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Abstract

Cognitive control enables individuals to rapidly adapt to changing task demands.

To investigate error-driven adjustments in cognitive control, we considered per-

formance changes in post-error trials, when participants performed a visual search

task requiring to detect angry, happy, or neutral facial expressions in crowds of

faces. We hypothesized that the failure to detect a potential threat (angry face)

would prompt a different post-error adjustment than the failure to detect a non-

threatening target (happy or neutral face). Indeed, in three sets of experiments

we found evidence of post-error speeding, in the first case, and of post-error

slowing, in the second. Previous results indicate that a threatening stimulus can

improve the efficiency of visual search. The results of the present study show

that a similar effect can also be observed when participants fail to detect a threat.

The impact of threat-detection failure on cognitive control, as revealed by the

present study, suggests that post-error adjustments should be understood as the

product of domain-specific mechanisms that are strongly influenced by affec-

tive information, rather than as the effect of a general-purpose error-monitoring

system.
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1. Introduction

A fundamental aspect of cognitive control is the ability to monitor the out-

comes of our actions in order to correct our errors. A common finding in choice-

reaction time tasks is that response latencies tend to increase on trials following

errors. This post-error adjustment is generally referred to as post-error slowing

(PES; Rabbitt, 1966; Laming, 1979).

PES is a robust phenomenon that has been observed in a great variety of dif-

ferent tasks, including Stroop (Gehring & Fencsik, 2001), flanker (Cavanagh,

Cohen, & Allen, 2009; van Veen & Carter, 2002), simple forced-choice and

go/no-go (Jones, Cho, Nystrom, Cohen, & Braver, 2002), Simon (Fan, Flom-

baum, McCandliss, Thomas, & Posner, 2003), and categorization (Jentzsch &

Dudschig, 2009) tasks. Despite the large number of studies, however, the cogni-

tive and neural mechanisms involved in PES are still debated. As pointed out by

Gehring et al. (2012), one problem in the study of PES is identifying the function

of slowing.

Functional accounts, such as the conflict monitoring theory (Botvinick, Braver,

Barch, Carter, & Cohen, 2001; Botvinick, Cohen, & Carter, 2004), the inhibition

account (Marco-Pallares et al., 2008; Ridderinkhof, 2002), and the reinforce-

ment learning theory (Holroyd & Coles, 2002), share the common idea that PES
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reflects a strategic increase in control aimed at reducing the probability of an er-

ror (for a discussion, see Houtman and Notebaert, 2013). Because the literature

indicates that post-error behavioral adjustments correspond to an increase in the

reaction times (RTs) and to an increase, or (more often) to a non-decrease, in

accuracy, then in general error reactivity is understood as an increase in response

caution.

However, PES might not necessarily be the expression of an adaptive mech-

anism aimed at improving performance. Instead, PES might occur because error

processing has a detrimental effect on subsequent information processing. In

fact, non-functional accounts of PES predict a decrement in performance after

an error (longer RTs and a decrease in accuracy), because error monitoring sub-

tracts cognitive resources from a capacity-limited central information processor

(bottleneck error-monitoring theory; Dudschig & Jentzsch, 2009; Jentzsch &

Dudschig, 2009) or because errors, being infrequent and salient events, divert

attention toward them (orienting account; Notebaert et al., 2009). Also the non-

functional accounts of PES, therefore, predict a decrement in performance after

an error.

In their review, Danielmeier and Ullsperger (2011) point out that there is ev-

idence for both functional and non-functional accounts of error reactivity and

that these accounts are not mutually exclusive. The available evidence thus indi-

cates that error reactivity comprises different components and it is not always an

adaptive response.

In the present study we will focus on the adaptive component of error re-

activity. According to the functional accounts of error reactivity, the prolonged

reaction times subsequent to errors reflect an increase in response caution. But
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do reaction times always slow down after an (infrequent) error2?

To determine whether error reactivity leads necessarily to an increase in re-

sponse caution, we used an experimental design that differs in three main re-

spects from the vast majority of studies on error reactivity. Almost all studies on

error reactivity make use of neutral stimuli void of affective components, employ

experimental designs based on speeded RT tasks that usually produce sub-second

response times, and use short response-stimulus intervals (RSI). In order to em-

phasize the strategic planning that may occurs in natural settings after an error

(which may differ from the responses elicited by the aforementioned methods),

in our experiments we used affective stimuli that have a motivational signifi-

cance, a visual search task that requires relatively long response times (e.g., the

search for one angry face in a crowd of happy faces), and longer RSIs.

In the present visual-search experiments, the presence/absence of a threat in

the target item was the key factor that was manipulated in the attempt to acti-

vate adaptively different post-error adjustments. In a visual search task in which

the target is a valenced face (angry, happy, or neutral), an error corresponds to

the failure to detect either a nonthreatening (happy or neutral) or a threatening

(angry) target. In general, these two errors have very different potential conse-

quences for the individual.

The failure to detect a nonthreatening target mimics a situation that is void of

2It has been shown that the sign of the post-error adjustments (slowing vs. speeding) depend

on the frequency of errors in the experiment. When the proportion of errors is low, post-error

slowing is observed; when the proportion of errors is high, post-error speeding is observed. This

result has been explained by the orienting account by arguing that frequent errors are not sur-

prising and, therefore, they do not orient attention toward them and away from the task (Desmet,

Fias, Hartstra, & Brass, 2011; Notebaert et al., 2009).
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aversive consequences for the individual. In functional terms, this kind of error

is similar to the errors that are studied in the literature on PES. For this kind of

errors, increasing post-error response caution to improve future performance is

an adaptive behavioral adjustment. In fact, there is no cost if the individual fails

to react quickly.

A very different situation arises if the target represents a potential threat (e.g.,

an angry face), given that the failure to detect a threat is a serious risk to an indi-

vidual’s safety. From an evolutionary perspective, individuals must rapidly iden-

tify the source of a threat and act effectively to avoid potential danger (Mathews,

1990). Several lines of evidence suggest that threatening events generate defen-

sive reactions which mobilize the defensive motivational system of the organism

(Bradley 2000; Cuthbert et al. 2000; Lang, Bradley, & Cuthbert, 1997; Wein-

berg, Riesel, & Hajcak, 2012). A defensive reaction typically increases attention

and readiness for action in order to cope with the threat.

The fact that failing to detect a threatening or a nonthreatening target pro-

duces different consequences for the individual has led us to hypothesize that

error reactivity may also take on different forms in the two cases. We propose

that the failure to detect a threatening target in a visual search task may prompt a

defensive reaction also in the laboratory, thus producing a transient enhancement

in visual search efficiency in the following trial (i.e., a RTs decrease in the post-

error trial without an accuracy cost), compared to the search efficiency after a

correct trial, or after failing to detect a non-threatening target. As a consequence,

we hypothesize that the failure to detect a threatening target may lead to a re-

duction of PES, or even to post-error speeding. This result would be important

for the theories on error reactivity because it would question the idea that error

reactivity necessarily leads to an increase in response caution.
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1.1. Threat-relevant stimuli: increased alertness and processing efficiency

Ethologically oriented psychologists have advanced the notion of a “defense

system” concerned with the detection and amelioration of both physical and so-

cial potential threats to security (e.g., Marks & Nesse, 1994; Masterson & Craw-

ford, 1982; Trower, Gilbert, & Sherling, 1990). Indeed, several lines of evidence

suggest that stimuli with threat significance are processed in a privileged manner

(Maior et al., 2012). (1) Angry faces are more effective as conditioned stim-

uli for aversive unconditioned stimuli than happy and neutral faces. Moreover,

responses to angry conditioned faces are more resistant against extinction than

happy or neutral conditioned faces (Öhman & Dimberg, 1978). (2) Stimuli such

as angry faces, spiders, or aversive pictures induce behavioral effects even when

subjects are unaware of them (Gelder, Morris, & Dolan, 2005; Morris, Öhman,

& Dolan, 1998, 1999). (3) In visual-search tasks, the search for threatening

targets requires smaller reaction times (RTs) than the search for nonthreatening

targets (Öhman, Flykt, & Esteves, 2001; Flykt, 2005). (4) The presentation of

a threat-relevant stimulus can facilitate early vision. For example, contrast sen-

sitivity improves after the presentation of a threatening face, but not after the

presentation of a neutral face or an upside-down threatening face (Phelps, Ling,

& Carrasco, 2006).

