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Abstract

Background: Alterations in key-regulator genes of disease pathogenesis (BRAF, cKIT, CyclinD1) have been evaluated
in patients with multiple primary melanoma (MPM).

Methods: One hundred twelve MPM patients (96 cases with two primary melanomas, 15 with three, and 1 with
four) were included into the study. Paired synchronous/asynchronous MPM tissues (N = 229) were analyzed for BRAF
mutations and cKIT/CyclynD1 gene amplifications.

Results: BRAF mutations were identified in 109/229 (48%) primary melanomas, whereas cKIT and CyclinD1
amplifications were observed in 10/216 (5%) and 29/214 (14%) tumor tissues, respectively. While frequency rates of
BRAF mutations were quite identical across the different MPM lesions, a significant increase of cKIT (p < 0.001) and
CyclinD1 (p = 0.002) amplification rates was observed between first and subsequent primary melanomas. Among
the 107 patients with paired melanoma samples, 53 (49.5%) presented consistent alteration patterns between first
and subsequent primary tumors. About one third (40/122; 32.8%) of subsequent melanomas presented a discrepant
pattern of BRAF mutations as compared to incident primary tumors.

Conclusions: The low consistency in somatic mutation patterns among MPM lesions from same patients provides
further evidence that melanomagenesis is heterogeneous and different cell types may be involved. This may have
implications in clinical practice due to the difficulties in molecularly classifying patients with discrepant primary
melanomas.
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Introduction
Incidence of cutaneous melanoma has increased during
last decades in Western population [1,2]. Several risk
factors have been reported. A light phototype (especially
when associated with excessive sun exposure and/or
increased incidence of sunburns), a large number of ac-
quired common nevi, and the occurrence of atypical nevi
have been associated with a higher risk of melanoma
[3,4]. Among others, family history of melanoma (pres-
ence of two or, mainly, three or more affected relatives)
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confers the highest risk for the development of the disease
[3,5]. Nevertheless, patients with cutaneous melanoma
present a higher incidence of second or even additional
melanomas (risk seems to be highest in the first years after
diagnosis of the first melanoma and decreases pro-
gressively with time) [6,7]. However, subsequent primary
melanomas have been found to be significantly thinner
than index lesions [8], possibly due to increased surveil-
lance and not to differences in tumor biology [9-11]. In
patients with multiple primary melanoma (MPM), the
disease staging is based on the melanoma with the worst
prognostic features [12].
From the pathogenetic point of view, the mitogen-acti-

vated protein kinase (MAPK) signal transduction pathway
(including the cascade of NRAS, BRAF, MEK1/2, and
tral Ltd. This is an Open Access article distributed under the terms of the
/creativecommons.org/licenses/by/4.0), which permits unrestricted use,
, provided the original work is properly credited. The Creative Commons Public
mons.org/publicdomain/zero/1.0/) applies to the data made available in this

mailto:gpalmieri@yahoo.com
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Colombino et al. Journal of Translational Medicine 2014, 12:117 Page 2 of 8
http://www.translational-medicine.com/content/12/1/117
ERK1/2 proteins) has been reported to play a major role
in both the development and progression of melanoma
[13,14]. The increased activity of ERK1/2 proteins, which
is constitutively activated in melanomas mostly as a con-
sequence of mutations in upstream components of the
pathway, has been implicated in rapid melanoma cell
growth, enhanced cell survival and resistance to apoptosis
[15,16]. Oncogenic mutations of BRAF, all constituted by
single amino acid substitutions, have been found in
approximately 8% of all types of human cancer, including
colorectal, ovarian, thyroid, and lung cancers as well
as in cholangiocarcinoma and hepatocellular carcinoma
[15,17,18], but their highest rates remain those observed
in melanoma. Overall, slightly less than half of melanomas
carry activating mutations in the BRAF gene [19,20],
regardless of the mutation screening approach used [21].
The affirmation of new drugs inhibiting some mediators
of the MAPK pathway, including mutated BRAF and
activated MEK, has led to major advances in the treatment
of patients with melanoma [22].
A less common primary pathway which stimulates cell

