± 66.2 246.4 ± 73.2 186.6 ± 65.2
Rural Mine 193 ± 33.8 94.8 ± 23.28 40.6 ± 1.11
Urban 1070.8 ± 393.2 722.6 ± 360.0 942 ± 695.8
Urban Mine 363.8 ± 134.5 195.4 ± 35.2 129.4 ± 37.31

Based on these results, the computational behavior is compared with the bio-
logical behavior based only on adaptive Stigmergy and Flocking, called “S+F*” pre-
sented in (Cimino et al. , 2016). It is worth noting that the S+F* algorithm supports
a basic obstacle avoidance that does not detect drones as obstacles. Thus, UAVs
overlapping are possible. To have comparable results, the same UAV parameters re-
ported in (Cimino et al. , 2016) have been used. The results in Tab. 4.21, clearly shows
that the computational approach outperforms the “S+F*” approach, although the
latter is not constrained by UAV avoidance. Indeed, in the Urban scenario, which
is characterized by highly dense targeted cells, the “S+F*” approach outperforms
the computational approach. However, it is worth noting that the number of UAV
overlapping during the execution of the “S+F*” approach on this scenario is very
high. Thus, the related result is not realistic since it does not consider the real-world
constraints by providing an excess of freedom to UAV flight.

Table 4.22 and Table 4.23 show the mission duration and the search efficiency
when considering the adaptation of the evolution metaheuristics. Here, the hu-
man adaptation is provided by means of heuristics based on simple statistics: (i)
MaxRandomTurn and FlockAngle are set to 120 and 60 degrees, respectively; (ii) to
avoid overlapping the UAVs fields of view, SeparationRadius is set to 2 cells, whereas
AlignRadius and CohereRadius are set to 4 and 8 cells, respectively; (iii) the flocking
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Table 4.21: Mission duration with computational approach and “S+F*” approach.

Scenario “S+F*” Computational Approach
Dump 927 ± 71 919.9 ± 180.9
Field 500 ± 55 292 ± 41.9
Forest 515 ± 65 511.3 ± 38.9
Rural Mine 947 ± 57 501 ± 95.3
Urban 644 ± 51 930.4 ± 114.1
Urban Mine 1109 ± 67 902.6 ± 133.2

parameters, SeparationRadius, AlignRadius and CohereRadius, have been set accord-
ingly to 10, 15 and 20 cells; (iv)MarkTopRadius has been set to 6 cells, since it must be
greater than ObstacleVision to avoid UAV overcrowding; (v) MarkBottomRadius has
been set to 8 cells, since this is the average distance between targeted cells in the
scenarios; (vi) OlfactoryHabituationTime is set to 3 ticks to allow the UAV to cover a
distance of markBottomRadiuswhich allows to go far from its pheromone.

Table 4.22: Mission duration considering the adaptation process performed by DE.

Scenario RandomWalk Human Adaptation DE Adaptation
Dump 701.8 ± 87.8 624.4 ± 382.7 419.4 ± 157.0
Field 236.6 ± 14.2 198.6 ± 43.3 119.2 ± 16.8
Forest 532.2 ± 130.1 602.2 ± 171.1 318.2 ± 26.4
Rural Mine 206.0 ± 25.4 200 ± 31.4 110.4 ± 58.9
Urban 1760.2 ± 398.6 3056.2 ± 1919.8 801.6 ± 310.7
Urban Mine 217.2 ± 56.7 200.6 ± 17.7 198.2 ± 35.2

Table 4.23: Search Efficiency considering the adaptation process performed by DE.

Scenario RandomWalk Human Adaptation DE Adaptation
Dump 0.0838 ± 0.004 0.0737 ± 0.004 0.0652 ± 0.002
Field 0.0680 ± 0.057 0.0194 ± 0.001 0.0156 ± 0.001
Forest 0.0229 ± 0.002 0.0247 ± 0.002 0.0138 ± 0.001
Rural Mine 0.0274 ± 0.001 0.0269 ± 0.002 0.0264 ± 0.001
Urban 0.5294 ± 0.175 0.6630 ± 0.169 0.1937 ± 0.051
Urban Mine 0.0270 ± 0.002 0.0262 ± 0.002 0.0259 ± 0.001

The results obtained with the DE adaptation shows a good improvement of per-
formances in all scenarios, with respect to the other approaches. Is it worth noting
that in many scenarios the Human Adaptation does not outperforms the Random
Walk. This result shows the structural importance of the DE optimization.

