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Introducing Probability within State Class Analysis
of Dense-Time-Dependent Systems

G.Bucci, R.Piovosi, L.Sassoli, E.Vicario

Abstract— Several techniques have been proposed for symbolic the limits of exponential timing[9]. However, the application
enumeration and analysis of the state space of reactive systemsof these techniques imposes various restrictions which exclude
with non-deterministic temporal parameters taking values within models allowing multiple concurrent non-exponential clocks

a dense domain. In a large part of these techniques, the state L .
space is covered by collecting states within equivalence classeéz] (14] [15] [11], or models where timing constraints are

each comprised of a discrete logical location and a dense variety €ssential to keep the set of reachable markings finite [24] [10].

of clock valuations encoded as a Difference Bounds Matrix . e
(DBM). The reachability relation among such classes enables On the other hand, in the context of correctness verification of

qualitative verification of properties pertaining the ordering of real time systems, a number of analysis techniques have been
events along critical runs and the satisfaction of stimulus/response proposed for models such as Timed Automata and Time Petri
deadlines. However, up to now, no results have been proposedyets which include non-deterministic temporal parameters
which extend state class enumeration so as to combine the verl-t i | ithi iblv finite) d int Is (4116
fication of the possibility of critical behaviors with a quantitative aKing vaiues wi ,m (pOSSI y finite) enge intervals [4][6]
evaluation of their probability. [17][71[27]. For this kind of models, the timed state space

In this paper, we extend the concept of equivalence classesis covered through the enumeration of a discrete reachability
based on DBM encoding with a density function which provides relation among state classes, each comprised of a discrete
a measure for the probability associated with individual states |oqica) |ocation and a time domain collecting a dense variety
collected in the class itself. To this end, we extend the formalism f timi | ticul ide literat has b devel d
of Time Petri Nets by associating the static firing interval of each oftimings. In particular, a V\,” e litera gre as been deve op'e
transition with a probability density function. We then expound ~UPON state classes where time domains are encoded as differ-
how this probabilistic information determines a probability for ~ ence bounds matrixes (DBM) [3] [8] [7] [19] [5]. Enumeration
the states collected within a class and how this probability evolves and analysis of the reachability relation among such state
in the enumeration of the reachability relation among state ¢|a55es opens the way to the solution of a number of relevant
classes. This opens the way to characterizing thpossibility of bl h th hability of . loqical locati
critical behaviors with a quantitative measure of probability. pro ems., 'Sfuc as the reacl a ,' ity 0_ a given Og',ca ocation,

the feasibility of a run satisfying given constraints on the

logical sequencing of events and on their quantitative timing,
the evaluation of a tight bound on the minimum and maximum
time that can elapse between any two events along a symbolic
run [7] [6] [22] [27].

However, these techniques do not permit to characterize
_ _ ~ feasible behaviors with a measure of probability, which is

Development of reactive and time-dependent systems joinfl essential step towards dependability and performance eval-
addresses requirements pertaining ordered sequencingy&fion. To the best of our knowledge, no techniques have
events, stimulus-response timeliness, and efficient resoufe®n proposed yet to overcome this limitation through the

usage [21] [26] [20]. Despite this demand raised by th@tegration of stochastic analysis with symbolic enumeration
application domain, modeling and analysis techniques fgf densely timed state spaces.

correctness verifications and for performance/dependability
evaluation have been separately addressed in different ti
variants of Petri Nets [12].

Index Terms— Real time reactive systems, correctness verifica-
tion, performance and dependability evaluation, Time Petri nets,
dense timed state space enumeration, Difference Bounds Matrix.

I. INTRODUCTION

n?ﬁqhis paper, we address the problem of deriving a density
function which characterizes the probability of individual
On the one hand, in the context of performance and démnings comprised within the boundaries of a time domain in
pendability evaluation, stochastic Petri Nets associate timB®M form. To this end, we extend the formalism of Time
transitions with a stochastic delay characterized through Betri Nets by associating the static firing interval of each
exponential density function [23] [1]. This enables Markoviatransition with a (dense) probability density function. We then
analysis and permits automated derivation of effective perfaxpound how this probabilistic information induces a measure
mance and dependability indexes [16]. As a major drawbacak, probability for individual states collected in a class and how
the unbounded support of the exponential distribution does ribts probability evolves in the enumeration of the reachability
permit to represent implicit precedences induced by finite timelation among state classes.
ing constraints (e.g. timeouts). In fact, exponential transition The rest of the paper is organized in four sections. Time
timing neither conditions the state of the model or it restricBetri Nets extended with stochastic time intervals are defined
the feasibility of event sequences. in Sect.ll. In Sects.lll and IV, we extend the concept of
Several extensions of stochastic Petri Nets have been degtdhte class with a density function capturing the probability
oped to encompass bounded delays and to partially overcoofiendividual states in the class, we present a method for the



derivation of the successors of a stochastic state class, andtavére 7(t,) is not higher than the time to fire of any other
discuss the application of this derivation within an enumeratiygogressing transition.
semi-algorithm. Conclusions are drawn in Sect.V.
Firing: When a transitiont, fires, the states = (M, 1) is
[I. TIME PETRINETS WITH STOCHASTIC FIRING replaced by a new staté = (M’,7’). The markingM’ is
INTERVALS derived fromM b){ removing a token from each input place
of t,, and by adding a token to each output placetgpf

o R Mimp(p) = M(p) =1 Vp.(p,t,) € A~ ©6)
STPN =< P;T;A"; AT M; A, FI°;D > Q) M'(p) = Mymp(p) + 1 ¥p.(to,p) € AT

