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Abstract 

Detailed stratigraphic, sedimentary facies and palaeosol analyses were performed on an outcrop 

on Late Quaternary deposits in the coastal area of Tuscany. The outcrop was selected as 

representative of one of the major Quaternary alluvial fan complexes of Central Italy, the ancient 

Cecina river fan, and as showing contrasting, if related, palaeosols. The oldest relic palaeosol was 

identified as an Ultisol, representative of the most developed soil type normally found as relic soil 

in Italy, and about whose possible ages only approximate interpretations presently exist. 

OSL dating set the whole succession of sediments, palaeosols and geomorphic surfaces into a 

firm chronological setting. As a result, evolution of the Cecina fan complex in Late Pleistocene 

could be fully reconstructed. Assessment of the age of the relic Ultisol produced results contrasting 

with current interpretations, showing how such a soil type can have developed in Italian conditions 

in a relatively short time, i.e. since about MIS 5d. 

 

1 Introduction 

Relic palaeosols are defined as having existed as surface, live soils for long times, going 

through varying environmental conditions but experiencing no or limited erosion and deposition, 

thus preserving the main characteristics produced by long pedogenesis. They represent unique 

opportunities to investigate the time required for formation of the most developed palaeosols. 

Knowledge of the time required for certain palaeosols to form is of major significance for their 

use in stratigraphy. Firm palaeosol chronology may bridge the gap between landform stratigraphy 

and unconformity-based sedimentary stratigraphy, allowing correlation of landform surfaces and 

buried unconformities. 
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In many temperate to subtropical, moist areas of the world, the most developed relic soils that 

are commonly found are classified as Ultisols (Soil Survey Staff, 1999). This position gives Ultisols 

a special significance in landform stratigraphy. 

Ultisols were introduced in Soil Taxonomy (Smith, 1986, p. 226) to differentiate Argillic soils 

occurring in, respectively, glaciated and non-glaciated parts of U.S. territory. “Non-glaciated” was 

intended as mostly free from glacial surface rejuvenation processes, including high-rates of aeolian 

deposition. A detailed study by Saif et al. (1997) revealed a fine-scale correlation between the 

southern boundary of loess deposition and the northern boundary of Ultisols in Ohio, USA. 

Ultisols were thus conceived as having started forming earlier than Holocene and having 

experienced little rejuvenation, a definition very close to that of relic soils. Conversely, this 

definition is of little use for buried soils: base saturation (BS), the main diagnostic character for 

Ultisols, rarely survives burial, and is unsuitable for buried palaeosol classification (Yaalon, 1971; 

Krasilnikov and Calderón, 2006). 

Dating of Ultisols is fairly limited in the literature. In moist subtropical climates, where they 

are most frequent, both numerical dating (Pai et al., 2003; Driese et al., 2007) and landform 

stratigraphy (Markewich and Pavich, 1991; Tsai et al, 2007) suggest Ultisols to be mostly relic 

soils. Two related studies based on landform stratigraphy (Bockheim et al., 1996; Lindenburg et al., 

2013) support the above hypotheses and further indicate the importance of rainfall, over 

temperature, in determining timing and rates of Ultisol formation. In the Mediterranean, Ultisols are 

much less common and always considered as palaeosols. In the Guadalquivir basin of Spain (Espejo 

Serrano, 1985; Núñez and Recio, 2007; Saldaña et al., 2011) a consistent body of Ultisols is 

referred to Late Pliocene. 

In Italy, Ultisols cover limited surfaces, but are not rare. The national soil data base (Costantini 

et al, 2013b) records 14 Soil Typological Units (STUs) as Ultisols, representing 0.25% of Italian 

soil cover. In Italian landform stratigraphy, Alfisols are often found on the lowest major terrace, in 

both river and marine sequences, and Ultisols on the next higher one. Application of both eustatic 

and climatic terrace development models has considered Ultisols as generically referred to MIS 7. 

Filocamo et al. (2009) interpreted the second lowest marine terrace of Southern Calabria as 

being of MIS 7 or older age. On this terrace, Scarciglia et al. (2006) describe strongly weathered 

Alfisols, classified as such due to resupply of exchangeable bases from overlying recent sediments. 

Sauer et al. (2010) describe Ultisol-like soils on terraces along the Ionian coast of Lucania. These 

terraces are not dated, but are the youngest, in a well-studied terrace flight, which can be definitely 

said to be older than MIS 5. 



Widespread evidence of Alfisols forming in Italy later than MIS 5 is available (Ajmone Marsan 

et al., 1988; Amorosi et al., 1996; Eppes et al., 2008; Costantini et al., 2009; Sauer et al., 2010). The 

absence of numerical dating, however (Carnicelli and Costantini, 2013), has prevented serious 

discussion of the Ultisol/MIS 7 assumption, eventually replaced by reference to “Early to Middle 

Pleistocene” (Napoli et al., 2006). 

