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Introducing Probability within State Class Analysis
of Dense-Time-Dependent Systems

G.Bucci, R.Piovosi, L.Sassoli, E.Vicario

Abstract— Several techniques have been proposed for symbolic
enumeration and analysis of the state space of reactive systems
with non-deterministic temporal parameters taking values within
a dense domain. In a large part of these techniques, the state
space is covered by collecting states within equivalence classes
each comprised of a discrete logical location and a dense variety
of clock valuations encoded as a Difference Bounds Matrix
(DBM). The reachability relation among such classes enables
qualitative verification of properties pertaining the ordering of
events along critical runs and the satisfaction of stimulus/response
deadlines. However, up to now, no results have been proposed
which extend state class enumeration so as to combine the veri-
fication of the possibility of critical behaviors with a quantitative
evaluation of their probability.

In this paper, we extend the concept of equivalence classes
based on DBM encoding with a density function which provides
a measure for the probability associated with individual states
collected in the class itself. To this end, we extend the formalism
of Time Petri Nets by associating the static firing interval of each
transition with a probability density function. We then expound
how this probabilistic information determines a probability for
the states collected within a class and how this probability evolves
in the enumeration of the reachability relation among state
classes. This opens the way to characterizing thepossibility of
critical behaviors with a quantitative measure of probability.

Index Terms— Real time reactive systems, correctness verifica-
tion, performance and dependability evaluation, Time Petri nets,
dense timed state space enumeration, Difference Bounds Matrix.

I. I NTRODUCTION

Development of reactive and time-dependent systems jointly
addresses requirements pertaining ordered sequencing of
events, stimulus-response timeliness, and efficient resource
usage [21] [26] [20]. Despite this demand raised by the
application domain, modeling and analysis techniques for
correctness verifications and for performance/dependability
evaluation have been separately addressed in different timed
variants of Petri Nets [12].

On the one hand, in the context of performance and de-
pendability evaluation, stochastic Petri Nets associate timed
transitions with a stochastic delay characterized through an
exponential density function [23] [1]. This enables Markovian
analysis and permits automated derivation of effective perfor-
mance and dependability indexes [16]. As a major drawback,
the unbounded support of the exponential distribution does not
permit to represent implicit precedences induced by finite tim-
ing constraints (e.g. timeouts). In fact, exponential transition
timing neither conditions the state of the model or it restricts
the feasibility of event sequences.

Several extensions of stochastic Petri Nets have been devel-
oped to encompass bounded delays and to partially overcome

the limits of exponential timing[9]. However, the application
of these techniques imposes various restrictions which exclude
models allowing multiple concurrent non-exponential clocks
[2] [14] [15] [11], or models where timing constraints are
essential to keep the set of reachable markings finite [24] [10].

On the other hand, in the context of correctness verification of
real time systems, a number of analysis techniques have been
proposed for models such as Timed Automata and Time Petri
Nets which include non-deterministic temporal parameters
taking values within (possibly finite) dense intervals [4][6]
[17][7][27]. For this kind of models, the timed state space
is covered through the enumeration of a discrete reachability
relation among state classes, each comprised of a discrete
logical location and a time domain collecting a dense variety
of timings. In particular, a wide literature has been developed
upon state classes where time domains are encoded as differ-
ence bounds matrixes (DBM) [3] [8] [7] [19] [5]. Enumeration
and analysis of the reachability relation among such state
classes opens the way to the solution of a number of relevant
problems, such as the reachability of a given logical location,
the feasibility of a run satisfying given constraints on the
logical sequencing of events and on their quantitative timing,
the evaluation of a tight bound on the minimum and maximum
time that can elapse between any two events along a symbolic
run [7] [6] [22] [27].

However, these techniques do not permit to characterize
feasible behaviors with a measure of probability, which is
an essential step towards dependability and performance eval-
uation. To the best of our knowledge, no techniques have
been proposed yet to overcome this limitation through the
integration of stochastic analysis with symbolic enumeration
of densely timed state spaces.

In this paper, we address the problem of deriving a density
function which characterizes the probability of individual
timings comprised within the boundaries of a time domain in
DBM form. To this end, we extend the formalism of Time
Petri Nets by associating the static firing interval of each
transition with a (dense) probability density function. We then
expound how this probabilistic information induces a measure
of probability for individual states collected in a class and how
this probability evolves in the enumeration of the reachability
relation among state classes.

The rest of the paper is organized in four sections. Time
Petri Nets extended with stochastic time intervals are defined
in Sect.II. In Sects.III and IV, we extend the concept of
state class with a density function capturing the probability
of individual states in the class, we present a method for the
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derivation of the successors of a stochastic state class, and we
discuss the application of this derivation within an enumerative
semi-algorithm. Conclusions are drawn in Sect.V.

II. T IME PETRI NETS WITH STOCHASTIC FIRING

INTERVALS

A Stochastic Time Petri Net (sTPN) is a tuple

sTPN =< P ; T ; A−; A+;M ; A·; FIs;D > (1)

• The first seven members comprise the basic model of
Time Petri Nets: P is a set ofplaces; T a set of
transitions; A− and A+ are sets of preconditions
and postconditions connecting places to transitions and
viceversa, respectively:

A− ⊆ P × T
A+ ⊆ T × P

(2)

A place p is said to be aninput or an output place
for a transition t if there exists a precondition or
a postcondition from p to t or viceversa, (i.e. if
< p, t > ∈ A− or < t, p >∈ A+), respectively.
M (the initial marking) associates each place with a
non-negative number of tokens:

M : P → N ∪ {0} (3)

P , T , A−, and A+ comprise a bipartite graph,P and
T being disjoint classes of nodes, andA− and A+ be-
ing relations between them. This graph is represented
graphically by drawing places as circles, transitions as
bars, and preconditions and postconditions as directed
arcs; the tokens of the initial marking are represented
as dots inside places.
A· is a set of inhibitor arcs connecting places to
transitions:

A· ⊆ P × T (4)

inhibitor arcs are represented graphically as dot-
terminated arcs.
FIs adds timing constraints to the net by associating
each transition t with a static firing intervalmade up
of an earliestand a (possibly infinite)latest firing time

FIs : T → R+ × (R+ ∪ {+∞})
FIs(t) = (EFT s(t), LFT s(t)) (5)

• D associates each transitiont with a dense static probabil-
ity functionft(τ), whose probability distribution function
Ft(τ) measures the probability that transitiont, at the
enabling, will take a time to fireτ(t) not higher thanτ .