proliferation, without MAPK activation, seems to be the
reduction of RB (retinoblastoma protein family) activity
by CyclinD1 or CDK4 amplification or RB mutation
(impaired RB activity through increased CDK4/cyclin D1
could substitute for the MAPK activation and initiate
clonal expansion) [23]. Nevertheless, impairment of
the p16CDKN2A protein, which acts as an inhibitor of
melanocytic proliferation by binding the CDK4/6 ki-
nases and blocking phosphorylation of the RB protein,
may also lead to uncontrolled cell growth as well as
to increased aggressiveness of transformed melanocytic
cells [23,24].
It has been reported that melanomas on skin not

chronically exposed to sun usually carry a mutated BRAF
whereas those arising from chronically sun-damaged
(CSD) skin infrequently have BRAF mutations but present
an increased copy number of the proliferation-controlling
CyclinD1 (CCND1) or cKIT genes, with subsequent in-
creased expression of the correspondent proteins [25-28].
Overexpression of the CyclinD1 gene is commonly obser-
ved in several human cancers, including breast, head and
neck, and bladder cancers [29]. In melanoma, the elevated
intracellular concentration of CyclinD1, related to the
amplification of the gene locus at chromosomal level, has
been implicated into the resistance to both BRAF and
MEK inhibitors since it promotes a MAPK-independent
cell proliferation [27,30]. With no stratification for ana-
tomical location, amplification of cKIT has been reported
in about 7% of all cutaneous melanomas [25,31]; its
frequency increase up to 30% or more in acral and CSD
melanomas as well as in melanomas carrying a cKIT mu-
tation (prevalence is even higher in Chinese population
[32]) [25,31,33].
In this study, we aimed at assessing the frequency and
distribution of alterations in candidate genes (BRAF,
cKIT, CyclinD1) involved in pathogenesis of melanoma
in a large series of patients with synchronous or asyn-
chronous MPM lesions.

Methods
Patients
One-hundred twelve patients with histologically-proven
diagnosis of multiple melanoma (96 cases with two
primary melanomas, 15 with three, and 1 with four) were
included into the study. Among them, 229 tissue samples
of synchronous (N = 40; 17%) or asynchronous (N = 189;
83%) primary melanomas (93 cases with two paired tumor
tissues, 13 with three, and 1 case with 4) were available
and addressed to somatic molecular analysis. Melanomas
were considered as synchronous when a second melan-
oma was diagnosed during the same first observation or,
at the most, within one month from the first diagnosis, as
previously stated [34,35]. Among the 189 patients with
asynchronous multiple tumors, the subsequent melano-
mas were diagnosed at a median time from the first diag-
nosis of 34 months (range, 6-173 months). In particular,
intervals between the first diagnosis and the subsequent
melanomas were: ≤ 2 years (84 cases; 44%), > 2 to ≤ 4 years
(37; 20%), > 4 to ≤ 6 years (34; 18%), > 6 to ≤ 8 years
(13; 7%), > 8 to ≤ 10 years (7; 4%), and > 10 years (14; 7%).
Patients were enrolled consecutively between January

2009 and October 2012 from centers in Italy, after evalu-
ation of a collection of 1893 patients with diagnosis of
cutaneous melanoma (our series of 112 MPM patients
thus represents the 5.9% of the total amount of screened
cases). To avoid bias, patients were included regardless
of age of onset, cancer family history, and disease charac-
teristics. Familial recurrence of melanoma was ascertained
by using a questionnaire to interview patients about their
first- and second-degree relatives. Melanoma families were
identified according to standardized criteria [36].
Patients were informed about aims and limits of the

study and a written consent was obtained for tissue sam-
pling. The study was approved by the ethical review board
at the University of Sassari.

Samples
Paired samples of incident primary melanomas and
synchronous or asynchronous subsequent primary mela-
nomas from the same patient were collected. Paraffin-
embedded tumor tissues were taken from pathological
archives. Using light microscopy, the neoplastic portion of
each tissue section was isolated in order to obtain tumor
samples with at least 80% neoplastic cells (improving
sensitivity of nucleotide sequencing, which may detect a
mutation when the mutant alleles are at least 15%-20% of
the analyzed DNA sample). Histologic classification and



Figure 1 Patients and samples included into the study.
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disease stage at diagnosis were confirmed by medical re-
cords, pathology reports, and/or review of pathologic
material.