When moving from river or marine terraces to alluvial fan contexts, the concept of terraced 

surfaces acquires complexity. Palaeosol investigation may be very useful, even as a leading 

stratigraphic criterion (Wright and Alonso Zarza, 1990). This use requires, however, firm soil age 

models, backed by numerical dating. 

In coastal Tuscany (Fig. 1), Alioto and Sanesi (1986) and Mori (1986) described an Ultisol on a 

surface interpreted as the highest in a series of eustatic marine terraces (Mazzanti and Sanesi, 1986). 

Boschian et al. (2006) referred this surface to Middle Pleistocene: the terrace is cut by fluvial 

incisions referred to Würm I (MIS 4). Alfisols develop on the formation filling such incisions, and 

are then interpreted as younger than MIS 4. 

In the recent survey for the geological map of Tuscany, 1:10.000 scale, palaeopedological 

evidence was used to support stratigraphy of the Quaternary succession. Several palaeosol outcrops 

were examined, and a representative one was dated by Optically Stimulated Luminescence (OSL). 

This provided new insight into the age of the Ultisols and Alfisols of Central Italy and on the 

relationships between time and past climates in the genesis of highly developed palaeosols. 

 

2 Materials and Methods 

2.1 Geological Setting 

The study area lies in western Tuscany, within the lower reaches of the Cecina River catchment 

(Fig. 1A). This watershed, of about 900 km
2
, is developed on a tectono-stratigraphic pile spanning 

from Early Mesozoic to Quaternary. The Quaternary succession, including coastal, shallow marine 

and alluvial clastic deposits, was described and interpreted in lithostratigraphic terms by Mazzanti 

(1983) and Mazzanti and Sanesi, (1986; Fig. 2). In these studies the succession was correlated to the 

glacial-interglacial stages of classic Quaternary Alpine stratigraphy and on the eustatic events of 

Italian marine stratigraphy. This classic lithostratigraphical model was reconsidered, but 

substantially confirmed, by recent revisions (Boschian et al., 2006; Ciampalini et al., 2011) or 

discussed within an allostratigraphic approach (NASC, 1983; Sarti et al., (2007), stressing the 

significance of major unconformities occurring in the succession. Following surveys for the 

geological map of Tuscany, 1:10000 scale (http://www.regione.toscana.it/cittadini/territorio-e-

paesaggio/informazione-geografica), in the present study the Quaternary succession is subdivided 
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into two main synthems, including different sub-synthems (unconformity-bounded stratigraphic 

units, ISSC, 1994; Fig. 2). 

Lower Pleistocene Synthem 2 is divided into sub-synthems 2B and 2A. Sub-synthem 2B 

encompasses three lithofacies associations: fluvial gravels and sands (2B1) grade upwards and 

laterally into delta-front bioclastic, locally cemented, coarse-medium sands (2B2); these are, in turn, 

locally overlain by delta-plain muds (2B3). Sub-synthem 2A rests on both sub-synthem 2B and 

older deposits on an angular unconformity. It is made up of fluvial gravels, passing upwards to delta 

front-shoreface bioclastic calcareous sandstones. 

Synthem 1 is represented by Middle Pleistocene to Holocene continental deposits, arranged in 

six sub-synthems whose upper bounding surfaces are frequently marked by palaeosols or modern 

soils. Sub-synthem 1F consists of alluvial, cobble- to boulder-gravels. These grade downslope to 

cross-stratified pebbly sands, recording a wave-dominated delta front. Sub-synthem 1E is made up 

of reddish sands with lenses of pebble- to cobble-gravels, which increase in frequency upstream. 

Sub-synthem 1D is widespread in the area, consisting of reddish, poorly sorted sands with sparse 

pebbles. Sub-synthem 1C is made up of red-yellowish, poorly sorted sands, and is well developed 

on the right side of the Cecina valley. Sub-synthems 1B and 1A represent the lowermost alluvial 

terraces, which mark the progressive downcutting of the valley. 

The succession records a prolonged history of progradation of the Cecina river’s outlet into a 

shallow bay (1F) first, then into the coastal plain (1E to A). The geomorphic signature of such 

evolution is a large, well preserved, alluvial-fan like landform (Fig. 1B), stretching eastwards about 

8 km from the town of Cecina, about 20 m asl, to the highest-lying outcrops of synthem 1 deposits, 

at >150 m asl. This is the southern part of the original fan complex. The present-day Cecina River 

cut deeply into the succession, along a structural line to the north of the middle axis of the fan. 

Differential uplift caused much greater erosion of the northern portion, which is scarcely preserved. 