The state of a sTPN is a pairs = 〈M, τ〉, where M is
the marking and τ associates each transition with a possibly
infinite time to firevalue ( τ : T → R+ ∪ {∞}). The state
evolves according to a transition rule made up of two clauses
of firability andfiring.

Firability: A transition to is enabled if each of its input
places contains at least one token and none of its inhibiting
places contains any token. A transitionto is firable if its time

to fire τ(to) is not higher than the time to fire of any other
progressing transition.

Firing: When a transition to fires, the states = 〈M, τ〉 is
replaced by a new states′ = 〈M ′, τ ′〉. The markingM ′ is
derived fromM by removing a token from each input place
of to, and by adding a token to each output place ofto:

Mtmp(p) = M(p)− 1 ∀p.〈p, to〉 ∈ A−

M ′(p) = Mtmp(p) + 1 ∀p.〈to, p〉 ∈ A+ (6)

Transitions that are enabled both by the temporary marking
Mtmp and by the final markingM ′ are saidpersistent, while
those that are enabled byM ′ but not byMtmp are saidnewly
enabled. If to is still enabled after its own firing, it is always
regarded as newly enabled.

The time to fireτ ′ of any transition enabled by the new
marking M ′ is computed in a different manner for newly
enabled transitions and for persistent transitions:
i) for transitionta which is newly enabled after the firing ofto,
the time to fire takes a nondeterministic value sampled in the
static firing interval, according to the static probability density
function fta(·):

EFT s(ta) ≤ τ ′(ta) ≤ LFT s(ta) (7)

ii) for any transitionti which is persistent after the firing ofto,
the time to fire is reduced by the time elapsed in the previous
state. This is equal to the time to fire ofto as it was measured
at the entrance in the previous state:

τ ′(ti) = τ(ti)− τ(to) (8)

III. A UGMENTING STATE CLASS WITH PROBABILITY

A. States, State Classes and Stochastic State Classes

In the firing clause of sTPNs, a newly enabled transition
may take any real value within its static firing interval, and
each value can lead to a different state, thus resulting in a dense
variety of possible successors. To obtain a discrete representa-
tion of the state space, the reachability relation between states
is conveniently replaced through some reachability relation
betweenstate classes, each made up by a dense variety of
states with the same markingm but with different timings
comprised within afiring domainDm [19][27]:

State class = 〈m,Dm〉 (9)

The encoding of the firing domainDm jointly depends on the
way in which transition timers are made to advance in the
firing clause and on the semantics of the reachability relation
established among state classes. Most works (and this among
them) on the analysis of densely timed models are based on
the AE reachability relation [25]:

Definition 3.1: classSc is a successor of classSp through
to (which is also written asSp to→ Sc) if and only if
Sc contains all and only the states that are reachable from
some state collected inSp through some feasible firing of
to.

Under this reachability relation, the firing domain of state
classes of a TPN model can be represented as the setD
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of solutions of a set of linear inequalities in the form of a
Difference Bounds Matrix (DBM) [19]:

D =
{

τ(ti)− τ(tj) ≤ bij

∀ti, tj ∈ T (m) ∪ {t∗} ti 6= tj
(10)

where T (m) denotes the set of transitions enabled bym,
τ(ti) denotes the time to fire of transitionti, the fictitious
unknown variableτ(t∗) = 0 serves to keep all the inequalities
in the same difference form, andbij ∈ R ∪ {+∞} are the
coefficients which define the boundaries of a class. The DBM
form has anormal representation which can be computed
as the solution of anall shortest pathproblem, and which
supports efficient detection and derivation of successor classes,
in time O(N) and O(N2) respectively, with respect to the
number of enabled transitions [27].

The DBM representation can be applied to encode the range
of feasible timings of an sTPN, as the support of feasible
timings of this model evolves with the same semantics of a
TPN. However, this encoding does not exploit the stochastic
information which is introduced in sTPNs to characterize the
probability of different determinations of temporal parame-
ters. To overcome the limitation, we introduce a concept of
stochastic state classwhich extends a state class〈m,D〉 with a
joint probability functionf~τ (·) characterizing the distribution
of the vector~τ = 〈τ(t0), τ(t1), . . . τ(tn)〉 of times to fire of
transitions enabled bym within the limits of the firing domain
D:

Stochastic state class = 〈m,D, f~τ (·)〉 (11)

The set of determinations of~τ which fall within the boundaries
of D biunivocally corresponds to the set of states collected in
the stochastic class, in the sense that each determination of~τ
uniquely identifies a state in classS and viceversa. According
to this, f~τ (·) takes the meaning of a density function for
the probability of the states inS, for which we call it state
probability density function.

With this perspective, we extend the notion of reachability
relation among state classes as follows:

Definition 3.2: given two stochastic state classes
Σp = 〈mp, Dp, f ~τp(·)〉 and Σc = 〈mc, Dc, f ~τc(·)〉, we
say thatΣc is a successor ofΣp throughto with probability
µ, and we writeΣp to,µ⇒ Σc, iff the following property holds:
if the marking of the net ismp and the vector of times to
fire of transitions enabled bymp is a random variable~τp

distributed within the boundaries ofDp according tof ~τp(·),
then to is a possible firing, which occurs with probability
µ and which leads to a new markingmc and a new vector
of times to fire distributed within the boundaries ofDc

according tof ~τc(·).

In the following, we develop the steps for the enumeration of
this reachability relation, i.e. the detection of successors, the
calculus of their probability, and the derivation of successor
state-probability density functions.