It has been argued that visible and abstract potential threats elicit different

responses (Eilam, Izhar, & Mort, 2011). The defensive behavior elicited by a

perceptible threat takes on three forms: freezing (to hide from the enemy’s at-

tention), fleeing (to increase the distance from the danger) or fighting (to dis-

suade the enemy). The defense response elicited without an identifiable trig-

gering threat, instead, manifests itself in the form of as an increased vigilance

with the purpose of gathering information about the potential threat, in order to
6



produce an optimal response.

We hypothesize that the awareness of having failed to detect the presence

of a threat may act as an internal cue (i.e., a not identifiable triggering threat)

that elicits a defensive reaction. This defensive reaction may make the individ-

ual more vigilant and alert, thus facilitating response preparation and/or decision

making in order to select an appropriate action (Keil et al., 2010; Lang, Bradley,

& Cuthbert, 1997). For example, in a recent study by Fernandes et al. (2013),

the activation of defensive response strategies was triggered by emotional stim-

uli depicting a threat directed either toward or away from the observer (i.e., by

pictures of a man pointing a gun toward the observer or away from him). Par-

ticipants were instructed to judge the orientation of two peripheral bars, while

ignoring the task-irrelevant central image (a threatening image or a neutral im-

age). Fernandes et al. found faster RTs in the bar orientation discrimination task

when the threat was directed toward the observer than in the control condition,

with no decrease in accuracy. Conversely, when the threat was directed away

from observer, RTs were slower than in the control condition.

In summary, several lines of evidence indicate that the presence of a threat,

because of its social and biological relevance, can induce specific attention,

learning, and visual advantages. The signals of an imminent threat can be ex-

ternal or internal. The purpose of the present study is to determine whether the

awareness of the failure to detect a threat, because of its risks for the individual,

and because of the necessity of locate the source of a potentially persisting dan-

ger, can induce a defensive behavior. According to the defense cascade model

(Fanselow, 1994; Lang, Bradley, & Cuthbert, 1997), the defensive behavior is

characterized by cognitive changes “that are consistent with threat-unspecific hy-

pervigilance to all stimuli in the environment” (Weymar, Keil, & Hamm, 2013).
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We therefore expect that, for the failure to detect a threatening target, error reac-

tivity may take on the opposite form than PES, that is, it may manifest itself as

post-error speeding.

1.2. The anger superiority effect

The use of a visual search task requiring to detect a discrepant face in crowds

of faces is particularly suited to study the modulation of cognitive control af-

ter an error. With such a task, in fact, the failure to detect a threatening or a

nonthreatening target calls for opposite post-error adjustments.

A rich literature has tried to understand whether, in a visual-search task, there

is a processing advantage for angry as opposed to happy faces. The typical find-

ing is that angry faces are detected more efficiently than happy faces among a

crowd of distractors (Hansen & Hansen, 1988; Öhman, Lundqvist, & Esteves,

2001). The most recent literature, however, has challenged this “anger superi-

ority effect” (ASE) by pointing out that it strongly depends on the presence of

low-level visual features, which naturally co-occur with the expression of anger

(Becker, Anderson, Mortensen, Neufeld, & Neel, 2011). A recent study, for

example, has concluded that “prior reports of anger or happiness superiority ef-

fects in visual search are likely to reflect on low-level visual features associated

with the stimulus materials used, rather than on emotion” (Savage, Lipp, Craig,

Horstmann, & Becker, 2013, p. 758).

Another important consideration is that most studies on the ASE have used

static displays whereas, in natural settings, emotional expression can only be

transmitted through motions resulting from face deformations (Arsalidou, Mor-

ris, & Taylor, 2011; Pilz, Vuong, Bülthoff, & Thornton, 2011). In a previous

study, which investigated the ASE under both static and dynamic conditions, we
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indeed found evidence for an ASE when using dynamic displays of facial expres-

sions, but not when the emotions were expressed by static face images (Ceccarini

& Caudek, 2013).

If the dynamics of facial emotions facilitate the ASE, then it is important

to use dynamic stimuli to study the control adjustments that take place after

participants fail to detect a threatening target. For this reason, in the present

study the post-error adjustments were investigated using dynamic faces.

2. Experiment 1

In Experiment 1, participants completed a visual search task for angry, happy,

or neutral expressions in crowds of discrepant faces (angry, happy, or neutral).

Each face image simulated the rigid three-dimensional (3D) rotation from the

view of the individual’s profile to the full frontal view of the face (Figure 1A). A

rigid rotation about the y-axis does not produce ecologically valid dynamic ex-

pressions. Such a display, in fact, has the properties of a static image, while also

providing dynamic cues (although unrelated to the unfolding of facial expres-

sions). The stimuli of Experiment 1, therefore, are not optimal for observing the

ASE and the expected post-error adjustments. If we find evidence that, also in

these conditions, post-error adjustments are modulated by the presence/absence

of a threat, that would strengthen our argument.

————– Please insert Figure 1 about here ————–
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2.1. Method

2.1.1. Participants

A total of 17 undergraduate students from the University of Florence partici-

pated in the experiment. All participants were naïve to the purpose of the study

and had normal or corrected-to-normal vision. Participation was voluntary.

2.1.2. Apparatus

Stimulus presentation and data acquisition were conducted using a PC-com-

patible computer (Dell Precision PWS690, Intel Xeon X5355 at 2.66 Ghz, NVIDIA

Quadro FX 4600) connected to a 19-inch video monitor (Philips Brilliance 109P4)

operating at 75 Hz. A custom Visual C++ program was used for stimulus pre-

sentation and response recording.

2.1.3. Stimuli

Twelve caucasian facial identities (six males and six females) were gener-

ated with the FaceGen software. For each facial identity, we create 3 three-

dimensional (3D) models, each with a different facial expression (angry, happy,

and neutral). These 36 facial models were then processed with the 3dStudio

Max software in order to equate illumination intensity and illuminant direction

in each face. For each 3D face model, we generated 30 images representing the

face orientations after successive 3◦ rotations about the y-axis. Such images were

then transformed into video sequences (30 fps) with the Flash CS5 software. The

duration of each video sequence was 1000 ms.

Each stimulus display presented 12 dynamic faces rotating in synchrony from

the view of the individual’s left profile to the full frontal view of the face. The po-

sitions of the face images within the stimulus displays were determined randomly
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on each trial, with the constraint that the minimum distance between the (200 ×

200 pixels) regions containing each face was at least 10 pixels (Figure 1D).

Visual feature confounds. Becker et al. (2011) provide a number of method-

ological recommendations for studying the ASE. They suggest to vary set sizes

to compare search efficiency between stimulus types, to keep constant the con-

tent of the distractor crowds across different targets types, to require participants

to consciously search for a particular kind of expression, and to use dyshomoge-

nous distractors. In particular, they stress the necessity to rule out the possibility

that low-level visual features could account for the effect (see also Horstmann &

Bauland, 2006; Pinkham, Griffin, Baron, Sasson, & Gur, 2010; Purcell, Stew-

art, & Skov, 1996; Purcell & Stewart, 2010; Savage et al., 2013). To address

this latter issue, we measured the bottom-up visual salience of the full frontal

views of the face images by means of Itti and Koch’s model of visual attention

(Itti & Koch, 2000, 2001; Koch & Ullman, 1985). The model analyzes natural

images by extracting low-level features such as intensity, color, and orientation

at a range of spatial scales. The maps generated for each image feature are then

combined to create a saliency map, with locations of higher salience being more

likely to be fixated (Parkhurst, Law, & Niebur, 2002).

By using the last frame of the 36 video sequences (full frontal view of the

twelve facial identities, each with an angry, happy, or neutral expression), we

generated 8640 images comprising one target face and eleven distractors. Each

image was divided into an evenly spaced 4 × 3 grid, with each cell covering

320 × 256 pixels. Each facial identity (target), with an angry, happy, or neutral

emotional expression, was positioned (in different images) within each cell of the

grid; the eleven remaining facial identities (distractors), having a discrepant but

homogeneous facial expression, were randomly positioned in the remaining grid
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cells (Figure 2A). These images were then processed with the SaliencyToolbox

2.2 software for MATLAB, with the standard settings (Walther and Koch, 2006;

http://www.saliencytoolbox.net/). For each image, we computed the total

activation within the cell containing the target face (Calvo & Nummenmaa, 2008;

Ceccarini & Caudek, 2013; Humphrey, Underwood, & Lambert, 2012). On

average, the angry and happy target faces did not differ in terms of their bottom-

up salience, t2879 = 0.46, p = .6459. The neutral target faces, instead, had a

lower bottom-up salience relative to both angry (t2879 = −347.71, p = .0001)

and happy (t2879 = −324.17, p = .0001) target faces.

