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Abstract

Modeling of industrial plants, and especially energy systems, has become increas-
ingly important in industrial engineering and the need for accurate information
on their behavior has grown along with the complexity of the industrial processes.
Consequently, accurate and flexible simulation tools became essential yielding the
development of modular codes. The aim of this work is to propose a new modular
mathematical modeling for industrial plant simulation and its reliable numerical
implementation. Regardless of their layout, a large class of plant’s configura-
tions is modeled by a library of elementary parts; then the physical properties,
compositions of the working fluid, and plant’s performance are estimated. Each
plant component is represented by equations modeling fundamental mechanical
and thermodynamic laws and giving rise to a system of algebraic nonlinear equa-
tions; remarkably, suitable restrictions on the variables of such nonlinear equations
are imposed to guarantee solutions of physical meaning. The proposed numerical
procedure combines an outer iterative process which refines plants characteristic
parameters and an inner one which solves the arising nonlinear systems and con-
sists of a trust-region solver for bound-constrained nonlinear equalities. The new
procedure has been validated performing simulations against an existing modular
tool on two compression train arrangements with both series and parallel-mounted
compressors..
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methods.

1. Introduction

Industrial plants are subject to standard requirements as low equipment costs,
high energy conversion/transmission efficiency, low environmental impact and high
operational flexibility. In particular, in industrial plant design and in-service be-
havior prediction, high calculation accuracy and competitive computational time
are fundamental to meet the customers’ needs. These are the reasons why tra-
ditional methods for such simulations involve the use of numerical 0/1-D codes,
known to fully satisfy the above requirements. In particular, the dedicated ap-
proach leads to procedures for specific plant configurations where either none or a
few input data are allowed to vary. Over the last decades, this approach has pro-
gressively been replaced by a modular one that can handle general plant’s layout
and general input data.

Recently, there has been a renewed interest in global plant landscape driven by
the increasing demand for low-cost energy and reduced environmental impact; this
has led to continuous efforts for enhancing the elementary plants’ components and
to the theoretical and practical study of alternative thermodynamic cycles. On one
side, this process resulted in a general complication of the plants’ arrangements
and, correspondingly, in a high demand of flexible tools to numerically estimate
the plants’ performance. On the other hand, it yielded to the description of a
large variety of plant solutions as a combination of a finite number of elementary
components (pumps, heat exchangers, valves, turbines, compressors) connected
with each other. Therefore a numerical code equipped with a database of elements
representing their physical behavior and suited to combine these with general
criteria, turns out to be much more versatile than a code designed for a specific
plant’s configuration. These types of codes are known as modular codes and are
generally characterized by the following properties [1]. They must be able to:

• create a plant configuration without requiring a new program source;

• handle any combination of input data if a sufficient number of parameters
for the plant’s solution is provided;

• find the characteristic parameters of the elementary components, even with
an increased number of input data.

Since the early 1990s many modular codes for plants’ simulation have been de-
veloped to fulfill the growing needs of flexible and fast numerical tools for the study
of complex flow networks; firstly Perz [2] built an elemental code for mass and heat
balances, named IPSEpro, that has been subsequently developed with commercial
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purposes by Simtech Simulation Technology [3]. The program, due to its simplifi-
cations, is able to model only the behavior of ideal gas [4]. Carcasci and Facchini
[1] proposed a modular code for applied research that, grown over the years, han-
dles thermodynamic [5], design and off-design analysis of industrial plants [6, 7].
Falcetta and Sciubba [8, 9], similarly, developed a modular tool, named CAMEL, that
has become a commercial code owned by Altran [10]. Also Carapellucci and Cau
studied a modular procedure based on fundamental thermodynamic relations, in-
cluding real gas behavior [11], mainly used for power plants simulations [12]. Many
other modular-based codes have been developed for commercial uses since their
origin; examples include THERMOFLEX, property of Thermoflow Inc. [13], that is
a fully flexible program for heat balance modeling and engineering, particularly
suited to model both conventional [14] and unconventional power plants, like solar
ones [15]; GE’s GateCycle [16], a professional tool for both the gas and steam
sides of power plant design and analysis [17]; Prosim, a modular simulation and
design environment for power processes [18], developed by Endat Oy (Prosim,
www.endat.fi). The great advantages of the modular approach have yielded the
development of a whole class of object-oriented programming languages, among
which the most notably is Modelica, introduced in 1996 within the project ES-
PRIT [19]. Modelica deals with component-oriented modeling of complex physical
systems consisting of mechanical, electrical, hydraulic, thermal and control equip-
ment [20]. The algorithms and programming approaches adopted in both such
commercial and applied research-based codes are rather obscure and often con-
fidential; this makes extremely hard to gain an in-depth understanding of their
properties and potentials in plants’simulations.

One of the issues which greatly influences the performance of the codes but has
not been thoroughly discussed in the literature consists in the numerical solution
of the equations for process simulation. In particular, a common task of all the
above-mentioned codes is the solution of a set of equations, including differential
and algebraic equations, that represents the physical behavior of the modeled
problem. Such set can be either split into subsets of equations, each coming
from a particular module [21], that are solved using a proper sequential approach
(alike the approach adopted in dedicated codes) or solved simultaneously by a
parallel/full implicit mode. None of above papers offer details for this algorithmic
phase.