Middle-Late Pleistocene units and palaeosols outcrop frequently in the area. The most 

interesting units for palaeosol investigation are the 1E and 1D sub-synthems. No palaeosol 

associated with the 1F sub-synthem was found, 1C sub-synthem is poorly represented on the right 

side of the Cecina river and the 1B and 1A sub-synthems carry soils of limited development. In the 

soil map of Toscana region (Regione Toscana, 2013), the reference soils for well preserved, well 

drained surfaces are, respectively: 



Sub-synthem 1E: the Pianacci STU, Ultic Palexeralf 

Sub-synthem 1D: the Red Riposa STU, Ultic Haploxeralf 

Sub-synthem 1C: the Tripesce STU, Typic Haploxeralf 

2.1.1 Reference outcrop and sampling 

Out of 11 outcrops exposing palaeosols in the area, one was selected as representative of the 

relations between 1E and 1D sub-synthems and related palaeosols. At 43°18’59” N, 10°34’51” E, 

between 100 and 110 m asl (Fig. 1B), a forest road cuts across the right side of a tributary valley, 

about 400 m across and 20 m deep. The road cut exposes sub-synthem 1D in an inset terrace, lying 

some 15 m above the thalweg, and sub-synthem 1E on the shoulder portion of the interfluve surface 

(Fig. 3-4). Two reference sections (11A, on the terrace and 11B, on the interfluve shoulder) were 

described and sampled as soil profiles. Sedimentary logs were measured and described in 

coincidence with the soil profiles and in 4 intermediate points, to fully reconstruct stratigraphic 

architecture. Six samples were collected for OSL dating in coincidence with the soil profiles (Fig. 

4). 

 

2.2 Palaeosol Analysis 

Description of palaeosols followed standard FAO methods (FAO, 2006). Basic analyses of 

palaeosol horizon samples, including pH, particle size, Cation Exchange Capacity (CEC) and Base 

Saturation (BS), DCB-extractable Fe (Fed) were performed according to USDA-NRCS (2004). 

Classification followed Soil Survey Staff (1999). 

 

2.3 Luminescence Dating 

The OSL dating method is mainly applied on quartz grains of various aeolian, fluvial, and 

shallow marine deposits. Although the most reliable results were obtained for coastal deposits (e.g. 

Madsen and Murray, 2009; Andreucci et al., 2010), many OSL applications to fluvial, alluvial and 

palaeosol deposits have been successful (e.g. Thiel et al., 2010, Andreucci et al., 2012, 2014). Six 

opaque PVC tubes (D = 8 cm; L = 40 cm) of freshly exposed alluvial and fluvial deposits (1D3, 

1D4, 1M1, 1Fc1, 1E2, 1E3) were collected for OSL dating. 

Optically stimulated luminescence analysis was conducted at the Sheffield Centre for 

International Drylands Research Luminescence Laboratory under controlled red light conditions. 

Material was prepared at the laboratory of the University of Sassari following the methodology 

described by Bateman and Catt (1996), with pure quartz in the size range 90 to 180 µm extracted 

for OSL analysis. 



All OSL measurements were conducted on an automated Risø TL/OSL reader machine 

equipped with a 90Sr/90Y beta source, a blue/green LEDs used for stimulation and luminescence 

detection through a Hoya U-340 filter. For measurement purposes, quartz grains were mounted as a 

2 mm monolayer on stainless steel disks (small aliquots). 

Initial checks using infra-red stimulated luminescence were conducted to check for residual 

feldspar contamination: as these proved negative, a Single Aliquot Regenerative (SAR) dose 

protocol was used for equivalent dose, De, measurements (Murray and Wintle, 2003). The OSL 

measurements (80 s) were made at 125°C, after pre-heating aliquots for 10 s at 220°C and a cut heat 

of 160°C. The pre-heat value was derived experimentally, based on the results of a dose recovery 

pre-heat plateau test. Five regeneration points were measured during the SAR procedure, including 

a recycling point, which was used to determine the effectiveness of the sensitivity corrections. All 

aliquots had recycling values within 1.1 ± 0.1 and each sample showed good OSL characteristics 

with a strong OSL signal, dominated by a fast component which grew well with laboratory dose 

(Fig. 5). Up to 24 replicate palaeodoses per sample were attained, to give an indication of the 

reproducibility of the palaeodose measurements and to attempt to assess sample bleaching 

behaviour (Table 5). 

The environmental dose rate (Dr) of the samples was calculated by measuring the concentration 

of the major radioactive elements (K, U and Th) in 10 g sub-samples (obtained by riffling); 

inductively coupled plasma mass spectrometry (ICP-MS) was used for U and Th and inductively 

coupled plasma atomic emission spectroscopy (ICP-AES) for K. ICP-MS/AES measurements were 

carried out at SGS laboratories, Canada, on samples completely digested using sodium peroxide 

fusion. Values, given in Table 5, were converted to annual Dr using pre-determined data 

incorporating attenuation factors (Marsh et al., 2002). The contribution to dose rates from cosmic 

sources was calculated using the expression published in Prescott and Hutton (1994). 

To estimate a representative moisture content across sample life, this was assumed to be 

represented by the average between the normal minimum soil water content, as represented by the 

wilting point, and the water content of a fully-drained soil at field capacity, the maximum water 

content a soil can hold for any significant time. Higher contents were assumed as negligible in such 

well-drained soils. Water content at wilting point and at field capacity (-20 kPa water potential) 

were assessed by solving the van Genuchten equation (van Genuchten, 1980) with coefficients 

estimated from soil particle size distribution through the Rosetta model (Schaap et al., 2001). These 

are fairly standard and widely tested procedures in soil-water studies. 