The better search efficiency of the DE adaptation is also confirmed by Fig. 4.34,
where the distribution of number of cells with a given number of visits is shown.
Here, an efficient search produces narrower and more-to-the-left distributions.
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To measure the internal UAV organization caused by the DE adaptation, Table
4.24 and Table 4.25 shows the adaptive cooperation measures with Human and DE
adaptation, respectively. As a first result, in theDE adaptation, each scenario is char-
acterized by a lower number of isolated UAVwith respect to the Human adaptation.
This corresponds to a better swarm formation.

Table 4.24: Adaptive cooperation measures with human adaptation.

Scenario Flock Size Isolated UAVs Flock Dynamism
Dump 28.463 ± 0.215 47.539 ± 0.347 0.970 ± 0.182
Field 24.473 ± 0.293 47.084 ± 1.119 0.983 ± 0.193
Forest 25.788 ± 0.198 51.196 ± 0.395 1.396 ± 0.280
Rural Mine 25.155 ± 0.343 47.830 ± 0.806 1.437 ± 0.231
Urban 25.899 ± 0.109 50.593 ± 0.129 1.333 ± 0.178
Urban Mine 29.326 ± 0.451 42.098 ± 0.757 1.000 ± 0.179

Table 4.25: Adaptive cooperation measures with DE adaptation.

Scenario Flock Size Isolated UAVs Flock Dynamism
Dump 34.334 ± 0.350 5.104 ± 0.119 0.190 ± 0.070
Field 9.213 ± 0.365 35.721 ± 1.236 3.033 ± 0.367
Forest 24.901 ± 0.261 11.114 ± 0.214 0.842 ± 0.247
Rural Mine 16.816 ± 0.361 17.922 ± 0.498 0.148 ± 0.067
Urban 9.875 ± 0.076 29.726 ± 0.221 2.041 ± 0.234
Urban Mine 29.964 ± 0.488 7.910 ± 0.229 0.858 ± 0.174

On the other hand, the DE adaptation determines flock configurations that are
peculiar to the scenario structure. For example, Dump, Forest and Urban Mine sce-
narios are characterized by numerous and small obstacles, which tend to crumble
dense and rigid flocks. For this purpose, a good strategy is to create large and sparse
flocks, which are more resilient to small obstacles getting across. This also results
in a lower number of isolated UAVs shown in Table 4.25.

Figure 4.35 shows the scalability of the proposed approach, considering the con-
fidence intervals of mission duration against the number of drones. Overall it shows
that for each scenario, to increment the number of drones produces a different de-
gree of improvements. It is worth noting that for some scenario characterized by
dense targeted cells or dense obstacles such as Urban, Field, and Rural Mine, some
nonlinear phenomenon can occur due to the complex obstacle avoidance situations.

In this work, we have enhanced basic biologically inspired metaheuristics for
modeling and optimizing UAVs coordination in target search, taking into account
technological and computational advances. A novel coordination logic is proposed,
by designing stigmergy, flocking, and sensing/actuation metaheuristics. The com-
bined metaheuristics are logically integrated and adapted to specific missions via a
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Figure 4.34: Search efficiency: number of cells against number of visits, with Ran-
domWalk (dotted line), Human Adaptation (dashed line), and DE adaptation (bold
line).

differential evolution optimization. The systemhas been simulated on synthetic and
real-world scenarios, by considering UAV commercial models. Experimental results
show that (i) the computational advances sensibly improve the performance and the
realism of the biologicallymetaheuristics; (ii) the differential evolution optimization
provides significant and structural improvements to the coordination logic; (iii) the
quality of the resulting cooperation is better in terms of swarm formation, search
efficiency, strategy and scalability.
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Figure 4.35: Mission duration with the computational approach: confidence inter-
vals against UAVs numbers.