Differential equations have a marginal role in industrial plants’ simulations,
since the modular codes are generally zero dimensional and model steady state
flows, whereby neither spatial nor temporal evolution of the phenomena is taken
into account within each element. On the contrary, systems of nonlinear equations
(i.e., systems where at least one equation is not linear) constitute the mathemat-
ical models for a surprisingly large number of problems of real concern, as they
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model both the behavior of dynamic and thermodynamic systems, through the dis-
cretization of ordinary or partial differential equations, and equilibrium systems,
see e.g. [1, 2, 4, 10, 18, 22, 23].

Newton method and its variants are arguably the most popular class of proce-
dures for solving nonlinear systems of algebraic equations [24] and they are used in
most of the above codes [4, 10, 18, 22, 23]. It is well-known that Newton method
is an iterative procedure and its convergence depends critically on the vicinity of
the initial guess to a solution of the nonlinear system. For practical applications
in modular codes, this feature may represent a severe limitation as the nonlinear-
ity of the equations and the number of unknowns make the location of the roots
highly difficult. In order to enhance convergence, Newton’s method is combined
with so-called globalization strategies which include linesearch and trust-regions
methods, see e.g. [24, 25, 26, 27, 28, 29, 30, 31]. An alternative solution strategy,
implemented in codes for industrial plants’ simulations [1, 2], consists in a simpli-
fication of the mathematical problem to be solved where, by means of first-order
Taylor expansion, nonlinear equations are replaced with linear equations. The re-
sulting problem is a linear system which can be solved with standard algorithms
such as Gauss-Jordan Elimination or Lower-Upper Decomposition [1, 2]. Clearly,
though computational cheaper than Newton method, this approach may provide
an inaccurate approximation to a solution of the original problem and does not
overcome the need to locate solutions of the nonlinear system.

A further issue that requires modification of standard procedures for solving
nonlinear systems derives from the fact the systems of our interest are constrained.
Specifically, bounds have to be imposed to find a solution of physical meaning, e.g.,
a solution where absolute pressures are positive, and possibly to restrict the search
space for a desired solution, see e.g. [26, 32].

The aim of this paper is to provide a detailed overview of a new modular proce-
dure for industrial plants’ simulation that can handle a broad class of plant’s lay-
outs through a wide library of elementary components, and determine the physical
properties and composition of the working fluid, as well as plant’s performance, in
steady state operational conditions. Each module of the developed code has been
made as independent as possible from the others, enhancing flexibility and allow-
ing for upgrades; e.g. the solver of the arising nonlinear systems of equations can
be readily replaced or improved without altering the other parts of the code. The
core of this implementation is given by use of the nonlinear optimization solver
TRESNEI for bound constrained nonlinear least-squares problems [29]. This solver
implements a trust-region Gauss-Newton method and is suitable for the solution
of “smooth” problems, that is problems described by continuously differentiable
functions. It provides enhancements with respect to standard solvers for nonlinear
systems in the following respects:

4



• being a solver for bound constrained problems, once proper upper and lower
bounds for the variables are fixed, it prevents the computation of undesirable
solutions lying outside from the feasible solution’s domain;

• by implementing a globally convergent method, it avoids the tricky issue of
selecting an initial guess close enough to the problem’s solution.

Moreover, since our approach does not rely on simplified versions of the non-
linear system, the solutions computed are expect to be more accurate than those
obtained with the approach in [1, 2].

In this paper, a thorough description of both our modular procedure and
TRESNEI’s algorithm is provided. Our goal is to offer a scheme that can serve
as a template to users interested in reproducing, and possibly adapting, our code.
The performance of the proposed modular procedure is illustrated on two compres-
sion train arrangements with both series and parallel-mounted compressors; the
results obtained have been compared with ESMS [1], a pre-existing in-house mod-
ular tool, based on a Gauss-Jordan solver, that has been widely validated over a
broad range of industrial plants’ problems [5, 6, 7]. The comparison shows a good
agreement between the results of the two codes and comparable computational
speed.

2. The modular approach

In this section we describe the mathematical model for industrial plants and
focus on the formulation of bond’s equations and on the solution of the resulting
constrained nonlinear system of equations.

2.1. Description of the plant

An industrial plant consists of a certain number of elementary components
such as pumps, heat exchangers, valves, turbines, compressors, etc., where ther-
modynamic, energetic or chemical transformations of the operational flows take
place; flows can be of mass, power or heat. In order to model this plant structure,
one can define a list/library of elementary components where each transformation
(thermodynamic transformation, mass and energy flows’ continuity) is mathemat-
ically described. Then, in a plant configuration setting phase, components in the
library can be used whenever similar ones are present in the considered plant.

In this paper, we use the symbols and notations given in Figure 1: a single
elementary component is referred as a unit; depending on the internal flows, each
unit has some inlet and outlet ports which handle the corresponding working flows
and generate the system networking. Generally, the number of inlet and outlet
ports is different in units representing different types of components. At each unit’s
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Figure 1: A compressor plant and its modular model.

port corresponds a node that, in accordance with the passing through operational
flow, can be classified as mass, power or heat flow node. Therefore, flows connect
the units through nodes.

In every single node, the flow state can be fully determined by the following
properties:

• mass flow properties: mass flow rate, chemical compositions (mass/molar
fractions of the chemical species) and thermodynamic parameters (pressure,
temperature, enthalpy) 1;

• power flow properties: mechanical power and rotational speed (typically the
power flows represent shafts);

• heat flow properties: thermal power.

Clearly the flow state continuity condition holds between adjacent nodes.
Every unit can be treated as a black-box that represents a particular energetic

transformation and links the flow properties of each operational flow between the
entry and exit nodes. A unit is also characterized by some typical parameters that
affect its performance, as for example efficiency, pressure or heat losses.