B. Successors detection and calculus of their probability

A transition to is an outcoming event from the stochastic
classΣp = 〈mp, Dp, f ~τp(·)〉 iff to is enabled by the marking
mp and the firing domainDp accepts solutions in which the
firing time τ(to) of transition to is not greater than that
of any other enabled transition. This occurs iff the following
restricted firing domain Dp

to
accepts a non-empty set of

solutions:

Dp
to

=





τ(ti)− τ(tj) ≤ bij

τ(to)− τ(tj) ≤ min{0, boj}

∀ti, tj ∈ T (mp) ∪ {t∗} ti 6= tj

(12)

If to is a possible outcoming event, its probabilityµ is
derived by integrating the state density functionf ~τp(·) over
the restricted firing domainDp

to
:

µ = Prob{t0 fires first} =
= Prob{~τ ∈ Dp

t0} =
∫

Dp
t0

f ~τp(~x) d~x (13)

C. Derivation of successor state-probability density functions

In the computation of the classΣc = 〈mc, Dc, f~τc(·)〉
reached fromΣp = 〈mp, Dp, f~τp(·)〉 through an outcoming
eventto (i.e. Σp to,µ⇒ Σc), the new markingmc is derived by
moving tokens according to the execution rule of transitions,
and the firing domainDc is derived so as to reflect the
evolution of times to fire. Details of the derivation are reported
in [27]. For the present treatment, it is sufficient to resume the
steps of the derivation as follows:

1) the vector of times to fire~τp = 〈τ(to), τ(t1), ...τ(tn)〉 of
the transitions enabled inSp is replaced with the vector
~τ ′ = 〈τ ′(to), τ ′(t1), ...τ ′(tn)〉 where each unknown
value τ ′(ti) is obtained by restrictingτ(ti) with the
constraintτ(ti) ≥ τ(to) so as to capture the condition
for to to be the firing transition;

2) ~τ ′ is replaced through the vector
~τ ′′ = 〈τ ′′(to), τ ′′(t1), ...τ ′′(tn)〉 =
〈τ ′(to), τ ′(t1)− τ ′(to), ...τ ′(tn)− τ ′(to)〉 so as to
reflect the reduction of times to fire during the
permanence in the parent classΣp;

3) times to fire of enabled transitions at the firing ofto
are obtained by eliminatingτ(to) from ~τ ′′ through a
projection operation which yields a new vector~τ ′′′ =
〈τ ′′′(t1), ...τ ′′′(tn)〉;

4) the vector~τ ′′′′ of times to fire in the child classΣc

is finally obtained by removing through a projection
the times to fire of transitions that are not persistent
after the firing of to and by adding the times to fire
of newly enabled transitions, each constrained within its
own static firing interval.

Derivation of the probability density function within the
boundaries of the firing domain of the child classΣc can be
organized along the same four steps, extending the derivation
of inequalities with a stochastic characterization of their solu-
tion space.
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1) We regard~τ = 〈τ(to), τ(t1), ...τ(tn)〉 as a stochastic
array variable, and~τ ′ = 〈τ ′(to), τ ′(t1), ...τ ′(tn)〉 as
the variable obtained by conditioning~τ through the
assumption thatto will fire first, i.e. thatτ(to) ≤ τ(ti)
for any enabled transitionti in Σp:

~τ ′ = 〈τ ′(to), . . . τ ′(tn)〉
τ ′(ti) = τ(ti) | τ(to) ≤ τ(ti) ∀i = 1, n

(14)

The joint density function of~τ ′ can be expressed through
Bayes Theorem as:

f~τ ′(τ ′o, τ
′
1, ...τ

′
n) =





f~τ (τ ′o, ...τ ′n)∫

Dp
to

f~τ (τo, ...τn)dτo...dτn

if τ ′o, τ
′
1, ...τ

′
n ∈ Dp

to

0 if τ ′o, τ
′
1, ...τ

′
n /∈ Dp

to

(15)
2) The stochastic array variable~τ ′′ is obtained by replacing

each stochastic variableτ ′(ti) with i > 0 through the
differenceτ ′(ti)− τ ′(to):

τ ′′(ti) =
{

τ ′(ti)− τ ′(to) ∀i = 1 . . . , n
τ ′(to) for i = 0 (16)

The joint density functionf~τ ′′ of the variable~τ ′′ can be
expressed as:

f~τ ′′(τ ′′o , τ ′′1 , ...τ ′′n ) = f~τ ′(τ ′′o , τ ′′1 + τ ′′o , ...τ ′′n + τ ′′o ) (17)

3) The stochastic variable~τ ′′′ is derived from~τ ′′ through
a projection eliminating the variableτ ′′(to):

~τ ′′′ = 〈τ ′′(t1), τ ′′(t2), ...τ ′′(tn)〉 (18)

The joint density functionf~τ ′′′ is thus be obtained by
integrating the density functionf~τ ′′ with respect to
τ ′′(to):

f~τ ′′′(τ ′′′1 , ...τ ′′′n ) =
∫

Suo(τ ′′′1 ,...τ ′′′n )

f~τ ′′(τ ′′o , τ ′′′1 , ...τ ′′′n )dτ ′′o

(19)
where Suo(τ ′′′1 , ...τ ′′′n ) is the support of the unknown
value τ ′′(to) when the tuple〈τ ′′(t1), ...τ ′′(tn)〉 takes
the value 〈τ ′′1 , ...τ ′′n 〉. Being a set in DBM form,
Dp

to
is convex and thusSuo(τ ′′′1 , ...τ ′′′n ) is an interval

[Mino(τ ′′′1 , ...τ ′′′n ),Maxo(τ ′′′1 , ...τ ′′′n )].

By composing Eqs.(19), (17), and (15), we finally ex-
press the joint density function of~τ ′′′ with respect to
that of ~τ :

f~τ ′′′(τ ′′′1 , ...τ ′′′n ) =

=

∫ Maxo(τ ′′′1 ,...τ ′′′n )

Mino(τ ′′′1 ,...τ ′′′n )

f~τ (τ ′′o , τ ′′′1 + τ ′′o , ...τ ′′′n + τ ′′o )dτ ′′o
∫

Dp
to

f~τ (τo, τ1, ...τn)dτodτ1...dτn

(20)

4) the state probability density function of transitions that
are persistent in the child classΣc can now be obtained
by integrating the density functionf~τ ′′′ so as to elim-
inate times to fire of transitions that are not persistent.
Specifically, if t1, ...tm are disabled at the firing, and
~τ c
pers = 〈tm+1, ...tn〉 is the vector of transitions that

are persistent in the child class, the density function
f~τc

pers
(τm+1, ...τn) is expressed as:

f~τc
pers

(τm+1, ...τn) =

=
∫ +∞

−∞
...

