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Abstract

Myeloproliferative neoplasms (MPN) are chronic myeloid cancers thought to arise at the
level of CD34+ hematopoietic stem/progenitor cells. They include essential thrombocythe-
mia (ET), polycythemia vera (PV) and primary myelofibrosis (PMF). All can progress to
acute leukemia, but PMF carries the worst prognosis. Increasing evidences indicate that
deregulation of microRNAs (miRNAs) might plays an important role in hematologic malig-
nancies, including MPN. To attain deeper knowledge of short RNAs (sRNAs) expression
pattern in CD34+ cells and of their possible role in mediating post-transcriptional regulation
in PMF, we sequenced with lllumina HiSeq2000 technology CD34+ cells from healthy sub-
jects and PMF patients. We detected the expression of 784 known miRNAs, with a preva-
lence of miRNA up-regulation in PMF samples, and discovered 34 new miRNAs and 99
new miRNA-offset RNAs (mMoRNAs), in CD34+ cells. Thirty-seven small RNAs were differ-
entially expressed in PMF patients compared with healthy subjects, according to microRNA
sequencing data. Five miRNAs (miR-10b-5p, miR-19b-3p, miR-29a-3p, miR-379-5p, and
miR-543) were deregulated also in PMF granulocytes. Moreover, 3’-moR-128-2 resulted
consistently downregulated in PMF according to RNA-seq and qRT-PCR data both in CD34
+ cells and granulocytes. Target predictions of these validated small RNAs de-regulated in
PMF and functional enrichment analyses highlighted many interesting pathways involved in
tumor development and progression, such as signaling by FGFR and DAP12 and Onco-
gene Induced Senescence. As a whole, data obtained in this study deepened the knowl-
edge of miRNAs and moRNAs altered expression in PMF CD34+ cells and allowed to
identify and validate a specific small RNA profile that distinguishes PMF granulocytes from
those of normal subjects. We thus provided new information regarding the possible role of
miRNAs and, specifically, of new moRNAs in this disease.
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Background

Philadelphia-negative chronic myeloproliferative neoplasms (MPNs) are a heterogeneous
group of clonal hematopoietic stem cell (HSC) disorders associated with overproduction of
mature myeloid cells[1,2].

MPNs are a group of chronic myeloid cancers that include essential thrombocythemia (ET),
polycythemia vera (PV) and primary myelofibrosis (PMF), associated with an increased risk of
thrombosis and/or hemorrhage and a propensity to develop acute myeloid leukemia.

Myelofibrosis, the most symptomatic and associated with the worst survival, can arise primarily
or as a progression of PV or ET (post-PV/ET MF). In primary myelofibrosis (PMF) the increased
proliferation of megakaryocytes is accompanied by deposition of fibrosis in the bone marrow,
abnormal stem cell trafficking, and extramedullary hematopoiesis (myeloid metaplasia).[1,2]

In 2005, a new somatic mutation in the Janus Kinase 2 (JAK2)[3-7] has been discovered,
providing the first genetic insight into the MPN pathogenesis. The JAK2V617F mutation is
present in approximately 95% of patients with PV, and in 50% to 60% of those with ET or
PMF. Subsequently, other mutations have been discovered, including mutation in MPL gene
or in epigenetic regulators.[2,8-10]

In 2013, somatic mutations of CALR, the gene encoding calreticulin, have been found in
20% to 25% of patients with essential thrombocythemia (ET) or PMF[11,12]. Like JAK2 and
MPL mutations, somatic mutations of CALR behave as driver mutations responsible for the
myeloproliferative phenotype.

Despite the fact that the mutational background of MPNs has been extensively investigated,
the molecular etiology of the disease has not been fully elucidated. Indeed several lines of evi-
dence indicate that the identified mutations are not sufficient for disease initiation and progres-
sion. Although murine models have provided unequivocal evidence that JAK2"¢'’¥ is able to
cause MPNs[13], disease phenotype is significantly heterogeneous between different murine
lines and even within the same line, suggesting that disease phenotype is affected by other
unknown genetic or epigenetic factors[14].