————– Please insert Figure 2 about here ————–

2.1.4. Procedure

Each trial began with the presentation of a fixation cross (500 ms) followed

by the presentation of a random arrangement of twelve dynamic faces (1000 ms).

Each face was shown as rotating about a vertical axis from the sideway position

to the full frontal view. All faces were removed from the screen after they com-

pleted the 900 rotation and the screen remained blank until the participants’ re-

sponse. Participants were free to respond also after the stimulus had disappeared

from the screen. The interval between successive trials was set to 2500 ms and

was initiated by the participant’s response. Participants were asked to indicate

with a key-press whether all faces showed the same expression or whether one

face showed an expression differing from the others. Participants were instructed

to perform the task as quickly and accurately as possible. No feedback on correct

or incorrect responses was provided. RTs were measured from onset of stimuli.

12
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Each session consisted of two blocks of 162 trials presented in a random order

and separated by a 10 minutes break. The first block of trials was preceded by

20 practice trials.

2.1.5. Design

There were nine different target-distractor combinations: aTnD, aThD, hTaD,

hTnD, nThD, nTaD, neutral, angry, happy, where the lowercase letters a, h,

and n denote “angry”, “happy”, and “neutral” faces, respectively; the uppercase

letters T and D denote “target” and “distractor”, respectively. So, the string aTnD

denotes the trials with an angry target face in a neutral crowd. The conditions

neutral, angry, and happy are the target-absent conditions with neutral, angry,

and happy faces, respectively. In Experiment 1, each of the nine conditions was

repeated 36 times, for a total of 324 trials per participant.

2.2. Statistical analyses

Post-error RT adjustments were computed as indicated by Dutilh et al. (2012),

that is, as PESrobust = RTN+1− RTN-1, where N, N+1, and N−1 denote the trials

in which an error is committed, and the following and the preceding trials, re-

spectively. PESrobust describes the fluctuations in the RTs surrounding an error

and is obtained by computing the difference RTN+1− RTN-1 within each triplet of

successive correct/error/correct trials, and then by averaging the results over all

triplets of trials with a similar structure. Instead, in the traditional method for

quantifying the PES, the mean RT (MRT) of all post-correct trials is subtracted

from the MRT of all post-error trials: PEStraditional = MRTpost-error−MRTpost-correct.

PESrobust is more robust than PEStraditional because it takes into consideration the

fact that error trials are not evenly distributed across the time series (see Ap-

pendix A). In computing post-error RT adjustments, we only considered the se-
13



quences of trials in which N−1 and N+1 were correctly performed trials. For

comparison purposes, the potential post-correct RT adjustments were also com-

puted, in a similar manner to PESrobust, by considering all groups of three succes-

sive correct trials.

Statistical analyses of various effects were done by means of linear mixed-

effects (LME) models (for RTs) and generalized mixed-effects (GLME) models

with a binomial link function (for error rates) (Pinheiro & Bates, 2000). LME

and GLME models allow to consider simultaneously the standard fixed-effects

factors controlled by the experimenter and also the random-effects factors. For

the LME and GLME models used in this study, random effects consisted of par-

ticipants (modeling both slopes and intercepts) and stimulus ID (modeling inter-

cepts only) (e.g., Barr, Levy, Scheepers, & Tily, 2013; Caudek, 2013; Caudek &

Domini, 2013; Caudek & Monni, 2013; Sica, Caudek, Chiri, Ghisi, & Marchetti,

2012). Models were fitted using Restricted Maximum Likelihood (REML). We

used R (R Core Team, 2013), lme4 (Bates, Maechler, Bolker, & Walker, 2014),

nlme (Pinheiro, Bates, DebRoy, Sarkar & R Core Team, 2014), and lmerTest

(Kuznetsova, Brockhoff, & Christensen, 2014). p-values were estimated by like-

lihood ratio tests of the full model with the effect in question against the model

without the effect in question and by using the Satterthwaite and Kenward-Roger

(KR) approximations of the degrees of freedom. The RT outliers (trials outside

the range of the mean reaction time ± 2.5 standard deviations) were discarded

(less than 1%). Visual inspection of residual plots did not reveal any obvious

deviations from homoscedasticity or normality.

There are several advantages that comes from adopting mixed-effect linear

models over the traditional ANOVA approach (Baayen, Davidson, & Bates,

2008; Gelman & Hill, 2007): LME models (1) allow correlated observations

14



within a unit or cluster of observations; (2) provide a greater statistical power for

the analysis of repeated observations; (3) allow to model heteroskedasticity and

non-spherical error variance; (4) provide a flexible method of dealing with miss-

ing data. Given that the number of errors made by each participant is not under

the experimenter’s control, the data of the present experiments are necessarily

unbalanced. Whereas LME models are robust in the analysis of unbalanced

data, this situation is highly problematic for the traditional repeated-measures

ANOVA.

2.3. Results

Post-error and post-correct RT adjustments. The mean post-correct and post-

error RT adjustments as a function of Condition (aThD, aTnD, hTaD, hTnD,

nTaD, nThD, angry, happy, neutral) are shown in Figure 3, top panel. An LME

model with participants and stimulus ID as random effects, and with fixed ef-

fects for Condition and Performance Accuracy (correct/incorrect trial) revealed

a statistically significant effect of Condition on the RT adjustments, χ2
1 = 41.05,

p = .0001. The effect of Performance Accuracy was not statistically significant,

χ2
1 = 1.80, p = .180, and neither was the Condition × Performance Accuracy

interaction, χ2
8 = 9.83, p = .2770. An angry target face in a happy crowd, t3823

= 3.69, p = .0002, and an angry target face in a neutral crowd, t3823 = 3.21, p =

.0013, produced a statistically significant decrease in the RTs on the following

trial. This post-threat speeding was not modulated by Performance Accuracy. A

statistically significant increase in the RTs on the N + 1 trial was observed after

a neutral target face in a happy crowd, t3823 = 2.22, p = .0261, and after a target-

absent angry crowd, t3823 = 2.48, p = .0131. No significant effects were found

in the other target/distractors combinations. Contrast analysis showed that the
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combined aThD, aTnD conditions produced a post-threat speeding of -124 ms

(S.E. = 25 ms), t3830 = -4.87, p = .0001, and that participants took longer (164

ms) to respond on the N + 1 trial after a happy target face in a neutral crowd than

after an angry target face in a neutral crowd, z = 3.21, p = .0013.

————– Please insert Figure 3 about here ————–

Sequence effects for post-error RT adjustments. For error trials, sequence ef-

fects were examined with an LME analysis with participants and stimulus ID as

random effects, and with fixed effects for Condition on trial N − 1 and Condition

on trial N. The interaction ConditionN-1× ConditionN was not statistically sig-

nificant, χ2
63 = 62.56, p = .4921. Likewise, a separate analysis showed that the

interaction ConditionN× ConditionN+1 was also not statistically significant, χ2
64

= 55.73, p = .7598.

Anger superiority effect. Figure 4, top-left panel, provides a description of

the mean RTs for all the target-distractor combinations of Experiment 1. For

target-present trials, an LME analysis with participants and stimulus ID as ran-

dom effects, and with fixed effects for Condition indicated that Condition had a

statistically significant effect on the response latencies, χ2
5 = 21.51, p = .0006.

Contrast analysis showed slower RTs for an angry target face in a neutral crowd

than for a happy target face in a neutral crowd, z = 3.67, p = .0001; the average

of the mean RTs for angry target faces was lower than the average mean RTs for

all the other conditions, z = 3.72, p = .0001; the mean RTs for a happy target

face in an angry crowd did not differ from the mean RTs for an angry target face

in a happy crowd, z = 0.961, p = .651 (adjusted p values). Crowds of neutral

distractor faces produced slower RTs than crowds of angry distractor faces, t1629
16



= 2.571, p = .0102; no RTs difference was observed between crowds of angry

distractor faces and crowds of happy distractor faces, t1629 = 1.55, p = .1213.

————– Please insert Figure 4 about here ————–

Performance accuracy. The percentages of errors were 19%, 17%, and 8%

for nonthreatening targets, threatening targets, and target-absent trials, respec-

tively. False alarm rates were 7%, 7%, and 11% for target-absent trials in the

angry, happy, and neutral conditions, respectively. We analyzed the errors by

fitting a binomial logit random effects (GLME) model to the correct and incor-

rect responses, with participants and stimulus ID as crossed random effects. The

error rates were not affected by the presence/absence of a threatening target face

on trial N, z = 1.25, p = .211. Accuracy was significantly higher on target-

absent trials than on trial with nonthreatening target faces, z = 4.77, p = .0001.