A Stochastic Time Petri Net (sSTPN) is a tuple

o The first seven members comprise the basic model ®fansitions that are enabled both by the temporary marking
Time Petri Nets: P is a set ofplaces T a set of M, and by the final marking//’ are saidpersistent while
transitons A~ and A" are sets of preconditionsthose that are enabled By’ but not by, are saidnewly
and postconditions connecting places to transitions amedabled If ¢, is still enabled after its own firing, it is always
viceversa, respectively: regarded as newly enabled.

A-cp The time to firer’ of any transition enabled by the new
CPxT : ) ; .
AV CTx P (2) marking M |§_c0mputed in a Qn‘ferent manner for newly
enabled transitions and for persistent transitions:

A place p is said to be arinput or an output place i) for transitiont, which is newly enabled after the firing &f,

for a transition ¢ if there exists a precondition orthe time to fire takes a nondeterministic value sampled in the

a postcondition from p to ¢ or viceversa, (i.e. if static firing interval, according to the static probability density

<p,t>e€ A~ or < tp >e AT), respectively. function f;, (-):

M (the initial marking) associates each place with a s o

non-negative number of tokens: EFT*(ta) < 7'(ta) < LET"(ta) Q)

ii) for any transitiort; which is persistent after the firing of,

M:P—NU{0} ©) the time to fire is reduced by the time elapsed in the previous

P, T, A—,and A* comprise a bipartite graphP and State. This is equal to the time to fire f as it was measured

T being disjoint classes of nodes, anti- and A+ be- at the entrance in the previous state:

ing re_Iations betwegn them. This graph is rep_r_esented () = 7(t) — () )

graphically by drawing places as circles, transitions as

bars, and preconditions and postconditions as directed;;; A yoMENTING STATE CLASS WITH PROBABILITY

arcs; the tokens of the initial marking are represented _
as dots inside places. A. States, State Classes and Stochastic State Classes

A is a set of inhibitor arcs connecting places to In the firing clause of sSTPNs, a newly enabled transition
transitions: may take any real value within its static firing interval, and
ACPxT (4) eachvalue can lead to a different state, thus resulting in a dense
variety of possible successors. To obtain a discrete representa-
inhibitor arcs are represented graphically as dofpn of the state space, the reachability relation between states
terminated arcs. is conveniently replaced through some reachability relation
FI® adds timing constraints to the net by associatingetweenstate classeseach made up by a dense variety of
each transitiont with a static firing intervalmade up states with the same marking but with different timings
of an earliestand a (possibly infinite)atest firing time comprised within diring domain D,,, [19][27]:
FI5: T — R" x (RT U{+0c0}) 5
FIS(L‘) — (EFTS(t), LEFTS (t)) ( ) State class = (m, Dm> (9)

« D associates each transitiowith a dense static probabil- The encoding of the firing domaif,,, jointly depends on the
ity function £, (7), whose probability distribution function Way in which transition timers are made to advance in the

F,(r) measures the probability that transitienat the firing clause and on the semantics of the reachability relation
enabling, will take a time to fire'(£) not higher than-. ~established among state classes. Most works (and this among

them) on the analysis of densely timed models are based on
The state of a STPN is a pairs = (M, 7), where M is the AE reachability relation [25]:
the marking and = associates each transition with a possibly Definition 3.1 classSe
infinite time to firevalue (7 : T — RT U {cc}). The state o
evolves according to a transition rule made up of two clausgg
of firability andfiring.

is a successor of class’ through
(which is also written asS? L S€) if and only if
contains all and only the states that are reachable from
some state collected inS? through some feasible firing of

Firability: A transition ¢, is enabledif each of its input to-
places contains at least one token and none of its inhibitikipder this reachability relation, the firing domain of state
places contains any token. A transitiagp is firableif its time classes of a TPN model can be represented as thé)set



of solutions of a set of linear inequalities in the form of 8. Successors detection and calculus of their probability

Difference Bounds Matrix (DBM) [19]: A transition ¢, is an outcoming event from the stochastic
class¥? = (m?, DP, f5(-)) iff t, is enabled by the marking

D= { 7(t:i) = 7(t;) < b (10) m? and the firing domainD? accepts solutions in which the

