
Nonlinear Analysis 131 (2016) 170–181

Contents lists available at ScienceDirect

Nonlinear Analysis

www.elsevier.com/locate/na

Linear Algebra and its Applications 466 (2015) 102–116

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Inverse eigenvalue problem of Jacobi matrix 

with mixed data

Ying Wei 1

Department of Mathematics, Nanjing University of Aeronautics and Astronautics, 
Nanjing 210016, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 January 2014
Accepted 20 September 2014
Available online 22 October 2014
Submitted by Y. Wei

MSC:
15A18
15A57

Keywords:
Jacobi matrix
Eigenvalue
Inverse problem
Submatrix

In this paper, the inverse eigenvalue problem of reconstructing 
a Jacobi matrix from its eigenvalues, its leading principal 
submatrix and part of the eigenvalues of its submatrix 
is considered. The necessary and sufficient conditions for 
the existence and uniqueness of the solution are derived. 
Furthermore, a numerical algorithm and some numerical 
examples are given.

© 2014 Published by Elsevier Inc.

E-mail address: weiyingb@gmail.com.
1 Tel.: +86 13914485239.

http://dx.doi.org/10.1016/j.laa.2014.09.031
0024-3795/© 2014 Published by Elsevier Inc.

The Matzoh Ball Soup Problem: A complete characterization✩

Rolando Magnaninia, Michele Marinib,∗

a Dipartimento di Matematica e Informatica “U. Dini”, Università di Firenze, viale Morgagni 67/A, 50134
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We characterize all the solutions of the heat equation that have their (spatial)
equipotential surfaces which do not vary with the time. Such solutions are either
isoparametric or split in space–time. The result gives a final answer to a problem
raised by M.S. Klamkin, extended by G. Alessandrini, and that was named the
Matzoh Ball Soup Problem by L. Zalcman. Similar results can also be drawn for a
class of quasi-linear parabolic partial differential equations with coefficients which
are homogeneous functions of the gradient variable. This class contains the (isotropic
or anisotropic) evolution p-Laplace and normalized p-Laplace equations.
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1. Introduction

In this paper we settle a question raised by M.S. Klamkin in [5] and extended in [2].

Klamkin’s conjecture (1964). Consider the heat conduction problem for a solid Ω ,

ut = ∆u in Ω × (0,∞).

Initially, u = 0. On the boundary u = 1. The solution to the problem is well-known for a sphere
and, as to be expected, it is radially symmetric. Consequently, the equipotential surfaces do not vary
with the time (the temperature on them, of course, varies). It is conjectured for the boundary value
problem above, that the sphere is the only bounded solid having the property of invariant equipotential
surfaces. If we allow unbounded solids, then another solution is the infinite right circular cylinder which
corresponds to the spherical solution in two-dimensions.
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L. Zalcman [19] included this problem in a list of questions about the ball and named it the Matzoh Ball
Soup Problem. For the case of a bounded solid (by solid we mean, according to [1,19], a connected open set
that coincides with the interior of its closure and whose complement is connected), the conjecture was given
a positive answer by G. Alessandrini [1]: the ball is the only bounded solid having the property of invariant
equipotential surfaces.

In [10], the second author of this paper and S. Sakaguchi showed that to obtain the spherical symmetry of
the solid in Klamkin’s setting, it is enough to require that the solution has only one invariant equipotential
surface (provided this surface is a C1-regular boundary of domain). In a subsequent series of papers, the
same authors extended their result in several directions: spherical symmetry also holds for certain evolution
nonlinear equations [11,13,15,16]; a hyperplane can be characterized as an invariant equipotential surface
in the case of an unbounded solid that satisfies suitable sufficient conditions [12,14]; for a certain Cauchy
problem, a helicoid is a possible invariant equipotential surface [9]; spheres, infinite cylinders and planes
are characterized as (single) invariant equipotential surfaces in R3 [8]; similar symmetry results can also be
proven in the sphere and the hyperbolic space [13].

