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a b s t r a c t

A new higher order 1D numerical scheme for the propagation of flood waves in compound channels with

a movable bed is presented. The model equations are solved by means of an ADER Discontinuous Galerkin

explicit scheme which can, in principle, reach any order of space–time accuracy. The higher order nature of

the scheme allows the numerical coupling between flux and source terms appearing in the governing equa-

tions and, importantly, to handle moderately stiff and stiff source terms. Stiff source terms arise in the case of

abrupt changes of river geometry such as in the case of hydraulic structures like bridges and weirs. Hydraulic

interpretation of these conditions with 1D numerical modelling requires particular attention; for instance, a

1st order scheme might either lead to inaccurate solutions or impossibility to simulate these complex con-

ditions. Validation is carried out with several test cases with the aim to check the scheme capability to deal

with abrupt geometric changes and to capture the direction and celerity of propagation of bed and water

surface disturbances. Validation is done also in a real case by using stage-discharge field measurements in

the Ombrone river (Tuscany). The proposed scheme is further employed for the computation of flow rating

curves in cross-sections just upstream of an abrupt narrowing, considering both fixed and movable bed con-

ditions and different ratios of contraction for cross-section width. This problem is of particular relevance as,

in common engineering practice, rating curves are derived from stage-measuring gauges installed on bridges

with flow conditions that are likely to be influenced by local width narrowing. Results show that a higher

order scheme is needed in order to deal with stiff source terms and reproduce realistic flow rating curves,

unless a strong refinement of the computational grid is performed. This capability appears to be crucial for

the computation of rating curves on coarse grids as it allows the modeling of abrupt contractions and jumps

in bed bottom elevations, which often occur near cross-sections where stage measuring gauges are installed.

© 2015 Elsevier Ltd. All rights reserved.
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. Introduction

In the present work, a higher order 1D Discontinuous Galerkin nu-

erical scheme for the propagation of flood hydrograph over a com-

ound channel with movable bed is presented. The scheme is de-

igned in order to model the complex geometry variations occurring

n natural channels, which are represented by source terms in the

overning equations.

The model equations are represented by the coupled system of

alance laws (SBL) formed by the 1D Shallow Water equations and

he Exner sediments continuity equation, written for a compound
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atural channel. A bedload transport equation is used as closure con-

ition for sediments dynamics.

Source terms appearing in the shallow water equations for natural

hannels are related to channel width, slope and friction. The pres-

nce of abrupt geometry variations, which, for instance, is common

n cross-sections near stage measuring gauges in rivers, may lead to

tiff source terms. The characteristic speed associated to such terms is

uch larger than the one associated to the flux term. If an explicit nu-

erical scheme does not feature some appropriate treatment for stiff

ource terms, the numerical solution can be inaccurate and asymp-

otically inconsistent (see Dumbser et al. [3]) with wrong advection

peed estimates or even instabilities on coarse grids.

In order to solve an SBL, a widely used method is the so-called

ource term splitting (see Toro [2]). It consists in splitting the SBL onto

wo sub-problems to be solved in sequence: a homogeneous prob-

em, in which the source term in the original SBL is not taken into
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account, and an ODE containing only the source term and the time

derivatives of state from the original SBL. The numerical method to

solve the ODE can feature some appropriate treatment for stiff source

terms if needed. This method is however not optimal when a scheme

which is also capable of effectively reproducing stationary solutions

is sought, as splitting methods may lead to oscillations near steady

states.

The main reason that motivated the present work is the one of

devising a scheme capable of treating moderately stiff and stiff source

terms, while preserving other desired properties such as the well-

balanced property, which allows steady states to be reproduced with

a certain accuracy.

The scheme has been developed within the framework of the

ADER-Discontinuous Galerkin (DG) methods, as proposed by Dumb-

ser et al. [1]. As it will be clear from Section 3, it is necessary to em-

ploy a higher order scheme (a scheme with order of accuracy higher

than the 1st), in order to preserve the coupling between the flux and

the source term. Also, the nature of the model equations requires the

use of a path-conservative formalism in order to treat liquid and solid

dynamics in a coupled way.

In the literature, 1D shallow water numerical models have been

recently proposed both using 1st order (e.g. Catella et al. [4], Audusse

et al. [5]) and higher order (e.g. Caleffi et al. [6], Siviglia et al. [7] and

Canestrelli et al. [8]) schemes.

It would still be possible to use a shallow water scheme not featur-

ing a special treatment for source terms in order to simulate abrupt

geometry changes in natural rivers, by refining the computational

grid. However, the use of an ADER-DG strategy in such cases proves

to be effective with no need for grid refinement and the resulting

scheme is very stable and can be easily extended to even higher or-

ders of accuracy.

The use of an ADER-DG strategy in the case of shallow water equa-

tions for natural channels has never been investigated in the scientific

literature, to the knowledge of the authors.

The proposed numerical scheme can in principle reach any order

of space–time accuracy. For the applications in the present work, the

2nd order accuracy has been found sufficient and represents a good

compromise between accuracy and calculation time. This is partly

due to information on river geometry being often low in accuracy.

The model is validated against several benchmarks: (i) water at

rest in a non-prismatic channel, (ii) dam break problem with a mov-

ing strong shock, (iii) steady flow in a Venturi-type flume, (iv) sub-

critical flow in an irregular channel, and (v) propagation of a sedi-

ment hump near critical conditions. Moreover, the model is further

validated against field measurements of water level-flow discharge

during a flood in the Ombrone Pistoiese river in Tuscany (Italy).

The implications of modelling moderately stiff or stiff source

terms in the case of flow rating curves are discussed. Importantly,

conditions of non-uniformity are found in cross-sections just up-

stream of bridges where, typically, water-level gauges are installed

for flow monitoring by making use of stage-discharge rating curves.

Abrupt geometric changes, due to a rapid cross-section narrowing,

can deeply affect the flow, leading for instance to backwater effects

and transition to a supercritical state. As a result, rating curves may

considerably deviate from the classical power law function assuming

non-trivial shapes. Moreover, flow unsteadiness can produce a hys-

teretic behavior (see Schmidt and Yen [9] and Francalanci et al. [10]).

In these conditions, reliable rating curves need to be developed by

coupling filed measurements with 1D hydraulic numerical modelling.

The model is applied to the case of abrupt geometry changes,

where flow can be more effectively reproduced by using a higher or-

der scheme featuring some kind of treatment for stiff source terms;

a 1st order scheme would lead to erroneous results, unless a dras-

tic grid refinement was performed. Flow rating curves are derived

in a schematic channel subject to a flood wave forcing in the cases

of movable and fixed bed with a local width constriction (such as
Please cite this article as: L. Minatti et al., Second order discontinuous G
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n the case of bridge piers). Various numerical tests are carried out

onsidering different degrees of channel narrowing for given bound-

ry conditions (i.e. input hydrograph, upstream bed level and down-

tream water level). Results are shown considering the present higher

rder scheme and its 1st order version. It appears that in these geo-

etrical conditions, rating curves are better reproduced only when a

igher order numerical scheme is considered. Importantly, a 1st or-

er scheme can lead to wrong/inaccurate results although it does not

ecome unstable.

The numerical scheme is introduced in Section 3, and its valida-

ion and application to the computation of rating curves are shown in

ection 4. A discussion of the results and the conclusions are shown

n Section 5.

. Model equations

The model features the shallow water equations for a natural

hannel coupled with the Exner equation describing sediments mass

onservation. A capacitive approach is used in the present work: the

olid flow rate in the channel is assumed to be coincident with the

olid flow rate as predicted by bedload transport formulas.

The three governing equations can be written as an SBL having the

ollowing form:

∂U

∂t
+ dF

dx
= B

∂U

∂x
+ S

∂ω

∂x
(1)

here (x, t) are the space–time coordinates, U(x, t) is the state vector,

(x) is a known scalar function useful for describing the geometry of

he system, F(U, ω) is a flux vector, B(U, ω) is a coupling matrix, S(U,

) is the source term vector, and d · /dx indicates the total derivative

perator. The total derivative is used to take into account fluxes de-

ending on the space coordinate x independently of the state U, as

t happens in the case of channels with space varying cross-section

hape.