Vti,t; € T(m) Uit} ti firing time 7(t,) of transition ¢, is not greater than that

here T denotes th t of t i bled 1 of any other enabled transition. This occurs iff the following
where T'(m) deno es the set of transitions enabled my o syricted firing domain D! accepts a non-empty set of
7(t;) denotes the time to fire of transitian, the fictitious solutions: °

unknown variable-(t.) = 0 serves to keep all the inequalities

in the same difference form, arg; € R U {400} are the

coefficients which define the boundaries of a class. The DBM 7(ti) = 7(t;) < bij

form has anormal representation which can be computed — p? — 7(to) = 7(t;) < min{0,bo;} (12)

as the solution of arall shortest pathproblem, and which

supports efficient detection and derivation of successor classes, Vi t; € T(mP) Uit} ti # ¢

in time O(N) and O(N?) respectively, with respect to thelf ¢, is a possible outcoming event, its probability is

number of enabled transitions [27]. derived by integrating the state density functigip,(-) over
the restricted firing domaim? :

The DBM representation can be applied to encode the range p= Prob{ty fires first} = (13)
of feasible timings of an sTPN, as the support of feasible = Prob{f € D;} = foo [ (%) dZ

timings of this model evolves with the same semantics of a

TPN. However, this encoding does not exploit the stochast: Derivation of successor state-probability density functions
information which is introduced in STPNs to characterize the

probability of different determinations of temporal parame- |, ihe computation of the clasE® = (m¢, D¢, fx(-))
ters. To overcome the limitation, we introduce a concept of,-hed from>? — (m?, DP, f=»(-)) through a’n o:JtcToming
stochastic state clasghich extends a state clags, D) with a . bol coon e R .

. o . . o O eventt, (i.e. XP = X9), the new markingm¢ is derived by
joint probability function fz(-) characterizing the distribution moving tokens according to the execution rule of transitions

of the vector? = (r(to), 7(t1),...7(tn)) of times to fire of o " firing domainDe is derived so as to reflect the
transitions enabled by: within the limits of the firing domain . . . ) o
evolution of times to fire. Details of the derivation are reported

D in [27]. For the present treatment, it is sufficient to resume the
Stochastic state class = (m, D, fz(-)) (11) steps of the derivation as follows:
1) the vector of times to fire? = (7(t,), 7(t1),...7(t,)) of

The set of determinations &fwhich fall within the boundaries the transitions enabled i§” is replaced with the vector
of D biunivocally corresponds to the set of states collected in 7 = (7/(¢,),7'(t1),...7'(¢tn)) where each unknown
the stochastic class, in the sense that each determinatién of  value 7/(¢;) is obtained by restrictingr(¢;) with the
uniquely identifies a state in classand viceversa. According constraintr(t;) > 7(t,) so as to capture the condition
to this, fz(-) takes the meaning of a density function for for t, to be the firing transition;
the probability of the states iy, for which we call itstate 2) 7 is replaced through the vector
probability density function 7 = (7" (to), 7" (t1), ... (tn)) =

With this perspective, we extend the notion of reachability — (7/(t,),7(t1) — 7'(to), ...7"(t,) — 7'(t,)) SO as to
relation among state classes as follows: reflect the reduction of times to fire during the

permanence in the parent class,;
Definition 3.2: given two stochastic state classes 3) times to fire of enabled transitions at the firing ©f

¥P=(mP,DP f5(-)) and ¢ = (m°%D° f=()), we are obtained by eliminating(¢,) from 7 through a
say thatXc is a successor of? throught, with probability projection operation which yields a new vectgt’ =

1, and we writeX? "2 s¢_ iff the following property holds: (7" (1), 7" ()

if the marking of the net isn? and the vector of times to  4) the vector7”” of times to fire in the child clas&®

fire of transitions enabled byn? is a random variable? is finally obtained by removing through a projection
distributed within the boundaries db” according tofs (), the times to fire of transitions that are not persistent
then ¢, is a possible firing, which occurs with probability after the firing of¢, and by adding the times to fire
1 and which leads to a new marking® and a new vector of newly enabled transitions, each constrained within its
of times to fire distributed within the boundaries @° own static firing interval.

according tof = (-).

Derivation of the probability density function within the
In the following, we develop the steps for the enumeration dbundaries of the firing domain of the child class can be
this reachability relation, i.e. the detection of successors, theganized along the same four steps, extending the derivation
calculus of their probability, and the derivation of successof inequalities with a stochastic characterization of their solu-
state-probability density functions. tion space.