∫ +∞

−∞
f~τ ′′′(τ1, ...τm, τm+1, ...τn)dτ1...dτm

(21)
Finally, the vector~τ ′′′′ collecting the times to fire of
all transitions enabled in the child class is obtained by
extending~τ c

pers with the vector~τ c
new made up by the

times to fire of transitions newly enabled inΣc, each
distributed according to its own static density function.

~τ ′′′′ = 〈~τ c
pers, ~τ

c
new〉 (22)

Since the time to fire of any newly enabled transitionta
is independent from the time fire of any other enabled
transition, the joint probability density functionf~τ ′′′′

in the firing domainDc of the child classΣc can be
expressed as the product:

f〈~τc
new,~τc

pers〉( ~τ c
new, ~τ c

pers) =

f~τc
pers

( ~τ c
pers) ·

∏

ta∈~τc
new(Σc)

fta(τ c(ta))
(23)

D. Example

We illustrate the theory in the derivation of a stochastic class
for the example in Fig.1. We assume (without limitation) that
the firing times of all transitions have a uniform probability
density function over their static firing intervals.

[2,8] [5,10]

[2,4]

[3,9]

t 2

t 4

t 3

t 1

p
5

p
3

p
6

p
1

p
2

p
4

Fig. 1. A stochastic Time Petri Net. All non-deterministic timings are
supposed to be uniformly distributed.

Since in the initial classS0 transitions are newly enabled, their
times to fire are all independent. According to this, the joint
probability density function overD0 is obtained as the product
of static probability density functions of individual transitions:



5

D0 =





5 ≤ τ(t1) ≤ 10
2 ≤ τ(t2) ≤ 8
3 ≤ τ(t3) ≤ 9

f0(τ1, τ2, τ3) =
{

1
180 if (τ1, τ2, τ3) ∈ D0

0 if (τ1, τ2, τ3) /∈ D0

(24)

Three events are possible in the classS0: the firing of
transitiont1 in the interval [5,8],t2 in [2,8], andt3 in [3,8].
The assumption of the case thatt3 fires first restricts the firing
domain toDt3

0 :

Dt3
0 =





5 ≤ τ(t1) ≤ 10
3 ≤ τ(t2) ≤ 8
3 ≤ τ(t3) ≤ 8
τ(t3) ≤ τ(t1)
τ(t3) ≤ τ(t2)

(25)

According to equation (13), the probabilityProbt3first that
t3 fires first is obtained by integratingfo(τ1, τ2, τ3) overDt3

0 :

Probt3first =
∫

D
t3
0

f0(τ1, τ2, τ3)dτ1dτ2dτ3 =
29
90 (26)

The joint probability distribution of firing times conditioned
to the assumption thatt3 fires is:

f0|t3first(τ1, τ2, τ3) =





f0(τ1,τ2,τ3)
Probt3first

= 1
180 · 90

29 = 1
58

if (τ1, τ2, τ3) ∈ Dt3
0

0 if (τ1, τ2, τ3) /∈ Dt3
0

(27)

The classS1 reached fromS0 through the firing oft3 has
two enabled transitions:t1 and t2. Their firing times are
constrained within domainD1 (also pictured in Fig. 3):

D1 =





0 ≤ τ(t1) ≤ 7
0 ≤ τ(t2) ≤ 5

−7 ≤ τ(t2)− τ(t1) ≤ 3
(28)

According to Eq.(20), we derive the probability density func-
tion for transitionst1 and t2 by integratingf0|t3first(τ ′′′1 +
τ ′′3 , τ ′′′2 + τ ′′3 , τ ′′3 ) with respect toτ ′′3 .

The function f0|t3first(τ ′′′1 + τ ′′3 , τ ′′′2 + τ ′′3 , τ ′′3 ) is
defined over D̂t3

0 , derived from Dt3
0 through variable

substitutions τ ′′(t3) = τ(t3), τ ′′′(t1) = τ(t1)− τ ′′(t3),
τ ′′′(t2) = τ(t2)− τ ′′(t3):

D̂t3
0 =





5 ≤ τ ′′′(t1)− τ ′′(t3) ≤ 10
3 ≤ τ ′′′(t2)− τ ′′(t3) ≤ 8

3 ≤ τ ′′(t3) ≤ 8
τ ′′′(t1) ≥ 0
τ ′′′(t2) ≥ 0

(29)

In order to integratef0|t3first(τ ′′′1 + τ ′′3 , τ ′′′2 + τ ′′3 , τ ′′3 ) with
respect toτ ′′3 , we must now express the range of variability
of τ ′′(t3) as a function of the values taken byτ ′′′(t1) and
τ ′′′(t2). According to Eqs.(19)-(20), this range is an interval
Su3(τ ′′′1 , τ ′′′2 ) = [Min3(τ ′′′1 , τ ′′′2 ),Max3(τ ′′′1 , τ ′′′2 )] with:

Min3(τ ′′′1 , τ ′′′2 ) = min{τ ′′3 |〈τ ′′′1 , τ ′′′2 , τ ′′3 〉 ∈ D̂t3
0 }

Max3(τ ′′′1 , τ ′′′2 ) = max{τ ′′3 |〈τ ′′′1 , τ ′′′2 , τ ′′3 〉 ∈ D̂t3
0 }

(30)

According to Eq.(29), the two extrema can be expressed as:

Min3(τ ′′′1 , τ ′′′2 ) = max{5− τ ′′′1 , 3− τ ′′′2 , 3}
Max3(τ ′′′1 , τ ′′′2 ) = min{10− τ ′′′1 , 8− τ ′′′2 , 8} (31)

This splits the range of values for the pair〈τ ′′′(t1), τ ′′′(t2)〉
in three sub-regionsZa, Zb, Zc within each of whichMin3()
andMax3() has homogeneous form (i.e. it is defined through
a single non-piecewise function):