In order to do so, the above mentioned terms are defined:

(x, t) =
(

�
Q
�s

)
(2)

(x, t) = x (3)

(ω,U) =

⎛⎜⎜⎜⎝
Q

β
Q2

�
+ gI0

Qs

φ

⎞⎟⎟⎟⎠ (4)

(ω,U) =

⎛⎜⎜⎝
0 0 0

0 0 −g�

L0

0 0 0

⎞⎟⎟⎠ (5)

(ω,U) =

⎛⎜⎜⎝
0

gI1 − g�
∂b0

∂x
+ g

�

L0
(b − b0)

∂L0

∂x
− g�

Q2

K2
c

0

⎞⎟⎟⎠ (6)

here � is the wetted cross-section area, Q is the liquid discharge, �s

s the solid area that is scoured or aggraded by the flow, Qs is the (vol-

metric) solid flow rate, φ is the volume fraction of the bed material

defined as the volume occupied by the solid grains on the unit bulk

olume of bed material), β is the Boussinesq coefficient accounting

or non uniform velocity distribution on the cross-section, Kc is the

ross-section conveyance, g is the gravity acceleration, b is the chan-

el thalweg elevation.
alerkin scheme for compound natural channels with movable bed.
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Fig. 1. Definition sketch for the shallow water equations. A x = const. plane is shown on the left, while a z = const. plane is shown on the right.
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The volume fraction φ is assumed to be a constant (it is usually

ssumed to be around 0.6) and is taken into the flux vector.

The β and Kc terms are calculated according to the method em-

loyed for compound channel modelling. The well known Divided

hannel Method (DCM) by Chow [11] is used here, leading to the fol-

owing expressions for such coefficients:

c =
∑

i

�5/3
i

ni · P2/3
i

i = lob, chn, rob (7)

here �i, Pi and ni are respectively the wetted area, the wetted

erimeter and the Manning coefficient in either the left overbank

lob), the main channel (chn) or the right overbank (rob) compart-

ent of the cross-section.

= �

K2
c

·
∑

i

�7/3
i

n2
i
P4/3

i

(8)

The L0 and the b0 terms represent, respectively, the channel top

idth and thalweg elevation at a time t0 < t, with t being the cur-

ent simulation time. Such quantities are used to represent the ero-

ional/aggradational history of a cross-section prior to time t. In prac-

ice, t0 is assumed equal to time tn−1 in the explicit time stepping

cheme, tn being the current time step.

Finally, the I0 and I1 terms are calculated as follows:

0 =
∫ h

0
(h − z)σdz (9)

1 =
∫ h

0
(h − z)

∂σ

∂x
dz (10)

here h is the cross-section hydraulic depth, z is the coordinate along

vertical axis whose origin is placed at the bottom of cross-section

local height), σ is the local cross-section breadth in (x, z).

Fig. 1 shows the definition sketch for the problem:

Note that it is not possible to write the (g�/L0) · (∂�s/∂x) term

ppearing into the B · (∂U/∂x) product of Eq. (1) as the x-derivative of

ome quantity: the model equations are a nonconservative SBL and

hey can not be written without using a coupling matrix B.

The quasi-linear form of the model equations is found by observ-

ng that the flux total derivative can be written as:

dF

dx
= J

∂U

∂x
+ V

∂ω

∂x
(11)

here J = ∂F/∂U is the flux Jacobian matrix and V = ∂F/∂ω is the

eometry variation term.

In the proposed model, river overbanks are considered to act as

xed bed portions of the river cross-section, while the main channel

s left free to modify its morphology according to the hydraulic con-

itions.
Please cite this article as: L. Minatti et al., Second order discontinuous G
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In order to restrict the river morphological changes to the main

hannel area, bedload transport equations are calculated on the pro-

ection of hydraulic variables over the main channel. This is accom-

lished by using the DCM method for splitting the cross-section to-

al flow rate into fractions relevant to overbanks and main channel

ompartments (the solid flow rate calculated in this way is indicated

sing the chn subscript). The cross-section wetted area is split onto

he compartments according to the geometry of the cross-section.

The J and V terms have the following expressions:

(ω,U) =

⎛⎜⎜⎜⎜⎝
0 1 0

g
�

σT

(
1 + Q2

g�2

∂β

∂z

)
− β

Q2

�2
2β

Q

�
0

1

φ

∂Qs,chn

∂�

1

φ

∂Qs,chn

∂Q
0

⎞⎟⎟⎟⎟⎠ (12)

(ω,U) =

⎛⎜⎜⎜⎜⎝
0

gI1 − g
�H1

σT

+ Q2

�

∂β

∂x

∣∣∣∣
�

1

φ

∂Qs,chn

∂x

∣∣∣∣
�

⎞⎟⎟⎟⎟⎠ (13)

here:

1 =
∫ h

0

∂σ

∂x
dz (14)

T indicates the top width of the free surface and the |� symbol indi-

ates differentiation at constant �.

By substituting Eq. (11) in Eq. (1) the quasi-linear form of the SBL

s obtained:

∂U

∂t
+ A

∂U

∂x
= (S − V)

∂ω

∂x
(15)

here:

= J − B (16)

It can be shown with some calculations that in fixed bed condi-

ions the system is strictly hyperbolic, being the three eigenvalues of

distinct and real, except in critical conditions, where two of them

oincide.

In movable bed conditions, proof of hyperbolicity in the case of

rass [12] bedload transport equation can be found in Castro et al.

13]. As far as different bedload transport formulas are concerned, an

nalysis by Cordier et al. [14] shows that the system is hyperbolic in

ost physical situations. However, in the movable bed simulations

erformed for the present work, only real and distinct eigenvalues

ere found: for Q > 0 one of them was negative, while the remaining

wo were positive.
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3. Numerical scheme

In order to solve a hyperbolic SBL in the form of Eq. (1), the main

idea is the one of writing it as an homogenous nonconservative sys-

tem. The following trivial equation is therefore added to the system:

∂ω

∂t
= 0 (17)

and an extended state vector is defined:

˜ =
(

U
ω

)
(18)

If U ∈ R
D, then Ũ ∈ R

D+1.

The following homogeneous hyperbolic system of equations is

considered:

∂Ũ

∂t
+ Ã

(
Ũ
)∂Ũ

∂x
= 0 (19)

If Eq. (19) represents a nonconservative system (NCS), then the Ã
(
Ũ
)
·

∂Ũ/∂x term cannot be written as the gradient of some flux vector

and it is called a nonconservative product. Otherwise, if it represents

a system of conservation laws (SCL), the term can be written as an

extended flux gradient term ∂ F̃/∂x.

The SBL of Eq. (1) and the trivial equation of Eq. (17) can now

be written in the compact form of Eq. (19) by using the following

(D + 1) × (D + 1) system matrix:

Ã =
(

A −(S − V)
0 0

)
(20)

The (S − V) · (∂ω/∂x) term acts as a nonconservative product, in

addition to the B · (∂ U/∂x) term, for the modified system of Eq. (20).

We use the convention of removing thẽ sign to either indicate the

top left D × D block of matrix Ã or the first D components of states,

without including the geometry variable ω.

The numerical scheme has been built starting from the ADER-FV

framework proposed by Titarev and Toro [15].

ADER-FV schemes use the solution of generalized Riemann prob-

lems at cell interfaces to achieve high-order accuracy in space and

time. A difficulty in this approach is represented by the Cauchy–

Kovalewsky procedure, which is needed to obtain expressions for

higher order time derivatives of states. The procedure requires suc-

cessive analytical differentiations and it is rather cumbersome. In or-

der to avoid the analytical calculations involved with it, a method

based on local DG predictors was proposed by Dumbser et al. [16]

for the case of a SCL with non stiff source terms and by Dumbser et al.