A further GLME model with participants and stimulus ID as random effects,

and with fixed effects for Condition (aThD, aTnD, hTaD, hTnD, nTaD, nThD, an-

gry, happy, neutral) and Performance Accuracy (correct/incorrect trial) showed

that the probability of an error on trial N + 1 was not affected by any of these

two variables, nor by their interaction, χ2
17 = 20.93, p = .2296 (see Figure 5, top

panel).

————– Please insert Figure 5 about here ————–
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2.4. Discussion

Experiment 1 does not provide the optimal conditions for the ASE: Image

motion was generated by a rigid 3D rotation rather than by a 3D deformation,

the stimuli were synthetic face images rather than natural images, and we used all

the nine possible combinations of angry, happy, and neutral faces for the target-

distractor pairings (in order to minimize the possibility of anticipatory response

strategies – see Becker et al., 2011), rather than an asymmetry design. In spite

of these limitations, an ASE was found also within the present stimulus con-

ditions and, importantly, we found new evidence for post-threat speeding, after

both correct and error responses. Post-threat speeding can be interpreted as an

enhancement of processing efficiency, given that post-threat accuracy remained

constant (Figure 5). In these less-than-optimal conditions for the ASE, how-

ever, we did not find a heightened defensive behavior when participants failed to

detect a threatening target, relatively to when they correctly localized the threat-

ening target.

3. Experiment 2

In Experiment 2, we tried to isolate the best stimulus conditions for the ASE

and, therefore, for observing a post-error enhancement of vigilance after the fail-

ure to detect a threatening target. Participants completed a visual search task for

dynamic angry or happy expressions in crowds of neutral faces. The distractor

crowd was held constant for the two targets, so that the search speed through

the distractor crowds did not vary across target types. The dynamic stimuli were

natural faces selected from the Radboud Faces Database (Langner et al., 2010).
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4. Method

4.1. Participants

A total of 14 undergraduate students from the University of Florence partic-

ipated in Experiment 2. All participants were naïve to the purpose of the study

and had normal or corrected-to-normal vision. Participation was voluntary.

4.1.1. Apparatus and stimuli

The apparatus was the same as in Experiment 1. Stimuli were 3D face mod-

els of nine different facial identities showing angry, happy, and neutral facial

expressions (Figure 1, panel B). The stimuli were generated by following the

procedure described by Ceccarini and Caudek (2013). From the Radboud Faces

Database (Langner et al., 2010) – a standardized set of face images that display

facial expressions based on prototypes from the Facial Action Coding System

(FACS; Ekman, Friesen, & Hager, 2002) – we selected nine face identities, each

with three emotional expressions, with similar ratings of intensity of the expres-

sion, clarity of the expression, and genuineness of the expression. Each image

was cropped to remove hair and background. These 27 images were uploaded

into Facegen in order to create a 3D model of each face with the PhotoFit SDK

function. These 27 3D models were then processed with the 3dStudio Max soft-

ware in order to equate illumination intensity and illuminant direction in each

face.

In the Radboud database, the happy faces are represented with open-mouth

smiles and the angry faces are represented with the mouth closed. Previous

studies have shown that images of faces with an open mouth relative to close-

mouthed faces yield a simple visual feature (visible teeth) that can drive efficient

search (Becker et al., 2011; Purcell, Stewart, & Skov, 1996). To address this
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issue, following the same procedure described by Ceccarini and Caudek (2013),

we modified the nine happy face images with the 3dStudio Max software in order

to create 3D face models expressing happiness with a closed mouth.

The 3D face models were then transformed in video sequences (30 fps) by

means of the Flash CS5 software. The frame sequences representing the tempo-

ral unfolding of the angry, happy, and neutral expressions were generated by a

linear morphing between the untransformed images of the neutral faces selected

from the Radboud database and the happy and neutral face images transformed

as indicated above, or the fully-expressive untransformed angry faces. To gener-

ate dynamic faces with a neutral expression, we used the function PhotoFit SDK

of the FaceGen software that allows to produce realistic images of the spoken

phoneme /W/.

The duration of each video sequence was 1500 ms. Within this temporal

window, a neutral face was displayed for 300 ms, followed by the morphing

transition between the neutral face and the final expressive face (or the face with

the spoken phoneme /W/) (533 ms), and by the final expression of the face (677

ms). This procedure allows a precise control of the timing of the change without

sacrificing the realism of the expressive dynamics (e.g., Becker et al., 2012). The

duration of the temporal unfolding of facial expressions of emotion (533 ms) is in

line with other experiments generating dynamic facial expressions with methods

similar to the present study (e.g., Arsalidou, Morris, & Taylor, 2011; Becker et

al., 2012; Horstmann & Ansorge, 2009; Schultz & Pilz, 2009).

Bottom-up visual salience. By using the last frame of each of the 27 video

sequences (full frontal view of the nine facial identities, each with an angry,

happy, or neutral expression), we generated 1440 displays comprising one target

face and seven distractors. The displays were divided into an evenly spaced 2 × 4
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grid, with each cell covering 512 × 320 pixels. Each of the 18 expressive faces (9

angry and 9 happy) was positioned (in different displays) within each cell of the

grid. Seven neutral faces (distractors) were randomly selected (for each display)

from the remaining eight facial identities and were randomly positioned in the

remaining grid cells. These displays were processed with the SaliencyToolbox

2.2 software for MATLAB (with the standard settings) and, for each display,

we computed the total activation within the cell containing the target face. On

average, the angry and happy target faces did not differ in terms of their bottom-

up salience, t1439 = 0.14, p = .8882.

Intensity of emotional expressiveness. The facial expressions of the 27 se-

lected face identities were analyzed by means of the FaceReader software (Noldus

Information Technologies, 2012). This analysis showed that, for all the selected

images, the emotional expressiveness was greater than 0.95.

Amount of image motion. We measured the amount of image motion in order

to insure that it was approximately the same across the three emotional expres-

sions (angry, happy, and neutral faces; see Horstmann & Ansorge, 2009). Fol-

lowing the same procedure described by Ceccarini and Caudek (2013), image

motion was evaluated by comparing the first (neutral) and the last (full emo-

tion or the face with the spoken phoneme /W/) frame of the video sequence, for

each face identity and each expression. An ANOVA indicated that the average

amount of image motion did not differ significantly depending on whether the

motion sequences displayed the temporal unfolding of an angry emotion, of a

happy emotion, or of the spoken phoneme /W/, F2,24 = 0.09, p = .914.
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4.1.2. Procedure

The procedure was the same as in Experiment 1. No feedback on correct or

incorrect responses was provided. Each session consisted of four blocks of 180

trials presented in a random order and separated by a 10 minutes break. The first

block of trials was preceded by 20 practice trials.

4.1.3. Design

There were three different conditions: angry target with neutral distractors

(aTnD), happy target with neutral distractors (hTnD), target-absent trials with

only neutral distractors (neutral). For each participant there were 180 trials for

each of the two target-present conditions, and 360 trials for the target-absent

condition.

4.2. Results

Post-error and post-correct RT adjustments. In examining post-error and

post-correct adjustments, it is important to consider the stimulus conditions on

trials N−1 and N+1 (Steinhauser & Yeung, 2012). Because of the larger number

of trials per subject and the smaller number of conditions, in Experiment 2 this

control was possible. Therefore, we examined the post-correct and post-error

RT adjustments for matched target/distractors combinations on trials N − 1 and

N + 1. The mean post-correct and post-error RT adjustments as a function of

Condition are shown in Figure 3, middle panel.

An LME model with participants and stimulus ID as random effects, and

with fixed effects for Condition (aTnD, hTnD, neutral) and Performance Accu-

racy (correct/incorrect trial) showed that the Condition × Performance Accuracy

interaction was statistically significant, χ2
2 = 86.87, p = .0001. To interpret this

interaction, a model with a “cell design” was used to test the hypotheses of a nil
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effect on the RT adjustments in each of the six levels defined by the Condition ×

Performance Accuracy interaction. For correct trials, we found no effects on the

RT adjustments (aTnD: t20.77 = 0.73, p = .4739; hTnD: t21 = -1.11, p = .2774;

neutral: t6.8 = -1.481, p = .1833). For error trials, instead, we found post-error

speeding in the aTnD condition, t235.64 = -3.23, p = .0014, and post-error slowing

in the hTnD, t114.91 = 8.07, p = .0001, and neutral conditions, t38.07 = 3.20, p =

.0027.