Za =

8
<
:

2 ≤ τ ′′′(t1) ≤ 7
τ ′′′(t2) ≥ 0
τ ′′′(t1)− τ ′′′(t2) ≥ 2

Zb =

8
<
:

2 ≤ τ ′′′(t1) ≤ 7
τ ′′′(t2) ≤ 5
τ ′′′(t1)− τ ′′′(t2) < 2

Zc =

8
<
:

0 ≤ τ ′′′(t1) < 2
τ ′′′(t2) ≥ 0

τ ′′′(t1)− τ ′′′(t2) ≥ −3

With reference to this split, we can finally expressMin3()
andMax3() as:

Min3(τ ′′′1 , τ ′′′2 ) =





3 if 〈τ ′′′1 , τ ′′′2 〉 ∈ Za

3 if 〈τ ′′′1 , τ ′′′2 〉 ∈ Zb

5− τ ′′′1 if 〈τ ′′′1 , τ ′′′2 〉 ∈ Zc

Max3(τ ′′′1 , τ ′′′2 ) =





10− τ ′′′1 if 〈τ ′′′1 , τ ′′′2 〉 ∈ Za

8− τ ′′′2 if 〈τ ′′′1 , τ ′′′2 〉 ∈ Zb

8− τ ′′′2 if 〈τ ′′′1 , τ ′′′2 〉 ∈ Zc

(32)

Fig.2 plots the partitionment for the range of variability
of 〈τ ′′′1 , τ ′′′2 〉 and the form ofMin3() and Max3() in the
three subzones. Note that the procedure of derivation of the
subzones whereMin3() andMax3() have homogeneous form
is general and it is performed as a step in the symbolic
computation of the integral in Eq. (20).
The probability density function for transitionst1 and t2 is
finally derived according to equation (20) and results in a
piecewise function defined over the three zonesZa, Zb, Zc

(also shown in Fig. 3).

f1(τ ′′′1 , τ ′′′2 ) =





1
58 (7− τ ′′′1 ) if 〈τ ′′′1 , τ ′′′2 〉 ∈ Za

1
58 (5− τ ′′′2 ) if 〈τ ′′′1 , τ ′′′2 〉 ∈ Zb

1
58 (3 + τ ′′′1 − τ ′′′2 ) if 〈τ ′′′1 , τ ′′′2 〉 ∈ Zc

0 elsewhere
(33)



6

Fig. 2. The time domainbDt3
0 partitioned in three regions during the calculus

of Su3(τ ′′′1 , τ ′′′2 ); in the projectionsZa, Zb, Zc, the bounds ofτ ′′(t3) are
both defined by a single homogeneous rule.

Fig. 3. The temporal domainD1 and its state probability density function
f1(τ1, τ2). D1 is partitioned in three subzones (a, b and c), representing the
three sub-domains of the piecewise functionf1(τ1, τ2) (see Equation (33)).
Note that since the firing oft3 does not enable or disable any transition, zones
a, b and c ofD1 correspond to zonesZa, Zb, Zc reported in Fig. 2.

In the child classS1 reached throught3, both t1 and t2 are
persistent. Moreover, no other transition is newly enabled. Ac-
cording to this,f1(τ ′′′1 , τ ′′′2 ) is the probability density function
for states collected in the state classS1. In the more complex
case of any transition being (newly) enabled or disabled by the
firing of transition t3, we would have to use equations (21)
and (23).

IV. ENUMERATION

Equations (13) and (23) can be embedded within a ”con-
ventional” algorithm for the enumeration of DBM state classes
(e.g. [27] [8]) so as to derive a graph of reachability among
stochastic state classes of a sTPN.

To this end, algorithms for the detection of class successors
and for the computation of their firing domains must be
combined with a symbolic derivation of integrals, that can
be conveniently supported by a symbolic toolbox. In our
experimentation, we integrate the Oris tool for state class
enumeration [13] and the Wolfram Mathematica 5.1 for the
symbolic calculus [29].

The result of the enumeration of the reachability relation
Σp t,µ⇒ Σc among stochastic state classesΣ = 〈m,D, f~τ (·)〉 is

a stochastic timed transition system, that we callstochastic
class graph, where nodes are state classes labeled with a
state density function and edges are transitions labeled with a
measure of probability.

The stochastic class graph can be regarded as a continuous-
time Markov chainXn with respect to the numbern of fired
transitions. The analysis of this structure permits to associate
a stochastic characterization with symbolic runs identified in
the class graph. In particular, it supports the evaluation of such
indexes as the probability to reach a logical location, or the
probability that the system executes along a given run, the
probability that a run exceeds a deadline, the distribution of
probabilities for the timing of a symbolic run.

5

01 7 6

34

2

t 1

t 2

t 3 t 4

t 1

t 2 t 1

t 3

t 2

t 3

t 2

t 1

t 3

Fig. 4. The class graph for the net in Fig.1. Each node is a state class〈m, D〉
made up of a markingm and a firing domainD encoded as a difference
bounds matrix.

A. Example

Enumeration of the reachability relationSp t→ Sc among
”conventional” state classesS = 〈m,D〉 for the net in Fig.1
yields the state class graph shown in Fig.4. Markings and time
domains for the eight state classes are:

S0 =

1 p4 1 p5 1 p6
5 ≤ τ(t1) ≤ 10
2 ≤ τ(t2) ≤ 8
3 ≤ τ(t3) ≤ 9

S1 =

1 p3 1 p4 1 p5
0 ≤ τ(t1) ≤ 7
0 ≤ τ(t2) ≤ 5

−7 ≤ τ(t2)− τ(t1) ≤ 3

S2 =

1 p2 1 p4 1 p6
0 ≤ τ(t1) ≤ 8
0 ≤ τ(t3) ≤ 7

−7 ≤ τ(t3)− τ(t1) ≤ 4

S3 =
1 p1 1 p5 1 p6
0 ≤ τ(t2) ≤ 3
0 ≤ τ(t3) ≤ 4

S4 =
1 p1 1 p3 1 p5
0 ≤ τ(t2) ≤ 3

S5 =
1 p2 1 p3 1 p4
0 ≤ τ(t1) ≤ 7

S6 =
1 p1 1 p2 1 p6
0 ≤ τ(t3) ≤ 4

S7 =
1 p1 1 p2 1 p3
2 ≤ τ(t4) ≤ 4

When classes are extended with the state density probability,
we obtain the extended reachability relationΣp to,µ⇒ Σc among
stochastic state classesΣ = 〈m,D, f~τ (·)〉 shown in Fig. 5.
This now includes eleven stochastic state classes as each of
the three state classesS4, S5 and S6 can be reached under
two different state probability density functions (see Fig. 6),
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0.01.3 7.10