 

3. Results 



3.1 Stratigraphy and Sedimentary Facies 

The overall stratigraphic layout is outlined in Fig. 4. Three erosional surfaces were traced 

across the outcrop. The intermediate surface, representing the contact between sub-synthems 1E and 

1D, shows very strong relief, with a near-vertical segment. 

The lower beds (logs 1-2, Fig. 4), part of sub-synthem 1E, are partitioned by the lower 

erosional surface into sub-units 1E1 and 1E2. Sub-unit 1E1 shows crudely and horizontally bedded 

pebble- to cobble-sized conglomerate and sandstone layers (Fig. 3A). Conglomerates are 

polymodal, sub-rounded and arranged in a clast-supported framework with abundant sandy-silty 

matrix. Clasts are mostly made up of weathered sandstone, siltstone and diaspore with some cobbles 

of hard, high-Si limestone, typical of Ligurid units. In log 3, just below the steepest segment of the 

main erosional surface, sub-unit 1E1 shows fractures and filled cracks, hinting at bank collapse 

phenomena. 

Sandstones are coarse-medium, massive or normally graded. According to sedimentological 

models for alluvial-fan deposition (Todd, 1989; Benvenuti and Martini, 2002), such bedding and 

textural features indicate grain-size bipartition. Each conglomerate-sandstone couplet records the 

settling of a single, sediment-laden flood-flow, expanding on the fan surface. The overlying 1E2 

sub-unit shows a sharp variation in grain size and texture, being a well-rounded, pebble-sized, 

conglomerate, containing significantly less matrix than the underlying unit. Pedoturbation may have 

partly obliterated original sediment structure. We refer this unit to the fill of a fluvial channel 

incised within the older alluvial fan surface. 

Sub-synthem 1D is also subdivided into two sub-units, separated by the upper erosive surface. 

Sub-unit 1D1 rests over older deposits through the higher-relief middle erosional surface. Two 

laterally-related facies were recognized. In logs 3-4 (Fig. 4), deposits above the erosive surface are 

massive matrix-supported pebbles and cobbles (Fig. 3B), arranged in crudely inclined, decimetre-

thick beds, dipping to the south (i.e., towards the valley floor). The bank-collapse features clearly 

visible in sub-synthem 1E beds, just below this same surface, suggest that this lateral portion of 1D1 

sub-unit is dominated by mass flows, reworking the underlying unit. To the south (i.e. towards the 

valley floor, Fig. 4) deposits show crudely, horizontally bedded pebbles and rare cobbles in an 

abundant muddy matrix (Fig. 3B). In each meter-thick bed, fine-grained matrix increases with an 

upward trend. These deposits are referred to sediment-laden flows, flowing in small channels; 

finally, the topmost sub-unit, 1D2, is characterized by massive muddy sands. 

 



3.2 Description of Palaeosols 

Synthetic soil descriptions are reported in tables 1 and 3, and results of soil analyses in tables 2 

and 4. 

Soil profile 11B corresponds with stratigraphic log n° 1, in the interfluve shoulder position. In 

this profile, below the boundary between Bt and 2Bt1 horizons a thick (>3 m), series of reddish to 

red clay illuviation horizons is observed (Table 1 and Fig 3A). A relevant morphological character 

is the poor development of pedogenic structure, so that sedimentary facies could be observed and 

described in some detail. On the other hand, further than reddening and clay illuviation, evidence of 

strong weathering includes (Table 2): very low base saturation and low clay activity, high clay 

content, and a very low silt/clay ratio. 

The upper horizons contain many less coarse fragments, are thoroughly pedoturbated and less 

developed, as indicatced by less reddish colours and higher base saturation. They do retain some 

relations to the underlying horizons, evidenced by comparable silt/clay ratios and clay activity. 

They are interpreted as the result of erosion and reworking in a slope environment, with some 

addition of fresh material. The underlying horizons represent a truncated palaeosol, buried 5 cm 

deeper than the common standard for buried soils (Soil Survey Staff, 1999). 

Soil profile 11A corresponds with log n° 6, on the inset terrace tread (Fig. 3B). It is similar to 

11B profile in terms of depth, reddening and clay illuviation (Table 3) but, apart from 

characteristics resulting from different parent materials, there are significant differences in terms of 

weathering degree (Table 4). The difference in base saturation is highly significant: soil 11A is 

firmly within the field of Ultic Alfisols. The difference in silt/clay ratio is also large, due to the high 

silt content of profile 11A. A related change is observed in the size distribution of sand: while sand 

in profile 11B is of mostly medium and fine sizes, sand in profile 11A is dominated by the very fine 

size class. 

Soil 11A is then less developed than soil 11B, a genetic relation that fits the stratigraphic 

relation. There are a few irregularities. Clay activity in soil 11A is much the same as in soil 11B, 

both being quite low. The deepest Bt horizon in soil 11A has a base saturation definitely lower than 

the above-lying horizons. The simplest explanation is that soil 11A developed from materials 

recycled from erosion of soil 11B, with an addition of fresh material. 