Solving the plant consists in finding all the flow properties in each node and
all the typical parameters of each plant’s element. To pursue this issue, some of

1Temperature, pressure and enthalpy together might appear redundant in expressing a flow’s
thermodynamic state, as only the last two could be sufficient, even when working with multi-
phase fluids. The choice to use both the thermodynamic parameters temperature and enthalpy
is due to the fact that usually operational conditions are given in terms of temperature and not
in terms of enthalpy. The use of these properties guarantees maximum flexibility of the code.
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these properties and typical parameters are known and constitute the boundary
conditions of the problem. Notably, for this modular framework, there is no need
to specify which conditions have to be imposed and in which node, provided that
there is a sufficient number of independent parameters for the plant’s solution.
Moreover, it is important to remark that the values of the flow properties should
satisfy some bound constraints which are generally specified by the plant designer
and guarantee that the computed values have physical meaning, e.g. trivially,
absolute pressure must be nonnegative.

2.2. Mathematical model overview

Once defined the plant’s layout, the physical processes are modeled in mathe-
matical terms.

Let a plant be composed byN units with inlet and outlet connections. LetNM,j

be the number of mass flow ports, NW,j be the number of mechanical connections
and NQ,j be the number of heat flow ports of each unit, where the subscript j refers
to the j-th unit. For each port, depending on the kind of passing through flow there
are some unknown parameters that represent the flow properties. These unknowns
are 4 + NS associated to mass flow rate, pressure, temperature, enthalpy and
compositions of the NS involved species, two associated to power and rotational
speed, one associated to power. Consequently, the number of problem’s unknowns
is

N
∑

j=1

(4 +NS)NM,j + 2NW,j +NQ,j. (1)

Three kinds of governing equations are necessary to describe the plant: the
flow continuity equations, the bond’s equations and the boundary conditions. The
continuity equations impose the conservation of flow properties between connected
nodes; since the number of flow properties depends on the type of node, let nf

be the number of connections between two mass flow’s nodes of different elements
and np and nh be the number of connections between power and heat flow’s nodes.
Then the total number of continuity equations is:

(4 +NS)nf + 2np + nh. (2)

The unit bond’s equations describe the physical transformations occurring in
each component of the plant (mass balances, energy balances, adiabatic relations
for expansion or compression, equations of state, heat exchanges and many other),
and are generally nonlinear (e.g., the equation TP ǫ = cost, representing the adi-
abatic expansion or compression of gases, is typically nonlinear). Since each unit
determines the number of bond’s equation, denoted as NBE,j, the total number of
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bond’s equations is:
N
∑

j=1

NBE,j. (3)

Finally, the last kind of equations is represented by boundary conditions that
fix the value of known flow properties in some nodes of the plant and characterize
the solution of the problem; let NBC be the number of these boundary conditions.

Summarizing, if the overall number of unknowns and equations coincides, i.e.

N
∑

j=1

(4 +NS)NM,j + 2NW,j +NQ,j = NBC +
N
∑

j=1

NBE,j +NCE, (4)

then the system of nonlinear equations is square, i.e. the number of equations
equals the number of unknowns. Under suitable assumptions on the nonlinear
function, the solutions are locally unique and, imposing reasonable physical bounds
on the variables, it is expected to have only one solution.

Interestingly, this modular approach allows the definition of a fully implicit
mathematical model for a plant. Hence, differently from several existing sequen-
tial or semi-parallel approaches adopted in dedicated simulators, the nonlinear
equations can be solved simultaneously. Advantages of this feature are threefold:
the problem setting and the solution is not affected from the ordering of the plant’s
elements; how and where imposing the boundary conditions of the problem is not
relevant; it is possible to set boundary conditions in order to reduce the number
of required operational parameters, e.g. efficiency.

2.2.1. Formulation of the bond’s equations

The system of equations described above is nonlinear since some bond’s equa-
tions, such as those involving gas compression/expansion, pressure losses or linking
the thermodynamic properties through thermodynamic libraries, are nonlinear.
Besides these nonlinear equations, the modeled transformations also include linear
equations thus yielding a large variety of bond’s equations from a wide library of
elementary components.

Handling and solving such equations requires a computational effort propor-
tional to the number of bond’s equations. Therefore, in order to reduce both
the code maintenance and the computational overhead, it is necessary to keep the
number of different equations’ types as low as possible. This issue can be addressed
by arranging bond’s equations into the four groups given below; as a consequence,
by varying the multiplicative and the exponential constants in the equations, a
number of equations is obtained, each characterizing a specific thermodynamic
transformation. We refer to Table A.5 for details on the nomenclature. In partic-
ular, in the following formulas, subscripts equal to 1 and 2 refer to inlet and outlet
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ports, respectively.
The equations in the first group state: continuity equations; mass, energy,

heat balances; simple equations involving power, rotational speed, heat, mass flow,
temperature, pressure and enthalpy. They take the form

NW
∑

l=1

(κl,WW ǫl,W + κl,ωω
ǫl,ω) +

NQ
∑

l=1

κl,QQ
ǫl,Q + (5a)

NM
∑

i=1

ki,1M
ei,1,M
1,i T

ei,1,T
1,i P

ei,1,P
1,i H

ei,1,H
1,i + (5b)

NM
∑

j=1

kj,2M
ej,2,M
2,j T

ej,2,T
2,j P

ej,2,P
2,j H

ej,2,H
2,j = kknown, (5c)

where W and ω are power and rotational speed respectively, Q is the heat flow,
M , T , P , H are mass flow rate, temperature, pressure and enthalpy respectively.
The scalars NW , NQ and NM denote the number of power, heat and mass ports of
the unit respectively; κ and ǫ are the multiplicative and exponential constants of
the power and heat ports’ parameters (the subscript indicating the variable they
correspond to); similarly, k and e are the constants of the mass ports’ parameters.
Finally, kknown is the known right-hand side of the equation.