In [2], G. Alessandrini re-considered Klamkin’s problem for a bounded domain in the case in which u

initially equals any function u0 ∈ L2(Ω) and is zero on ∂Ω for all times. He discovered that either u0 is
a Dirichlet eigenfunction or Ω is a ball. A comparable result was obtained by S. Sakaguchi [17] when a
homogeneous Neumann condition is in force on ∂Ω .

The aim of this paper is to show that Klamkin’s property of having invariant equipotential surfaces
characterizes a solution of the heat equation without assuming any whatsoever initial or boundary condition.
This is the content of our main result.

Theorem 1.1. Let Ω ⊆ RN be a domain and let u be a solution of the heat equation:

ut = ∆u in Ω × (0,∞). (1.1)

Assume that there exists a τ > 0 such that, for every t > τ, u(·, t) is constant on the level surfaces of
u(·, τ) and Du(·, τ) ̸= 0 in Ω .

Then one of the following occurrences holds:

(i) the function ϕ = u(·, τ) (and hence u) is isoparametric, that is there exist two real-valued functions f
and g such that ϕ is a solution of the following system of equations:

|Dϕ|2 = f(ϕ) and ∆ϕ = g(ϕ) in Ω ;

(ii) there exist two real numbers λ, µ such that

u(x, t) = e−λtφλ(x) + µ, (x, t) ∈ Ω × [τ,∞),

where

∆φλ + λφλ = 0 in Ω ;

(iii) there exists a real number γ such that

u(x, t) = γ t+ w(x), (x, t) ∈ Ω × [τ,∞),

where

∆w = γ in Ω .
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As we shall see in Remark 2.1, the assumption on the gradient of the solution u is only technical. Without
that assumption, another (trivial) occurrence would be that u is constant.

The proof of Theorem 1.1 relies on and completes those contained in [2,17]: there, option (iii) and the
fact that initial and boundary conditions are unnecessary were overlooked.

Isoparametric functions are well-known in the literature; accordingly, their level surfaces are called
isoparametric surfaces and can also be characterized as those surfaces whose principal curvatures are all
constant. The classical results of T. Levi-Civita [7] and B. Segre [18] classify isoparametric functions in RN

by their level surfaces: they can be either concentric spheres, co-axial spherical cylinders (that is Cartesian
products of an M -dimensional sphere by an (N −M − 1)-dimensional euclidean space, 0 ≤ M ≤ N − 2),
or parallel hyperplanes (affine spaces of co-dimension 1). By using this fact, one can conclude fairly easily
that, in Klamkin’s setting, that is when (i) of Theorem 1.1 holds and u is constant on ∂Ω , then the possible
shapes of a domain Ω can be one of the following: a ball, its exterior or a spherical annulus; a spherical
cylinder, its exterior or a cylindrical annulus; a half-space or an infinite strip (see [2] for the solid case).
Analogous results can be drawn in the case we impose on u a homogeneous Neumann condition (see [17]),

uν = 0 on ∂Ω × (0,∞). (1.2)

Thus, a caloric function that has invariant equipotential surfaces enjoys some splitting property in
space–time, since it is always separable (either with respect to addition or to multiplication). We point
out that this behavior is not restricted to the case of the heat equation, since it also occurs for other linear
evolution equations, such as the wave equation, the Schrödinger equation or any partial differential equation
connected to the heat equation by some integral transform.

More interestingly, a similar behavior holds for the following class of quasi-linear evolution equations:

ut = Qu in Ω × (0,∞), (1.3)

where the operator

Qu =
N
i,j=1

aij(Du)uxixj (1.4)

is elliptic and the coefficients aij(ξ) are sufficiently smooth α-homogeneous functions of ξ ∈ RN , α > −1,
that is such that

aij(σ ξ) = σαaij(ξ) for every ξ ∈ RN , σ > 0 and i, j = 1, . . . , N ; (1.5)

this will be shown in Theorem 2.2.
Important instances of (1.3) are the evolution p-Laplace equation,