Molecular analysis
For mutation analysis, genomic DNA was isolated from
tumor tissues, using standard methods. The coding
sequence and splice junctions of the exon 15 in BRAF
gene were screened by directly sequencing the amplified
PCR products, using an automated fluorescence-cycle
sequencer (ABIPRISM 3130, Life Technologies, CA).
Sequencing analysis was conducted in duplicate (two
PCR assays from two different tumor sections) and in
both directions (forward and reverse) for all samples. A
nucleotide sequence was considered as valid when the
quality value (QV) was higher than 20 (<1/100 error
probability); in this study, the QV average was 40 (range,
30-45; <1/1000-1/10,000 error probability).
For fluorescence in situ hybridization (FISH) analysis,

probes specific for CyclinD1 and cKIT genes or control
centromeres were labelled with Spectrum Orange or
Green (Vysis, Des Plaines, IL), respectively. Three distinct
experiments were performed for each case. To be sure
that FISH results were exclusively from tumor cells, histo-
logic examination using conventional hematoxylin-eosin
staining was systematically carried out on adjacent sec-
tions from paraffin-embedded tissues. Digital images were
captured using an Olympus BX-61 epifluorescence micro-
scope equipped with the appropriate filters for excitation
of DAPI, Cy3 (orange) or FluorX (green), and with a
COHU video and Cytovision software. Hybridization
signals on at least 200 intact, well-preserved, and non-
overlapping nuclei were evaluated by at least two inves-
tigators. The CyclinD1 or cKIT gene amplification was
defined by the presence of at least a tetrasomic signal
(≥2.0 gene copies per control centromere) in more than
one tenth (>10%) of cells.

Statistical analysis
Univariate analysis of the presence of BRAF, CyclinD1,
or cKIT alterations versus the various clinical character-
istics of the multiple primary melanomas was performed
by Pearson’s Chi-Square test, using the statistical package
SPSS/7.5 for Windows.

Results
Patients and samples
A total of 112 patients with multiple primary melanoma
(96 cases with two primary tumors, 15 with three, and 1
with four) were enrolled. Paired samples of synchronous
or asynchronous primary melanomas (N = 229; 93 cases
with two paired tumor tissues, 13 with three, 1 with four)
underwent molecular analysis at somatic level. Overall, a
total of 341 samples were screened for mutations in
candidate genes, as summarized in Figure 1. Median age
of the 112 enrolled patients was 59 years (range, 23-87
years); 59 (53%) were women. Considering the 102 first
primary melanomas, trunk was the most frequent location
(trunk, 57 [51%]; limbs, 41 [37%]; head and neck, 14
[12%]); median Breslow thickness was 1.7 mm (range,
0.35-5.8 mm).

Somatic alteration frequencies
BRAF mutations were detected in 109 (47.6%) of 229
primary melanomas. All BRAF mutations across samples
were located in codon 600 of the gene and were of two
subtypes only: V600E (94/109; 86.2%) and V600K (15/109;
13.8%) (Table 1). Both mutations are reported in the
Human Gene Mutation Database at http://www.hgmd.cf.
ac.uk/ac/index.php and the Catalogue Of Somatic Muta-
tions In Cancer (COSMIC) at http://www.sanger.ac.uk/
genetics/CGP/cosmic/.
No association between BRAF mutations and any

clinicopathological parameters was observed (Table 2).
Frequency rates of BRAF mutations were quite identical
across the different types of MPM lesions (first vs. second
vs. subsequent melanoma; Table 3).
Paraffin-embedded nuclei from available tissue sections

of primary melanomas were investigated by a two-colour
FISH analysis, using genomic subclones corresponding to
either CyclinD1 or cKIT gene loci as well as to the relative
chromosome centromeres as controls. Gene amplification,
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Table 1 BRAF mutations in 229 tumor tissues from MPM
patients

Position DNA mutation Amino acid
mutation

Positive cases
n (%)

Exon 15 c.1799 T > A p.V600E 94 (41.0)