1)

2)

3)

We regard? = (7(t,),7(t1),...7(t»)) as a stochastic
array variable, and™ = (7'(t,),7'(t1),...7'(tn)) as
the variable obtained by conditioning through the
assumption that, will fire first, i.e. thatr(t,) < 7(¢;)
for any enabled transitior; in X7:

7= (1'(to),... T (tn))
T(t) = T(t) | T(te) < T(t;) Vi=1,n

The joint density function of” can be expressed through
Bayes Theorem as:

(14)

f‘?’ (Téa’r{a T;L) =

7L)

f2(7 if 7),71,...7, € D},
/ fz(70, .‘.Tn)dTO...d’Tn
DY,
0 if 7,71,...7, ¢ DY
(15)

The stochastic array variabf€ is obtained by replacing
each stochastic variable (¢;) with ¢ > 0 through the

differencer’(t;) — 7/ (t,):
7  T) =T () Vi=1....n
(k) = { ' (to) for i=0 (16)

The joint density functiory- of the variabler”’ can be
expressed as:

fer(rg ol oml) = fa (7] T+ 1) (A7)

The stochastic variabl&€” is derived from7” through
a projection eliminating the variable’ (¢,):

(tn))

1 1
s T +To s

P = (1 (1), 7" (t2), "

4) the state probability density function of transitions that

are persistent in the child class® can now be obtained
by integrating the density functiofi-» so as to elim-
inate times to fire of transitions that are not persistent.
Specifically, if ¢1,...t,,, are disabled at the firing, and
TCrs = (tm+1,...tn) IS the vector of transitions that
are persistent in the child class, the density function

pers
fre., (Tm1,..7a) is expressed as:

pe” m+1>~ -

+oo +<>o
/ / 200 (T1y oo Ty T 1y -+ T ) AT1 oo AT,

(21)
Finally, the vector7’” collecting the times to fire of
all transitions enabled in the child class is obtained by
extending7,.,., with the vector7; ., made up by the
times to fire of transitions newly enabled kr, each
distributed according to its own static density function.

7= <?ers7 7_—:iew> (22)

Since the time to fire of any newly enabled transitign

is independent from the time fire of any other enabled
transition, the joint probability density functiopiz

in the firing domainD¢ of the child classX¢ can be
expressed as the product:

(T_&ne111; T_Epers) ==

I f.G

ta €T 00y (B°)

F (7 e Pere)
(23)

prcms (T_épETS) : “(ta))

(18) D. Example

The joint density functionf. is thus be obtained by We illustrate the theory in the derivation of a stochastic class
integrating the density functiorf> with respect to for the example in Fig.1. We assume (without limitation) that

7" (t0):

the firing times of all transitions have a uniform probability

density function over their static firing intervals.

n 7
TTL )dTO

(19)
where Su°(r]",...7)/") is the support of the unknown
value 7”(t,) when the tuple(”(t1),...7"(t,)) takes
the value (7/,...7/). Being a set in DBM form,
Dy is convex and thusSu’(r{",...7)’) is an interval

(Min® (1", 7Y, Maz®(rl", .o,

n

Foon (24 o) = / Fon (70 .
uo (T/// 7.///)

By composing Egs.(19), (17), and (15), we finally ex-

press the joint density function af’” with respect to
that of 7
"

*HI(T{”, "'Tn ) =

Maz®(r{",..7!")
" " "
/ fe(r) "+ 7l A+ )T
A

Fig. 1.
supposed to be uniformly distributed.

A stochastic Time Petri Net. All non-deterministic timings are

Since in the initial class$® transitions are newly enabled, their

_ I Mino(ri",..T}") times to fire are all independent. According to this, the joint

Jpr (7o, 71, .. )dTodry . dTy

(20)

probability density function oveb, is obtained as the product
of static probability density functions of individual transitions:



5<7(t) <10
DOZ 2§7’(t2)§8
3<7(ts) <9

(24)

ﬁ If (7'177'2,T3)€D0
if (11,72,73) ¢ Do

0
Three events are possible in the clas$: the firing of
transitiont; in the interval [5,8],t5 in [2,8], andts in [3,8].
The assumption of the case thatfires first restricts the firing
domain toD{?:

f0(7—177—277—3): {

W w
=+
(VAN VAIVAN
o

o~
w

A~~~
~
N
o —

D = (25)

e s B |
~ 0o 00

FFIANAIA
IAIA

)
—~
89
—~
4~
N
~

)

According to equation (13), the probabilitfrob;, i+ that
t3 fires first is obtained by integrating,(y, 72, 73) over D§*:

B

2
Prob, first = / fo(m1, T2, T3)dTidTodTs = —  (26)
i 90

The joint probability distribution of firing times conditioned

to the assumption that fires is:

fo(T1,m2,m3) 1 90 _ 1
Probtsfirst ~ 58

180 29
. t3
Jolts pirst(T1, T2, T3) = it (71,72, 7) € Do

If (Tl,T27T3) ¢ Dé‘;
(27)

The classS! reached fromS° through the firing oft; has
two enabled transitionst; and t,. Their firing times are
constrained within domai; (also pictured in Fig. 3):

D, (28)

In order to integratefo,, first (71" + 75, 75" + 73, 73') with
respect torj, we must now express the range of variability
of 7”(t3) as a function of the values taken by’(¢,) and