The second set of equations concerns chemical species,e.g. the continuity of
species’ concentration, and is given by

NM
∑

i=1

ki,1M
ei,1,M
1,i

(

NS
∑

n=1

Ki,1,yny
Ei,1,yn

i,2,n

)

+ (6a)

NM
∑

j=1

kj,2M
ej,2,M
2,j

(

NS
∑

n=1

Kj,2,yny
Ej,2,yn

j,2,n

)

= kknown, (6b)

where y is the chemical molar/mass concentrations of the flow (depending on the
species n), NS represents the number of chemical species involved, K and E are
the multiplicative and exponential constants of the chemical concentrations.

The third type of equations states, in a general form, pressure losses within a
duct as a function of mass flow, temperature or pressure,

D1,PP
η1,P,1

1,i +D2,PP
η1,P,2

1,i P
η2,P,1

2,j = (7a)

D1,M

(

|M1,i|η1,M,1 M1,iT
η1,T,1

1,i P
η1,P,3

1,i

)

+ (7b)

D2,M

(

|M2,j|η2,M,1 M2,jT
η2,T,1

2,j P
η2,P,2

2,j

)

+ kknown, (7c)
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where D are the multiplicative constants of the various terms (the first subscript
refers to the inlet/outlet port, the second one to the related term); η are the power
of the flow’s parameters (the third subscript indicates each flow’s parameter may
appear more than once in the above equation, e.g. the inlet pressure can appear
a maximum of three times). Subscripts i and j specify respectively the number
of inlet and outlet ports to which flow’s parameters are associated, since pressure
losses can occur within an element with multiple inlet/outlet ports.

The fourth type of equations concerns the thermodynamic properties of the flu-
ids. Since a consistent modeling of real fluids requires an accurate computation of
the thermodynamic properties of pure fluids and mixtures, we use thermodynamic
libraries for real gas and water-steam behaviour. Functions that bind the state
variables (pressure, temperature and enthalpy) at every thermodynamic state of
the working flow are considered and the equations take the following exponential
form

T + BHb + CP c = kknown. (8)

Clearly, the solution of equation (8) in the unknowns T , H and P , requires the
knowledge of the constants B, b, C and c and kknown. These quantities are com-
puted for each node solving an auxiliary nonlinear system of 5 equations in the
5 unknowns B, b, C and c and kknown with low accuracy. This system is built by
considering starting values for pressure P and enthalpy H and slightly perturbing
these values forwardly and backwardly from the starting known points, obtaining
5 equations of the form (8). Then, the system is solved in the variables B, b, C
and c and kknown.

In conclusion, equations (5)-(8) are the general formulation of all the bond’s
equations governing the physical problem considered. The constants involved are
determined for each elementary unit. It is important to note that further bond’s
equations can be easily added to the code if those already developed and included
in the model are not sufficient to describe the plant.

2.3. Solving the mathematical model

The equations introduced in the previous section can be stated as a square
nonlinear system of equations, say F (x) = 0, with F : IRn → IRn. Taking into
account the physical meaning of the variables and imposing inequality bounds, the
mathematical model described in the previous sections takes the form

F (x) = 0,
l ≤ x ≤ u.

(9)

where l, u ∈ IRn are given. Letting the i-th component of a vector x be denoted
by either xi or (x)i, we suppose that −∞ ≤ li < ui ≤ ∞, i = 1, · · · , n and let the
inequalities l ≤ x ≤ u be meant componentwise.
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The methods for solving problem (9) are iterative and a reliable methodology
should have the following characteristics:

• the ability in locating solutions is mathematically guaranteed;

• for any initial iterate the procedure either converges to a solution or fails to
so do in a small number of detectable ways;

• the rate of convergence is fast (at least close to a solution) in order to ap-
proximate, in a small amount of time, a solution at a prescribed accuracy.

The numerical approach for solving (9) followed in this paper, was proposed in
[28] and it is based on the minimization of the function

f(x) =
1

2
‖F (x)‖22, (10)

where ‖ · ‖2 indicates the euclidean norm, i.e. ‖F (x)‖2 =
√

F (x)TF (x). Since
f is a nonnegative function and vanishes at the solutions of (9), it is minimized
including the simple bounds in (9), i.e.

min
l≤x≤u

f(x). (11)

The method used in this work, denotes as TRESNEI [29](Trust-REgion Solver for
Nonlinear Equalities and Inequalities), was developed in [28] and originally imple-
mented in the Matlab freely accessible solver, http://TRESNEI.de.unifi.it.
We refer to such a Matlab implementation as a template for different program-
ming languages.

The necessary conditions for the optimality at a point x can be expressed as
([33])

D̃(x)∇f(x) = 0, (12)

where ∇f(x) = F ′(x)TF (x), F ′(x) ∈ IRn×n is the Jacobian matrix of F , and
D̃(x) ∈ R

n×n is a diagonal matrix with diagonal entries (D̃(x))i,i given by

(D̃(x))i,i =















xi − ui if (∇f(x))i < 0, ui < ∞,
xi − li if (∇f(x))i ≥ 0, li > −∞,
1 if (∇f(x))i ≥ 0, li = −∞, or

(∇f(x))i < 0, ui = ∞.