Exon 15 c.1798_1799GT > AA p.V600K 15 (6.6)
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as inferred by the presence of a tetrasomic signal in more
than one tenth of cells (see Methods), were observed in
cancer cells only. No karyotypic alteration was found in
cells from normal tissues surrounding the tumours
(diploid signals were consistently detected).
Overall, 10/216 (4.6%) and 29/214 (13.6%) primary

melanomas were found to carry cKIT and/or CyclinD1
gene amplification, respectively. As shown in Table 3, a
significant increase of cKIT amplification rates was
observed moving from first to subsequent primary mela-
nomas (p < 0.001); analogously, the rate of CyclinD1
Table 2 Frequency of BRAF somatic mutations according
to patients’ characteristics

Subgroups (No. of samples) Cases positive to
BRAF mutations

No. % P

All samples (229) 109 47.6

Sex

Male (107) 50 46.7
0.809

Female (122) 59 48.4

Site of primary melanoma

Head-neck (20) 9 45.0

0.623Trunk (129) 58 44.9

Limbs (86) 42 48.8

Number of primary tumors

2 melanomas (186) 86 46.2
0.172

≥ 3 melanomas (43) 23 53.5

Type of melanoma

Synchronous (40) 18 45.0
0.208

Asynchronous (189) 91 48.1

AJCC disease stage

≤ I (161) 72 44.7
0.276

≥ II (78) 37 47.4

Age at diagnosis

< 40 years (34) 18 52.9

0.08940-50 years (52) 25 48.1

> 50 years (143) 66 46.2

Family history of melanoma

1 affected members (193) 92 47.7
0.962

≥ 2 affected members (36) 17 47.2

Disease stage was defined according to the recent American Joint Committee
on Cancer (AJCC) guidelines. P: chi-squared test; two tailed; 95% confidence
interval.
amplification was significantly higher in subsequent
melanomas (22/114; 19.3%) than first primary melanomas
(7/100; 7%) (p = 0.002). Again, no correlation between
CyclinD1 or cKIT amplification status and any clinicopath-
ological parameters was found (not shown).
Distribution of somatic alterations into the three

candidate genes is summarized in Table 4. Among the
229 multiple melanomas analyzed, majority of them
(127; 55.5%) presented a genetic alteration in at least
one of such genes; no sample was found to carry all
three genes affected.
Considering the 107 patients who had paired samples

of primary melanomas, about half of them showed
consistent alteration patterns between either first and
second primary tumors (53; 49.5%) or first and third/
fourth primary tumors (7/15; 46.7%) (Table 5). Focusing
on BRAF mutations only, about one third of patients
presented discrepant mutation patterns between first
and second primary melanomas (34/107; 31.8%); such a
discrepancy was even higher when comparing first and
third or fourth primary tumors (6/15; 40%) (Table 5).
Since differences in genetic alterations underlying mel-
anoma pathogenesis may depend on the anatomical site
of the primary lesion [18,25], consistency was evaluated
among multiple melanomas arisen into the same body
district. Among the 48 (42.9%) patients satisfying such a
criterion, again roughly half of them (25; 52.1%) presented
consistency in all somatic alteration patterns as well as
about one third of cases (17; 35.4%) showed discrepant
distribution of BRAF mutations (Table 5). No difference in
consistency rates was observed between the two subsets
of synchronous and asynchronous multiple melanomas
(Table 5).
Among the 62 paired samples (54/107 [50.5%] patients)

with discrepancies in BRAF/cKIT/CyclinD1 mutation
patterns between first and subsequent primary melano-
mas, majority of them (40; 64.5%) displayed differences in
BRAF mutation distribution (19 with a wild-type first
tumor and a mutated subsequent tumor, 19 with a muta-
ted first tumor and a wild-type subsequent tumor, and 2
with a change in mutation variants between the two
tumor lesions) (Additional file 1: Table S1). The remaining
22 (35.5%) discrepant paired samples showed differences
in cKIT and/or CyclinD1 gene amplification status
(Additional file 1: Table S1). A quite similar distribution
of genetic alterations into the three candidate genes was
observed when comparing subsequent versus second pri-
mary melanomas (Additional file 2: Table S2).
The BRAF/cKIT/CyclinD1 mutation status was not eval-

uated for association with clinical outcome in our series.