MicroRNAs are endogenous small non-coding RNAs, approximately 22 nt in length, crucial
for post-transcriptional gene regulation. They are loaded into the RNA-induced silencing com-
plex (RISC), directing the complex (including Argonaute proteins) to downregulate target
mRNA expression by either triggering mRNA degradation or translational repression.[15]
Recent studies show that mRNA destabilization explains most (66%->90%) miRNA-mediated
repression[16].

It is known that deregulation of miRNAs plays an important role in both solid and hemato-
logic malignancies[17,18]. Indeed, hematopoietic differentiation is tightly governed by gene
expression that is strictly regulated at multiple cell-fate decision levels. miRNAs regulate hema-
topoiesis acting both in HSC and in committed progenitor cells[18-20]. At the stem cell level,
some miRNAs evolutionally conserved are responsible for expanding HSCs by inhibiting apo-
ptosis[21-23]. At the progenitor cell level, miRNAs regulate the developmental fate of the
megakaryocyte-erythroid progenitor (MEP) cell, the common progenitor of the erythroid and
megakaryocytic lineages[24,25]. At the more committed hematopoietic cell level, specific miR-
NAs are expressed in different blood cell lineages and in different stages of hematopoietic dif-
ferentiation. For example Chen et al.[26] reported that miR-142s expression was lower in the
erythroid and T-lymphoid lineages and higher in B-lymphoid and myeloid lineages, while
miR-223 expression was confined to myeloid lineages, with a very low detectable expression in
T- and B-lymphoid and erythroid lineages.

miRNAs have an important role in regulation of hematopoiesis[27-30]. miR-16, miR-451
upregulation and miR-150, miR-155, miR-221 and miR-222 downregulation are associated
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with different stages of erythropoiesis[31,32]. miR-223 expression level, determined by two
regulatory regions on its gene, fine-tunes lineage commitment of myeloid precursor[33]. miR-
181 family was detected during granulocytic and macrophage-like differentiation and its level
decreases along the hematopoietic lineage. It modulates differentiation by targeting and nega-
tively regulating PRKCD mRNA, an upstream regulator of a pathway of the myeloid differenti-
ation, and CAMKKI mRNA, involved in the granulocytic and PMA-induced macrophage-like
differentiation[34,35].

Recent studies highlighted aberrant miRNA expression in MPNs, and specific miRNA sig-
natures that distinguish MPN granulocytes from those of healthy donors[18,36]. We also pre-
viously demonstrated that abnormal expression of miR-16-2 in vitro and in vivo contributes to
the expansion of erythroid lineage in polycythemia vera.[20]

High-throughput array-based analysis of miRNA expression levels in MPN CD34" cells
were previously reported only by Lin et al.[35,37] A recent study characterized both gene and
microRNA (miRNA) expression profiles in CD34+ cells from PMF patients[38]. It identified
several biomarkers and putative molecular targets such as FGR, LCN2, and OLFM4. By means
of miRNA-gene expression integrative analysis, the study suggested that JARID2 downregula-
tion, mediated by miR-155-5p overexpression, might contribute to MK hyperplasia in PMF.

In a preliminary study, we performed short RNA massive sequencing and extensive bioin-
formatic analysis in the JAK2V617F-mutated SET2 cell line[39], detected and quantified 652
known mature miRNAs, of which 21 were highly expressed, thus being responsible of most of
miRNA-mediated gene repression. In the same study, we showed that the majority of miRNAs
were mixtures of sequence variants (isomiRs) and we identified 78 novel miRNAs. Indeed, we
discovered that SET?2 cells express a number of miRNA-offset RNAs (moRNAs), short RNAs
derived from genomic regions flanking mature miRNAs, whose biological role needs to be
elucidated.

In the present study, we characterized miRNA and moRNA expression in CD34+ stem cells
using massive small RNA-seq. The observed specificities in small RNAs expression of PMF
CD34+ cells were subsequently confirmed considering granulocytes from PMF, PV and ET
patients and from healthy controls. We thus provided new information regarding the possible
role of miRNAs and, specifically, of new moRNAs in the disease.