Let a point x be denoted as feasible if l ≤ x ≤ u. Given a feasible initial guess
x0, TRESNEI is an iterative procedure such that

• the iterates xk generated are feasible;
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• irrespective of the initial guess x0 used, every limit point of the sequence
{xk} satisfies (12);

• if x∗ is a limit point of {xk} such that f(x∗) = 0, then all the limit points of
{xk} solve the problem (9).

In order to fulfill the above features, we use a trust-region Gauss-Newton scheme
sketched below. Theoretically, the stated convergence properties are guaranteed if
F ′ is Lipschitz continuous and bounded in norm in an open, bounded and convex
set containing the level set {x ∈ R

n s.t. f(x) ≤ f(x0)} [28, 34].
The basic idea of a trust-region method is to fix the radius ∆k of a ball about

xk in which the quadratic model

mk(p) =
1

2
‖F ′(xk) p+ F (xk)‖22, (13)

for f can be trusted to accurately represent the function. The ball {p ∈ R
n s.t. ‖p‖2 ≤

∆k} is called the trust-region and ∆k is the trust-region radius. Then, by using
the so-called trust-region problem

min
p∈Rn

{mk(p) : ‖p‖2 ≤ ∆k}, (14)

and an appropriate adjustment of ∆k, it is possible to enforce a strictly monotonic
reduction in the value of f through the iterates. The quadratic model (13) is
known in the literature as the Gauss-Newton model.

The progressive decrease of f is guaranteed by imposing specific conditions
on the acceptance of the iterates. Suppose that the sequence {xk} has the form
xk+1 = xk + pk for k ≥ 0. By [28, 33] it is known that the first-order optimality
conditions (12) are satisfied at every limit point of {xk} if the step pk satisfies

ρc(pk) =
mk(0)−mk(pk)

mk(0)−mk(pCk )
≥ β1, β1 ∈ (0, 1), (15)

where pCk is the scaled Cauchy step defined as

pCk = argmin
p∈span{−D̃(xk)∇f(xk)}

mk(p) subject to ‖p‖2 ≤ ∆k, l ≤ xk + p ≤ u.(16)

Therefore, in order to find a suitable step pk, first we compute a step ptr
by (approximately) solving the trust-region problem (14). Second, we form the
projected step p̄tr = P (xk + ptr) − xk, where P (x) = max{l,min{x, u}} is the
projection map onto the set l ≤ x ≤ u, and find a step of the form pk = t pCk +
(1− t)p̄tr, for some t ∈ [0, 1], such that ρc(pk) = β1.
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Finally, the trust region radius and the trial point xk + pp are tested simulta-
neously. In particular, the predicted reduction of the quadratic model mk and the
actual reduction of the objective function f at the trial point xk+pk are compared
using the standard rule

ρf (pk) =
f(xk)− f(xk + pk)

mk(0)−mk(pk)
≥ β2, β2 ∈ (0, 1). (17)

If (17) is satisfied, then a reduction in the value of f has been obtained, the trial
point is accepted, and a new iteration begins with possibly a larger trust-region
radius. Otherwise the step is rejected and the trust-region radius is reduced.

We conclude this section giving some algorithmic details. The parameters β1

and β2 and the rules for the trust-region update are given in [29]. The Jacobian
matrix F ′(xk) is formed by using finite differences. In particular, the sparsity
pattern of the Jacobian is detected and the nonzero entries (F ′(xk))i,j are computed
by setting

(F ′(xk))i,j ≈
1

hj

(Fi(xk + hjej)− Fi(xk)),

where ej is the j-th vector of the canonical basis of Rn, ǫm is the machine precision
and

hj =

{ √
ǫm if (xk)j = 0√
ǫmsign((xk)j)max{|(xk)j|, ‖xk‖1/n} otherwise .

If the point xk + hjej is not feasible, the backward approximation

(F ′(xk))i,j ≈
1

hj

(Fi(xk − hjej)− Fi(xk),

is used.
Successful termination in the solution of (11) is declared when one of the fol-

lowing conditions is met

‖F (xk)‖∞ ≤ ǫ1, (18)

min{‖D̃(xk)∇f(xk)‖2, ‖P (xk −∇f(xk))− xk‖2} ≤ ǫ2
√
n, (19)

where ǫ1 and ǫ2 are prescribed tolerances and ‖ · ‖∞ indicates the ∞-norm, i.e.
‖F (x)‖∞ = max1≤i≤n |(F (xk)i|. In the simulation reported in Section 5, bound-
constrained nonlinear systems are solved with high accuracy setting ǫ1 = ǫ2 =
10−12.
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3. Solution of the model

3.1. The overall iterative procedure

The definition of the bound-constrained nonlinear system depends on the knowl-
edge of several coefficients present in the bond’s equation, as e.g. the quantities
B, b, C, c and kknown in equation (8). Once these values are determined, the so-
lution of the nonlinear system is performed by the trust-region solver and in the
remaining of this work, we refer to the iterations in this phase as to inner iterations.

The estimate of various constants can be performed in two manners. One
possibility is to update these coefficients at each inner iteration. However, this
could be time consuming, as many of such scalars depend on the thermodynamic
properties of the working flow which are computed by dedicated database libraries.
Another possibility, adopted in this procedure, is to approximate the coefficients,
solve the nonlinear equations and use the solution computed for updating the
coefficients. This procedure is iterative and we call its iterations as outer iterations.