ut = div{|Du|p−2Du} in Ω × (0,∞); (1.6)

the normalized evolution p-Laplace equation,

ut = |Du|2−pdiv{|Du|p−2Du} in Ω × (0,∞); (1.7)

the (anisotropic) evolution h-Laplace equation,

ut = ∆hu in Ω × (0,∞); (1.8)

here,

∆hu = div{h(Du)Dh(Du)}

is the so-called anisotropic h-Laplacian, where h : RN → R is a non-negative convex function of class
C2(RN \ {0}), which is even and positively homogeneous of degree 1.
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In Section 3, besides a brief discussion on the possible symmetries of the domain Ω when initial
and boundary conditions are added, we will also prove a classification theorem, related to Eq. (1.8), for
isoparametric surfaces in the spirit of Levi-Civita and Segre’s result (Theorem 3.1).

2. The splitting property

The proof of Theorems 1.1 and 2.2 are similar; however, we prefer to give them separately to draw the
reader’s attention on the different behaviors that depend on the parameter α in (1.5).

Proof of Theorem 1.1. As originally observed in [1], the assumption on the level surfaces of u implies that,
if we set ϕ(x) = u(x, τ), then there exist a number T > τ and a function η : R× [τ, T )→ R, with

η(s, τ) = s, s ∈ R, (2.1)

such that

u(x, t) = η(ϕ(x), t) (2.2)

for every (x, t) ∈ Ω × [τ, T ); thus, (1.1) gives that

ηss(ϕ, t) |Dϕ|2 + ηs(ϕ, t) ∆ϕ = ηt(ϕ, t) in Ω × [τ, T ).

By differentiating in t this identity, we obtain that ϕ must satisfy in Ω the following system of equations:

ηs(ϕ, t) ∆ϕ+ ηss(ϕ, t) |Dϕ|2 = ηt(ϕ, t),
ηst(ϕ, t) ∆ϕ+ ηsst(ϕ, t) |Dϕ|2 = ηtt(ϕ, t),

(2.3)

for t ∈ [τ, T ).

Notice that the necessary smoothness of the function η can be proved by a standard finite difference
argument: in fact, one can prove that, since Dϕ ̸= 0, then η ∈ C∞(I × [τ, T )), where I = (infΩ ϕ, supΩ ϕ)
and ηs > 0 on I × [τ, T ) (see [1, Lemma 1], [2, Lemma 2.1] or [17, Lemma 2.1] for details).

As observed in [17], for the system (2.3), it is enough to consider the alternative cases in which the
determinant

D(s, t) = ηsηsst − ηstηss

is zero or not zero. In fact, if D(s, t) ̸= 0 at some (s, t) ∈ I × [τ, T ), then D ̸= 0 in an open neighborhood,
say U × V ⊂ I × [τ, T ), of (s, t); (2.3) then implies that

|Dϕ|2 = f(ϕ) and ∆ϕ = g(ϕ)

at least in a subdomain Ω ′ of Ω , and the expressions of f and g are given by the formulas

f = ηsηtt − ηstηt
ηsηsst − ηstηss

, g = ηtηsst − ηttηss
ηsηsst − ηstηss

;

clearly, f and g are analytic functions. Thus u(·, t) (and hence ϕ) is isoparametric in an open subdomain of
Ω ; by using the classification result for isoparametric functions by Levi-Civita and Segre and the analyticity
of ϕ, we can then conclude that the function ϕ is isoparametric in the whole Ω .

Otherwise, we have D = 0 in I × [τ, T ). Thus, since

∂2

∂s∂t
log(ηs) = (ηs)−2 (ηsηsst − ηstηss) = 0 in I × [τ, T ),
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we have that log ηs(s, t) splits up into the sum of a function of s plus a function of t; (2.1) then implies that
ηs(s, t) only depends on t, and hence it is easy to conclude that

η(s, t) = a(t) s+ b(t), (s, t) ∈ I × [τ, T ),

for some smooth functions a and b such that

a(τ) = 1 and b(τ) = 0.