3.1

2.2

t 1

t 2

t 3 t 4

t 1

t 2

t 1

t 3

t 2

t 3

t 1

t 3

5.7

5.9

4.5

4.8

6.6

6.4

129/90
1

1
t 3

1/3

2/3

69/217

148/217

89/116

27/116

t 2

t 2

1

1

3/40

217/3601

t 1
1

Fig. 5. The stochastic class graph for the net in Fig.1. Each node is a
stochastic state class〈m, D, f~τ ()〉 made up of a markingm, a firing domain
D encoded as a difference bounds matrix, and a state density functionf~τ ()
associating the individual timings withinD with a measure of probability.
Edges are labeled with a measure of probability associated with the transition.
Stochastic state classes are numbered and positioned so as to make evident
their correspondence with the classes in the class graph of Fig.4: all stochastic
classes labeled by x.n have the marking and the firing domain of class labeled
by x, but they differ in the state density functionf~τ (·).

thus corresponding to six stochastic state classes (Σ4.5, Σ4.8;
Σ5.7, Σ5.9; Σ6.4, Σ6.6).
State density functions for the classes enumerated in the
stochastic class graph of Fig.5 are:

f0.0 =

8
<
:

1/180 if 5 ≤ τ1 ≤ 10 ∧ 2 ≤ τ2 ≤ 8 ∧ 3 ≤ τ3 ≤ 9

0 elsewhere

f1.3 =

8
>>>>>>><
>>>>>>>:

1
58 (7− τ1) if 2 ≤ τ1 ≤ 7 ∧ τ2 ≥ 0 ∧ τ1 − τ2 ≥ 2

1
58 (5− τ2) if (2 ≤ τ1 ≤ 7 ∧ τ2 ≤ 5 ∧ τ1 − τ2 < 2)

1
58 (3 + τ1 − τ2) if 0 ≤ τ1 < 2 ∧ τ2 ≥ 0 ∧ τ1 − τ2 ≥ −3

0 elsewhere

f2.2 =

8
>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

10
217 if 2 < τ1 ≤ 3 ∧ 2 < τ1 − τ3 ≤ 2

− 2
217 (−8 + τ1) if τ3 > 1 ∧ 3 < τ1 ≤ 8 ∧ τ1 − τ3 ≥ 1

2
217 (3 + τ1) if 0 ≤ τ1 ≤ 2 ∧ 0 ≤ τ3 ≤ 1

− 2
217 (−7 + τ1 − τ3) if (τ1 − τ3 > 2 ∧ τ3 ≥ 0 ∧ 2 < τ1 ≤ 3)

∨(0 ≤ τ3 ≤ 1 ∧ 3 < τ1 ≤ 7)
∨ (τ1 − τ3 ≤ 7 ∧ τ3 ≤ 1 ∧ 7 < τ1 ≤ 8)

2
217 (4 + τ1 − τ3) if (τ1 − τ3 ≥ −4 ∧ τ3 > 1 ∧ 0 ≤ τ1 < 2)

∨ (−4 ≤ τ1 − τ3 ≤ 1 ∧ 2 < τ1 ≤ 3)

− 2
217 (−7 + τ3) if 3 < τ1 ≤ 8 ∧ τ1 − τ3 < 1 ∧ τ3 ≤ 7

0 elsewhere

f3.1 =

8
>>><
>>>:

− 2
27 (−3 + τ2) if 0 ≤ τ2 ≤ 3 ∧ τ3 ≥ 0 ∧ τ2 − τ3 ≥ −1

− 2
27 (−4 + τ3) if 0 ≤ τ2 ≤ 3 ∧ τ2 − τ3 < −1 ∧ τ3 ≤ 4

0 elsewhere

f6.4 =

8
>>><
>>>:

1
2 if 0 ≤ τ3 < 1

1
18 (16− 8τ3 + τ2

3 ) if 1 ≤ τ3 ≤ 4

0 elsewhere

f4.5 =

8
<
:

1
9 (9− 6τ2 + τ2

2 ) if 0 ≤ τ2 ≤ 3

0 elsewhere

f6.6 =

8
>>><
>>>:

1
23 (13− 4τ3) if 0 ≤ τ(t3) < 1

1
69 (40− 14τ3 + τ2

3 ) if 1 ≤ τ3 ≤ 4

0 elsewhere

f5.7 =

8
>>>>>>><
>>>>>>>:

1
148 (39 + 6τ1 − τ2

1 ) if 0 ≤ τ1 ≤ 1

1
148 (51− 6τ1 − τ2

1 )) if 1 < τ1 ≤ 2

1
148 (63− 16τ1 + τ2

1 ) if 2 < τ1 ≤ 7

0 elsewhere

f4.8 =

8
<
:

1
27 (21− 10τ2 + τ2

2 ) if 0 ≤ τ2 ≤ 3

0 elsewhere

f5.9 =

8
>>><
>>>:

1
89 (21 + 4τ1 − τ2

1 )) if 0 ≤ τ1 < 2

1
89 (49− 14τ1 + τ2

1 ) if 2 ≤ τ1 ≤ 7

0 elsewhere

f7.10 =

8
<
:

1
2 if 2 ≤ τ4 ≤ 4

0 elsewhere

B. Boundedness

Due to the extension of the enumeration algorithm with
probabilistic information, the stochastic class graph may in-
clude multiple stochastic classes with the same marking and
domain but with different state density functions.