Sequence effects for post-error RT adjustments. An LME model with partic-

ipants and stimulus ID as random effects, and with fixed effects for Condition in

trial N − 1 and Condition in trial N showed that the interaction ConditionN-1×

ConditionN was not statistically significant, χ4 = 4.98, p = .2889. Likewise, a

separate analysis showed that the ConditionN× ConditionN+1 interaction was also

not statistically significant, χ4 = 8.53, p = .0740.

Anger superiority effect. Figure 4, top-right panel, shows the mean RTs as

a function of Condition. For target-present trials, an LME analysis with partic-

ipants and stimulus ID as random effects, and with fixed effects for Condition

indicated that the response latencies were modulated by Condition, χ2
1 = 12.21,

p = .0005. Contrast analysis indicated that the RTs for an angry target face in

a neutral crowd were, on average, 317 ms faster than for a happy target face in

a neutral crowd, t16.72 = 4.104, p = .0008. RTs in target-absent trials were, on

average, 661 ms slower than for a happy target face in a neutral crowd, t47.34 =

4.03, p = .0002.

Performance accuracy. The percentages of errors were 12.8%, 6.7%, and

2.1% for nonthreatening targets, threatening targets, and target-absent trials, re-

spectively. False alarm rates were 2% for target-absent trials (neutral distrac-

tors). A binomial logit GLME analysis showed that accuracy was higher on tri-
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als with a threatening target than on trials with a nonthreatening target, z = 4.49,

p = .0001 (i.e., less errors were made in trials with an angry face target). More-

over, accuracy was significantly higher when the target was absent then it was

when the target was nonthreatening, z = 4.53, p = .0001. A further analysis

showed that Performance Accuracy (correct/incorrect trial) on trial N was not

affected by Performance Accuracy on trial N − 1 , z = 0.74, p = .46. A final

analysis showed that Performance Accuracy on trial N + 1 was not affected by

Condition (aTnD, hTnD, neutral) and Performance Accuracy in trial N, nor by

their interaction, χ2
5 = 2.90, p = .7149.

4.3. Discussion

Experiment 2 provided ecologically valid emotional stimuli, with natural dy-

namic facial expressions. Moreover, in Experiment 2, participants consciously

searched for an expressive face in a neutral crowd (even though they could not

predict whether the target was angry or happy), whereas in Experiment 1 such

search strategy was not possible because target and distractors could take on any

of three possible expressive values (angry, happy, or neutral). Within such stim-

ulus conditions, which better support the ASE, participants showed post-error

speeding for threatening targets and post-error slowing for nonthreatening tar-

gets, while maintaining similar levels of post-error accuracy in the two cases.

Differently from Experiment 1, we found no evidence of post-threat speeding

for correct responses. In sum, the results of Experiment 2 confirm our hypoth-

esis that the failure to detect a threatening target promotes enhanced post-error

processing.
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5. A re-analysis of the data from Ceccarini and Caudek (2013)

A further test of the hypothesis that post-error reactivity takes on qualitatively

different forms, depending on the presence/absence of a threat in the error trial,

is provided by the re-analysis of the data from Ceccarini and Caudek (2013). In

that previous study, an asymmetry design was used in four visual-search exper-

iments requiring to detect angry or happy facial expressions in crowds of faces.

The displays were static or dynamic (the dynamic displays were generated as in

Experiment 2, see Figure 1, panel C). After removing the outlier responses, the

combined data of the 51 participants totaled 10,831 trials, with 411 error trials

embedded in sequences where N−1 and N+1 were correctly performed trials.

Ceccarini and Caudek (2013) examined four target-distractor combinations:

happy target face in an angry crowd (hTaD), angry target face in a happy crowd

(aThD), angry-face distractors (angry), and happy-face distractors (happy). Each

condition was repeated 54 times, for a total of 216 trials per participant.

5.1. Results

Post-error and post-correct RT adjustments. The mean post-correct and post-

error RT adjustments as a function of Condition are shown in Figure 3 bottom

panel. An LME model with participants and stimulus ID as random effects, and

with fixed effects for Condition (aThD, hTaD, angry, happy) and Performance

Accuracy (correct/incorrect trial) showed that the Condition × Performance Ac-

curacy interaction was statistically significant, χ2
3 = 10.58, p = .0142. For error

trials, contrast analysis indicated that the response on trial N + 1 was faster in

the aThD condition than in the combined hTaD, angry, and happy conditions, z

= 3.01, p = .0052; for correct trials, instead, a similar analysis did not produce a

statistically significant result, z = 0.66, p = .7614 (adjusted p values).
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Sequence effects for post-error RT adjustments. An LME analysis with par-

ticipants and stimulus ID as random effects, and with fixed effects for Condition

(aThD, hTaD, angry, happy) in trial N − 1 and Condition in trial N showed that

the ConditionN-1× ConditionN interaction was not statistically significant, χ9 =

13.85, p = .1276. A separate analysis showed that the ConditionN× ConditionN+1

interaction was also not statistically significant, χ9 = 3.22, p = .9548.

Anger superiority effect. By combining the data of the four experiments of

Ceccarini and Caudek (2013), we examined the RTs as a function of Condition

(threatening target, nonthreatening target, target-absent) and Stimulus Presenta-

tion (dynamic, static). The interaction Condition × Stimulus Presentation was

statistically significant, χ2
2 = 31.19, p = .0001. For dynamic displays (Fig-

ure 4, bottom left panel), the effect of Condition was statistically significant,

χ2
2 = 89.85, p = .0001. On average, participants were 171 ms faster on trials with

a threatening target than on trials with a nonthreatening target, t52.46 = −5.29,

p = .0001. Participants tended to be 403 ms slower on target-absent trials than

on trials with a nonthreatening target, t56.73 = 9.06, p = .0001. For static dis-

plays (Figure 4, bottom right panel), the effect of Condition was statistically

significant, χ2
2 = 92.03, p = .0001. However, the average RTs for trials with a

threatening target and trials with a nonthreatening target were not significantly

different from each other, t50.89 = −0.67, p = .506. Participants tended to be

567 ms slower on target-absent trials than on trials with a nonthreatening target,

t57.93 = 14.19, p = .0001.

Performance accuracy. The percentages of errors were 8.5%, 9.3%, and

2.1% for trials with a nonthreatening target, trials with a threatening target, and

target-absent trials, respectively. False alarm rates were 4% and 1% for target-

absent trials in the angry and happy conditions, respectively. A GLME analysis
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showed that error rate did not differ significantly as a function of whether the

target was threatening or nonthreatening, z = −0.73, p = 0.464. Accuracy was

higher when the target was absent then it was when the target was nonthreat-

ening, z = 5.99, p = .0001. A further GLME analysis showed a statistically

significant effect of response accuracy on trial N − 1: Participants were more

accurate after a correct response (95% correct) than after an error (85% correct),

z = 2.70, p = .0069. However, post-error accuracy did not differ depending on

whether trial N provided a threatening (84% correct) or a nonthreatening (87%

correct) target, z = −0.38, p = .706.

5.2. Discussion

Like in Experiment 1, the stimulus conditions of Ceccarini and Caudek (2013)

are not optimal to study error reactivity after the failure to detect a threat. In fact,

dynamic and static displays were randomly intermixed in half of the trials of their

experiments, and an ASE was found for the dynamic displays only3. Neverthe-

less, also in those conditions, participants tended to show post-error speeding

when they failed to detect a threatening target. No evidence was found for post-

threat speeding after correct responses.

Differently from Experiments 1 and 2, in the data of Ceccarini and Caudek

(2013) post-error accuracy was lower than post-correct accuracy. This result is

consistent with several previous reports (Bombeke, Schouppe, Duthoo, & Note-

baert, 2013; Houtman & Notebaert, 2013; Rabbitt & Rodgers, 1977; Fiehler,

3For the present analysis it was not possible to consider only the dynamic trials because,

even though in two experiments the static/dynamic manipulation was blocked, in the remaining

two experiments static and dynamic trials were randomly intermixed. Therefore, dynamic face

images were used in all trials of an experimental block in only about one-fourth of the total

number of trials.
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Ullsperger, & Von Cramon, 2005) and it has been explained by the orienting ac-

count with the idea that errors act as “oddballs” that divert attentional resources

from the task and, thus, impair subsequent performance. In spite of this overall

post-error decrease in accuracy, the data of Ceccarini and Caudek (2013) show

that a failure to detect a threatening target enhances post-error processing effi-

ciency relative to the failure to detect a nonthreatening target. In fact, the first

kind of error led to post-error speeding whereas the second produced post-error

slowing, although the level of post-error accuracy was similar in both cases.