[3] in the case of a SCL with stiff source terms. The method was then

extended to nonconservative systems by Dumbser et al. [1].

In the present work, the ADER strategy involving local DG predic-

tors is employed to devise a higher order DG scheme with moder-

ately stiff or stiff source term treatment. While being natural to read

the equations of the scheme considering its order of accuracy to be

higher than the 1st, they are quite general and can be easily “con-

tracted” to obtain a 1st order scheme. The strategy produces a well-

balanced scheme capable of reproducing steady states.

The scheme is presented for an arbitrary order of accuracy even

though its equations and applications are shown for a 2nd order case.

In the applications, the numerical solution is therefore represented

by a 1st order piecewise space polynomial at each time step.

3.1. ADER schemes for nonconservative hyperbolic systems

The homogeneous hyperbolic system of Eqs. (19) and (20) is con-

sidered. In order to simplify the notation we introduce the cell space–

time element as the set Ei = [xi−1/2, xi+1/2] × [tn, tn+1]. It is conve-

nient to normalize E onto the unit space–time element ε = [0, 1] ×
i i

Please cite this article as: L. Minatti et al., Second order discontinuous G
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0, 1] through the following transformation:

ξ =
(
x − xi−1/2

)

xi

= (t − tn)


t

(21)

The numerical solution Ũn
h,i(ξ) for the state Ũ on the cell

xi−1/2, xi+1/2

]
at time tn is a polynomial of order N0 − 1, for a scheme

ith order of accuracy N0 in space. It can therefore be expressed as

linear combination of N0 space bases functions φl(ξ ) for the set of

olynomials of order N0 − 1:˜n
h,i(ξ) = φl(ξ)Ũn

l,i (22)

he convention of indicating sums with repeated indexes is used. The˜n
l,i

=
(
Un

l,i
,ωn

l,i

)
terms in the sum are numerical coefficients used to

xpress the numerical solution as a linear combination of the space

ases.

The space bases used in the present work are orthonormal modal

ases. Therefore, the first component Ũn
1,i

of the solution represents

he cell average, while for instance, the second one represents its

lope times the cell size 
xi and a normalization factor. Further de-

ails can be found in Appendix A.

Ã is a (D + 1) × (D + 1) matrix and Ũ, Ũn
h,i

, Ũn
l,i

are D + 1 compo-

ents states.

The scheme consists of three steps: namely a reconstruction step,

predictor step, that allows to treat either moderately stiff or stiff

ource terms in the SBL and a fully explicit corrector step which is

ubject a CFL condition.

.2. Reconstruction step

In order to limit the oscillations in the presence of moving shock

aves, the numerical solution Ũn
h,i(ξ) should be reconstructed in a

onlinear way by using an appropriate limiter. In the present work,

he TVB limiter of Cockburn and Shu [19] and Cockburn et al. [20] has

een implemented. The procedure for a 2nd order scheme is briefly

ecalled.

A modified minmod function is introduced:

(a, b, c) =
{

a i f |a| < K · 
X2

minmod(a, b, c) else
(23)

here K is a problem dependent parameter used to preserve local ex-

remes, which should be set according to the maximum value of the

econd derivative of initial conditions near critical points (see Cock-

urn and Shu [19]), and 
X is the maximum grid spacing.

The following modified interface values are computed for the so-

ution in the cell:

−
i+1/2

= Ũn
1,i + m

(
Ũn

h,i(1−) − Ũn
1,i, Ũn

1,i − Ũn
1,i−1, Ũn

1,i+1 − Ũn
1,i

)
(24)

+
i−1/2

= Ũn
1,i + m

(
Ũn

h,i(0+) − Ũn
1,i, Ũn

1,i − Ũn
1,i−1, Ũn

1,i+1 − Ũn
1,i

)
(25)

If both r−
i+1/2

= Ũn
h,i(1−) and r+

i−1/2
= Ũn

h,i(0+), no reconstruction

s performed. Otherwise, the following reconstructed slope is com-

uted for the solution:

R
i = m

(
Ũn

h,i(1−) − Ũn
h,i(0+)


xi

,
Ũn

1,i
− Ũn

1,i−1


xi + 
xi−1

,
Ũn

1,i+1
− Ũn

1,i


xi+1 + 
xi

)
(26)

nd the initial solution Ũn
h,i(ξ) is replaced by the following:

˜R,n
h,i (ξ) = Ũn

1,i + sR
i · 
xi ·

(
ξ − 1

2

)
(27)

he Ũ2,i component of the reconstructed solution with respect to the

odal bases can then be calculated from the L2 projection of ŨR,n
h,i

.
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For schemes of order higher than the 2nd, the above procedure is

pplied to the L2 projection of Ũn
h,i(ξ) onto the space of polynomials

f degree one. For 1st order schemes, the whole procedure can’t be

pplied and it is therefore skipped.

If the treatment of strong moving shocks is not needed, the

resent step can be skipped and the solution Ũn
h,i(ξ) can be directly

sed into the predictor step of Section 3.3. The scheme, when used

ith no limiter, is a linear DG scheme: strong moving shocks can’t be

eproduced even though it is known from the literature, see Atkins

nd Shu [21], that linear DG schemes still perform rather well in the

resence of non strong discontinuities.

In order to simplify the notation, both the reconstructed (DG

cheme with TVB limiter) and the non reconstructed solutions (lin-

ar DG scheme) will be indicated with Ũn
h,i(ξ) throughout the rest of

he paper.

.3. Predictor step

The Cauchy–Kovalewsky procedure is needed in ADER-FV

chemes to achieve higher order accuracy in time. It is here replaced

y a purely numerical procedure based on a local weak formulation

f the PDE in the space–time element.

An unknown state W̃ , whose numerical approximation is indi-

ated with W̃h,i(ξ , τ ) =
(
Wh,i,μh,i

)
, is considered in the space–time

lement εi. W̃h,i �= Ũh,i in general.

For a model with order of accuracy N − 1 in both space and time,˜
h,i(ξ , τ ) is a polynomial of order N − 2 in (ξ , τ ). W̃h,i(ξ , τ ) is writ-

en as a linear combination of N space–time bases θ (ξ , τ ) which

re space–time polynomials of order N − 2. The following notation

s used:˜
h,i(ξ , τ ) = θl(ξ , τ ) · q̃l,i (28)

he q̃l,i =
(
ql,i,μl,i

)
terms in the sum are unknown numerical coef-

cients used to express the numerical solution as a linear combina-

ion of the space–time bases. Both W̃h,i and q̃l,i are D + 1 components

tates.

Note that N > N0 in general. Also, for a 2nd order scheme N0 = 2

nd N = 3.

The space–time bases used in the present work are orthonormal

odal bases. Further details can be found in Appendix A.

Predictor step is performed by multiplying Eq. (19) for a test func-

ion and by integrating on the internal part of εi to obtain a weak for-

ulation of the PDE. Integration is performed on the internal part of

he element, which we indicate with ε̇i = (0, 1) × (0, 1) as the pre-

ictor is a local operator and coupling with neighboring cells is not

onsidered at this stage. We use the space–time bases functions θ (ξ ,

) as test functions and substitute the exact state W̃ with its numeri-

al approximation W̃h,i. The following weak formulation is obtained:∫
ε̇i

θk

∂W̃h,i

∂τ
dξdτ +

∫∫
ε̇i

θkÃ∗ ∂W̃h,i

∂ξ
dξdτ = 0 (29)

here Ã∗ = Ã
t/
xi.

The 2nd term of Eq. (29) allows the coupling between the flux

nd the source terms. It can be observed how this is possible only for

higher order scheme as it would be ∂W̃h,i/∂ξ = 0 in the case of a

st order scheme and Eq. (29) would reduce to a trivial equation.

The value of 
t is obtained at the beginning of the predictor step

rom a CFL condition based on the eigenvalues of matrix A, calculated

n the numerical solution Ũn
h

.