Now, we now know that

u(x, t) = a(t)ϕ(x) + b(t)

is a solution of (1.1), thus (2.3) can be written as a linear system of equations:

a′(t)ϕ(x)− a(t) ∆ϕ = −b′(t),
a′′(t)ϕ(x)− a′(t) ∆ϕ = −b′′(t).

(2.4)

The determinant of this system must be zero, otherwise ϕ would be constant (in fact, it would be that ϕ(x)
is a function of t); thus,

a(t)a′′(t)− a′(t)2 = 0 for t ∈ [τ,∞), a(τ) = 1.

All solutions of this problem can be written as a(t) = e−λ(t−τ) for λ ∈ R and, by going back to (2.4), we
obtain that

∆ϕ(x) + λϕ(x) = b′(t) eλ(t−τ) = γ,

for some constant γ. Since b(τ) = 0, we have:

b(t) = γ
1− e−λ(t−τ)

λ
if λ ̸= 0 and b(t) = γ (t− τ) if λ = 0.

Therefore, we have obtained:

u(x, t) = e−λ(t−τ) [ϕ(x)− γ/λ] + γ/λ if λ ̸= 0,
u(x, t) = ϕ(x) + γ(t− τ) if λ = 0.

In conclusion, by setting φλ = eλτ [ϕ − γ/λ] and µ = γ/λ for λ ̸= 0, we get case (ii), while setting
w = ϕ− γτ for λ = 0 yields case (iii). �

Remark 2.1. For the sake of simplicity, in Theorem 1.1 we assumed that Du ̸= 0 in the whole Ω , in order to
be able to deduce the necessary regularity for η. Here, we will show how that assumption can be removed.

The only possible obstruction to the regularity of η is the presence of level sets of ϕ whose points are all
critical. Indeed η is always smooth in the t variable and is smooth in the s variable, for every semi-regular
value s of ϕ (i.e. a value that is the image of at least one regular point). For every open subset of Ω of
regular points for ϕ corresponding to a semiregular value of ϕ, the above theorem still holds true even if we
remove the assumption on the gradient of the solution u.

We now show that, in any case, the classification holds true globally in Ω . For simplicity we assume that
there exists only one critical level set.

Let then s be a value in the range of ϕ such that Dϕ(x) = 0, for every x ∈ ϕ−1(s) and set
Ω+ = {x ∈ Ω : ϕ(x) > s}, and Ω− = {x ∈ Ω : ϕ(x) < s}. Clearly the above classification holds true
separately in Ω+ and in Ω−. Being cases (i), (ii) and (iii) closed relations involving continuous functions, if
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the same case occurs both in Ω+ and Ω−, then it holds in the whole domain Ω . Thus, we are left with all the
cases in which in Ω+ and Ω− the solution assumes two different representations of those given in Theorem 1.1.

We proceed by direct inspection. If case (i) occurs in Ω+ or in Ω−, as it has been already remarked, then
ϕ extends to an isoparametric function in an open domain containing Ω .

We then have only to study the case in which instances (ii) and (iii) are in force in Ω− and Ω+, respectively;
by contradiction, we shall see that it is not possible to have a critical level set. In fact, up to sum a constant, we
can assume without loss of generality that s ̸= 0. As shown in [2, Lemma 2.2], the presence of a critical level
set implies that ∆ϕ(x) = 0, for every x ∈ Ω+ ∩ Ω−. Then, according to the previous computations, we get
that 0 = ∆ϕ(x) = λϕ(x), and, being λ ̸= 0, we have that ϕ(x) = 0 and thence s = 0, that is a contradiction.

We now consider the case of the quasi-linear operator (1.3). Notice that, when α = 0, this also concerns
(1.7) besides the heat equation. In what follows, it is useful to define the generalized gradient operator:

Gu =
N
i,j=1

aij(Du)uxiuxj . (2.5)

Theorem 2.2. Let Ω ⊆ RN be a domain and let u ∈ C1((0,∞);C2(Ω)) be a solution of Eq. (1.3),

ut = Qu in Ω × (0,∞),

where the operator Q, given in (1.4), is elliptic with coefficients aij(ξ) that satisfy (1.5).