6. Analysis of combined experiments

To increase statistical power and to better examine sequential effects in er-

ror reactivity, we performed an additional set of control analyses by combining

the data of all the experiments discussed above (i.e., the data of Experiments 1

and 2, together with those of Ceccarini and Caudek, 2013) – see Supplemen-

tal Information. No significant post-correct RT adjustments were found in any

conditions (Section S1.1 in Supplement 1). Instead, the data of the combined

experiments showed that participants increased response speed after failing to

detect a threatening target. This effect was stronger in Experiment 2 than in the

other experiments, confirming our hypothesis that a defensive response, which

improves processing efficiency after the failure to detect a threat, is more likely

to be elicited within ecologically valid stimulus conditions (i.e., natural dynamic

expressions of emotions) (Section S1.2 in Supplement 1).

When considering only the target/distractors combinations in which angry

faces were used as targets or as distractors, we found post-threat speeding on

error trials; correct trials, instead, showed no effect (Table 1). Therefore, the

analysis of the data of the combined experiments provides no evidence that post-
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correct adjustments (RTN+1− RTN-1) are modulated by the emotional content of

the target on trial N. This suggests that the post-correct adjustments found in

Experiment 1 do not generalize to different stimulus conditions (Section S1.3 in

Supplement 1).

Trial N Threat Mean(RTN+1− RTN-1)

Correct Distractors 0 (15)

Correct Target 65 (13)

Error Distractors 65 (40)

Error Target -137 (39)

Table 1: Mean post-correct and post-error RT adjustments (in ms) for threatening targets vs.

threatening distractors. Standard errors are shown in parenthesis.

By combining the data of the three sets of experiments, we were able to assess

error reactivity after controlling for sequence effects. We considered the triplets

of consecutive trials with matched N − 1 and N + 1 trial types, and we compared

the post-error adjustments for threatening and nonthreatening targets on trial N.

We found post-threat speeding after errors also when potential sequence effects

were statistically controlled (Section S1.4 in Supplement 1).

Post-error speeding might be observed because of the way in which post-

error adjustments are computed. It is possible that longer RTs are associated to a

reduced alertness leading to an error in the following trial. Post-error speeding,

then, might be related to the fact that a reduced alertness in trial N − 1 may be

the cause of the observed error. To test this hypothesis, the data of the combined

experiments were divided into four data sets identified by the quartiles of the

distribution of the RTs on the N − 1 trials. The quartile split was performed

separately for each participant. Within these four sets of trials, we considered the
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relation between the (post-error and post-correct) RT adjustments and Condition

in trial N (nonthreatening target, threatening target, target-absent trials). The

effect of the quartile split, as shown in Figure 6, simply indicates that, if we

select the faster responses on the N − 1 trials (Figure 6, first quartile) then, on

average, the N+1 trials will be slower. Therefore, the difference between RTN+1−

RTN-1 will tend to be positive. The opposite happens if we select the slower

N − 1 trials (Figure 6, fourth quartile). What is interesting is that, within each

panel of Figure 6, we found an RT advantage on the N + 1 trials when, on the

previous trials, participants failed to detect a threatening target. No statistically

significant post-correct adjustments were found in any of the four data sets shown

in Figure 6. The results of this analysis thus indicate that post-error speeding

cannot be attributed to a reduced alertness leading to an error in the following

trial (Section S1.5 in Supplement 1).

We also examined the effect of repetition priming between trials N and N + 1

(Table 2; Section S1.6 in Supplement 1), and between trials N−1 and N (Table 3;

Section S1.7 in Supplement 1). In the stop-signal paradigm, for example, Ver-

bruggen, Logan, Liefooghe and Vandierendonck (2008) have shown that stim-

ulus repetitions affect post-error adjustments. In the present case“stimulus rep-

etition” does not correspond to an exact perceptual replica (because the spatial

arrangements of target and distractors was randomly determined on a trial-by-

trial basis and because the selected facial identities could also vary from trial to

trial), but only to the repetition of the experimental condition in successive trials.

In our data, repetition priming effects were present, but they did not interact with

the effect of target valence on the post-error adjustments4.

4The question remains, however, of whether the null effect of congruency on the post-error

RT adjustments may be due to a lack of statistical power.
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Error Responses Correct Responses

Trials N and N + 1 Threat on Trial N on Trial N

Incongruent Distractors 188 (33) -2 (13)

Incongruent Target -87 (42) 181 (14)

Congruent Distractors 16 (90) -360 (28)

Congruent Target -366 (87) -377 (26)

Table 2: Mean(RTN+1− RTN-1) for threatening and nonthreatening targets (in ms) as a function

of the congruency between trials N and N + 1, of target type in trial N, and of whether trial N

was an error or a correctly performed trial. Standard errors are shown in parenthesis.

N − 1 and N Trials Threat Error Trials Correct Trials

Incongruent Distractors 140 (34) -119 (13)

Incongruent Target -206 (41) -46 (14)

Congruent Distractors 369 (91) 243 (30)

Congruent Target 183 (108) 479 (29)

Table 3: Mean(RTN+1− RTN-1) for threatening and nonthreatening targets (in ms) as a function

of the congruency between trials N − 1 and N, of target type in trial N, and of whether trial N

was an error or a correctly performed trial. Standard errors are shown in parenthesis.

Finally, we considered the relation between the post-error RT adjustments

and the response latencies on error trials. For nonthreatening targets, slower re-

sponses on trial N induced stronger post-error slowing. For threatening targets,

instead, the amount of post-error speeding was unrelated to the response laten-

cies on previous trials. This provides further evidence that errors associated to

threatening and nonthreatening targets induce different post-error adjustments

(Section S1.8 in Supplement 1).
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7. General discussion

The present study provides evidence that post-error control adjustments in a

visual search task can adapt to the opposite demands deriving from the failure to

detect a threatening or a nonthreatening target. We hypothesized that the failure

to detect a nonthreatening face would lead to post-error slowing, whereas the

failure to detect a threatening face would reduce post-error slowing, or it would

produce post-error speeding. These predictions were confirmed.

In our study, we used dynamic faces because they provide a more ecologi-

cally valid representation of threat (Arsalidou et al., 2011). Moreover, we care-

fully controlled several bottom-up confounds that have been described in the

literature as alternative explanations of the ASE (Becker et al., 2011), and we

also equated the amount of motion across experimental conditions (Horstmann

& Ansorge, 2009). Such stimuli proved to be adequate for producing an ASE

(Figure 4).

Having found the stimulus conditions that elicit an ASE, we examined error

reactivity. Participants showed post-error slowing when they failed to detect a

nonthreatening face. To our knowledge, this is the first evidence of post-error

adjustments in a visual-search task, where response latencies are much longer

than what is typically found in studies using choice reaction time tasks (Laming,

1979; Rabbitt, 1966), Simon tasks (Rigoni, Wilquin, Brass, & Burle, 2013),

or Stroop tasks (Suárez-Pellicioni, Núñez-Peña, & Colomé, 2013). This result

supports the hypothesis that sequential control adjustments impact performance

for a prolonged time period (Cheyne, Carriere, Solman, & Smilek, 2011).

The failure to detect a threatening face is an event that has important survival

implications. The main result of the present study is that participants showed

post-error speeding, when they failed to detect a discrepant angry face in a crowd
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of faces. It is known that the perception of threat increases arousal and con-

tributes to focus attention in order to facilitate an adequate coping behaviour

(Easterbrook, 1959; Gable & Harmon-Jones, 2010; Van Steenbergen, Band, &

Hommel, 2011). The present data provide the first evidence that also the failure

to detect a threat may trigger cognitive control processes that enable faster and

more efficient responses.

In Experiment 1, we found a post-threat advantage in the RTs for both error

trials and correctly performed trials. Post-threat speeding was also found in Ex-

periment 2 and in the data of Ceccarini and Caudek (2013), but only for error

trials5. These results suggest that a defensive reaction, which produces a height-

ened alertness, is more likely to be observed when participants fail to detect an

angry face, rather than when an angry target face is correctly detected. We spec-

ulate that the uncertainty deriving from the failure of localizing a threat (when a

threat may still be present) may trigger a higher level of vigilance than when the

threat has been correctly localized.

Becker (2009) examined the efficiency of visual search for a non-threaten-

ing target after the presentation of a spatially non-informative emotional face.