The Ã∗ ·
(
∂W̃h,i/∂ξ

)
term is projected onto the space of space-time

olynomials of order N − 2 on the unit space–time element using

he L2 projection with modal bases. This provides an approximation

f the term as Ã∗ is in general a nonlinear function of W̃h,i. It is then

ossible to express the projected term as a linear combination of the
Please cite this article as: L. Minatti et al., Second order discontinuous G
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pace–time modal bases:

∗ ∂W̃h,i

∂ξ
= p̃l,i · θl (30)

he expressions for the p̃l,i coefficients can be found by evaluating

he inner product of the term with each modal basis:

p̃k,i =
∫∫

ε̇i

Ã∗ ∂W̃h,i

∂ξ
· θkdξdτ (31)

n general, the p̃k,i coefficients are nonlinear functions of all the

l,i, l = 1..N coefficients.

The integral in Eq. (31) can be numerically approximated via Gaus-

ian quadrature. The number of quadrature points should be chosen

ccording to the accuracy of the scheme, bearing in mind that with

G Gaussian points, integration is exact for polynomials up to or-

er 2NG − 1. For a 2nd order accurate scheme and for a linear hyper-

olic system, a single Gaussian quadrature point located in (ξ , τ ) =
1/2, 1/2) usually allows for a sufficiently accurate integration (even

f the integrand in Eq. (31) would be a quadratic space–time func-

ion). In the case of a nonlinear system such as the one under study,

he coefficients inside the Ã∗ matrix are nonlinear functions of the

tate components. In this case, the number of Gaussian points to be

sed should depend on how high the nonlinearity of the coefficients

s. For geometries with simple cross-sections (e.g. rectangular) we

ound the use of one Gaussian point to provide sufficient accuracy.

or more complex geometries, such as the ones in natural channels,

he use of more Gaussian points should be considered at the price of

more time consuming scheme.

If the (D + 1)th component of Eq. (29) is considered, then the fol-

owing is obtained:∫∫
ε̇i

θk

∂μh,i

∂τ
dξdτ = 0 (32)

As Eq. (32) is verified for each space–time basis θ k, it is concluded

hat the (D + 1)th component μh of the predicted state W̃h does not

epend on the normalized time τ . This is an expected result as Eq.

29) is the local weak formulation of Eq. (19) whose (D + 1)th row

eads as ∂ω/∂t = 0.

The step proceeds in two different ways, according to the stiffness

f the source/geometry variation term S − V .

.3.1. Non stiff or moderately stiff source term

The expressions of Eqs. (28) and (30) are substituted into Eq. (29)

o obtain:

τ
kl q̃l,i + Mkl p̃l,i(q̃1,i . . . q̃N,i) = 0 (33)

here Kτ
kl

and Mkl are N × N matrices defined as follows:

τ
kl =

∫∫
ε̇i

θk

∂θl

∂τ
dξdτ (34)

kl =
∫∫

ε̇i

θkθldξdτ (35)

τ
kl

and Mkl depend on the chosen space–time bases only and can be

recalculated and stored in order to speed up the computations. Ex-

ressions for such matrices for N = 3 (2nd order scheme) are shown

n Appendix A.

Eq. (33) is a nonlinear algebraic equation. The unknowns are rep-

esented by the q̃l,i coefficients. In this case, the q̃l,i components rel-

vant to pure spatial modes are obtained from the initial condition:

˜
h,i(ξ , 0) = Ũn

h,i(ξ) (36)

The remaining q̃l,i components are obtained by directly solving

q. (33).

The expression of Eq. (33) in the case of a 2nd order scheme can

e found in Appendix B for the model equations under study.
alerkin scheme for compound natural channels with movable bed.
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3.3.2. Stiff source terms

The first term of Eq. (29) is integrated by parts in time. The ini-

tial state Ũn
h,i(ξ) is used to define the initial condition into the term

integrated by parts:∫ 1

0

θk(ξ , 1)W̃h,i(ξ , 1)dτ −
∫ 1

0

θk(ξ , 0)Ũh,i(ξ)dτ

−
∫∫

ε̇i

∂θk

∂τ
W̃h,idξdτ +

∫∫
ε̇i

θkÃ∗ ∂W̃h,i

∂ξ
dξdτ = 0 (37)

Performing integration by parts in time implies that the predicted

state W̃h,i may exhibit a discontinuity in time at τ = 0, that is˜
h,i(ξ , 0) �= Ũn

h,i(ξ). The discontinuity is induced by the presence of

the stiff source terms locally acting in the element.

By substituting the expression of Eq. (28) for W̃h,i, the expression

of Eq. (22) for Ũh,iand Eq. (30) in Eq. (37), one obtains:

M(1)
kl

q̃l,i − M(0)
kl

Ũn
l,i − t

(
Kτ

kl

)
q̃l,i + Mkl p̃l,i(q̃1,i . . . q̃N,i) = 0 (38)

where the superscript ‘t’ indicates the transpose operator and M
(1)
kl

and M
(0)
kl

are respectively N × N and N × N0 matrices, defined as fol-

lows:

M(1)
kl

=
∫ 1

0

θk(ξ , 1)θl(ξ , 1)dξ (39)

M(0)
kl

=
∫ 1

0

θk(ξ , 0)φl(ξ)dξ (40)

M
(1)
kl

and M
(0)
kl

depend on the chosen bases only and can be precalcu-

lated and stored. Their expression is shown in Appendix A for N = 3

(2nd order scheme).

As opposite to the non stiff source term case, all of the q̃l,i com-

ponents are obtained from the solution of Eq. (38), while the initial

condition is taken into account by the 2nd term on the LHS of the

equation. A time discontinuity at τ = 0 is admitted in this case and

thus q̃l,i �= Ũn
l,i

, l = 1, N0 in general.

The expression of Eq. (38) in the case of a 2nd order scheme can

be found in Appendix B for the model equations under study.

3.4. Corrector step

The final step of the scheme, that is the corrector step, is an explicit

time step evolving the numerical solution Ũn
h,i

onto time step tn+1.

Eq. (19) is multiplied by the space bases test functions φ(ξ ) and

integrated on Ei. At this stage, the boundaries of the space–time el-

ement are involved in the integration process in order to consider

the coupling with the neighboring cells. The numerical approxima-

tion Ũh,i of W̃ in cell i is used in the term involving the time derivative,

while the numerical approximation W̃h,i obtained from the predictor

step is used in the term involving the space derivative. Integration by

parts in time (bear in mind that the space bases functions φk depend

on ξ only) is also performed. The following equation is obtained:∫ 1

0

φkŨn+1
h,i

dξ −
∫ 1

0

φkŨn
h,idξ + 
t


xi

∫∫
εi

φkÃ
∂W̃h,i

∂ξ
dξdτ = 0 (41)

The integral term involving the space derivatives in the equation can

be split into two parts: a local part, where integration is performed in

ε̇i and in a boundary part ∂ε̇i providing the coupling with the neigh-

boring cells.

The boundary part accounts for jumps in the solution at the

boundaries with neighboring cells and is here treated with a path-

conservative Roe-scheme [22]. A path connecting states at opposite

sides of interfaces is therefore chosen in order to account for noncon-

servative products and Riemann solvers are introduced.
Please cite this article as: L. Minatti et al., Second order discontinuous G
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As far as the integration path is concerned, a linear path is cho-

en:

˜
i+1/2

(
s,W̃h,i(1−, τ ),W̃h,i+1(0+, τ )

)
= W̃h,i(1−, τ )

+s ·
(
W̃h,i+1(0+, τ ) − W̃h,i(1−, τ )

)
(42)

The choice of an integration path, such as the one of Eq. (42) allows

he definition of a generalized Roe matrix:

ĩ+1/2(τ ) =
∫ 1

0

Ã
(

̃i+1/2

(
s,W̃ n

h,i(1−, τ ),W̃ n
h,i+1(0+, τ )

))
ds (43)

A Riemann solver provides an approximate solution of the Rie-

ann problems arising at cell interfaces thus allowing to calculate

he upwinding matrices Ã+
i+1/2

and Ã−
i+1/2

at each cell interface. The

pwinding matrices allow to integrate the equations according to the

irection towards which information are propagated by the system.