 

3.3 Luminescence Dating 

A total of six OSL ages were obtained. On the basis of the data presented, the samples appear 

to be reproducible and to have been reset prior to burial. Thus, they should provide true burial ages. 



OSL ages as well as various related data from the samples analysed are shown in Table 5 and 

briefly described below and in Fig. 4. 

Samples 1e3 and 1e2, coming from the alluvial fan facies in 1E1 sub-unit, returned ages of 168 

± 8 ka and 138 ± 7 ka, respectively, dating the upper part of 1E1 sub-unit to MIS 6. Sample 1e1, 

from the overlying channel facies of 1E2 sub-unit, showed an OSL age of 111 ± 5 ka, implying that 

the fluvial phase of sub-unit 1E2 dates from MIS 5d. Sample 1d3, coming from sub-unit 1D1, 

showed and age of 93 ± 7 ka; the succeeding 1d2 and 1d1 samples, coming from the main body of 

1D sub-synthem, returned ages of, respectively, 85 ± 4 ka and 62 ± 3 ka, illustrating aggradation of 

this unit from MIS 5a to MIS 4. 

 

4.Discussion 

4.1 Depositional History 

The data presented allow reconstruction of a history of the development of the Cecina alluvial 

fan system in latest Middle to Late Pleistocene. Above the first-order erosional surface separating 

synthem 2 from synthem 1, the evolution from the fluvio-deltaic facies of 1F sub-synthem to the 

fully continental facies of sub-synthem 1E depicts a regressive succession. 

The main body of sub-synthem 1E records a phase of high-energy alluvial fan aggradation; 

according to OSL dates of 168 ± 8 ka and 138 ± 7 ka, this phase took place under glacial conditions, 

during MIS 6. The date returned by sub-unit 1E2 implies that the end of MIS 6 and the full 

interglacial (MIS 5e) are represented, in the outcrop, by an erosional lag. This lag is clearly related 

to the establishment, across the outcrop site, of a major river, likely to have been the palaeo-Cecina, 

thus indicating seawards progradation of the river system. This event is recorded by sub-unit 1E2, 

which documents a phase of channel aggradation taking place during MIS 5d. 

The transition between 1E and 1D sub-synthems is marked by a second-order erosional surface, 

frequently outcropping in the area, as reviewed by Boschian et al. (2006). With its characteristic 

topography, this surface outlines here the right bank of an entrenched box valley (Carnicelli et al., 

2009), recording the start of the development of a valley which, through successive cut-and-fill 

cycles, developed into the present-day one. In this outcrop, sub-synthem 1D records the first, major, 

valley fill cycle; evolution of facies from 1D1 to 1D2 sub-units testifies the progressive decrease of 

aggradation rates typical of such valley fill successions, the massive muddy sands of 1D2 marking 

the valley overfilling phase (Benvenuti et al., 2005). Several, similar low-order valleys are incised 

into the ancient alluvial fan surface. 

The development of such valleys, and the changes in sediment facies, indicate a major river 

avulsion, taking place at some time between MIS 5d and MIS 5b. Most likely, this episode 



represented the beginning of the deep entrenchment of the Cecina River into the older fan and of the 

evolution of the present-day hydrography. This kind of changes appears to be a response to a rapid 

base level lowering, caused by relative sea level dropping (Fig. 6). 

The valley fill represented by 1D sub-synthem was deposited between the end of MIS 5 (5a) 

and full MIS 4. As dating does not reach the top of the unit, the age of the succeeding incision cycle 

is undetermined. 

 

4.2 Landforms and Palaeosols Development 

In the time interval exposed by the outcrop, development of two well distinct landform surfaces 

can be reconstructed and constrained within Late Pleistocene chronology. The interfluve surface, 

the depositional top of 1E sub-synthem, became an abandoned and terraced alluvial fan after the 

main river avulsion. The valley side terrace is a morphological expression of the 1D sub-synthem. 

The geological map and previous studies indicate that this inset valley terrace is the proximal 

extension of a broader surface, lying downslope and representing a progradation stage of the 

alluvial fan complex. 

The palaeosols formed on the two surfaces are clearly observable, and their genesis can be 

interpreted in the context of stratigraphic, geomorphic and chronological relations. 

The soil on the older surface, profile 11B, is a shallow-buried palaeosol. The characters of the 

buried horizon sequence suggest that it represents the deep portion of a thick, strongly developed 

soil, i.e., the portion formed below the zones of high biological activity and disturbance from 

wetting/drying cycles. The pedogenic properties of the different preserved horizons are fully 

consistent, and there is no evidence of any serious disturbance. The sequence can then be 

interpreted as the result of a single soil formation history. The erosional surface separating 1E1 and 

1E2 sub-units is older than the soil formation episode we observe. Any soil development that might 

have taken place on top of sub-unit 1E1, i.e. in full Eemian conditions, was not preserved in this 

outcrop. 