Discussion
Melanoma development and progression have been
reported to occur by sequential accumulation of genetic



Table 3 Distribution of somatic alterations in multiple melanomas from our series

Sample Frequency of alterations, positive/total samples (%)

BRAF mutation cKIT amplification CyclinD1 amplification

All melanomas 109/229 (47.6) 10/216 (4.6) 29/214 (13.6)

First melanoma 50/107 (46.7) 2/101 (2.0) 7/100 (7.0)

Second melanoma 52/107 (48.6) 6/101 (5.9) 21/100 (21.0)

Third/Fourth melanoma 7/15 (46.7) 2/14 (14.3) 1/14 (7.1)
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and molecular alterations [18,37]. Two main genetic net-
works have been demonstrated to play a crucial role in
the control of growth, proliferation, and survival of the
melanocyte cells: the CDKN2A-driven pathway and the
mitogen-activated protein kinase (MAPK) signal trans-
duction cascade [38,39]. Genetic alterations in different
members of these pathways have been associated with
the pathogenesis of distinct types of primary melanomas:
high frequency of BRAF or NRAS mutations (which are
mutually exclusive) is mostly frequent in melanoma on
skin without chronic sun-damage, whereas CyclinD1 or
cKIT amplifications are prevalent in CSD or acral melan-
oma, respectively. In our study, we investigated the
prevalence and distribution of such genetic alterations in
MPM patients.
A high prevalence of somatic mutations in BRAF gene

was detected in incident and subsequent melanomas.
The frequency of BRAF mutations in primary melanomas
(47%) was consistent with that observed in our previous
study on 451 Italian patients with single melanoma (49%)
[40] and slightly higher than that reported in a meta-
analysis on 2521 patients with cutaneous melanomas
(41%) [41]. In our series, two BRAFV600 mutation subtypes
were detected: V600E and V600K (in 41% and 7% of cases,
respectively). Such two variants represent the most preva-
lent BRAF mutations (our frequencies were consistent
with most of those reported in literature [41]) and are able
to constitutively activate BRAF kinase [21]. Amplification
of CyclinD1 and cKIT genes, as determined by FISH
analysis, was found in about 14% and 5% of melanoma tis-
sues from our series, respectively (see Table 3). Again,
such frequencies were consistent with those reported in
Table 4 Somatic alterations in 229 tumor tissues from
patients with multiple melanoma

Alteration type No. of samples %

BRAF mutation only 91 39.7

cKIT amplification only 6 2.6

CyclinD1 amplification only 9 3.9

BRAF mutation + CyclinD1 amplification 17 7.4

BRAF mutation + cKIT amplification 1 0.4

cKIT + CyclinD1 amplifications 3 1.3

All three genes wild-type 102 44.5
literature (ranging from 12% to 19% for CyclinD1
amplification [27,42-44] and calculated in about 7% of
all cutaneous melanomas for cKIT amplification [25,31]).
One (0.4%) out of 229 melanoma samples presented a
coexistence of BRAF mutation and cKIT amplification
(see Table 4), confirming that aberrations in these two
genes can be considered as mutually exclusive [26].
A markedly higher rate of either BRAF mutations

(59%) or CyclinD1 (38%) or cKIT (13%) amplifications
was previously observed in 32 melanoma cell lines as
controls by our group ([45] and unpublished data). As
reported [45], these control cell lines were established as
primary cell cultures from tumor samples obtained from
donor patients with documented diagnosis of melanoma.
Since cultured melanomas are thought to represent cells
with the most malignant phenotype, one could speculate
that genetic alterations in these three candidate genes
play a role in tumor progression.
Sixty-two paired samples from 54 (51%) patients