More specifically, at the beginning of each outer iteration, the models defining
each elementary unit are solved to get the coefficients of the bond’s equations.
After that, the resulting system of equations is solved iteratively. It is interesting
to note that if the bond’s equations and thermodynamic properties of real mix-
tures are not related, the solution computed after the first outer iteration remains
unchanged, as no modifications on the coefficients occur between successive itera-
tions. Suitable termination criteria are included to established the convergence of
the outer procedure (see Section 4).

3.2. Reducing the system dimension

The mathematical model described in Section 2 has the same number of equa-
tions and unknowns. However, the number of independent variables is generally
less than the number of unknowns introduced for each node of the plant. In fact,
some flow properties are constant between connected elements and within each
element. This property is known as continuity and can be of two different types:
internal and external. The former concerns the element’s behaviour and has ef-
fect on a bond’s equation; e.g. it represents the mass and species continuity in a
real compression inside the unit compressor. The latter is implicit as it does not
arise from a unit bond’s equation and would require imposing a further equation;
e.g. in the case of two elements connected via a mass flow port, the thermody-
namic parameters (M,P, T,H) and the flow’s composition are the same in the two
linked nodes. The simple form of continuity equations suggests a reduction in the
dimension of the system by eliminating proper unknowns.

For equation (5), for example, continuity between two power, rotational speed
or heat occurs when the known term is null and the coefficients κ and ǫ have value
equal to 1 for two power or heat ports, and value equal to 0 for all the others,
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including mass flow ports. The same happens for continuity of mass, temperature,
pressure and enthalpy, but with coefficients k and e and in equation (6).

Finally, it is important to note that external continuity leads to two identical
bond’s equations (8) for each mass flow node of the plant. Hence, these bond’s
equations are included in the system of equations only if related to mass flow’s
outlet ports or to inlet ports connected to the outside.

3.3. The initialization procedure

Initial values of the flow properties in each node of the plant, except for bound-
ary conditions, are unknown at the first iteration along with the coefficients of
bond’s equations. These initial values have a great impact on the convergence
speed and success of the solver’s iterative process. Three possible initialization
approaches are possible. The first is a default mode: for each unit, initial val-
ues of the flow properties are fixed accordingly to standard working performance
of the corresponding modeled element. A second possibility consists in choosing
some of the flow properties’ values on the base of the designer experience; one can
initialize the calculation completely or partially by combining this approach with
the default mode. Finally, in the case of sensitivity analysis or with little plant’s
layout modifications, it is reasonable to use a previously computed solution as the
starting guess. Once the starting values of the flow properties have been fixed, the
initial coefficients of the bond’s equations can be straightforwardly obtained.

We underline that global convergence of the trust-region solver allows to over-
come the difficulties in selecting an initial hint sufficiently close to the solution.

4. Structure of the code

The modular approach described in the previous sections was implemented
using the ANSI Fortran 90 standard. The code is outlined in the flowchart in
Figure 2 and consists of three parts: the main program, the units’ subroutines (or
modules) of the various elements, the solver for the systems of nonlinear equations
generated.

The main program handles the various phases of the solution process: prob-
lem setting, system formulation, outer/inner iterations. The modules give rise to
the equations for the flow transformations and get the coefficients of the bond’s
equations. The nonlinear solver is the core of the code and performs the inner
iterations. Each of these parts is separated from the others allowing for maxi-
mum flexibility and expandability; therefore an easy reading, maintenance and
expansion of the code is ensured.

More specifically, the main program first calls the subroutines to acquire infor-
mation about plant’s layout, general chemical compositions of the working fluids,
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Figure 2: Program flow chart.
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boundary conditions and code’s general settings. Then it performs the outer it-
erations; in each of such iteration it calls the units’ subroutines to obtain the
coefficients of the bond’s equations, takes into account the boundary conditions
and calls the subroutines for the system reduction described in Section 3.2. Succes-
sively, the reduced system is solved by the iterative procedure TRESNEI described
in Section 2.3 which gives rise to the inner iteration. Once a sufficiently accurate
approximation to the solution is found, convergence of outer iterations is tested.
If convergence in the outer iteration is not declared, the current values of the
flow properties are possibly relaxed and used as initial guesses for the successive
outer iteration. The outer termination criteria and the relaxation procedure are
implemented as follows. Let xi

0 be the starting guess for TRESNEI at the i-th outer
iteration and xi

K be the corresponding computed solution. Moreover, let x̄i
K be

the average value of xi
K computed (componentswise) over the all network. Then,

the outer iteration is stopped if

‖(xi
K − xi

0)/x̄
i
K‖∞ ≤ ǫ3

where the ratio is meant componentwise and ǫ3 > 0 is a prescribed tolerance.
Moreover, the “relaxed” starting point is defined by

xi+1
0 = xi

0 − Crel(x
i
0 − xi

K),

with relaxation coefficient Crel ∈ [0, 1]. If Crel = 1, no relaxation is imposed on
the computed solution. In the experiments described in Section 5 we set ǫ3 = 10−6

and Crel = 1.

4.1. The units’ subroutines

Modularity of the code imposes similar formal structure to all units’ subrou-
tines, even if the physical transformations represented may differ. Indeed units’
subroutines differ in the part where calculation of the physical transformations is
carried out.