Assume that there exists a τ > 0 such that, for every t > τ, u(·, t) is constant on the level surfaces of
u(·, τ) and Du(·, τ) ̸= 0 in Ω .

Then there exists a countable set of values a1 < a2 < · · · ai < · · ·, such that

Ω =

i∈N

ϕ−1([ai, ai+1])

and, for every subdomain Ω ′ ⊂ ϕ−1([ai, ai+1]) one of the following cases occurs:

(i) there exist two real-valued functions f and g such that ϕ = u(·, τ) is a solution of the following system
of equations:

Gϕ = f(ϕ) and Qϕ = g(ϕ) in Ω ′;

(ii) there exist two real numbers λ, µ such that

u(x, t) = [1 + λ (t− τ)]−1/αφλ(x) + µ, (x, t) ∈ Ω ′ × [τ,∞),

with

Qφλ + λ

α
φλ = 0 in Ω ′,

if α ̸= 0;

u(x, t) = e−λ(t−τ)φλ(x) + µ, (x, t) ∈ Ω ′ × [τ,∞),

with

Qφλ + λφλ = 0 in Ω ′,

if α = 0;
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(iii) there exists a real number γ such that

u(x, t) = γ (t− τ) + w(x), (x, t) ∈ Ω ′ × [τ,∞),

where

Qw = γ in Ω ′.

Proof. The proof runs similarly to that of Theorem 1.1. We still begin by setting ϕ(x) = u(x, τ) and
u(x, t) = η(ϕ(x), t), where η satisfies (2.1). Since Du ̸= 0 Eq. (1.3) is uniformly parabolic, by standard
parabolic regularity (see, for instance [6]), we have the necessary regularity to give sense to the following
computations.

By arguing as in the proof of Theorem 1.1, we obtain the system of equations:

ξ(ϕ, τ)Qϕ+ ξs(ϕ, τ)Gϕ = ηt(ϕ, τ),
ξt(ϕ, τ)Qϕ+ ξst(ϕ, τ)Gϕ = ηtt(ϕ, τ),

(2.6)

where ξ = (ηs)α+1.

At this point, the proof is slightly different from that of Theorem 1.1. If there exists (s, t) such that
D(s, t) = ξ ξst − ξs ξt ̸= 0, then D(u(x, t), t) ̸= 0 for x ∈ Ω ′ = {x ∈ Ω : u(x, t) ∈ (s − δ, s + δ)} for some
δ > 0. By setting

f = ξs ηtt − ξt ηt
ξ ξst − ξs ξt

, g = ξst ηt − ξs ηtt
ξ ξst − ξs ξt

,

case (i) holds true for the function u(·, t). The same fact holds true for ϕ, since u(x, t) = η(ϕ(x), t) and
hence ϕ and u(x, t) share the same level sets; thus, there exist functions f and g such that Gϕ = f(ϕ) and
Qϕ = g(ϕ) in Ω ′.

Now, we define J as the closure of the complement in the image of u of the closure of the set
{s : D(s, t) ̸= 0, for some t}; J is a countable union of disjoint intervals. Let [p, q] ⊆ J ; in Ω ′ = ϕ−1([p, q]),
we get

∂2

∂s∂t
log(ξ) = (ξ)−2 (ξ ξst − ξt ξs) = 0 in [p, q]× [τ, T ),

ξ(s, τ) = 1 for s ∈ [p, q].

As before, we obtain

η(s, t) = a(t) s+ b(t),

with a(τ) = 1 and b(τ) = 0. Proceeding as before with u(x, t) = a(t)ϕ(x) + b(t) gives the system:

a′(t)ϕ(x)− a(t)α+1Qϕ = −b′(t),
a′′(t)ϕ(x)− (α+ 1) a(t)αa′(t)Qϕ = −b′′(t).