He hypothesized that “the detection of threat would also produce a more gener-

alized increase in processing efficiency, thereby allowing one to rapidly identify

5Although it is not clear why these methodological differences produce different post-correct

adjustments across the three sets of experiments, it is necessary to point out that, differently

from the other experiments, in Experiment 1 (1) the facial emotions were not displayed in an

ecologically valid manner (i.e., motion was generated by a rigid 3D rotation, rather than by a

deformation of the face), (2) there were nine different conditions, versus the three conditions

of Experiment 2 and the four conditions of the experiments of Ceccarini and Caudek (2013),

and (3) targets were present in 66% of trials versus the 50% of the other experiments; in these

conditions, participants may have adopted a low “present” criterion.
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objects that would be beneficial to fleeing or fighting the threat, objects that them-

selves may not be threatening” (p. 435). The results of his experiment indicate

that this is indeed the case. Becker (2009) interpreted his findings as indicat-

ing that threat processing increases the arousal level which, in turn, leads to a

generalized increase in alertness and to an increased search efficiency (Phelps &

LeDoux, 2005)6. Our results confirm and extend the findings of Becker (2009)

and suggest that the failure to detect a threatening face can induce a state of pha-

sic alertness and readiness to respond (see also Matthias et al., 2010; Kusnir,

Chica, Mitsumasu, & Bartolomeo, 2011; Weinbach & Henik, 2011).

In the study of Becker (2009), threat was evoked by a fearful face. Olatu-

nji, Ciesielski, Armstrong, and Zald (2011) replicated his findings by measuring

the efficiency of visual search after the presentation of a face expressing anger,

disgust, fear, happiness, or a neutral emotional state. Faster target detection was

found for the exposure to a fearful expression prior to visual search, compared

to exposure to other facial expressions. More specifically, Olatunji et al. found

that visual search efficiency improved after the presentation of a fearful face, but

not after the presentation of an angry face. These results are in apparent contrast

with those of the present study, in which we found an effect of angry faces.

Olatunji et al. (2011) point out that fearful faces trigger a defensive reaction

more strongly than angry faces. Similarly, in our experiments, the presence of an

angry face per se was not sufficient to increase arousal and vigilance. In the case

of correct trials, in fact, participants showed a post-threat advantage only in the

stimulus conditions of Experiment 1. Instead, an improved response efficiency

6There are many lines of (neuroimaging, neuropsychological, and psychophysiological) evi-

dence that indicate that phasic alertness can improve processing speed. For a recent discussion,

see Matthias et al. (2010).
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was found in all experiments after the failure to detect an angry face. A detection

failure can be interpreted as an internal signal of danger, which indicates that the

current state of alertness is insufficient and this makes the participant vulnerable.

In our experiments, it is this internal signal of danger that seems to trigger an

increased state of alertness, not the mere presence of an angry face.

An important question is whether awareness is necessary to elicit post-error

behavioral adjustments (Navarro-Cebrian, Knight, and Kayser, 2013). The lit-

erature on this issue comprises several contributions, especially from the field

of the neurosciences (Wessel, 2012). There are, however, conflicting results:

Some studies find similar neural correlated for reported and non-reported errors

(Nieuwenhuis et al., 2001; Endrass et al., 2007, 2012; O’Connell et al., 2007;

Shalgi et al., 2009; Hester et al., 2005, 2009; Klein et al., 2007), whereas other

studies find different neural correlates for aware and unaware errors (Steinhauser

and Yeung, 2010; Wessel et al., 2011; Shalgi and Deouell, 2012). It must be

considered, however, that most of these studies are limited to the cortical elec-

trophysiology of error reactivity – behavioral adjustments have not been consid-

ered. Although we did not set out to study error awareness, spontaneous reports

provided in post-experimental interviews indicate that at least some of our par-

ticipants were aware of committing errors. This awareness may be due to the

fact that, having to perform the task under time pressure, response movements

are programmed in a ballistic fashion (i.e., once initiated, they cannot be inter-

rupted). While the motor response is executed, however, the visual scanning

of the stimulus array continues, and this could make the participants aware of

having responded too early (i.e., of having missed a target).

Post-error adjustments have been interpreted as reflecting an attentional shift

toward task-relevant stimulus features and away from task-irrelevant features
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(e.g., Danielmeier, Eichele, Forstmann, Tittgemeyer, & Ullsperger, 2011). This

hypothesis predicts stronger post-error adjustments for congruent N and N+1

trials: If an error is triggered by the failure to detect a threatening face then,

in the successive trial, attention should focus on anger-specific facial features.

Therefore, stronger post-error adjustments are expected when the target in the

N+1 trial is an angry face, rather than a happy or neutral face. In the present

data, however, such sequential effects were not found. This supports the idea that

failing to detect a threatening face impacts generic (i.e., a-specific) alertness, and

this has a dramatic impact on how participants subsequently complete the task,

rather than enhancing selective attention to threatening-inducing features.

In our data, the amount of post-error slowing for nonthreatening targets was

affected by the response latency on error trials; for threatening targets, instead,

post-error speeding was unrelated to the RTs on error trials. These different qual-

itative patterns of post-error adjustments suggest that post-error slowing depends

on an evaluation of the participants’ performance, whereas post-error speeding

does not. In turn, this supports the idea that post-error slowing and post-error

speeding may be mediated by different underlying mechanisms.

Post-error speeding is inconsistent with the idea that error reactivity neces-

sarily leads to a more conservative response strategy (Laming, 1979), or with the

idea that error reactivity only depends on an interference of error-monitoring on

post-error processing (e.g., Jentzsch & Dudschig, 2009). Instead, the evidence of

post-error speeding provided by the present study, together with other findings

– such as the “affective privilege” of Reeck and Egner (2011) (i.e., the finding

that task-irrelevant valent distractors interfere with task processing whereas task-

irrelevant nonvalent distractors do not) – suggest that, in the presence of valent

information, error reactivity is better characterized as a domain-specific process
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rather than as a domain-general effect.

However, it is important to point out that there are significant methodologi-

cal differences between the present experiments and the previous investigations

on PES. Our average response latencies were longer than two seconds and can-

not be directly compared to sub-second responses, which are typically exam-

ined in the studies on PES. We used response-stimulus intervals of 3000 ms and

Danielmeier and Ullsperger (2011) found no evidence of PES with RSIs greater

than 1500 ms7. We used valent stimuli, whereas PES is typically investigated

with neutral stimuli. For these reasons, our results may describe a different form

of cognitive control than the error reactivity that is reflected in PES. We propose

that our experiments taps into strategic planning and post-perceptual response

selection, whereas the “traditional” studies on PES describe earlier stages of in-

formation processing.

A final comment concerns the fact that our results do not show that angry

faces are in any way special in how they impact subsequent performance, except

that they indicate a threat and this is strategically interpreted and impacts cog-

nitive control. Other threatening stimuli could presumably have much the same

effect.

7van den Brink, Wynn, and Nieuwenhuis (2014) acknowledge that there are several studies

in which PES has been found with inter-trial intervals of several seconds (Hajcak et al., 2003;

Marco-Pallarés et al., 2008; King et al., 2010; Danielmeier et al., 2011). However, they also point

out that all those studies have measured either PEStraditional (which is confounded by variations in

motivation and task performance in the course of the experiment – Dutilh et al., 2012), or they

did not control for differences in pre-error and post-error trial type (another possible confound

of PES – Steinhauser & Yeung, 2012). These considerations led van den Brink et al. (2014) to

question the idea that PES truly occurs with long RSIs.
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7.1. Conclusions

Executive control in a visual-search task was measured by post-error adjust-

ments (RTs on N+1 trials minus RTs on N−1 trials). After failing to detect a

threatening target, participants showed post-error speeding. These adjustments

represent a gain in RTs and may be attributed to increased arousal leading to a

generalized increase in vigilance. Instead, after failing to detect a nonthreaten-

ing target, participants showed post-error slowing. These adjustments represent

a cost in RTs and may be attributed to the adoption of a more conservative re-

sponse criterion. The present results indicate that the error monitoring system is

very flexible and can adapt to the opposite demands of a task on a trial-by-trial

basis.
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Figure 1 (previous page): Illustration of the stimulus-generation process. Panel A: Experiment