Nevertheless, this palaeosol clearly records a major soil formation episode: it is clear that it 

attained a high degree of weathering as a deep, fully developed, Ultisol. Though it was not possible 

to confirm that this was exactly the same soil described in Alioto and Sanesi (1986), it represents 

the same soil type (the Pianacci STU) and soil-stratigraphic unit. Available data clearly imply that 

this soil formed starting after 111 ± 5 ka, i.e. later than the MIS 5e climate optimum. Present 

climate conditions (Costantini et al, 2013a) allow for only about 100 mm excess water available in 

winter for leaching. It is thus highly likely that this time span has seen long periods with a higher 

water excess, likely during transitions to glacial and interstadial times. Overall, these data support 



the hypothesis that rainfall budget and time are much more important in Ultisol development than 

was temperature (Bockheim et al, 1996; Lindenburg et al., 2013). 

The soil formed on the valley terrace, an Ultic Alfisol, is significantly less developed. Evidence 

suggests it to have formed from a mixture of materials reworked from the older surface with a 

significant addition of fresh materials, causing reversal of such weathering indicators as BS and 

silt/clay ratio; particle size data (Table 4) suggest an aeolian contribution. Map-wise, the 1D sub-

synthem generally corresponds with the Val di Gori sands formation (Fig. 2), within which 

evidence of aeolian contributions was noted by Mazzanti and Sanesi (1986). 

The genetic and chronological relationship between the two palaeosols is entirely consistent 

with both stratigraphic and landform relationships. The development of the ancient Cecina alluvial 

fan followed the fully entrenched model (Wright and Alonso Zarza, 1990, Fig. 6). Consistency 

between different stratigraphic criteria allowed high accuracy mapping of Late Quaternary units in 

the area (see supplementary material). 

 

5. Conclusions 

The combined analysis of sedimentary successions, geomorphic surfaces and soils allowed 

detailed reconstruction of the evolution of a large, old alluvial fan complex. 

The soils presented in this study supply significant new insight about the age of the most 

developed relic palaeosols to be found frequently in Italy, about which knowledge is presently 

limited. While the age of the Alfisol on the 1D sub-synthem is consistent with relatively widespread 

numerical dating of Alfisols of Italy, the age of the Ultisol on the interfluve surface is in clear 

contrast with currently accepted concepts. The possibility of such soil type developing after the MIS 

5e climatic optimum has never been seriously considered in Italian, and Mediterranean, literature. It 

appears then that soil development proceeded, during the Late Pleistocene of Italy, at faster rates 

than usually thought, possibly influenced by moister rainfall regimes. A general inference of 

palaeopedological meaning to be drawn from this new dating evidence is that highly developed 

soils may be more the product of long-term geomorphic stability than of specific climate optima. 
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Captions 

Figure 1: geological and geomorphological setting; A) location map and schematic geology of 

Cecina river catchment; B) Prospect view, looking to north-east, of the lower reaches of Cecina 

river valley and coastal plain; the main preserved part of the Cecina fan complex is on the right, 

with outcrop location marked by star; from Google Earth 

Figure 2: Chronostratigraphic schemes of the Quaternary succession in the Cecina coastal area, 

comparing previous reconstructions with the subdivisions adopted in this study. 

Figure 3: The studied outcrop; A): from log 1 to log 2, notebook in white circle for scale; B) 

from log 3 to log 6, hammer in white circle for scale 

Figure 4: Stratigraphy of the studied outcrop, with position of logs, soil profiles and dated 

samples, and dating results. 

Figure 5: a) Quartz OSL SAR-growth curve for sample 1e3 based on eight regenerative doses 

(small black circle). The diagram also shows the natural signal = white circle. Note that despite the 

high De value, the sample is below the 85% of 2Do. A typical regenerative decay curve for quartz 

sample 1e3 shown inset. b) Quartz OSL SAR-growth curve for sample 1d1 based on eight 

regenerative doses (small black circle). Note that despite the high dose rate value (2.79 ± 0.1 

Gy/ka), sample 1d1 is below the 85% of 2Do. 

Figure 6: Conceptual sketches of the evolution of the Cecina fan complex, based on the studied 

outcrop (rectangle). A): the Cecina fan during deposition of 1E1 sub-unit; B): river incision and fan 

progradation, as indicated by 1E2 sub-unit; C): further river incision and progradation, with 

formation of a tributary drainage of box-shaped valleys, during deposition of 1D sub-synthem. 
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Supplementary material figure 1 

Schematic geological map of the lower reaches of the Cecina river, showing the main Late Quaternary units 

and the location of the studied outcrop. 