(2.7)

The determinant of this system must be zero, otherwise ϕ would be constant; thus, a must satisfy the
problem

aα+1a′′ − (α+ 1) aα(a′)2 = 0 in [τ, T ), a(τ) = 1.

The solutions of this problem are for t ∈ [τ, T )

a(t) = [1 + λ (t− τ)]−1/α if α ̸= 0,
a(t) = e−λ (t−τ) if α = 0,
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for some λ ∈ R, and going back to the first equation in (2.7) gives

Qϕ+ λ

α
ϕ(x) = b′(t) a(t)−(α+1) = γ if α ̸= 0,

Qϕ+ λϕ(x) = b′(t) a(t)−1 = γ if α = 0.

Thus, we have that

b(t) = γα

λ
{1− [1 + λ (t− τ)]−1/α} if α ̸= 0,

b(t) = γ
1− e−λ (t−τ)

λ
if α = 0,

for λ ̸= 0,

b(t) = γ (t− τ),

for λ = 0 and any α ≥ 0.

Therefore, (ii) follows when λ ̸= 0, by setting φλ = ϕ− γα/λ and µ = γα/λ for α ̸= 0 and φλ = ϕ− γ/λ
and µ = γ/α for α = 0; (iii) follows when λ = 0, by choosing w = ϕ. �

3. Symmetry in space

Theorems 1.1 and 2.2 thus give us a catalog of functions having time-invariant equi-potential surfaces.
In particular, they inform us that the shape of their level surfaces can be quite arbitrary, as those of
eigenfunctions are.

This arbitrariness significantly reduces if we add special initial and boundary conditions. For instance, if
we consider the situation in Klamkin’s conjecture, that is if Ω is a bounded solid and we require that the
solution u of (1.1) is initially 0 on Ω and equals a non-zero constant on ∂Ω at all times,1 then the only
possibility is that the level surfaces of u be concentric spheres, as proved in [1,17]. If we examine the case
of a general bounded domain, then the connected components of its boundary are spheres and must be
concentric, because they are parallel. Thus, a spherical annulus is the only possibility. In a similar way we
argue when is Ω is unbounded, thus obtaining the remaining possible solutions: a (solid) spherical cylinder;
a hyperspace; an infinite strip; a cylindrical annulus; the exterior of a ball and of a spherical cylinder.

Actually, the presence of those initial and boundary conditions allows one to relax the stringent
requirement that all equi-potential surfaces be time-invariant. In fact, to obtain the spherical symmetry
of them it is enough to require that only one of them be time-invariant, provided it is the boundary of a
C1-smooth domain compactly contained in Ω (see [10]). We also point out that this result can be obtained
under quite general regularity assumptions on ∂Ω , as shown in [16]. The case in which ∂Ω is not bounded
is not settled: we mention [12,14] for some partial results in this direction and [8] for a characterization in
3-space.

The possible non-regularity of ∂Ω , instead, opens up the way to non-spherical solutions if a homogeneous
Neumann boundary condition is assumed on ∂Ω for all times. As shown in [17], in fact, truncated spherical
cylinders are possible solutions, if Ω is a Lipschitz domain. At this date, no results are known if a
homogeneous Robin boundary condition is assumed:

uν − σ u = 0 on ∂Ω × (0,∞).

We notice that the situations considered in Klamkin’s conjecture and in [17] rule out the occurrence of
items (ii) and (iii) in Theorem 1.1. Thus one has to deal with (i), which means that the relevant time-invariant

1 It can be seen that constant can be replaced by any bounded positive function that is bounded away from zero on ∂Ω.
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surfaces can only be (portions) of spheres, spherical cylinders or hyperplanes. Of course, the same situation
reproduces for any choice of initial and/or boundary conditions which rule out (ii) and (iii). For instance,
any time-independent boundary condition coupled with a non-harmonic initial condition rule out (iii).