4.8 Urban Trash Disposal Service via Swarm of
Robots

Problem Statement

The world is urbanizing at an unprecedented rate of which humanity has never wit-
nessed before (Shahrokni et al. , 2014). UN-Habitat estimates that by 2050, 3.5 out of
the 9.1-billion global residents will be living in informal urban communities (Habi-
tat, 2016). On the one hand, novel urban infrastructures together with new tech-
nologies such as IoT, 5G, LiDAR, etc. allow to understand the city as a senseable,
programmable, and actuable ecosystem (Shahrokni et al. , 2014). On the other hand,
this urbanization implies important social and environmental challenges such as
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fuel production, air pollution, etc. (Kumar et al. , 2015). Experts estimate that it will
require $57 trillion US dollars to adapt traditional heavy infrastructures to the in-
formal urban needs (Jahan, 2017) and that today’s solutions will not be able to scale
at the pace urbanization is taking place. One of the main urban services that could
drastically benefit from the inclusion of novel technology is waste management due
to its economical and environmental impact (Zanella et al. , n.d.). For instance, in
areas that are experiencing fast growth, waste management has become a challenge
since the basic resources are not adapted to such changes (Off, 2012).

The aim of this work is to explore the synergy of swarm robotics systems and
urban environments by using MPF and stigmergy to improve the efficiency and au-
tonomy of the urban waste management system. Specifically, we employ the con-
cept of smart city. Indeed, in order to respond to the growing demands of more
efficient, sustainable, and increased quality of life, cities are becoming more and
more "smart". In this context, "to be smart" can be defined as the capability to gain
insights about the current urban conditions, and to react dynamically to manage
them properly. According to this view, smart cities can be seen as cybernetic urban
environments where different agents (e.g., citizens) and actuators (e.g., swarm of
robots) exploit the city wide infrastructure as a medium to operate synergistically.

Proposed Approach
The approach proposed in this work is presented as a multilayer simulation model
where each layer represents one of these components: (a) The urban environment,
(b) the waste management infrastructure, and (c) the actuation layer (see Fig. 4.36).

The urban environment (Fig. 4.36 (a)) contains (i) buildings, where agents stay in
specific hours of the day, (ii) roads, used by agents to move between buildings, and
citizens (iii). Citizens are special agents that move between buildings (e.g., home,
workplace, amenities, etc.) at certain hours during the day using roads. In our ap-
proach, citizens recreate the daily activity of the urban area; their simulated behav-
ior and mobility patterns were described in recent literature (Grignard et al. , 2018;
Alonso et al. , 2018).

Due to the citizens’ activity (e.g., shopping, eating out, etc.), waste is generated
and deposited in urban Trash Bins (TB). Waste generation is a multi-step process
(Fig. 4.37). Firstly, citizens are positioned on an initial location (1). When it is time
to travel (2) (e.g., go towork, return home, etc.), the citizen chooses a destination and
starts the trip. While travelling, if the citizen is bringing waste, is within a distance
ϕ from a TB, and the TB is not full, the citizen drops λ liters of waste in the TB (3).
After depositing waste in the TB, the citizen continues traveling (4). In case citizens
find a TB that is already full, they do not drop any waste and continue traveling.

On top of the urban environment layer we have the waste management infras-
tructure (Fig. 4.36 (b)), which employs (i) Trash Bins (TBs). TBs are geolocated and
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Figure 4.36: Multilayer model of the proposed scenario. In the image a “smart” city
is divided into different “layers”. (a) represents the urban environment layer, where
buildings, roads, and citizens coexist. (b) represents the waste management infras-
tructure layer, where road RFID tags coexist with Trash Bins (TB) and Deposits (Ds).
Finally, (c) represents the actuation layer, where swarm robots operate by exploiting
the previous layers to carry out the waste management in the urban area.

arranged beside the roads. Each TB has an RFID tag containing a unique ID and
the current amount of waste inside it (Ghadage & Doshi, 2017). The TB detects its
amount of waste and updates the RFID tag accordingly. Once aminimum threshold
is exceeded, the TB automatically packs the waste into a transportable unit (Chomik
et al. , 2017). The number of packedwaste units that can be kept in each TB is limited.
Once this limit is exceeded, the TB is no longer usable. (ii) Deposits (Ds) are facilities
that provide final trash disposal services (e.g., waste compactors, recycle processes,
etc.) as well as robot battery refills. (iii) RFID tags at every crossroad store the in-
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Figure 4.37: Representation of a citizen’s travel path and waste depositing process.
Citizens start their activity in an initial location (1). By travelling around (2) citizens
generate waste. If citizens find a Trash Bin (TB) within distance ϕ (3), they drop λ
amount of waste inside. Once this process is completed, or if the TB is full, they
continue their journey (4).