Figure 3 shows the structure of a generic unit’s subroutine. At the first outer
iteration, after the initial variables’ declaration, the characteristic element’s input
data are read and stored for use at following iterations. Depending on the current
iteration, flow properties’ initial values are assigned; an initialization procedure
is performed at the first iteration while the current approximation is used at the
following ones. Successively, the element’s calculations bind flow properties in
each inlet/outlet port of the element for the represented physical transformations.
Finally, the multiplicative and exponential coefficients of the bond’s equations are
evaluated.
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Figure 3: Unit’s subroutine flow chart.
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5. Code validation

The aim of this section is to make preliminary tests on the performance of
the new code and compare it with the non-commercial code ESMS introduced
in [1]. Tests were carried out on two compression train arrangements with both
series and parallel-mounted compressors and illustrate the behaviour of our code
under thermodynamic working condition. The two plants considered are shown in
Figure 4 and 5 along with boundary conditions and operating parameters. Table
2 summarizes the system’s parameters for the two problems.

The first plant is composed by 9 elements and 18 nodes (16 mass flow nodes
and 2 power flow nodes). Starting with an initial number of 128 bond’s equations
and 220 unknowns, the system is reduced to 54 equations in 54 unknowns; such
reduction of the unknown quantities is achieved by using boundary and continuity
conditions and eliminating continuity equations. With our new tool, a feasible
solution is found in 4 outer iterations; the number of inner iterations performed at
each outer iteration is 157, 10, 4 and 2 respectively. On the other hand, a solution
is found by ESMS in 15 outer iterations. We remark that, at each ESMS’s outer
iteration, the nonlinear system is replaced with a simplified model represented by
a linear system; then, the linear system is solved by the Gauss-Jordan Elimination
and the solution obtained is refined inside the characteristic elements at the suc-
cessive iterative step [1]. The loss of accuracy caused by the linearization of the
original nonlinear system motivates the higher number of ESMS’s outer iterations
with respect to our Trust-Region based approach. On an Intel i7-4770 processor,
the performed computational time is below one second for both codes.

Results from the two codes in terms of physical properties in each node of the
plant and plant’s performance are given in Table 3, where bold numbers indicate
boundary conditions (equal for both input data of the two codes). Variables P, y
air, y H2O and ω are reported only once since they can be retrieved either from
continuity relations or from trivial ones and are therefore equal for both codes.
The table shows that the computed solutions differ slightly in terms of mechanical
power and outlet temperature across the compressors; relative errors between these
two quantities are smaller than 10−3. This discrepancy is due to the different
thermodynamic libraries used in the two codes for computing the specific heats
involved into adiabatic compression equations which lead to outlet temperatures.
Moreover, we observe that such a discrepancy affects the temperature values until
the coolers; successively, coolers’ pinch point temperature differences are fixed
equal for both codes so that gas temperatures are forced to take the same values.

We remark that no information on enthalpy is obtainable with ESMS, as it is
works with the two state variables temperature and pressure. It is therefore
interesting to note that pressure drops across the lamination valve and the second
splitter could only be modelled as simple variations on pressure with ESMS, as it
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Figure 4: Parallel-mounted compression train plant.

M [kg/s] P [Pa] T [K] H [J/kg]
lower 0 100 180 −2 · 105
upper bound 103 108 3000 5 · 106

Y [-] W [W] ω [rad/s] Q [W]
lower bound 0 −109 0 −109

upper bound 1 109 3 · 104 109

Table 1: Lower and upper bounds for the two train plants.

is unable to represent the effect that isenthalpic expansions have on temperature.
On the contrary this effect is displayed by the new modular tool.

The second plant, Figure 5, is made up of 8 elements and 17 nodes (16 mass
flow nodes and 1 power flow node). Our new modular code finds a feasible solu-
tion after 4 outer iterations and TRESNEI requires 77, 5, 2 and 2 respectively, inner
iterations to reach convergence; ESMS takes 13 iterations to achieve the solution
at the required accuracy. Analogously to the previous simulation, comparison of
plant’s results in terms of flow properties between the two codes are given in Table
4. Similarly to the previous test case, the slight differences on the computed tem-
peratures and mechanical power can be ascribed to the different thermodynamic
libraries used. Again, both codes takes less than one second to return the solution.

Overall, the agreement between the results obtained with the new tool and the
well-assessed ESMS indicates that the code presented in this paper is reliable and
efficient on the proposed test cases.
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Figure 5: Series-mounted compression train plant.

parallel-mounted series-mounted
plant plant

# of elements 9 8
# of nodes 18 17
# of bonds equations 128 118
# of unknowns 220 204
# internal continuity equations 64 64
# of external continuity equations of mass flows 80 64
# of external continuity equations of power flows 0 1
# of boundary conditions 22 29
# of redundant P-T-H equations 10 8
# of independent equations 54 46
# of independent variables 54 46

Table 2: System’s parameters for the two plants.
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Node M M P T T H y air y H2O W W ω