Circumstances analogous to those of Theorem 1.1 emerge in Theorem 2.2, where the Laplace operator
is replaced by the more general quasi-linear operator Q defined in (1.4) with coefficients satisfying (1.5).
In particular, when case (i) of Theorem 2.2 occurs, in some instances we have to deal with the description
of anisotropic isoparametric functions and surfaces. In the rest of this paragraph, we shall focus on the
important case of the evolution h-Laplace equation (1.8); here, it is convenient to look at the function h as
the support function of a convex body K ⊂ RN belonging to the class C2

+ of bodies having a C2-smooth
boundary with (strictly) positive principal curvatures. By setting

H = 1
2 h

2, (3.1)

the system of equations that appears in item (i) of Theorem 2.2 can be conveniently re-written as

DH(Dϕ) ·Dϕ = f(ϕ) in Ω , (3.2)
∆hϕ = g(ϕ) in Ω . (3.3)

We also notice that, since H is 2-homogeneous, by Euler’s identity (3.2) can be re-written as

2H(Dϕ) = f(ϕ) in Ω . (3.4)

We shall say that a function ϕ is K-isoparametric if it is a solution of (3.2)–(3.3); accordingly, its level
surfaces will be called K-isoparametric surfaces.

Theorem 3.1 (K-Isoparametric Functions). Let K ⊂ RN be a convex body of class C2
+ and let h denote its

support function.

Let ϕ ∈ C2(Ω) be a K-isoparametric function. Then its level surfaces are of the form

Dh(SM )× RN−1−M , M = 0, . . . , N − 1. (3.5)

Remark 3.2. Eq. (3.5) should be interpreted as follows: Dh(SM ) is an M -dimensional submanifold of
Dh(SN−1) = ∂K and the vector-valued function ψ : Dh(SM ) × RN−1−M → RN defined by ψ(Dh(ν), y) =
Dh(ν) + j(y), where j is the natural inclusion of RN−1−M in RN , defines an embedding and its image
coincides, up to homoteties, with a level surface of ϕ.

The proof of the Theorem 3.1 relies on the results obtained in [3,4], which generalize the classical ones of
Levi-Civita and Segre [7,18]. In this new setting, the metric defined on the submanifolds (the level sets of
the function ϕ) is given by an anisotropic (non constant) operator. In [3], the authors prove a classification
theorem for hypersurfaces with constant anisotropic principal curvatures; the proof is mainly based on a
Cartan-type identity which forces the K-isoparametric surface to admit at most two different values for
principal curvatures.

Proof. Let ϕ(x) be a regular value of the function ϕ,Σ the level surface {y ∈ Ω : ϕ(y) = ϕ(x)} and let
Tx(Σ ) be the tangent space to Σ at x. We also introduce the K-anisotropic Weingarten operator,

W = D2h


Dϕ

|Dϕ|


D2ϕ

|Dϕ|
, (3.6)

and the K-anisotropic mean curvature,

M = 1
h(Dϕ)


∆hϕ−

Dϕ · [D2H(Dϕ)] [D2ϕ]Dϕ
|Dϕ|2


. (3.7)
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We differentiate (3.2) and (3.4) and obtain the identities (by the square brackets, we denote matrices):

[D2H(Dϕ)][D2ϕ]Dϕ+ [D2ϕ]DH(Dϕ) = f ′(ϕ)Dϕ,
2 [D2ϕ]DH(Dϕ) = f ′(ϕ)Dϕ, (3.8)
[D2H(Dϕ)] [D2ϕ]Dϕ = [D2ϕ]DH(Dϕ).

After straightforward computations, from the definition (3.7), the identities (3.3), (3.4) and (3.8) imply
that

M = g(ϕ)− f ′(ϕ)/2
f(ϕ)

,

that means that M is constant on Σ .

We are now going to show that M is actually the trace of the K-anisotropic Weingarten operator; to do
this we prove the following identity

W (x) = D2H(Dϕ(x))D2ϕ(x)
h(Dϕ(x)) on Tx(Σ ); (3.9)

in other words, we show that the two matrices coincide as bilinear forms on Tx(Σ ).