formation needed to steer the swarm of robots. Specifically, each RFID tag contains
the time-stamp of the last RFID operation, the amount of pheromone characterizing
each road on that crossroad, and the distance and the direction toward the closest
D. The path and distances between each road crossing and the closest D are fixed
and known. This information allows robots to compute the shortest path between
each crossing and the closest D and to store this information in its correspondent
RFID tag.

Figure 4.38: The Persuasive Electrical Vehicle (PEV). (a) PEV on the streets of the
Kendall area (Cambridge, Massachusetts). (b) PEV carrying several packages as a
payload.

The actuation layer (Fig. 4.36 (c)) is composed of a swarm of robots in charge of
carrying the waste from each TB to the closest D. In order to increase the feasibility
of our approach, we decided to model our robots using a real-world platform with
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specifications suited for the task. The Persuasive Electric Vehicle (PEV), depicted in
Fig. 4.38, is an autonomous tricycle developed at the MIT Media Lab aimed to be a
hybrid between autonomous cars and bike sharing systems. The core idea behind
the PEV is to provide an affordable, highly-customizable, self-driving solution to
urban mobility. One of the main advantages of this platform over more traditional
approaches is that it can operate on bike lanes; therefore, it would not stress the
already saturated road infrastructure of a populated urban area. The main specifi-
cations for the PEV are: a maximum payload of 120.0 kg, maximum speed of 40.0
km/h, and 2 hours battery autonomy. In addition, the PEV is equipped with a wide
variety of sensors such as R/W RFIDs, stereo cameras, LIDARs, IMUs, etc.

Figure 4.39: Robot behavior. Finite state machine diagram with 3 main actions:
Wander allows robots to explore the environment. Once they run out of battery,
robots move to the closest D to get a battery Recharge. Finally, if robots find waste
in a TB along their path, they Carry it to the closest D.

Fig. 4.39 depicts the robot behavior via a finite state machine diagram. The robot
behavior is designed by means of a set of 3 states and transition rules aimed at nav-
igating the urban environment:

• The initial state of every robot is Wander. While in the wandering state, the
robot travels from one road crossing to another by choosing the road with the
strongest pheromone level. If this is not possible (i.e., if there is no pheromone
on any road or all the roads have the same amount of pheromone), the next
edge is chosen randomly. In order to avoid getting stuck on the same area
until all the pheromones evaporate, robots can choose a random road with a
probability of (1-Xr), where Xr represents the exploitation rate of the robots.

• At each road crossing, the robot estimates the distance that can be traveled
with the remaining battery. If this distance is approximately the same to the
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closest D, the robot state switches to Recharge. In this state, the robot moves
towards the closest D by following the directions on the RFID tags on the way.
The robot returns to the wander state when it reaches the closest D, since we
assume that the deposit automatically swaps the battery of the robot.

• When the robot is close to a TB, it reads the RFID tag on the TB. If the TB
contains at least one transportable waste unit, the robot changes its state to
Carry. Then, the robot withdraws a waste unit from the TB and moves to the
closest D by following the directions available on the RFID tags on the way.
While the robot is in the carry state it ignores the TBs in its way. The robot
returns to the wander state after reaching the D.

The fundamental mechanism on which the self-organization of the swarm of
robots is based is the perception and distribution of pheromone amounts. In this
work, an RFID tag is placed at each road crossing. In addition to the direction to
the closest D and the time-stamp of the last operation, the RFID tag contains the
pheromone amounts corresponding to each direction (thus, each road) that can
be taken from the road crossing. The pheromones amounts are maintained in a
consistent state by the robots, which manipulate them according to a precise set of
rules that echo biological models of stigmergy-based foraging (?). In particular, the
pheromone amount is subject to three processes:

• Marking, i.e., the addition and aggregation of pheromone to the already ex-
isting pheromone trail due to the performance of a given action (e.g., when
an ant is carrying food). In our model, this is achieved by robots in the carry
state by increasing the amount of pheromone in the crossroads from which
the robot is coming, thus marking the path towards where the waste is being
generated. This amount is proportional to the amount of waste found in the
TB.