showed discrepancies in BRAF/cKIT/CyclinD1 mutation
patterns between first and subsequent primary melano-
mas (see Table 5). In the discrepant cases, we observed
20 (37%) patients with a wild-type first tumor and a
mutated subsequent tumor, 14 (26%) with a mutated first
tumor and a wild-type subsequent tumor, 8 (15%) with
change in alteration variants between the two tumor
lesions, and 12 (22%) with an additional gene amplifica-
tion in the two BRAF-mutated tumors (3 cases in first but
not in subsequent tumors and 9 with an opposite condi-
tion). In majority of cases (29/54; 53%), gene alterations
seem to be acquired in subsequent melanomas. Moreover,
while BRAF mutations were equally distributed among
discrepant multiple melanomas (47.5% wild-type first
tumors and mutated subsequent tumors, 47.5% mutated
first tumor and wild-type subsequent tumors), rates of
cKIT and CyclinD1 amplification were found to signifi-
cantly increase moving from incident to subsequent
primary melanomas (p values, <0.001 and 0.002, re-
spectively). Such discrepancies were also confirmed
among paired primary melanomas located at the same
anatomical site as well as in synchronous primary
melanomas (see Table 5). Overall, these observations
provide evidence about the heterogeneity of the mo-
lecular mechanisms underlying the development of
MPM in the same patients. The knowledge that molecularly



Table 5 Consistency between BRAF/cKIT/CyclinD1 alterations in paired samples from patients with multiple melanoma

Tissue type No. of cases Cases with consistent mutation patterns, n (%)

BRAF + cKIT + CyclinD1 alterations BRAF mutations

Subsequent vs. first primary melanoma

Second melanoma 107 53 (49.5) 73 (68.2)

Third/Fourth melanoma 15 7 (46.7) 9 (60.0)

Subsequent vs. second primary melanoma

Third/Fourth melanoma 15 8 (53.3) 11 (73.3)

Multiple melanomas at the same anatomical site (head/neck - trunk - limbs)

All cases 48 25 (52.1) 31 (64.6)

Synchronous 13 7 (53.8) 8 (61.5)

Asynchronous 35 18 (51.4) 23 (65.7)
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heterogeneous cell types may coexist in primary melanomas
[45,46] is a further confirmation that complex pathogenetic
scenarios exist in melanomagenesis.
About one third of patients presented a discrepant

pattern of BRAF mutations between incident and subse-
quent primary melanomas (overall, 40/122; 32.8%). The
introduction into the clinical practice of vemurafenib
and dabrafenib, potent inhibitors of BRAFV600 mutants,
makes the assessment of BRAF mutations as a crucial
step toward the appropriate use of a targeted melanoma
treatment. The low consistency in BRAF mutation pat-
terns among MPM lesions from the same patients arises
the practical question on how cases with coexistence of
BRAFwild-type and BRAFmutant primary melanomas (and,
to a less extent, those carrying different BRAF variants -
which may present a different degree of responsiveness
to BRAF inhibitors) should be molecularly classified.
Nevertheless, progression of disease in patients with
such discrepancies in primary melanomas may suggest
taking into consideration all developing metastases for
BRAF mutation analysis cucaccording to the recent indi-
cations provided by the National Comprehensive Cancer
Network (NCCN; at http://www.nccn.org/professionals/
physician_gls/f_guidelines.asp) guidelines, most recent
melanoma tissue samples should be considered as ad-
equate for BRAF mutation screening].
In our study, we contributed to provide additional

clues about the prevalence of alterations in some candi-
date genes (with particular attention to BRAF mutations)
among synchronous or asynchronous multiple primary
melanomas. Our findings further support evidence that
molecular events underlying development and progression
of melanoma are really complex. A better comprehension
of the factors crucially involved in activating one or the
other pathogenetic molecular mechanism, even in the
same individual, might have an impact on the disease
management. Since the future of melanoma therapy is
likely to focus on targeting multiple pathways, advancing
technologies (i.e., deep-sequencing approaches) will
permit to simultaneously investigate multiple genes and
targets toward more accurate correlations between mo-
lecular signatures and clinical outcome.
Additional files

Additional file 1: Table S1. Mutation patterns in patients presenting
discrepancies in tumor lesions (54 second and 8 third/fourth vs. first
primary melanomas) for BRAF/cKIT/CyclinD1 alterations.

Additional file 2: Table S2. Mutation patterns in patients presenting
discrepancies in tumor lesions (7 subsequent vs. second primary
melanomas) for BRAF/cKIT/CyclinD1 alterations.
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