One of the most common Riemann solver is the solver of Roe

23]. It is a linear solver with low numerical diffusivity. Being a linear

olver, it has the drawback of computing entropy-violating shocks:

he issue can however be fixed by using an entropy fix, such as the

ne proposed by Harten and Hyman [24].

The expression for the Roe solver upwinding matrices for systems

ike the one of Eq. (20) has been devised by Pares and Castro [22] and

s shown below for completeness:

±̃
i+1/2(τ ) =

(
Ai+1/2 ± |A|i+1/2

2
−P±

i+1/2
·
(
Si+1/2 − Vi+1/2

)
0 0

)
(44)

here
∣∣Ai+1/2

∣∣ = Ri+1/2 ·
∣∣�i+1/2

∣∣ · R−1
i+1/2

with Ri+1/2 being the matrix

hose columns are the eigenvectors of Ai+1/2 and �i+1/2 being the

iagonal matrix with the eigenvalues λk of Ai+1/2 on the diagonal.

he P±
i+1/2

matrices are called projection matrices and are calculated

s follows:

±
i+1/2(τ ) =

I ± Ri+1/2 · sgn
(
�i+1/2

)
· R−1

i+1/2

2
(45)

gn
(
�i+1/2

)
is a diagonal matrix such that sgn

(
�i+1/2

)
kk

= |λk|/λk if

k �= 0 and sgn
(
�i+1/2

)
kk

= 0 otherwise. I is the unit matrix. Further-

ore:

i+1/2(τ ) =
∫ 1

0

S
(

̃

(
s,W̃ n

h,i(1−, τ ),W̃ n
h,i+1(0+, τ )

))
ds (46)

i+1/2(τ ) =
∫ 1

0

V
(

̃

(
s,W̃ n

h,i(1−, τ ),W̃ n
h,i+1(0+, τ )

))
ds (47)

Another widely used Riemann solver is the Osher solver, firstly

roposed by Engquist and Osher [25]. The solver is nonlinear and as

pposite to the Roe solver, does not have the drawback of computing

ntropy-violating shocks. Dumbser and Toro [26] proposed a path-

onservative version of the solver for a nonconservative homogenous

ystem and showed its application to the case of the shallow water

quations for a prismatic channel with a rectangular cross-section.

The Osher upwinding matrix for a system like the one of Eq. (20)

s therefore calculated from the following:

±̃
i+1/2

= Ãi+1/2 ±
∫ 1

0

∣∣Ã(

̃

(
s, Ũn

i , Ũn
i+1

))∣∣ds (48)

nd can now be used to implement the Osher solver in the case of

hallow water equations for a non prismatic (natural) channel.

After some straightforward calculations starting from Eq. (20),

he upwinding matrices for the Osher solver turn out to be
alerkin scheme for compound natural channels with movable bed.

ources (2015), http://dx.doi.org/10.1016/j.advwatres.2015.06.007
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s follows:

±
i+1/2(τ ) =

∫ 1

0

(
A ± |A|

2
− P± · (S − V)

0 0

)
(

̃

(
s,W̃ n

h,i(1−, τ ),W̃ n
h,i+1(0+, τ )

))
ds (49)

In order to make the notation independent from the used Rie-

ann solver, the upwinding matrices are written in the following

ay for each solver:

±
i+1/2(τ ) =

(
A±

i+1/2
−G±

i+1/2

0 0

)
(50)

or the Roe solver, the A±
i+1/2

matrix is calculated as in the upper left

× D block in the RHS of Eq. (44) and the G±
i+1/2

vector is calculated

s follows:

±
i+1/2(τ ) = P±

i+1/2
·
(
Si+1/2 − Vi+1/2

)
(51)

or the Osher solver, the A±
i+1/2

matrix is calculated as in the upper left

× D block in the RHS of Eq. (49) and the G±
i+1/2

vector is calculated

s follows:

±
i+1/2(τ ) =

∫ 1

0

P± · (S − V)
(

̃

(
s,W̃ n

h,i(1−, τ ),W̃ n
h,i+1(0+, τ )

))
ds

(52)

Using either Eq. (44) or Eq. (49) according to the chosen Riemann

olver, Eq. (41) can be expanded:

1

0

φkŨn+1
h,i

dξ −
∫ 1

0

φkŨn
h,idξ + 
t


xi

·
∫∫

ε̇i

φkÃ
∂W̃h,i

∂ξ
dξdτ


t


xi

· φk(0)

(∫ 1

0

Ã+
i−1/2(τ )dτ

)
·
(
W̃h,i(0+, τ ) − W̃h,i−1(1−, τ )

)

t


xi

· φk(1)

(∫ 1

0

Ã−
i+1/2(τ )dτ

)
·
(
W̃h,i+1(0+, τ ) − W̃h,i(1−, τ )

)
= 0

(53)

By substituting the expression of Eq. (22) for Ũh in Eq. (53) and

y using Eq. (50), one obtains the final expression for the corrector

xplicit time step:

0
kl ·

(
Ũn+1

l,i
− Ũn

l,i

)
+ 
t


xi

· Lk,i


t


xi

·
(
φk(0)

(
H+

i−1/2
− I+

i−1/2

)
+ φk(1)

(
H−

i+1/2
− I−

i+1/2

))
= 0 (54)

here

k,i =
∫∫

ε̇i

φk · Ã
(
W̃h,i

)
· ∂W̃h,i

∂ξ
dξdτ (55)

±
i+1/2

=
∫ 1

0

A±
i+1/2(τ ) · (Wh,i+1(0+, τ ) − Wh,i(1−, τ ))dτ (56)

±
i+1/2

=
(∫ 1

0

G±
i+1/2(τ )dτ

)
· (μh,i+1(0+) − μh,i(1−)) (57)

Eq. (54) provides an explicit scheme which is stable under a CFL

ondition. The theoretical Courant number limits are CFL < 0.32 for a

nd order scheme and, CFL < 0.17 for a 3rd order scheme, according to

linear stability analysis performed by Dumbser et al. [16]. Such lim-

ts are in accordance with the usual ones for a DG scheme, depending
Please cite this article as: L. Minatti et al., Second order discontinuous G

Applications for the computation of rating curves, Advances in Water Res
n the degree of the polynomial representing the numerical solution.

hey are however lower than the ones typically needed in pure FV

chemes where the numerical solution is a polynomial reconstructed

tarting from cell averages. On the other hand, a DG scheme is very

table, satisfying an entropy inequality on the cell (see Jiang and Shu

27]) and the whole predictor step of Section 3.3, accounting for a fair

hare of the computational time within the timestep can be easily

rranged for a parallel code, needing only information on the local

ell.

The integrals in Eqs. (55)–(57) can be numerically approximated

ia Gaussian quadrature. As far as the number of Gaussian quadrature

oints to be used is concerned, similar considerations to the ones in

ection 3.3 apply.

The expression of Eq. (54) in the case of a 2nd order scheme can

e found in Appendix B.

. Applications

.1. Validation of the numerical model

Validation of the present model is carried-out by performing nu-

erical simulations of (i) water at rest in a non-prismatic channel, (ii)

am break problem with a moving strong shock, (iii) steady flow in

Venturi-type flume, (iv) subcritical flow in an irregular channel, (v)

ropagation of a sediment hump near critical conditions, and a real

ood wave in the Ombrone Pistoiese river in Tuscany (Italy).

.1.1. Water at rest in a non-prismatic channel

The water at rest test case of Garcia-Navarro and Vazquez-Cendon

28] is reproduced. Both the width of the rectangular cross-section

f the channel (see Fig. 2) and its thalweg elevation (see Fig. 3) show

brupt linear variations in space.