• Evaporation, i.e., the decay of the pheromone trail over time. In our model,
this is achieved by each robot by decreasing the amount of pheromone cor-
responding to the current crossroad visited. The amount of pheromone de-
creasing through the evaporation mechanism is proportional to the difference
between the current time instant (t) and the time-stamp (ts) of the last RFID
operation. If the final amount of pheromone is less than zero, it is set to zero.

• Diffusion. To increase the probability that robots are attracted to a location
with uncollected waste, we implemented the diffusion mechanism: the capa-
bility of marking a road with a small portion of the pheromone perceived on
the last RFID tag, so as to make the pheromone perceptible even from roads
immediately close to the marked path and steer the robots toward it. In our
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model, this is achieved by each robot by increasing the amount of pheromone
corresponding to the road from which the robot is coming.

In brief, when the robot interacts with an RFID tag, it decreases the amounts of
pheromones on it depending on the time elapsed since the last RFID operation and
the evaporation rate. Moreover, the amounts of pheromones regarding the direc-
tion (i.e., the road) fromwhich the robot comes from is increased due to the diffusion
andmarking processes (if the robot is carryingwaste). Specifically, the following for-
mula describes the updating procedure of the amount of pheromone corresponding
to each edge in the RFID tag:

Pt = Pts − [Er · Pa · (t− ts)] + (Pa · Ta) + (Dr · Pmax) (4.19)

In Eq. 4.19, Pt represents the amount of pheromone corresponding to the current
edge at the current time instant. Pts is the amount of pheromone corresponding to
the current edge at the time-stamp (i.e., the last operation on the RFID tag). Er is
the evaporation rate (0 ≤ Er ≤ 1), i.e., the amount of the pheromones disappearing
per unit of time. Pa is the amount of pheromone to be added to the RFID tag for
each unit of waste found in the TB fromwhich the waste has been picked up (only if
the robot is performing the carry action). Ta is the amount of waste found in the TB
(only if the robot is performing the carry action and it comes from the current edge).
Dr is the diffusion rate (0 ≤ Dr ≤ 1), in other words, the portion of the pheromone
to diffuse. Finally, Pmax is the maximum pheromone amount on the last RFID tag.

The presented system1 was developed in GAMA (Grignard et al. , 2018); a real-
istic agent-based simulation tool applied in fields such as urban planning, disaster
mitigation, etc. The urban environment layer was built using real-world GIS data
by integrating the map of the Kendall (Cambridge, MA) urban area. The number of
citizens was initialized to 10,000 following previous research works about the area
of study (Alonso et al. , 2018). Regarding the waste generation process, according to
the EPA (Environmental Protection Agency) Americans produce 2 kg of waste per
day (Agency, 2014). However, not all of that waste goes into public TBs; a large por-
tion of it is dropped in residential bins as well. According to (Patrick et al. , 2013),
Cambridge public works collect an average of 1.18 kg of waste per citizen per day
from Cambridge households. Thus, we estimated that 0.82 kg of waste per citizen
was deposited in public TBs everyday. By using conversion data about the weight of
different types of waste (Agency, 2016), we transformed the amount of kg of waste
generated per citizen into liters. The result of these conversions was 8.42 liters/c-
itizen. We initialized λ to this value throughout our simulations. Finally, ϕ was
initialized to 50 meters.

1A copy of code repository can be found here: https://goo.gl/tqRvS4
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Figure 4.40: Simulation of the urban swarm in the Kendall area (Cambridge, MA).
Citizens (small coloured dots) can move between buildings by using roads and dur-
ing each movement they can drop waste in TBs (green dots) close by. The robots
(cyan dots) can move over the roads to carry the waste from the TBs into the Ds
(blue dots) using the information written on the RFID tags at each crossroad.

Fig. 4.40 shows a screenshot of the simulation tool where each building (gray),
TB (green dots), road (black lines), and citizen (small dots over buildings and roads)
is depicted. Moreover, we obtained the number and location of TBs from the Cam-
bridge Geographic Information Service2. Ds (dark blue dots) were placed by using
the k-means algorithm to minimize the distance between them and the TBs.