The problem is related to confluences occurring at state
classes that can be reached through different paths in the class
graph, and it can be clearly illustrated with reference to the
example net of Fig.1. The class graph in Fig.4 contains a
diamond structure made up of four classesS0, S2, S3 and
S6: starting fromS0, classS6 can be reached visiting either
S2 (firing transition t1 and thent2), or S3 (viceversa). The
ordering of t1 and t2 does not influence the set of possible
behaviors, but it conditions the distribution of probability in
the times to fire of transitions that are enabled inS6. In the
stochastic class graph of Fig.5, this results in the split of the
state classS6 in two stochastic state classesΣ6.6 andΣ6.4, as
shown in Fig.6.

The break of confluences in the extension from the class graph
to the stochastic class graph not only exacerbates the problem
of state space explosion, but may also result in the case of
a model which accepts a finite class graph but which has an
unbounded stochastic class graph. This condition is related
to the existence of cycles in the class graph and to the way
in which memory is passed among the transitions that are
persistent through the firings along the cycle itself.

The case is demonstrated by the infinite overtaking that
may occur in the net in Fig.7. The class graph of the net
contains a self loop in which transitiont1 fires and re-enables
itself leavingt2 persistent. In the construction of the stochastic
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0

t 1

t 1

t 2

t 2
3

2

6

0.0 3.1 6.4
t 2t 1

0.0 2.2 6.6
t 1t 2

Fig. 6. In the class graph of Fig.4, both the timed sequencesS0 : t1, t2 and
S0 : t2, t1 lead to the state classS6 where transitiont3 is constrained to fire
in the interval[0, 4]. In the stochastic class graph of Fig.4, the same sequences
yield two different classesΣ6.4 andΣ6.6; the marking and the time domain of
these classes are equal, but the state probability density functions are different,
reflecting the same range of possibilities with different probabilities.

reachability graph, the class will be encountered infinite times.
In fact, if we assume thatt1 andt2 have uniform distributions,
we can prove (the proof is in the Appendix) that the state
probability density of the stochastic class reached aftern
subsequent firings oft1 is equal to:

fn
~τ (τ1, τ2) =





(−1)n(n + 2)(τ2 − 1)n+1 if〈τ1, τ2〉 ∈ [0, 1]× [0, 1]

0 elsewhere
(34)

The example has a clean interpretation: on each firing, transi-
tion t1 re-samples its time to fire within its static firing interval;
whereast2 always remains persistent and thus accumulates the
conditioning of a growing number of events in which it has
been overtaken by transitiont1; according to this, the density
function of t2 becomes more and more concentrated around
the 0 (it tends to the form of a right-Dirac function) and the
probability thatt1 overtakest2 tends to 0.

It is interesting to note that the accumulation of conditioning
also occurs along the more elaborate loop in which transitions
t1 andt2 fire alternatively. In this case, enumeration yields an
unbounded sequence of different stochastic classes in which
alternatively one of the two transitions is newly enabled (and
thus distributed uniformly according to its static density),
while the other has a density distributed according to a
polynomial of growing order. The form of polynomials is

[0,1]

t 2

p
2

t 1

t 3

[0,0]

[0,1]

p
1

p
3

t 2

t 2

< <

< <

t 1

0

0 1

1

[n]

t 1
t 1

t 2

< <

< <

t 1

0

0 1

1 [n]

t 2

< <

< <

t 1

0

0 1

1

t 2

t 1

t 2

[n]

[n]

S

S S 21

0

t 3

(a) (b)

0.2 0.4 0.6 0.8 1
Τ2

2

4

6

8

10

12

(c)

Fig. 7. (a) A simple net where the class graph is finite, but the stochastic class
graph is unbounded.(b) The class graph of the net includes loops which results
in an unbounded number of stochastic state classes, with the same marking
and time domain, but with different state probability density functions.(c) In
the enumeration of the stochastic class graph, the self loop corresponding to
the firing of t1 from classS0 yields an unbounded sequence of stochastic
classes where the time to fire of transitiont2 is distributed according to a
polynomial of increasing order. The picture plots the polynomials generated
after 0, 3, 10, and 100 repetitions of the loop.

similar to those of Eq.(34) and can be derived through the
same kind of procedure reported in the Appendix. In this case,
what happens is that the firing transitionpassesits memory to
the persistent one through the conditioning that derives from
the precedence: starting from the class in whicht1 is newly
enabled andt2 is distributed according to a polynomial of
ordern, the firing oft2 yields a new stochastic class in which
t1 becomes distributed according to a polynomial of order
n + 1.

This observations suggests that unboundedness in the rela-
tion between state classes and their associated stochastic state
classes is related to the presence of cycles in which each state
class has at least one persistent transition that can inherit the
conditioning determined by previous firings. According to this,
we introduce the following concept:

Definition 4.1: We callresetting class, a state class in which
all enabled transitions are newly enabled.

By construction, a resetting class is associated with a single
stochastic state class in which the times to fire of all enabled
transitions are independent and each of them is distributed
according to its own static density. This permits to prove the
following:

Theorem 4.1:If G is a finite state class graph in which
every cyclic path traverses at least one resetting class, then
the stochastic class graphΓ associated withG is also finite.

Proof:
• Ab absurdo, letΓ be unbounded.

Since each stochastic classΣ ∈ Γ is associated with
a classS ∈ G, there exist a classSo ∈ G which
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is associated with an unbounded number of stochastic
classes.

• This implies that the class graphG includes a cyclic path
r which originates inSo, and that the stochastic state
graph includes a stochastic classΣ0

k associated withSo,
such that, ifρk is the path in the stochastic class graph
corresponding tor and originating fromΣ0

k, then the
stochastic classΣ0

k+1 reached fromΣ0
k through the path

ρk is different thanΣ0
k:

r = So to→ S1 t1→ ...
tN−1→ So

ρk = Σ0
k

to,µo
k⇒ Σ1

k

t1,µ1
k⇒ ...

tN−1,µN−1
k⇒ Σ0

k+1

Σ0
k 6= ΣN

k+1

(35)

• Eq.(35) can be easily extended to show that the path
ρk+1 which follows the transitions ofr starting from
the stochastic classΣ0

k+1 visits a sequence of stochastic
classes which are all different than the corresponding
classes visited along the pathρk:

ρk+1 = Σ0
k+1

to,µo
k+1⇒ Σ1

k

t1,µ1
k+1⇒ ...

tN−1,µN−1
k+1⇒ Σ0

k+1

Σn
k 6= Σn

k+1 ∀n = 0, N − 1
(36)

• Sincer is a cyclic path, it visits a resetting class, that we
denote asSn! .
Since Sn! is visited alongr, it is also associated with
two stochastic classesΣn!

k and Σn!
k+1 visited alongρk

andρk+1, respectively.
According to Eq.(36),Σn!

k must be different thanΣn!
k+1,

which is not possible asΣn!
k and Σn!

k+1 are stochastic
classes associated with the same resetting class.