Caption to supplementary figure 1



TABLE 1: description and stratigraphy of soil profile SPC 11b 
 

  Soil Horizon Depth Field description 

S
T

R
A

T
IG

R
P

H
IC

 U
N

IT
 

S
L

O
P

E
 

II
 

AE 0-15 Fine, moderate, blocky subangular structure; moist, 7.5YR 6/6; 

10% fine subrounded gravel; segregated organic granular peds; 

clear wavy boundary 

EB 15-35 Medium, moderate, blocky subangular structure; moist, 7.5YR 

4/6; 5% fine rounded gravel; gradual, wavy boundary 

Bt 35-55 Coarse, moderate, blocky subangular structure; moist, 7.5YR 

4/4; 10% fine rounded gravel; discontinuous, 7.5YR 5/6 clay 

coatings on peds and coarse fragments; clear, wavy boundary 

1
E

2
 

I 

2Bt1b 55-100 Structureless, friable; moist, 7.5YR 4/6; bleached tongues, 0.5-2 

cm wide, 10 YR 7/4; 40% very fine, rounded gravel; continuous, 

2.5YR 4/6 clay coatings on pores and coarse fragments; clear 

smooth boundary 

2Bt2b 100-145 Structureless, friable; moist, 5YR 4/6; bleached tongues 

continuous from overlying horizon; 40% very fine, rounded 

gravel; continuous, 2.5YR 4/6 clay coatings on pores and coarse 

fragments; clear smooth boundary 

1
E

1
 

3Bt3b 145-210 Structureless, friable; alternating decimetre-sized beds, either 

20% very fine, rounded, gravel or 40% medium, rounded, 

weathered gravel; dry, crushed, 5YR 4/4 fine earth; 

discontinuous, iron-rich clay coatings, in clusters; clear, smooth 

boundary 

3C1b 210-230 Single sand bed; moist 5YR 4/6; discontinuous clay coatings on 

sand grains; few iron manganese nodules; clear wavy boundary 

3C2b 230-300 Structureless, friable; alternating decimetre-sized beds, either 

40% medium, rounded, gravel or 40% unsorted, rounded, 

fragments up to 10 cm; dry, crushed, 5YR 4/4; clay coatings on 

fragments; iron manganese nodules 

 

Table



TABLE 2: analytical data for soil profile SPC 11b 

  Soil Horizon Sand, %
a 

Silt Clay pHw CEC
b 

Fed Si/C Activity BS
c 

  vc c m f vf total %  cmolc
+∙kg

-1
 g∙kg

-1 Ratio % 

S
T

R
A

T
IG

R
P

H
IC

 U
N

IT
 

S
L

O
P

E
  

II
 

AE 8.5 6.9 10.0 14.2 10.9 50.5 41.5 8.0    5.2 
 

 

EB 12.5 7.1 11.8 18.0 7.4 56.8 32.8 10.4    3.2 
 

 

Bt 14.7 11.5 9.6 10.5 3.4 49.8 16.6 33.6 5.2 15.1 9.2 0.5 0.45 43.9 

M
U

P
3
a 

I 

2Bt1b 18.4 11.8 9.2 7.6 2.1 49.1 14.7 36.2 4.9 20.1 16.6 0.4 0.55 32.0 

2Bt2b 3.4 3.0 7.5 27.2 5.1 46.2 16.6 37.2 4.7 20.1 13.4 0.4 0.54 28.2 

M
U

P
2

 

3Bt3b 11.0 9.1 12.3 19.3 3.8 55.6 19.4 25.1 4.8 18.6 11.0 0.8 0.74 32.2 

3C1b 0.1 4.9 49.9 20.5 0.8 76.3 7.8 15.9 4.7 15.9 5.6 0.5 1.00 40.6 

3C2b 11.7 13.2 25.8 18.0 2.1 70.7 11.0 18.2 5.1 13.0 7.6 0.6 0.71 48.9 

a
vc: >1000 μm; c: 500-1000 μm; m: 250-500 μm; f: 125-250 μm; vf: 53-125 μm 

b
: by NH4-COOH, pH 7 

c
: by sum of bases 

Table



TABLE 3: description and stratigraphy of soil profile SPC 11a 
 

  Soil Horizon Depth Field description 

S
T

R
A

T
IG

R
P

H
IC

 U
N

IT
 

S
L

O
P

E
 

II
 

A1 0-9 Medium, moderate, blocky subangular structure; moist, 7.5YR 

3/3; 15% fine, fresh, rounded gravel; clear wavy boundary 

A2 9-17 Medium, moderate, blocky subangular structure; moist, 7.5YR 

3/4; 5% fine, fresh, rounded gravel; clear wavy boundary 

2EB 17-35 Medium, moderate, blocky subangular structure; moist, 5YR 4/4; 

few, fine gravel; bleached sand grains; clear smooth boundary 

1
D

2
 

2Bt1 35-50 Medium, moderate, blocky subangular structure; moist, 5YR 4/6; 

few fine gravel; discontinuous, iron-rich, clay coatings on peds 

and coarse fragments; abrupt, smooth boundary 

2Bt2 50-125 Fine, moderate, prismatic structure; moist, 5YR 3/4; 5% medium, 

rounded gravel; discontinuous, iron-rich, clay coatings on pores 

and coarse fragments; common iron-manganese masses; gradual 

irregular boundary 

1
D

1
 

I 

3Bt3 125-160 Fine, moderate, prismatic structure; moist, 5YR 3/3; 5% fine, 

rounded gravel; common bleached tongues, up to 1 cm wide, 

7.5YR 5/6; continuous, iron-rich, clay coatings on pores and 

coarse fragments; common iron-manganese masses; gradual 

irregular boundary 

3Btb 160-240 Structureless, friable; moist, 5YR 3/4; 20% fine, rounded gravel; 

clay coatings discontinuous on grains, continuous on coarse 

fragments; discontinuous iron-manganese coatings on coarse 

fragments; common iron-manganese masses; bleached tongues 

continuous from overlying horizon 

 