Finally, each robot is represented as a cyan dot. The effectiveness of the proposed
approach was tested with different configurations (i.e., by changing the behavioral
and scenario parameters). The ranges of the parameters were chosen to allow the
implementation of significantly different behaviors on the swarm of robots. Specif-
ically:

• Number of Robots (Rn): affects the effectiveness and the size of the overall
system; the tested values for this parameter were 20, 35, and 50 robots.

2More information can be found here: https://goo.gl/os3nxN
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• Evaporation Rate (Er): affects the amount of time the system retains the infor-
mation about thewaste disposal demand; the tested values were 0.05%, 0.15%,
and 0.3%.

• Exploitation Rate (Xr): affects the probability that the robots follow the path
with the strongest pheromone rather than a random one. A higher value re-
sults in a higher exploitation of the information about the waste disposal pro-
cess, whereas lower values increase the exploration of the overall scenario.
A more exploratory swarm easily reaches isolated TBs, while a swarm more
prone to the exploitation of the waste disposal information exhibits a more
aggressive waste collection behavior toward the previously-discovered non-
empty TBs. The exploitation rate affects also the diffusion rate, which is 1-Xr,
since in a non-exploratory swarm the diffusion will just reinforce the already
marked path. The tested values were 0.6, 0.75, and 0.9.

• Carriable Waste (Cw): affects the amount of carriable waste per robot. Lower
values of this parameter result in a more responsive but slow reaction of the
system since the waste can be picked only if the Cw is already present in the
bin. Indeed, we assume that the Cw corresponds to the amount of waste that
a TB can pack to be transported. The tested values were 6, 12, and 18 liters of
waste. This was designed taking into account the PEV capabilities.

• Number of Deposit (Dn): affects the responsiveness of the overall system; the
tested values were 2, 3, and 5 Ds.

In order to provide a better insight about the implications of the proposed ap-
proach, we compare it with thewastemanagementmodel that is currently operating
in the urban area of study (i.e., truck-based). We built this model based on the infor-
mation provided by the Cambridge Department of PublicWorks (CDPW)3. Accord-
ing to CDPW, a single truck system in 5 working days (Monday-Friday) in 5 hours a
day (7-12PM) is able to empty approximately 6000 TBs. This results in a capability
of emptying about 240 trash bins in an hour. In our scenario, the number of TBs is
fixed to 274. Therefore, the truck should be able to empty all TBs in about an hour
and 10 minutes and should pass once a day.

Obtained Results
We conducted ten simulations for each possible parameter combination previously
introduced. In order to analyze the effectiveness of both approaches, we introduced
two performance metrics. First, the Amount of Uncollected Trash (AUT, measured

3More information about the specific route and timetables can be found here:
https://goo.gl/cHXDYS
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in liters) represents the amount of waste left unattended in the environment. Higher
AUT levels correlate to the appearance of urban issues such as pests, air pollution,
and public health problems. Second, the average number of Full Trash Bins (FTB,
measured in units) in the scenario during a day. FTB shows the average number
of unusable TBs that the system leaves in the urban environment during the day.
Higher FTB values typically correlate to higher citizens’ dissatisfaction rates since
they might have to travel longer distances to dispose their waste. For the sake of
interpretability, each of the measures is presented as a percentage (the lower, the
better) considering that in our scenario there are 274 TBs with a capacity of 125
liters each4.

Figure 4.41: Percentage of AUT (Amount of Uncollected Trash) and FTB (Full Trash
Bins) measures for the truck and the swarm (best parameterizations) with the CPF
and theMPF approach. The results are presented in log scale to improve readability.

We compare the performance of our proposed approach against (i) the current
trash disposal model i.e., truck-based model; and (ii) a CPF solution i.e., by using
the stigmergy-based foraging with a single deposit. Thus, we simulated eachmodel
and computed the corresponding performance metrics. The results obtained with
ten simulations are summarized in Fig.4.41. Results show that the current waste
management system offers lower performance than the swarm-based solution pro-
posed in this paper. In fact, in terms of the percentage of AUT and FTB, the MPF
approach offers a decrease of 71% (0.061) and 99% (0.0007) compared to the results
obtained with the truck-based model (0.212 and 0.202 respectively). Moreover, the
MPF approach results to be more effective than the CPF approach for both AUT and
FTB.