The condition requested for the application of Theorem 4.1
can be easily checked: to this end, it is sufficient considering a
reduced class graphG− which is derived fromG by removing
every resetting class, and then checking whetherG− includes
any cycle. The test can be run in linear time with respect to
the size ofG and, obviously, without actually constructing the
graphG−. Application of the test gives a positive result (i.e.
no unbounded loops are identified) in all the examples of TPN
reported in [7] [18] [28].

V. CONCLUSIONS

We have proposed a probabilistic extension of state space
analysis for densely timed systems based on time zones
encoded through Difference Bounds Matrixes. The approach
extends the concept of state class and its reachability relation,
commonly applied to the analysis of models such as Time Petri
Nets and Timed Automata, by enriching dense firing domains
with a state probability density function.

This result, which is the first extension of DBM state
classes analysis with probabilistic information, comprises a
new approach to bridge the gap between the verification of the

possibility of critical behaviors with a quantitative evaluation
of their probability.
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APPENDIX A

Lemma 5.1:The class graph of the net of Fig.7-a includes
a self loop occurring at the firing of transitiont1 from the
classS2 of Fig.7-b. Starting from an initial stochastic class
where botht1 and t2 are uniformly distributed in their static
intervals, the state probability density of the stochastic class
reached aftern subsequent firings oft1 is equal to:

fn
~τ (τ1, τ2) =





(−1)n(n + 2)(τ2 − 1)n+1 if〈τ1, τ2〉 ∈ [0, 1]× [0, 1]

0 elsewhere
(37)

Proof:

• Casen = 0: We first prove that the stochastic state
class graph includes a class with state probability density
function given by Eq. (37) with n = 0. Since in the initial
classS0, transitionst1 e t2 are newly enabled, their times
to fire are independent. The joint state probability density
function is the product of individual density functions:

f~τ (τ1, τ2) =

8
<
:

1 if 0 ≤ τ1 ≤ 1 ∧ 0 ≤ τ2 ≤ 1

0 elsewhere

The assumption thatt1 fires first restricts the firing
domain to:

Dt1 =

8
>>><
>>>:

0 ≤ τ1 ≤ 1

0 ≤ τ2 ≤ 1

τ1 ≤ τ2

According to Eq. (13), the probability thatt1 fires first is
obtained by integrating the probability density function
f~τ (τ1, τ2) over Dt1 :

Probt1first =
R

Dt1 f~τ (τ1, τ2)dτ1dτ2 =

=
R τ2
0

R 1

0
dτ1dτ2 =

R 1

0
τ2dτ2 = 1

2

The probability density function for the time to fire of
persistent transitiont2 is derived through Eq. (20):

f~τ ′′′(τ
′′′
2 ) =

R+∞
−∞ f~τ (τ ′′1 ,τ ′′′2 +τ ′′1 )dτ ′′1R

Dτ1
f~τ (τ1,τ2)

=
R 1−τ ′′′2
0

2dτ ′′1 = −2(−1 + τ ′′′2 )

Since transitiont1 is newly enabled after its own firing,
the state probability density function for the successor
classS2 is (Eq.(23)):

f~τ (τ1, τ2) =

8
<
:

−2(−1 + τ2) if 0 ≤ τ1 ≤ 1 ∧ 0 ≤ τ2 ≤ 1

0 elsewhere

• Casen > 0.
By induction, we now assume that the state probability
density function aftern− 1 firings of transitiont1 is:

fn−1
~τ (τ1, τ2) =

8
<
:

(−1)n(n + 1)(−1 + τ2)
n if 0 ≤ τ1 ≤ 1 ∧ 0 ≤ τ2 ≤ 1

0 elsewhere

and we prove that the form is maintained by increasing
n whent1 fires again. The assumption thatt1 fires first
restricts the firing domain to:

Dt1 =

8
>>><
>>>:

0 ≤ τ1 ≤ 1

0 ≤ τ2 ≤ 1

τ1 ≤ τ2

According to Eq. (13), the probability thatt1 fires first is
obtained by integrating the probability density function
fn−1(τ1, τ2) over Dt1 :

Probt1first =
R

Dt1 fn−1
~τ (τ1, τ2)dτ1dτ2 =

=
R τ2
0

R 1

0
(−1)n(n + 1)(−1 + τ2)

ndτ1dτ2 = 1
n+2

The probability density function for the time to fire of
persistent transitiont2 is derived through Eq.(20):

fn−1
~τ ′′′ (τ ′′′2 ) =

R+∞
−∞ fn−1

~τ
(τ ′′1 ,τ ′′′2 +τ ′′1 )dτ ′′1R

Dτ1
fn−1

~τ
(τ1,τ2)

=

= (n + 2)
R 1−τ ′′′2
0

(−1)n(n + 1)(−1 + τ ′′1 + τ ′′′2 )ndτ ′′1 =

= (−1)n+1(n + 2)(−1 + τ ′′′2 )n+1

After its own firing, transitiont1 is newly enabled and
takes its static density function (which is uniform equal to
1 in the interval[0, 1], independent fromt2). According
to Eq.(23), the state probability density function for the
successor class is thus:

fn
~τ (τ1, τ2) = fn−1

~τ (τ2) · f~τ (τ1) =

8
<
:

(−1)n+1(n + 2)(−1 + τ2)
n+1 if 0 ≤ τ1 ≤ 1 ∧ 0 ≤ τ2 ≤ 1

0 elsewhere

which ends the demonstration.