Table



TABLE 4: analytical data for soil profile SPC 11a 

  Soil Horizon Sand, %
a 

Silt Clay pHw CEC
b 

Fed Si/C Activity BS
c 

  vc c m f vf total %  cmolc
+∙kg

-1
 g∙kg

-1
 Ratio % 

S
T

R
A

T
IG

R
P

H
IC

 U
N

IT
 

S
L

O
P

E
  

II
 

A1 14.0 10.4 10.7 13.9 12.2 61.3 36.0 2.7    3.3 
 

 

A2 8.1 6.7 8.8 13.4 11.5 48.5 44.3 7.2    1.8 
 

 

M
U

P
3
c 

2EB 5.6 5.1 7.5 12.5 10.8 41.5 45.0 13.5 6.1 8.4 13.4 1.3 0.62 39.4 

2Bt1 3.1 3.2 5.2 9.5 9.3 30.4 44.5 25.1 6.1 14.4 15.9 1.7 0.57 30.3 

2Bt2 3.9 3.2 5.6 9.6 9.6 31.9 38.7 29.4 6.4 9.9 17.4 1.7 0.34 58.0 

M
U

P
3
b

 

I 

3Bt3 4.9 4.7 7.2 12.4 12.4 41.6 36.9 21.5 6.1 9.1 13.6 3.3 0.42 52.3 

3Btb 6.7 7.7 10.2 13.0 9.1 46.7 33.4 19.9 5.7 12.4 12.2 1.8 0.62 38.1 

a
vc: >1000 μm; c: 500-1000 μm; m: 250-500 μm; f: 125-250 μm; vf: 53-125 μm 

b
: by NH4-COOH, pH 7 

c
: by sum of bases 
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TABLE 5 Summary of dosimetry, dose equivalent (De) measurements and luminescence ages. 

Sample 

n. 
Depth

1 
(cm) 

238U 
(PPM) 

230Th 
(PPM) 

K 
(%) 

Water
2 

(%) 

Dr3 
(Gy/ka-1) 

De 

(Gy) 
N 4 Age5 

(ka) 

Log 6 of figure 5 

1d1 120 2.83 ±0.4
1 

10.7 ±0.4 1.6 13.4 2.79 ± 0.1 173 ± 3 22 62 ± 3 

1d2 180 2.61 ±0.6 8.3 ±0.2 1.1 13.1 2.16 ± 0.09 184 ± 4 24 85 ± 4 

1d3 220 2.05±0.2 8.3 ±0.3 0.6 13.1 1.5 ± 0.04 140 ± 2 24 93 ± 4 

Log 1 of figure 5 

1e1 120 1.26±0.2 6.2 ±0.2 1.1 11.2 1.79 ± 0.05 199 ± 4 22 111 ± 5 

1e2 220 1.05±0.2 6.0 ±0.2 0.6 11.5 1.18 ± 0.03 163 ± 5 24 138 ± 7 

1e3 300 1.24±0.2 4.4 ±0.1 0.6 11.5 1.23 ± 0.03 207 ± 5 24 168 ± 8 

1
 Samples position below the top of the Log 

2
 selected water content value for the age calculation (see text for further details) 

3
 conversion factors from activity concentrations to dose rate, from Olley et al., 1996 

4
 the number of individual aliquots contributing to De 

5
 uncertainties are estimated standard errors 
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To the Editors, Quaternary International 

 

Object: submission of revised manuscript “Late Pleistocene, relic Ultisols and Alfisols frame an 

alluvial fan complex in coastal Tuscany”, by Stefano Carnicelli, Marco Benvenuti, Stefano 

Andreucci, Rossano Ciampalini, detailed list of changes 

Dear fellows, with respect to the comments sent to us, we accomplished the following 

modifications: 

- We enlarged discussion to account for present climate conditions and their implications 

- We deleted former figure 6, put dating results in former figure 3, that we renumbered figure 

4, and renumbered former figure 4 as figure 3; as a consequence, former figure 7 is now 

figure 6. 

Concerning other suggestions from reviewers, we agreed with Guest Editor not to act on them as: 

- Detail analysis of possible errors in dating is too speculative, and anyway the most likely 

bias would be to obtain a date older than the actual one 

- Considerations about carbonate content of original parent material, though highly relevant, 

cannot but be excessively speculative 

Many thanks to all Editors, other Guest editors and reviewers for the effort. 

Best greetings, 

 

Stefano Carnicelli 

 

*Detailed Response to Reviewers