4This capacity correlates to the TB model (Big Belly BB5) currently operating in the study area.
The BB5 is equipped with a solar-powered waste compactor and a wireless data link. More informa-
tion can be found here: http://bigbelly.com/
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Figure 4.42: The average percentage of Amount of Uncollected Trash (AUT) in the
scenario during a day by changing the parameterization.

It can be observed from the results in Fig. 4.42 that our system is able to collect
most of the disposable trash on average during the day, leaving a AUT of 17% (worst
case) and 6% (best case). Moreover, in general, the increase of Dn, Cw, and Rn results
in a lower AUT. A greater number of deposits results in a shorter path to reach them,
whilemore robots and a greater carriage capacity result in a system that collects and
disposes waste more quickly.

The results in Fig. 4.43 prove that our system is able to empty the TBs fast enough
to have less than 1 (0.0007%, best case) or 2 (0.0066%, worst case) FTB in the scenario
on average during the day. Moreover, it can be noticed that by increasing Er and
Rn we obtain a lower percentage of FTB since it increases the responsiveness of the
system.

Twoparameter configurations provided the best performances: (1) Rn=35, Er=0.15,
Xr=0.6, Cw=18, Dn=3 which produces a 0.7% FTB and 6.1% AUT and (2) Rn=50,
Er=0.15, Xr=0.6, Cw=12, Dn=5 which obtains a 0.9% FTB and 5.9% AUT. The first so-
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Figure 4.43: The average percentage of Full Trash Bins (FTB) in the scenario during
a day by changing the parameterization.

βRn βCw βDn
AUT -0.6615 -0.7580 -0.3868
FTB -0.4647 -0.9584 0.0407

Table 4.26: β coefficients, multiple standardized regression

lution is characterized by a medium number of deposits and robots, but can assure
a good responsiveness of the system thanks to the relatively high Cw. On the other
hand, the second solution, is characterized by a large Dn and Rn, and a medium
Cw. These configurations suggest that there is a balance between the size of the sys-
tem (Dn and Rn) and the amount of carriable waste (Cw). At the same time, both
solutions are characterized by an Er of 0.15 and a relatively high Xr with a value of
0.6. To assess the relationship between Rn/Dn/Cw and the proposed performance
measures, we computed a multiple standardized regression, i.e., the regression in
which both dependent and independent variable are substituted by their Z-score.
By considering the size of each β coefficient, we are able to compare the impact of
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each variable on the corresponding performance measure despite the differences in
their scale. Larger coefficients correspond to higher contributions, whereas the sign
describes the direction (positive or negative) of the contribution. It is worth recall-
ing that all performance measures proposed must be minimized to achieve a better
performance. According to Table 4.26, we can see that by increasing Rn and Cw,
the performance is considerably improved. Surprisingly, increasing Dn increases
the AUT performance but decreases FTB’s; indeed, a greater number of Ds means
shorter travel distances for robots, therefore a more responsive system and a better
AUT performance. However, since Ds are the destination of all robots, the paths
around the D are more likely to be marked by digital pheromones which are aimed
at steering the swarm. This means that around each D the robots’ exploratory capa-
bility is reduced due to the overwhelming amount of deployed pheromones, there-
fore the probability of reaching TBs in areas that require to pass by a near D may
be lower. This explains the decrease in the performance at the bottom-left corner of
Fig. 4.43 when Dn is increased.

We showed that a swarm is able to handle the waste management in an effec-
tive and self-organized manner, without any external information source or prior
knowledge about the trash disposal demand. Moreover, the proposed approach is
not specific to waste management and can be used in a number of different applica-
tions such as package delivery, autonomous vehicle rides, etc.

chapterConclusion This section draws the conclusion of this Ph.D. thesis. First,
we discuss the proposed approach and the obtained results. Then, a final section is
dedicated to future directions of the research.

4.9 Discussion
In this thesis, we presented eight applications of computational stigmergy with
very promising results. This confirms computational stigmergy as a versatile and
transversal computation approach, useful for unfolding spatiotemporal patterns from
the density of the analyzed data.