The water surface elevation for the simulation is constant and set

o 12 m. The grid spacing was set to 
x = 5 m and the Roe Rie-

ann solver was used. The results of the simulation are shown in

ig. 3.

The comparison with the analytical solution shows that the wa-

er surface is captured with very low errors by the scheme. In this

est case, the wetted area � is a second degree polynomial in space,

s both the rectangular cross-section width and the hydraulic depth

re linear functions. A 3rd order scheme, which employs 2nd or-

er polynomials to reproduce states, would be able to exactly repro-

uce the water at rest state, as the source and the flux terms would

e exactly balanced. With a 2nd order scheme, the errors are how-

ver bounded and grid spacing dependent, due to the well-balanced

roperty.

.1.2. Dam break problem

This test case is a dam break (Riemann) problem involving a mov-

ng shock and a rarefaction. Its purpose is the one of testing the

cheme capabilities at handling moving strong shocks.

The geometry of this problem is the one of a 25 m long frictionless

ectangular channel with unit width and flat bottom. We performed

wo simulations starting from the following initial conditions:

h, Q) =

⎧⎪⎨⎪⎩
(
1.0 m , 1.25 m3/s

)
i f x < 10 m (Test A)(

1.0 m, 5.00 m3/s
)

i f x < 10 m (Test B)(
0.2 m, 0.00 m3/s

)
i f x > 10 m

(58)

nd used free outflow boundary conditions at the ends of the channel.

The scheme with the Osher Riemann solver was used both with

nd without the TVB limiter of Section 3.2. The grid spacing was set

o 
x = 0.5 m. The results are shown in Fig. 4. The Froude number

head of the shock is around 1.1 for test A and around 1.4 for test B. In

he case of a milder shock (test A) both the linear DG scheme and the

G scheme with TVB limiter can reproduce the analytical solution.
alerkin scheme for compound natural channels with movable bed.
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Fig. 2. Channel width for the water at rest test case.

Fig. 3. Numerical solution for the water at rest test case. Water surface elevation (upper panel). Flow rate (lower panel). The Roe Riemann solver and the stiff source term predictor

step were used in the simulation.
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t

h

r

s

w

i

The DG scheme with TVB limiter, with parameter K = 0.1 from Eq.

(23), provides a less sharp shock profile than the one of the linear DG

scheme and a less oscillatory solution.

In the case of a stronger shock (test B) the linear DG scheme

crashes and is not able to reproduce the analytical solution. The fig-

ure shows the results from the DG scheme with TVB limiter, using

K = 0.5 and K = 0.001. In the first case the profile is quite irregular,

as opposite to the other one where the numerical solution is more

regular. In both cases, some numerical diffusivity spreads the numer-
ical solution. t

Please cite this article as: L. Minatti et al., Second order discontinuous G
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.1.3. Ventury-type flume

The numerical model is now applied for simulating the propaga-

ion of a flood wave in a 2024 m long straight rectangular channel

aving a bed slope of 0.55%; as in Fig. 5.

Channel width B0 is 30 m except for the central reach where it nar-

ows to a width Bc. The narrowed central reach is 24 m long and con-

ists of three 8 m long sub-reaches. In the first sub-reach, the channel

idth linearly drops from B0 to Bc, then it remains constant to Bc, and

n the third sub-reach linearly increases back to the full width B0. In

his test case the contraction coefficient c = Bc/B0 = 0.2 is used.
alerkin scheme for compound natural channels with movable bed.
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Fig. 4. Numerical solution for test A at t = 2.0 s (left column) and for test B at t = 1.2 s (right column).

Fig. 5. Sketch and notation (upper panel); input hydrograph (lower panel).
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The input flow rate is a triangular hydrograph with a peak dis-

harge of 200 m3/s, duration of 20 h, discharge growth rate of

7 m3/s/h and discharge decrease rate of 15 m3/s/h; see Fig. 5. The

sher Riemann solver was used and the normal flow depth was en-

orced downstream.

As far as the grid spacing is concerned, 
x = 30 m when x ≤
00 m, then 
x reduces to 20 m when 900 m ≤ x ≤ 1000 m and it

ecomes 8 m in the contracted reach of channel; the grid spacing is

ymmetrical with respect to the middle of the channel. Notice that

he channel contraction is represented by four cross-sections: two
Please cite this article as: L. Minatti et al., Second order discontinuous G
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re located just upstream and downstream of the contraction and the

ther two are at both ends of the narrowest reach. This kind of ge-

metrical representation follows the classical cross-section spacing

sed in well-known 1D numerical models (such as Hec-Ras, Usace).

The resulting rating curve has been calculated with fixed bed con-

itions in the cross-section A-A’ positioned just upstream the channel

ontraction at x = 1000 m (Fig. 5)

The numerical solution is compared to a reference analytical so-

ution obtained modeling the upstream straight reach and the con-

raction reach as a Venturi flume. For the present test case, no
alerkin scheme for compound natural channels with movable bed.
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Fig. 6. The rating curves in the cross-section A-A’ at 1st and 2nd order of accuracy and comparison with the analytical solution (fixed bed condition, c = 0.2).

Table 1

Convergence rate study for the test case of a subcritical flow

in an irregular channel.


x[m] L2 o(L2) Linf o(Linf)

4 1.78 · 10−04 9.41 · 10−05

2 6.02 · 10−05 1.56 3.02 · 10−05 1.64

1 1.80 · 10−05 1.74 8.43 · 10−06 1.84

0.5 4.42 · 10−06 2.03 2.07 · 10−06 2.02

0.25 1.12 · 10−06 1.98 5.04 · 10−07 2.04

w

h

f

T

s

o

a

s

4

A

t

t

experimental measurements are available. Water levels in the up-

stream reach have been calculated using a quasi-static approximation

by which their time evolution was driven by the difference between

the input flow hydrograph and the output flow in the channel con-

traction; this approximation appears to be sound as the water levels

account for about 90%; of the characteristic speed of waves, being the

Froude number around 0.1 in the test case.

The output flow was evaluated assuming the critical flow depth to

establish at the contraction.

Results in Fig. 6 show the analytical solution is captured by the

2nd order scheme; the 1st order scheme leads to a relevant overesti-

mation of flow discharge, for a given water level. This finding demon-

strates the capability of the present scheme to deal with abrupt ge-

ometric changes and how the application of a 1st order scheme may

lead to inaccurate results on a coarse grid.

4.1.4. Subcritical flow in an irregular channel

The test case is the subcritical flow in a short domain problem,

as described by Delestre et al. [17]. It was here reproduced in order

to check the order of accuracy of the numerical scheme. The steady

state test consists in a 200 m long rectangular channel, with a bottom

width variable in space as follows:

B1(x) = 10 − 5 exp

(
−10

(
x

200
− 1

2

)2
)

f or 0 m ≤ x ≤ L = 200 m

(59)

The Manning friction coefficient is n = 0.03 s/m1/3. The assumed

boundary conditions are: constant flow rate of Q = 20 m3/s up-

stream and constant water depth of hout = 0.9 m downstream. The
Fig. 7. Numerical solution for the subcritical flow in a short domain pr

Please cite this article as: L. Minatti et al., Second order discontinuous G

Applications for the computation of rating curves, Advances in Water Res
ater depth is calculated as follows:

(x) = 0.9 + 0.3 exp

(
−20

(
x

200
− 1

2

)2
)

(60)

The simulations have been performed decreasing the grid spacing

rom 4 to 0.25 m and a convergence rate table has been calculated.

he Roe Riemann solver was used in the calculations. The results are

hown in Table 1. The errors are expressed with the L1 and Linf norms

f the hydraulic depth h. Results indicate the scheme to be 2nd order

ccurate.

The water surface profile for the simulation with 
x = 2 m is

hown in Fig. 7.