In fact, (3.1) and the homogeneities of h,DH and D2H imply that

[D2h(ν)][D2ϕ]
|Dϕ|

= [D2H(ν)][D2ϕ]
h(ν) |∇ϕ| − [DH(ν)⊗DH(ν)][D2ϕ]

h(ν)3 |∇ϕ|

= [D2H(Dϕ)][D2ϕ]
h(Dϕ) − [DH(Dϕ)⊗DH(Dϕ)][D2ϕ]

h(Dϕ)3

= [D2H(Dϕ)][D2ϕ]
h(Dϕ) − 1

2 g
′(ϕ) [DH(Dϕ)⊗Dϕ]

h(Dϕ)3 ,

where, in the last equality, we used the second identity in (3.8). The desired formula (3.9) is then obtained
by noticing that Tx(Σ ) lies in the kernel of [DH(Dϕ(x))⊗Dϕ(x)], being orthogonal to Dϕ(x).

Notice that M only depends on the geometry of the level surface; indeed, ν(x) = Dϕ(x)/|Dϕ(x)| is the
normal unit vector to Σ at x and the restriction of −[D2ϕ(x)]/|Dϕ(x)| to Tx(Σ ) is the shape operator of Σ .

Now, we claim that there exist a relatively compact neighborhood Ux ⊂ Σ of x and a number δ > 0 such
that, for any y ∈ Ux, it holds that

ϕ(y + τ DH(Dϕ(y))) = ϕ(x+ τ DH(Dϕ(x))), (3.10)

for every 0 < τ < δ.

Without loss of generality we can assume that f(ϕ) = 1; indeed, since Σ is a regular level surface for
ϕ, then f(ϕ) > 0; by taking ψ = F (ϕ) with F such that (F ′)2 = f , it is easy to show that ψ is another
isoparametric function, with the same level surfaces of ϕ, and such that H(Dψ) = 1.

To prove our claim, we first have to show that the integral curves of DH(Dϕ) are geodesics. Let Ux ⊂ Σ
be a relatively compact neighborhood of x (of course, Dϕ does not vanish on Ux). For every y ∈ Ux, let
γy(τ) be the solution of the Cauchy problem

γ′y(τ) = DH(Dϕ(γy(τ))), γy(0) = y,
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and let δ be such that, for every y ∈ Ux, γy remains regular on [0, δ]. Then we have that

ϕ(γy(τ))− ϕ(y) =
 δ

0
Dϕ(γy(σ)) · γ′y(σ) dσ

=
 δ

0
Dϕ(γy(σ)) ·DH(Dϕ(γy(σ))) dσ = 2

 δ
0
H(ϕ(γy(σ))) dσ = 2δ,

where we used Euler identity for H and the fact that we are assuming that f = 1.

Moreover, we compute that

γ′′y (τ) = [D2H(Dϕ(γy(τ)))][D2ϕ(γy(τ))] γ′y(τ)
= [D2H(Dϕ(γy(τ)))][D2ϕ(γy(τ))]DH(Dϕ(γy(τ)))

= 1
2 f
′(ϕ(γy(τ))) [D2H(Dϕ(γy(τ)))]Dϕ(γy(τ)) = 0,

where we used (3.8) and the fact that we are assuming that f = 1.

Thus,

γy(τ) = y + τ DH(Dϕ(y)) for 0 ≤ τ < δ,

and hence

ϕ(y + τ DH(Dϕ(y)))− ϕ(y) = 2δ for 0 ≤ τ < δ,

which means that (3.10) holds.

Therefore, we have proved that, for every τ ∈ [0, δ), the surfaces

Στ = {y : ϕ(y) = ϕ(γx(τ))}

are parallel with respect to the anisotropic metric induced by K; also, every Στ has constant K-anisotropic
mean curvature.

Thus, (3.5) follows the results [3, Theorem 2.1] and [3, Theorem 1.1] recalled in the remark. �
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