In contrast with other machine learning techniques (e.g., neural network), the
SRF approach (i) exhibits robustness with respect to minor fluctuations occurring in
data by adopting stigmergic information granulation, (ii) does not require time dy-
namics modeling, because it intrinsically embodies the time domain, and (iii) does
not require the in-depth modeling of the dynamics under investigation since it re-
lies on DE and requires a small training set to adapts the similarity computation to
a specific problem.

Specifically, in terms of classification accuracy, our approach performs better
than supervised classifiers even if using a smaller dataset and with different cases
study (Chapters 4.1 and 4.2). Furthermore, the proposed solution overcomes the



116 Applications

specificity of a well-known set of classifiers (i.e., different classifiers performing bet-
ter on different users) offering a general framework for the sleep quality assessment
(Chapter 4.2). Indeed, on average, it outperforms all the comparing classifiers: 4%
more than DTW and 11% more than the best performing classifier (DecisionTable).

The goodness of these results is confirmed also in the application presented in
Chapter 4.3, where the daily physical activities of 3 subjects are assessed according
to how the activity is performed, and despite activity type.

In the application detailed in Chapter 4.4. and 4.5 by using stigmergy, the spa-
tiotemporal density in data has been exploited to identify city hotspots and charac-
terize their dynamics, allowing to generate data-driven prototypes of typical daily
activity. Moreover, by treating them via a clustering technique, we were able to
discern expected patterns from unexpected ones, which were found to be usually
related to various events (Chapters 4.5).

In Chapter 4.6 bidimensional stigmergy has been used to analyze the mobility
of a group of people (i.e. refugees and locals) with the aim to understand the re-
lationship between social integration and the mobility similarity between refugees
and locals and assess the effect of social friction.

In Chapter 4.7 stigmergy has been used togetherwith flocking strategy andDE to
coordinate a swarm of UAVs employed in a distributed target search. Experimental
results show that (i) the quality of the swarm cooperation is better in terms of swarm
formation, search efficiency, robustness to fault, strategy and scalability; (ii) the dif-
ferential evolution optimization provides significant and structural improvements
to the coordination logic; (iii) taking into account the technological characteristics of
the drone in its behavioral model sensibly improve the performance and the realism
of the biologically metaheuristics.

In Chapter 4.8 we showed that thanks to an approach based on stigmergy and
foraging heuristics a swarm of robots is able to handle the waste management in
an effective and self-organized manner, without any external information source
or prior knowledge about the trash disposal demand. Indeed, with the proposed
approach, both the average amount of trash and the average number of full trash
bins during the day are considerably reduced compared to the current solution.

Finally, it is important to note that our implementation also has reasonable execu-
tion times. Indeed, for data analysis applications that use the stigmergic perceptron,
the training times have always been between 3 and 5 hours, with a variability due to
the complexity (e.g. length, number of archetypes) of the time series analyzed. On
the other hand, the algorithm of coordination of the swarms of drones has a variable
training time depending on the scenario on which it is executed (for example, the
"field" scenario has always had the shortest times as the simplest) but still between 4
and 7 hours. The times shown refer to the execution on a machine with the follow-
ing characteristics: CPU Intel Core i7-6700HQ at 2.60-3.50 GHz, 6M Cache, 16 GB
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DDR3L 1600MHz RAM, Windows 10 OS.

4.10 Future works
A direction for possible future developments is represented by the possibility to
scale the already presented architecture in order to analyze multidimensional data.
An initial effort in this direction has already been made but the part of the aggre-
gation of trails and inference requires further research. As an example, the already
presented two-dimensional computational stigmergy together with mobility data
with an individual ID observed over a long period (which we have not had so far)
to recognize individuals (e.g. taxi drivers) or groups of similar individuals.

Moreover, the aggregation of the SP presented in this work exploits the concepts
taken from the connectionist paradigm. However, the aggregation could be per-
formed with a logic ruled based approach in order to exploit the spatiotemporal
aggregation provided by our approach in an inference system, i.e. implementing a
hybrid obtained including a fuzzy logic approach.

Finally, the great properties provided by stigmergy should be systematically in-
vestigated to study: (I) the robustness against noise in data observations, (II) the
computational complexity of the approach (III) the difference in terms of properties
with other swarm approaches or reinforcement learning..
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