.1.5. Propagation of a sediment hump

We reproduced the movable bed test case, as described by Lyn and

ltinakar [18], of the propagation of a sediment hump. The simulated

est case is the one termed as “Near Critical, High-Transport Case” in

he paper.
oblem. Water surface profile for the simulation with 
x = 2 m.
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Fig. 8. Numerical solution for the sediment hump propagation test case at t = 15 s. Normalized bottom profile (upper panel); normalized hydraulic depth (lower panel). The Roe

Riemann solver was used in the simulations.
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The test case involves the propagation of a small bed distur-

ance in a channel subject to a uniform flow with Froude number

U = 0.96, constant hydraulic depth hU = 1.0 m and thalweg eleva-

ion bU = 0.0 m. The cross-section of the channel is rectangular with

nit width. The initial disturbance on bottom topography is defined

y the following:

0(x) = 
 · e−x2

(61)

he bed perturbation amplitude is chosen to be very low and it is set

o 
 = 10−5 m.

The bedload transport equation used is the Grass equation [12]:

s = Ag · (u − ucr)
mg · σT (62)

here u is the flow velocity, Ag and mg are calibration parameters

sed to model the interactions between sediments and flow and ucr

s a critical flow velocity for bedload transport initiation. In the sim-

lation, it was chosen Ag = 3.4 × 10−4 and mg = 2.65. The volume

raction was chosen to be φ = 0.6. Finally, the critical flow velocity

cr was set in order to adjust the nondimensional bedload transport

arameter, used in Lyn and Altinakar [18] to linearize the set of equa-

ions:

U = 1

φhU

· ∂(Qs/σT )

∂u
(63)

or the present test case it was set ψU = 2.5 × 10−3. The enforced

oundary conditions are the ones of the uniform flow away from the

ediments hump. The initial condition corresponds to the fixed bed -

teady flow water surface profile over the hump. The analytical solu-

ion is found by linearizing the system of equations about the uniform

ow. The grid spacing was set to 
x = 0.05 m.

Fig. 8 shows the resulting normalized water surface and bottom

rofiles after 15 s of simulation.

The comparison with the analytical solution indicates the capabil-

ty of our scheme to fully capture the direction and celerity of propa-

ation of bed and water surface disturbances.
Please cite this article as: L. Minatti et al., Second order discontinuous G
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.1.6. Flood wave in the Ombrone Pistoiese river

The propagation of a flood wave along a reach of the Ombrone

istoiese river (Tuscany, Italy) is simulated in the present test case.

he simulated river reach is 6 km long with a bed slope of 0.06%;

t includes the gauge station of Poggio a Caiano (Pistoia) installed

pstream of a bridge where flow discharge measurements were

arriedout. This reach is described through 142 compound cross-

ections. The average width for the main channel is about 20 m

hile the side overbanks are 10 m wide in average. Also it was taken

50 = 0.011 m from field samples of bed material and Manning co-

fficient is set equal to 0.036 s/m1/3 for channel and 0.083 s/m1/3 for

anks. The Manning coefficients were chosen in order to reproduce

he existing steady flow rating curve for the station. The volume frac-

ion was chosen to be φ = 0.6.

The following boundary conditions are enforced: at the upstream

oundary a 2 year return period hydrograph with a peak discharge

f 285 m3/s, at the downstream boundary the steady flow water lev-

ls. Results in Fig. 9 show a comparison between the rating curves

btained from interpolation of field measurements and from the nu-

erical model.

The comparison is encouraging as the numerical scheme captures

he interpolated rating curve and the observed data. In particular,

he measurement of December 9th, 2006 was taken while the wa-

er levels were decreasing, that is during the descending phase of the

ow hydrograph; this aspect is reproduced by the numerical scheme.

lso, the January 17th, 2008 measurement was taken during the in-

reasing phase of hydrograph; this also is correctly reproduced by the

cheme.

.2. Computation of rating curves

Results from test case of Section 4.1.3 are now extended by con-

idering different contractions coefficients c: namely a mild (c = 0.8),

edium (c = 0.5), and strong (c = 0.2) contraction ratio. Numeri-

al simulations are carried out with both fixed and movable bed
alerkin scheme for compound natural channels with movable bed.
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Fig. 9. The rating curves in steady flow condition (black curve) and unsteady flow condition in movable bed (grey curve) in comparison with data from calibration (black points)

and field measurements (black square and star) at the gauging station in Poggio a Caiano (Pistoia, Italy).

Fig. 10. The rating curves in fixed (upper panel) and movable (lower panel) bed conditions in the cross-section A-A’ when c = 0.8. The 2nd order simulation was performed with

the moderately stiff source term predictor step.
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Fig. 11. The rating curves in fixed (upper panel) and movable (lower panel) bed conditions in the cross-section A-A’ when c = 0.5. The 2nd order simulation was performed with

the moderately stiff source term predictor step.
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onditions. In the latter case, the total sediment load formula by Ack-

rs and White [29] is adopted with D35 = 0.002 m. The volume frac-

ion was chosen to be φ = 0.6. The inflow hydrograph is the same

sed in Section 4.1.3. Moreover, results are also compared with the

st order version of the present scheme.

As in Section 4.1.3, rating curves have been calculated in the cross-

ection A-A’ (see Fig. 5), where they are not affected by the presence

f the hydraulic jump that might establish after the channel contrac-

ion; this is to replicate what can be commonly observed in river

onitoring stations, where water level gauges are typically located

n bridges upstream of width narrowing.

Fig. 10 shows the rating curves in the case of the mild contraction

atio (c = 0.8). It appears that the results at the 2nd order overlap

ith the ones at the 1st order. This finding is confirmed in the case

f movable bed; a slight deviation can only be detected in the falling

imb at lower discharges.

In the case of the medium contraction coefficient c = 0.5, re-

ults in Fig. 11 show that two schemes provide identical rating

urves when the bed is fixed; however, in the case of movable

ed, a deviation occurs during the falling limb for discharges lower

han about 75 m3/s. The scheme at the 1st order of accuracy pre-

icts a sudden reduction of flow levels and the classical loop shape

f the rating curve almost disappears. Interestingly, the movable

haracter of the bed and in particular the local scour at the chan-

el constriction, enhances the hysteretic behavior of rating curves
Please cite this article as: L. Minatti et al., Second order discontinuous G
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s the difference in the rising and falling limbs becomes more

ronounced.

When a strong contraction is considered (c = 0.2), the rating

urves predicted by the two schemes considerably deviate both in

xed and movable bed conditions; see Fig. 12. In particular, in fixed

ed conditions, for a given water level, the 1st order scheme greatly

verestimates flow discharges of about 40%. Also, the rating curve

ith the 1st order scheme appears to have a rather regular shape,

herefore it is not possible to detect this misleading result just by vi-

ual inspection, without a comparison with the results at the 2nd or-

er of accuracy. In movable bed conditions (Fig. 12), the rating curve

t 1st order attains a rather irregular behavior with the falling limb

rossing the rising limb due to a sudden increase of flow discharge

ogether with a reduction of water level.

. Discussion and conclusions

In the present work a 1D model based on a higher order numerical

cheme for simulating flood wave propagation on a natural channel

ith a movable bed has been presented. An important feature of the

cheme is represented by its ability at treating the moderately stiff or

tiff source terms that may appear in the governing equations due to

he occurrence of abrupt changes in the channel geometry.

After the validation of the scheme, its application to the com-

utation of flow rating curves in a schematic channel with a
alerkin scheme for compound natural channels with movable bed.
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Fig. 12. The rating curves in movable bed conditions in the cross-section A-A’ when c = 0.2. The 2nd order simulation was performed with the stiff source term predictor step.