[kg/s] [kg/s] [Pa] [K] [K] [kJ/kg] [kW] [kW] [rad/s]
ESMS ESMS ESMS

1 100.00 100.00 101325 293.15 293.15 271.68 1 0 - - -
2 129.47 129.47 101325 303.73 303.73 281.58 1 0 - - -
3 64.74 64.74 99298 303.73 303.73 281.58 1 0 - - -
4 64.74 64.74 99298 303.73 303.73 281.58 1 0 - - -
5 64.74 64.74 556072 516.38 515.94 485.19 1 0 - - -
6 64.74 64.74 556072 534.14 533.73 502.79 1 0 - - -
7 129.47 129.47 556072 525.27 524.84 493.99 1 0 - - -
8 100.00 100.00 544950 525.26 524.84 493.99 1 0 - - -
9 100.00 100.00 488550 308.15 308.15 284.84 1 0 - - -
10 29.47 29.47 544950 525.26 524.84 493.99 1 0 - - -
11 29.47 29.47 169725 525.00 524.84 493.99 1 0 - - -
12 29.47 29.47 101325 339.50 339.50 315.17 1 0 - - -
13 190.2 189.77 101325 293.15 293.15 84.01 0 1 - - -
14 190.2 189.77 99298 318.15 318.15 188.52 0 1 - - -
15 71.98 71.92 101325 293.15 293.15 84.01 0 1 - - -
16 71.98 71.92 99298 309.83 309.83 153.75 0 1 - - -
17 - - - - - - - -13181 -13222 523.6

18 - - - - - - - -14320 -14364 523.6

Table 3: Parallel-mounted plant’s results in each node

Node M M P T T H y air y H2O W W ω

[kg/s] [kg/s] [Pa] [K] [K] [kJ/kg] [kW] [kW] [rad/s]
ESMS ESMS ESMS

1 50.00 50 101325 293.15 293.15 271.68 1 0 - - -
2 64.74 64.74 99298 303.73 303.73 281.58 1 0 - - -
3 64.74 64.74 556072 516.38 515.94 485.19 1 0 - - -
4 64.74 64.74 510072 394.90 394.9 367.13 1 0 - - -
5 64.74 64.74 1173165 517.47 517.19 485.83 1 0 - - -
6 50.00 50.00 1149701 517.47 517.19 485.83 1 0 - - -
7 50.00 50.00 1071301 308.15 308.15 284.84 1 0 - - -
8 14.73 14.73 1149701 517.47 517.19 485.83 1 0 - - -
9 14.73 14.73 144525 516.72 517.19 485.83 1 0 - - -
10 14.73 14.73 101325 339.50 339.50 315.17 1 0 - - -
11 104.2 104.15 101325 293.15 293.15 84.01 0 1 - - -
12 104.2 104.15 99298 309.83 309.83 153.75 0 1 - - -
13 91.57 91.44 101325 293.15 293.15 84.01 0 1 - - -
14 91.57 91.44 99298 318.15 318.15 188.52 0 1 - - -
15 34.33 34.43 101325 293.15 293.15 84.01 0 1 - - -
16 34.33 34.43 99298 309.83 309.83 153.75 0 1 - - -
17 - - - - - - -20866 -20927 523.6

Table 4: Series-mounted plant’s results in each node
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6. Conclusions

This paper presents a new modular approach for industrial plant simulation.
Special emphasis has been put on the mathematical model which consists of a
constrained nonlinear system of equations and on its numerical solution.

The modular code introduced is capable of simulating industrial plant config-
urations, irrespective from input data (provided they are consistent), and plant’s
components (as long as they are present within the components’ library). The
former feature is guaranteed by the solver for the mathematical problem. The
nonlinear system of equations to be solved describes thermo-fluid dynamic and
mechanical processes that take place within each element of the plant and are
known as bond’s equations. After a proper simplification, the system is solved
iteratively by the solver TRESNEI with a parallel/full implicit mode; the equations
are solved simultaneously and an accurate hint for the solution is not required.
The latter feature is enforced by modeling plant’s elements through independent
subroutines from a components’ library. This allows maximum flexibility and ex-
pandability; the operating range of the code can be easily increased by adding new
kind of elements.

In order to validate the new modular tool against thermodynamic simulations
and to state its reliability, two compression trains have been thermodynamically
simulated and the results obtained by our code have been compared with those
computed by an extensively tested pre-existing modular code. Further develop-
ment of the code may include the implementation of tools for design and off-design
cycle calculations of the plant’s elements.
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Latin letters

a Exponential constant terms of temperature in bond’s equations (4)
A Multiplying constant terms of temperature in bond’s equations (1)
b Exponential constant terms of enthalpy in bond’s equations (4)
B Multiplying constant terms of enthalpy in bond’s equations (1)
C Exponential constant terms of pressure in bond’s equations (4)
C Multiplying constant terms of pressure in bond’s equations (1)
D Multiplicative constants of the mass flow properties of pressure loss equations

(bond’s equations (3))
e Exponential constants of the mass flow properties of bond’s equations (1) and (2)
E Species concentrations’ exponential constants in bond’s equations (2)
H Enthalpy [kJ/kg]
k Multiplicative constants of the mass flow properties of bond’s equations (1) and (2)
K Species concentrations’ multiplying constants in bond’s equations (2)
kknown Right-hand sides in the bond’s equations
M Mass flow [kg/s]
N Total number of elements
nf Number of mass flow ports of each element
nh Number of heat flow ports of each element
np Number of power ports of each element
NBC Total number of boundary conditions of the problem
NBE Number of bond’s equation of each element
NCE Total number of continuity equations
NM Number of mass flow ports of each element
NQ Number of heat flow ports of each element
NS Number of considered chemical species
NW Number of mechanical connections of each element
P Pressure [Pa]
Q Heat flow [W]
T Temperature [K]
W Mechanical power [W]
y Mass/molar fraction

Greek letters

ǫ Exponential constant terms of power and heat flow properties of bond’s equations (1)
η Exponential constants of the mass flow properties of pressure loss equations

(bond’s equations (3))
κ Multiplying constant terms of power and heat flow properties of bond’s equations (1)
ω Rotational speed [rad/s]

Table A.5: Nomenclature
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