”'(tz) According to Egs.(19)-(20), this range is an interval
Sud (", 74") = [Min?(r{", 7"), Max3(7]", 74")] with:

Mind (r{",74) = min{r{ (", 7", ) € Dy}
MCLJJ ( " Té//) 1" Dég}

30
maa{|(r", 7y, 7y € Dy OO
According to Eq.(29), the two extrema can be expressed as:

Min? (7'{”, ") = max{5—-7/",3 - 75" 3} (31)
Max?(7]", 73" = min{10 — 7{"",8 — 75", 8}
This splits the range of values for the pair”’(¢t1), 7" (t2))

in three sub-regiong,, Z,, Z. within each of whichMin?()
and Maxz?() has homogeneous form (i.e. it is defined through
a single non-piecewise function):

8
<2<7"(t) <7

_ 7(ta) > 0

- T///(tl) _ T”l(tQ) 2

Za

2

7_/// (tl)

With reference to this split, we can finally expre&sin?()
and Maz3() as:

_ Tm(tg) >3

3 if (1", 74) € Z
Min3({",74") = 3 if (", 74") € Zy
5 _ 7_{// |f <7./// ///> c Z
(32)
10— 7" if (#,7") € Zy
Max ( /Il ///) —_ 8 7_}II If E } %//i e Z
T2 )= 2 b
8 if (] 4 € Z,

Fig.2 plots the partitionment for the range of variability
of (r{”,75") and the form of Min3() and Maz3() in the
three subzones. Note that the procedure of derivation of the
subzones wher#/in3() andMax3() have homogeneous form

is general and it is performed as a step in the symbolic
computation of the integral in Eq. (20).

According to Eq.(20), we derive the probability density funcThe probability density function for transitions and i, is

tion for transitionst; andt, by integrating fo¢, first (71" +
T3, + 74, 74 with respect tor.

The function foi, first(T" + 78,7 4+ 715,75) s
defined over D derived from D} through variable
substitutions N(tg) =171(t3), 7" (t1) =7(t1) — 7" (t3),

7(t2) = 7(ta) — 7" (ts):

5<7"(t) — 7" (ts3) < 10
. 3<T"(t) — 7 ( 3) <
Dfp = 3<7"(t3) <8 (29)
/ll( ) > O
///( ) > O

finally derived according to equation (20) and results in a
piecewise function defined over the three zouks 7, Z.
(also shown in Fig. 3).

%(7 -7 if (r{", 7" € Z,
&6-1") it (11", 73"} € Z,
hrf ) =
(3 +7r" = (T e Z,
0 elsewhere
(33)



a stochastic timed transition system, that we catichastic
class graph where nodes are state classes labeled with a
state density function and edges are transitions labeled with a
measure of probability.

The stochastic class graph can be regarded as a continuous-
time Markov chainX,, with respect to the number of fired
transitions. The analysis of this structure permits to associate
a stochastic characterization with symbolic runs identified in
the class graph. In particular, it supports the evaluation of such
indexes as the probability to reach a logical location, or the
probability that the system executes along a given run, the
probability that a run exceeds a deadline, the distribution of

probabilities for the timing of a symbolic run.
Fig. 2. The time domamb partitioned in three regions during the calculus
of Su3(r{",74"); in the prOJectlonsZa Zy, Zc, the bounds of-"’(t3) are
both defined by a single homogeneous rule. 5 ts 2

2" (t

\l ]
™ (t1)

7(t2)
8 fi(n,m)

/|

1 2 3 A 5 6 77(t1)

Fig. 4. The class graph for the netin Fig.1. Each node is a state(cias®)

) made up of a markingn and a firing domainD encoded as a difference
Fig. 3. The temporal domaif; and its state probability density function pounds matrix.

f1(m1,m). D1 is partitioned in three subzones (a, b and c), representing the

three sub-domains of the piecewise functifi(r1, 72) (see Equation (33)).

Note that since the firing dfs does not enable or disable any transition, zoneA. Example
a, b and ¢ ofD; correspond to zoneg,, Z;, Z. reported in Fig. 2. o . :
Enumeration of the reachability relatios¥ — S¢ among

"conventional” state classe$ = (m, D) for the net in Fig.1
In the child classS! reached throughs, both¢, andt, are vyields the state class graph shown in Fig.4. Markings and time
persistent. Moreover, no other transition is newly enabled. Ademains for the eight state classes are:
cording to this,f, (71", 74") is the probability density function
for states collected in the state cla&s In the more complex

- ; ) 1p41p51pb 1p31pd1pd
case of any trz_ansmon being (newly) enabled or dlsapled bythe, 5<r(t) <10 o1 0<7(t) <7
firing of transitionts, we would have to use equations (21)~ — 2<7(t2) <8 - 0<7(tz2) <5
and (23). 3<7(t3) <9 —7<7(te) —7(t1) <3