Fig. 13. Rating curves predicted by 1st and 2nd order schemes in case of different cross-section spacing and in fixed bed conditions, c = 0.2.

c

1

c

a

s

contraction was presented. The used configuration mimics what

can be typically found in rivers, where water level gauges

are installed on bridges. In these conditions, rating curves can

be directly influenced by the channel narrowing since back-

water effects and transition through the critical state may

occur.
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Simulations were shown considering both fixed and movable bed

onditions and using the present 2nd order numerical scheme and its

st order version. The channel contraction was specified using classi-

al geometrical representation by means of four cross-sections, with

constant spacing of 8 m. Results show that, with the chosen grid

pacing, rating curves are correctly reproduced only when the 2nd
alerkin scheme for compound natural channels with movable bed.
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rder scheme with source terms treatment is employed; a 1st order

cheme leads to erroneous results greatly overestimating flow dis-

harge for the given water level.

Much smaller grid spacings of 2 m and 1 m in the contracted

each are now considered. Results in Fig. 13 show a comparison

etween the rating curves considering the different spacings both

t the first and the second order of accuracy. It appears that re-

ults with 1st order scheme are crucially dependent on grid-spacing

hile this dependence is almost negligible at the 2nd order of ac-

uracy. In the case of the tight spacing of 2 m, and more strongly in

he case of 1 m, the 1st and the 2nd order schemes provide similar

esults.

This finding is not surprising as 1st order schemes might suffer

rom an inaccurate representation of source terms. The fact that the

esults from the 1st order scheme overlap with the ones from the

nd order scheme, only when grid spacing is drastically reduced, em-

hasizes the issue of the proper geometrical channel representation

n terms of cross-section spacing in 1D models. Classical represen-

ation of channel obstructions by means of four cross-sections may

ead to inaccurate results and misleading rating curves with 1st order

chemes. On the other hand, 2nd order schemes are capable of repro-

ucing robust rating curves which are less affected by cross-sections

pacing.

Moreover, if the common four cross-sections representation

s used, results suggest that rating curves should be com-

uted by using more robust higher-order numerical schemes in-

luding special treatment for moderately stiff or stiff source

erms.
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ppendix A

Modal bases functions are orthonormal bases for the space of

olynomials either on the normalized space element [0, 1] or space-

ime element [0, 1] × [0, 1] according to the accuracy of the scheme.

The following table shows linear and quadratic space and space-

ime bases functions. Expressions of the functions can be obtained

tarting from a generic set of bases and using the Gram-Schmidt or-

honormalization process (see Hoffman and Kunze [30]).

Finally, expression for the matrices needed for the higher or-

er version of the scheme are shown for N = 3 (2nd order accurate
Table A1

Space and space-time modal bases expression for schemes with up to

3rd order accuracy.

N0 N φ(ξ ) θ (ξ , τ )

2 3 φ1 = 1 θ1 = 1

φ2 = √
3 · (2ξ − 1) θ2 = √

3 · (2ξ − 1)
θ3 = √

3 · (2τ − 1)
3 6 φ1 = 1 θ1 = 1

φ2 = √
3 · (2ξ − 1) θ2 = √

3 · (2ξ − 1)
φ3 = √

5 ·
(
6ξ 2 − 6ξ + 1

)
θ3 = √

5 ·
(
6ξ 2 − 6ξ + 1

)
θ4 = √

3 · (2τ − 1)
θ5 = 3 − 6ξ − 6τ + 12ξτ

θ6 = √
5 ·

(
6τ 2 − 6τ + 1

)

t

t

P

b
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cheme) and for the bases functions of Table A.1:

τ
kl =

⎛⎝0 0 2
√

3

0 0 0

0 0 0

⎞⎠ (A.1)

kl = I3 (A.2)

ith IN being the identity matrix of order N.

(1)
kl

=

⎛⎜⎝ 1 0
√

3

0 1 0
√

3 0 1

⎞⎟⎠ (A.3)

(0)
kl

=

⎛⎝ 1 0

0 1

−√
3 0

⎞⎠ (A.4)

ppendix B

redictor step for non stiff or moderately stiff source terms

Eq. (33) is specialized for a 2nd order accurate scheme, with the

ases indicated in Table A.1 and for the model equations introduced

n Section 2 for which ω = x.

In this case, the initial condition of Eq. (36) provides:

q1,i − √
3q3,i = Un

1,i

q2,i = Un
2,i

μ1,i = xi−1/2 + xi+1/2

2

μ2,i =
√

3

6

xi

(B.1)

s far as the pure time mode q̃3 is concerned, the following equations

re obtained from Eq. (33):

q3,i + 
t


xi

∫∫
ε̇i

A
(
W̃h,i

)
· q2,idξdτ−

√
3
t

6

∫∫
ε̇i

(S − V)
(
W̃h,i

)
dξdτ = 0

μ3,i = 0

(B.2)

The first equation in B.2 is a nonlinear equation in qk,i, k = 1..3.

ith simple algebraic manipulations, using also Eq. B.1, it can be cast

n the form q3,i = η0 + f
(
q3,i

)
, with η0 being a known term. It can be

olved through the following iteration scheme, with qk
3,i

indicating

he solution at the k-th iteration:

1. Check if q
(k)
3,i

solves the equation with a reasonable error. If it does,

then halt iterations. Go to step 2 otherwise.

2. Evaluate q
(k+1)
3,i

= η0 + f

(
q
(k)
3,i

)
.

3. Increase iteration counter k and go to step 1.

The stationary solution q
(0)
3,i

= 0 may be chosen as initial guess for

he iterations.

redictor step for stiff source terms

Eq. (38) is specialized for a 2nd order accurate scheme, with the

ases indicated in Table A.1 and for the model equations introduced
alerkin scheme for compound natural channels with movable bed.

ources (2015), http://dx.doi.org/10.1016/j.advwatres.2015.06.007

http://dx.doi.org/10.1016/j.advwatres.2015.06.007


16 L. Minatti et al. / Advances in Water Resources 000 (2015) 1–16

ARTICLE IN PRESS
JID: ADWR [m5G;July 15, 2015;19:44]

[

[

[

[

[

[

in Section 2 for which ω = x. The following system of nonlinear alge-

braic equations is obtained:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q1,i + √
3q3,i − Un

1,i
+ 
t


xi

∫∫
ε̇i

2
√

3A
(
W̃h,i

)
· q2,idξdτ

−
t

∫∫
ε̇i

(S − V)
(
W̃h,i

)
dξdτ = 0

q2,i − Un
2,i

+ 
t


xi

∫∫
ε̇i

√
3(2ξ − 1) ·

(
2
√

3A
(
W̃h,i

)
· q2,i

)
dξdτ

−
t

∫∫
ε̇i

√
3(2ξ − 1) · (S − V)

(
W̃h,i

)
dξdτ = 0

q3,i − √
3q1,i + √

3Un
1,i

+ 
t


xi

∫∫
ε̇i

√
3(2τ − 1) ·

(
2
√

3A
(
W̃h,i

)
· q2,i

)
dξdτ

−
t

∫∫
ε̇i

√
3(2τ − 1) · (S − V)

(
W̃h,i

)
dξdτ = 0

(B.3)

Eqs. B.3 can’t be solved by using an iterative scheme such as the

one used for the non stiff source term case. A more sophisticated

technique, like the inexact Newton method algorithm with back-

tracking proposed by Pernice and Walker [31], should instead be

used.

Corrector step

Eq. (54) is specialized for a 2nd order accurate scheme, with the

bases indicated in Table A.1 and for the model equations introduced

in Section 2 for which ω = x. Note that in this case the geometry func-

tion ω is a linear continuous function and the (D + 1)-th component

of the predicted state μh, i can exactly be reproduced starting from a

2nd order scheme. Therefore μh, i does not show discontinuities at

interfaces and the I±
i+1/2

terms disappear in Eq. (54). The resulting

scheme is as follows:⎧⎪⎨⎪⎩
Un+1

1,i
= Un

1,i
− 
t


xi

(
H+

i−1/2
+ H−

i+1/2
+ L1,i

)
Un+1

2,i
= Un

2,i
+ 
t


xi

(√
3H+

i−1/2
−

√
3H−

i+1/2
− L2,i

) (B.4)
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