1. A female caucasian face with neutral (top), angry (center), and happy (bottom) expressions

generated using the Facegen software (www.facegen.com). The figure shows some representa-

tive frames of the rotation about the vertical axis from the view of the individual’s profile to the

full frontal view of the face. Panel B: Experiment 2. The face enclosed in the rectangular frames

was selected from the Radboud Faces Database with three emotional expressions: neutral, angry,

and happy. These images were transformed to remove hair and then morphed to obtain a smooth

transition between the neutral expression and the full-emotion expression. The images of the

happy faces were also transformed so as to express happiness with a closed mouth. The figure

shows some representative frames of the morph continua in the case of a transition between a

neutral expression and the production of the spoken phoneme /W/ (top), a neutral expression

and an emotional expression of anger (center), and a neutral expression and an emotional ex-

pression of happiness (bottom). Panel C: Stimuli used by Ceccarini and Caudek (2013). The

figure shows an example of the face transitions between the neutral expression and anger (top),

and between the neutral expression and happiness, with an open mouth (center) or with a closed

mouth (bottom). Panel D: Experiment 1. Example of a target-present stimulus display at the

end of the video sequence (a happy face in a neutral crowd). Panel E: Experiment 2. Example

of a target-present stimulus display at the end of the video sequence (an angry face in a neutral

crowd).
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Figure 2: Examples of salience map computed according to the algorithm of Itti and Koch (2000,

2001). Panel A: Experiment 1. Left: happy target face in an angry crowd; right: angry target

face in a happy crowd. Panel B: Experiment 2. Left: happy target face in a neutral crowd;

right: angry target face in a neutral crowd. The red circle indicates the position of the target face.

Each panel shows the mean of 12 salience maps. Each salience map was computed by using a

different target face identity. The target was always located in the highlighted position among 11

distractors with different face identities. The arrangement of the distractors’ face identities was

reshuffled on each salience map.
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Figure 3 (previous page): Mean post-correct and post-error adjustments [RT(N+1)−RT(N−1)],

where N, N+1, and N−1 denote a triplet of consecutive trials, with N+1 and N+1 being correctly

performed trials], as a function of Condition, for each experiment. Positive values indicate post-

error slowing. The target-distractors combinations are denoted by the strings “aTnD”, “aThD”,

“hTaD”, “hTnD”, “nThD”, “nTaD”, “neutral”, “angry”, “happy”, where the lowercase letters a,

h, and n denote “angry”, “happy”, and “neutral” faces, respectively; the uppercase letters T and

D denote “target” and “distractor”, respectively. “neutral”, “angry”, and “happy” denote target-

absent trials with neutral, angry, and happy faces, respectively. Vertical bars indicate standard

error of the mean.
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Figure 4: Mean response latencies as a function of Condition (see figure caption 3), for each

experiment. Vertical bars indicate standard error of the mean.
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Appendix A.

Dutilh et al. (2012) have shown that the traditional way of computing the post-

error adjustments, PEStraditional = MRTN+1−MRTN-1, where MRT is the mean

of the RTs, is vulnerable to a confound that occurs when “slow RTs co-occur

with low accuracy. In this case, calculation of PEStraditional may result in spu-

rious or inflated estimates of PES” (p. 210) – see also Laming (1979). An

inflated PES means a spurious or deflated estimates of post-error speeding. It

is thus interesting to consider whether this confound may occur in the present

data. In Figure A.7 are shown, for each Experiment, the mean RTs as a func-

tion of the quartiles of binned trials (ordered from 1 to n) for nonthreatening

targets, threatening targets, and for distractor-only trials8. Figure A.8 shows

the proportion of error trials as a function of the quartiles of binned trials (or-

8For Experiment 1, an LME autoregressive model with (centered) log Trial number (repre-

senting the rank-order of a trial in its experimental sequence) and Condition (nonthreatening

target, threatening target, target absent) as fixed-effects, with by-participant random intercepts

and random slopes for Trial and Condition, indicated that the Trial × Condition interaction was

statistically significant, χ2
2 = 31.46, p = .0001. (log) RTs decreased as a function of Trial for

nonthreatening targets, t5486 = -3.56, p = .0004; the effect was the same for threatening targets,

t5486 = 0.40, p = .6862; no effect of Trial was instead found for target-absent trials, t5486 = -0.61,

p = .5427. The Trial × Condition was statistically significant also for Experiment 2, χ2
2 = 13.13,

p = .0014. (log) RTs decreased as a function of Trial for nonthreatening targets, t5021 = -2.07,

p = .0381; the effect was the same for threatening targets, t5021 = 0.18, p = .8565; no effect of

Trial was instead found for target-absent trials, t5021 = 0.33, p = .7387. The Trial × Condition

was statistically significant also for the data of Ceccarini and Caudek (2013), χ2
2 = 26.79, p =

.0001. (log) RTs decreased as a function of Trial for nonthreatening targets, t10852 = -2.07, p =

.0381; the effect was the same for threatening targets, t10852 = 0.18, p = .8565; the effect of Trial

was smaller for target-absent trials, t10852 = 5.17, p = .0001.
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dered from 1 to n)9. It is clear that, in our data, slow RTs tend to co-occur

with higher error rates. This consideration strengthens our choice of estimat-

ing the post-error and the post-correct RT adjustments as RTN+1− RTN-1, as

suggested by Dutilh et al. (2012). Figure A.9 shows the mean RTs in the

pre-error and post-error trials for nonthreatening targets, threatening targets,

and target-absent trials, in the three experiments10.

9For Experiment 1, a probit generalized estimating equation model with an autoregressive lag

one correlation structure (Zorn 2001) showed a statistically significant effect of Condition (non-

threatening target, threatening target, target absent), χ2
2 = 24.69, p = .0001. The proportions of

error trials were equal .08, .19, and .17 for target-absent, nonthreatening targets and threatening

targets, respectively. There as a statistically significant effect of Trial, χ2
1 = 10.83, p = .0010. For

nonthreatening targets, an increase of 100 trials had a multiplicative effect of 0.79 on the odds

that Y = 1 (error response) – i.e., p(error) decreased as a function of trial number. The Condition

× Trial interaction was not statistically significant, χ2
2 = 4.01, p = .1349. A similar result was

found for Experiment 2. The effect of Condition was statistically significant, χ2
2 = 50.5, p =

.0001. The proportions of error trials were equal .02, .13, and .07 for target-absent, nonthreaten-

ing targets and threatening targets, respectively. The effect of Trial was statistically significant,

χ2
1 = 11.2, p = .0008. For nonthreatening targets, an increase of 100 trials had a multiplicative

effect of 0.77 on the odds that Y = 1 (error response). The Condition × Trial interaction was

not statistically significant, χ2
2 = 1.7, p = .4261. Similarly, for the data of Ceccarini and Caudek

(2013), the effect of Condition was statistically significant, χ2
2 = 15.47, p = .0004. The propor-

tions of error trials were equal .021, .085, and .093 for target-absent, nonthreatening targets and

threatening targets, respectively. The effect of Trial was statistically significant, χ2
1 = 17.18, p

= .0001. For nonthreatening targets, an increase of 100 trials had a multiplicative effect of 0.68

on the odds that Y = 1 (error response). The Condition × Trial interaction was not statistically

significant, χ2
2 = 2.83, p = .24347.

10In Experiment 1, an LME model with random effects for participants and stimulus ID, and

with fixed effects for Condition (nonthreatening target, threatening target, target-absent) and Pre-

error/Post-error Trial (PPT, which identifies the N − 1 and N + 1 trials) revealed a statistically
62



————– Please insert Figures A.7, A.8 and A.9 about here ————–

significant effect of Condition, χ2
2 = 63.8, p = .0001. Neither the variable PPT, nor the Condition

× PPT interaction were statistically significant, χ2
3 = 2.59, p = .4599. In Experiment 2, the same

analysis showed that the interaction Condition × PPT was statistically significant, χ2
2 = 10.68,

p = .0048, suggesting that the difference in RTs between the pre-error and the post-error trials

is smaller for the threatening target trials than in the other trials. Finally, in Experiment 3, there

was a significant effect of Condition, χ2
2 = 51.19, p = .0001; neither the variable PPT, nor the

Condition × PPT interaction were statistically significant, χ2
3 = 2.14, p = .5443.
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Figure A.7: Mean response latencies as a function of the quartiles of binned trials (ordered from

1 to n) and target type, for each experiment. Vertical bars indicate standard error of the mean.
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Figure A.8: Proportions of error trials as a function of the quartiles of binned trials (ordered

from 1 to n) and target type, for each experiment.
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Figure A.9: Mean response latencies for pre-error and post-error trials as a function of target

type, for each experiment. Vertical bars indicate standard error of the mean.
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