1p21p41pb

IV. ENUMERATION 0<7(t) <8 , Lpl1p5dp6
Equations (13) and (23) can be embedded within a "con- < T—(tT) irft ) <4 0<7(ts) <4

ventional” algorithm for the enumeration of DBM state classes = Y=
(e.g. [27] [8]) so as to derive a graph of reachability among gt _ LpL1p31p5 g lp21p31lp
stochastic state classes of a STPN. T 0<71(t2) <3 T 0<7(t1) <7
To this end, algorithms for the detection of class successors Lol 102 106 Lol 102 103
i ir firi i 6_ 1lpllp2lp 7_ lpllp21p
and for the computation of their firing domains must bes® — 0< (k) < 4 7=, < r(ty) <4

combined with a symbolic derivation of integrals, that can

be conveniently supported by a symbolic toolbox. In ouVhen classes are extended with the state density probability,

experimentation, we integrate the Oris tool for state clagg obtain the extended reachability relatioh tosft e among

enumeration [13] and the Wolfram Mathematica 5.1 for thetochastic state classés = (m, D, f=(-)) shown in Fig. 5.

symbolic calculus [29]. This now includes eleven stochastic state classes as each of
The result of the enumeration of the reachability relatiofhe three state classet, S° and S¢ can be reached under

Y L ye among stochastic state classes= (m, D, fz(-)) is two different state probability density functions (see Fig. 6),
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148/217

t2
89/116

t2
217/360
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27/116

Fig. 5. The stochastic class graph for the net in Fig.1. Each node is a
stochastic state clagsn, D, f=()) made up of a markingn, a firing domain

D encoded as a difference bounds matrix, and a state density funGtion
associating the individual timings withiv with a measure of probability.
Edges are labeled with a measure of probability associated with the transition.
Stochastic state classes are numbered and positioned so as to make evident
their correspondence with the classes in the class graph of Fig.4: all stochastic
classes labeled by x.n have the marking and the firing domain of class labeled

by x, but they differ in the state density functigiz(-).

thus corresponding to six stochastic state clasgés (X248,

25.7 25.9- 26.4 26.6)_
State density functions for the classes enumerated in the
stochastic class graph of Fig.5 are:

f3

 VARARAXAKAXAKAKAXARARAR/  /\AKARAXARRNARRNANANRNANY 00 5~

1=

8
< 1/180

fo.o= _
-0 elsewhere

f5<7 <10A2< 7, <8A3<73<09

f1.3:

8 .

%5718(7_71) If2§7’1§7/\7'220/\71—7'222
%(577‘2) if(2§7’1§7/\7‘2§5/\7'1*7'2<2)

%%(3471772) fO<TI<2AT>0A T —710>—3

0 elsewhere

L0 f2<m <3 A 2<71—713<2
fr3>1 AN3<m1 <8 AT —73>1
fo<mm <2A 0<73<1
if(ri—m3>2 A132>20 A 2<7 <3)
VI0<73<1 A3<71<7)
V(Tl—T3§7/\7'3§1/\7<7'1§8)
V(74§T17T3§1/\2<T1§3)
f3<mm<8ATI—T1T3<1A 37T

0 elsewhere

S Hstm)
= — (=4 +73)

0 elsewhere

if(T17T3274/\ T3 > 1 /\O§71<2)

FO<T7 <3 AT3>0AT79—T732>-1

FO<T <3 AT—m3<—-1AT13<4

g % fo<m <1
f5.4:§ (16 —873+73) fl1<73<4
] elsewhere
8 R )
< 39-6m2+73) f0O<7T2<3
f4.5 =
0 elsewhere
g 55 (13 — 473) if 0 < 7(ts3) <1
f6_6:§ &40 — 145 +73) if1<73<4
T o elsewhere
8 , . )
§ (39 +6m —72) if0<T <1
; (51— 61 — 7)) fl<m <2
5.7 —
g A (63— 16m +72) if2<m <7
) elsewhere
8 5 .
< L(21-10m+73) f0<m <3
fas = _
-0 elsewhere
8 , ) )
% g9 (21+4m —77)) if0<T <2
f5_9=§ 549 —1dr +77) if2< 7 <7
) elsewhere

8 )
<1 if2<m<4

f7.10 = -
- 0 elsewhere

B. Boundedness

Due to the extension of the enumeration algorithm with
probabilistic information, the stochastic class graph may in-
clude multiple stochastic classes with the same marking and
domain but with different state density functions.

The problem is related to confluences occurring at state
classes that can be reached through different paths in the class
graph, and it can be clearly illustrated with reference to the
example net of Fig.1. The class graph in Fig.4 contains a
diamond structure made up of four class#s S2, S and
S6: starting fromS°, classS® can be reached visiting either
S? (firing transition#; and thent,), or S3 (viceversa). The
ordering oft; andt,; does not influence the set of possible
behaviors, but it conditions the distribution of probability in
the times to fire of transitions that are enabledsSih In the
stochastic class graph of Fig.5, this results in the split of the
state classS® in two stochastic state classe$® and %4, as
shown in Fig.6.

The break of confluences in the extension from the class graph
to the stochastic class graph not only exacerbates the problem
of state space explosion, but may also result in the case of
a model which accepts a finite class graph but which has an
unbounded stochastic class graph. This condition is related
to the existence of cycles in the class graph and to the way
in which memory is passed among the transitions that are
persistent through the firings along the cycle itself.

The case is demonstrated by the infinite overtaking that
may occur in the net in Fig.7. The class graph of the net
contains a self loop in which transitian fires and re-enables
itself leavingt, persistent. In the construction of the stochastic
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Fig. 7. (a) A simple net where the class graph is finite, but the stochastic class
graph is unboundedb) The class graph of the net includes loops which results

in an unbounded number of stochastic state classes, with the same marking
and time domain, but with different state probability density functig¢asin

the enumeration of the stochastic class graph, the self loop corresponding to
the firing of ¢; from classS© yields an unbounded sequence of stochastic
classes where the time to fire of transition is distributed according to a

Fig. 6. In the class graph of Fig.4, both the timed sequesest;, t2 and : f : : ;
5 o - S - polynomial of increasing order. The picture plots the polynomials generated
SY : t9,t1 lead to the state clas$® where transitiorts is constrained to fire after 0, 3, 10, and 100 repetitions of the loop.

in the interval[0, 4]. In the stochastic class graph of Fig.4, the same sequences
yield two different classeE6-# andx6-6; the marking and the time domain of
these classes are equal, but the state probability density functions are different,

reflecting the same range of possibilities with different probabilities. similar to those of Eq.(34) and can be derived through the
same kind of procedure reported in the Appendix. In this case,

reachability graph, the class will be encountered infinite time&hat happens is that the firing transitipassests memory to

In fact, if we assume thay andt, have uniform distributions, the persistent one through the conditioning that derives from
we can prove (the proof is in the Appendix) that the staff® precedence: starting from the class in whighs newly
probability density of the stochastic class reached after €nabled and: is distributed according to a polynomial of

subsequent firings of; is equal to: ordern, the firing oft, yields a new stochastic class in which
t; becomes distributed according to a polynomial of order
f2 () = ntl . |
T This observations suggests that unboundedness in the rela-
(1) (n +2)(rs — )™ if(r1,7) € [0,1] [0, 1] tion between state classes and their associated stochastic state

classes is related to the presence of cycles in which each state
class has at least one persistent transition that can inherit the
(34 conditioning determined by previous firings. According to this,

The example has a clean interpretation: on each firing, tran&€ introduce the following concept:

tiont; re-samples its time to fire within its static firing interval; Definition 4.1: We callresetting classa state class in which
whereag, always remains persistent and thus accumulates #ig enabled transitions are newly enabled.

conditioning of a growing number of events in which it ha%y construction, a resetting class is associated with a single

been overtaken by transition; according to this, the density . . . . )
. stochastic state class in which the times to fire of all enabled
function of ¢t becomes more and more concentrated aroupd .- . R

. ; ) : transitions are independent and each of them is distributed
the 0 (it tends to the form of a right-Dirac function) and theaccordin to its own static density. This permits to prove the
probability thatt, overtakest; tends to O. 9 Y. P P

It is interesting to note that the accumulation of conditioninBonOMng:

also occurs along the more elaborate loop in which transitionsTheorem 4.1:If G is a finite state class graph in which

t1 andt, fire alternatively. In this case, enumeration yields a@very cyclic path traverses at least one resetting class, then
unbounded sequence of different stochastic classes in whibh stochastic class graghassociated witl7 is also finite.
alternatively one of the two transitions is newly enabled (and Proof:

thus distributed uniformly according to its static density), « Ab absurdo, lef" be unbounded.

while the other has a density distributed according to a Since each stochastic clads € I' is associated with
polynomial of growing order. The form of polynomials is a classS € @G, there exist a clas$° € G which

0 elsewhere



is associated with an unbounded number of stochasgtiossibility of critical behaviors with a quantitative evaluation

classes.
« This implies that the class graghincludes a cyclic path
r which originates inS°, and that the stochastic state
graph includes a stochastic clas$ associated with5?,
such that, ifp; is the path in the stochastic class grap
corresponding tor and originating fromX?, then the
stochastic clas&), ; reached fromx{ through the path
pi. is different thanx{:
(1]
p=goly gl vl

o 1
pp = X0 2k w1 el

SO

N—
EN—1,Hy,

=

"o [2]
k1 (39)
(3]
= # S
o EQ.(35) can be easily extended to show that the patfa)
pra1 Which follows the transitions of starting from
the stochastic classy , , visits a sequence of stochastic
classes which are all different than the corresponding
classes visited along the pagh: (6]

(5]

(7]

to iy 41 1 tl»l‘llc+1 tN*h“z\;ql 0
=X = .. =X

_ Y0
Pk+1 = Elc-',-l k+1

Yp#EYE, Vn=0,N-1 8]
(36)
« Sincer is a cyclic path, it visits a resetting class, that wel°]
denote asS™.

Since S™ is visited alongr, it is also associated with [10]
two stochastic classes)' and X", , visited alongpy,
and py1, respectively.

According to Eq.(36)%;"' must be different thaix;”, ,,
which is not possible ag}' and 3}, are stochastic 112!
classes associated with the same resetting class.

(11]

[13]
The condition requested for the application of Theorem 4.1
can be easily checked: to this end, it is sufficient consideringa;
reduced class grapi— which is derived from& by removing
every resetting class, and then checking whetherincludes 15]
any cycle. The test can be run in linear time with respect {0
the size ofG and, obviously, without actually constructing the16]
graphG~. Application of the test gives a positive result (i.e.
no unbounded loops are identified) in all the examples of TR,
reported in [7] [18] [28].
(18]
V. CONCLUSIONS

We have proposed a probabilistic extension of state spgce
analysis for densely timed systems based on time zones
encoded through Difference Bounds Matrixes. The appro
extends the concept of state class and its reachability relation,
commonly applied to the analysis of models such as Time Petri
Nets and Timed Automata, by enriching dense firing domains
with a state probability density function. [21]

This result, which is the first extension of DBM state[2
classes analysis with probabilistic information, comprises*a
new approach to bridge the gap between the verification of the

of their probability.
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APPENDIXA

Lemma 5.1:The class graph of the net of Fig.7-a includes
a self loop occurring at the firing of transition from the
classS? of Fig.7-b. Starting from an initial stochastic class
where botht; andt, are uniformly distributed in their static

intervals, the state probability density of the stochastic class

reached after, subsequent firings aof; is equal to:

f;‘L(TlvTQ) -

(=1)"(n +2)(r2 — D)™ if(r, ) € [0,1] x [0,1]

0 elsewhere

(37)
Proof:
Casen = 0: We first prove that the stochastic state

class graph includes a class with state probability density

function given by Eq. (37) with n = 0. Since in the initial
classS?, transitionst; et, are newly enabled, their times
to fire are independent. The joint state probability density
function is the product of individual density functions:

<1 if0<1<1IAN0<S<»<1

fr(11,m2) =

- 0 elsewhere

The assumption that; fires first restricts the firing
domain to:

0

IN
IN

1

T1

Dt = 1

IN

0< o

WA

71 < T2

According to Eq. (13), the probability that fires first is
obtained by integrating the probability density function
f#(m1,72) over D'1:

R
Proby, first = ey fr(T1, T2)dT1dre =

R
T2

_ 1 1 1
= 0 0 d7‘1d7'2 = 0 ’7'2d7'2 =3

The probability density function for the time to fire of
persistent transitiom, is derived through Eq. (20):

10

R
p 1 111 " 1"
féfpf?(ﬁ g+ )dry

Dy fz(r1,7m2)

f.,«:/// (Té”) =

R o
=, 2 =-2(-1+1)

Since transitiort; is newly enabled after its own firing,
the state probability density function for the successor
classS? is (Eq.(23)):

8

< —2(—1 + T2)

fF(TlvTQ) = -
-0

fO<T <1A0<7<1

elsewhere

Casen > 0.
By induction, we now assume that the state probability
density function after, — 1 firings of transitiont; is:

n—1

7 (7_1’7_2) =

8

< (-D)*"n+D(-14+m)" fO0< <IA0<T<1

S| elsewhere
and we prove that the form is maintained by increasing
n whent, fires again. The assumption thit fires first

restricts the firing domain to:
8
% 0 S T1 S 1

D= 0<1<1

T <m
According to Eq. (13), the probability that fires first is
obtained by integrating the probability density function
fn_1(71,72) over D'

R
Probi, first = iy f§_1(7'1,7'2)d7'1d7'2 =

_Rn Rl(—l)"(n+ (=1 + ) dridr = 15
~ o0 o 2) aTaT2 = 355
The probability density function for the time to fire of
persistent transition, is derived through Eq.(20):

R
400 pm—1
Fx

1" 11’ " 1"
"71(7'”/) _ T+ )dry
Fr 2 - LA

=T
b,y f7 (T1,72)

R 1"
=n+2) o 2 (=)"(n+1)(~1+7 + ) dr] =

= (=)"(n+2)(-1+7")"
After its own firing, transitiont; is newly enabled and
takes its static density function (which is uniform equal to
1 in the interval|0, 1], independent fronts). According
to Eq.(23), the state probability density function for the
successor class is thus:

“H(r2) - fr(n) =

(=)™ (n 4+ 2) (=1 + )"

fE(r,m2) = f7
8
< fOo<m <1A0<7m<1

-0 elsewhere

which ends the demonstration.