Materials and Methods
Cell-sample preparation and RNA extraction

CD34+ cells were purified from 30 to 50 mL PB collected from PMF patients or from 5 mL BM
aspirate obtained in preservative-free heparin of healthy donors. All subjects provided
informed written consent. The study, conducted in accordance with the Declaration of Hel-
sinki, was approved by the Ethics Committee of the Azienda Ospedaliero-Universitaria Careggi
of Firenze (Largo Brambilla 3, 50134 Florence, Italy), the 04/22/2011 (protocol n. 2011/
0014777-37/11) in relation to the protocol "AGIMM (AIRC-Gruppo Italiano Malattie Mielo-
proliferative) Research Project".

Density gradient-separated mononuclear cells were processed through two sequential steps
of immunomagnetic CD34+ selection (Miltenyi Biotec, Bergisch Gladbach, Germany, http://
miltenyibiotec.com); final purity was evaluated by flow cytometry after labeling with
PE-HPCA?2 anti-CD34 monoclonal antibody (BD Biosciences, San Jose, CA, USA, http://www.
bdbiosciences.com), and found to be >97% in all instances.

Total RNA was extracted using Trizol. Disposable RNA chips (Agilent RNA 6000 Nano
LabChip kit; Agilent Technologies, Waldbrunn, Germany, http://www.home.agilent.com) were
used to determine concentration and purity/integrity of RNA with Agilent 2100 Bioanalyzer.
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Granulocytes were separated by differential centrifugation over a Ficoll-Paque gradient,
starting from 20 mL PB; contaminating red cells were removed by hypotonic lysis, and cell pel-
lets were resuspended in Trizol (Invitrogen Ltd, Paisley, UK, http://www.invitrogen.com).

Small RNA-seq library construction and sequencing

For each sample, a small RNA library was prepared starting from 1 pg total RNA, using the
TruSeq Small RNA Sample Preparation Kits and protocols (Illumina, San Diego, CA, USA,
http://www.illumina.com). Library quality was checked using High Sensitivity DNA chip (Agi-
lent Technologies, Waldbrunn, Germany, http://www.home.agilent.com). The purified cDNA
libraries was used for cluster generation on Illumina's Cluster Station and sequenced on an Illu-
mina HiSeq2000 instrument, producing single reads from 49 to 57 bp.

Small RNA data analysis: preprocessing

After the adapter removal preprocessing step, reads “adapter-only”, too short or unclipped
have been discarded. Unclipped reads are discarded because they can't represent miRNA or
miRNA like short RNAs.

We admitted a read length range between 15 and 30 nt, slightly wider than the human anno-
tated miRNAs length in miRBase to conserve also possible new longer isomiRs. We therefore
discarded raw reads out of the range 15-30 bps in length. We then filtered out low quality
reads, keeping all those reads displaying a mean base quality higher than 30, and allowing no
more than 2 nucleotides per read with quality under 20. To complete data preprocessing we
eliminated ground noise, considered as reads belonging to unique sequences with less than 10
reads counts each.

Small RNA data analysis: reads mapping and comparative filtering

Reads have been mapped using Bowtie v. 1.1.0 both to the GRCh38 genome assembly and the
known hairpins sequences extended in both directions by additional 30 bp to accommodate
moRNAs mapping at the extremities of known hairpins. Reads mapping to more than 5 differ-
ent loci on the genome, out of miRNA hairpins, are unlikely to be real miRNAs, and they have
been thus discarded.

Barplot on Fig A in S1 File shows filtering effects on absolute reads counts for each sample.

We processed each sample data with our in-house pipeline miR&moRe. The output consists
of lists of known miRNA read counts, lists of new miRNAs and moRNAs and lists of variants
(isomiRs) for all the small RNAs found in each sample.

Expression data normalization and sample cluster analysis

Sample merging and carefully conducted steps of data normalization and transformation are
needed to guarantee the comparability of samples, to allow descriptive unsupervised analyses
and differential expression tests. We performed normalization using R/Bioconductor package
DESeq. Inference of differential expression in DESeq relies on the estimation of the typical rela-
tionship between the data variance and their mean, or, equivalently, between the data disper-
sion and their mean. Variance dependence to the mean can be modeled following different
ways using DESeq, with several algorithms and very different results. The selection of the
method used is crucial, since variance estimation influences unsupervised classification, differ-
ential expression and all following analyses. We tried two different methods for fitting data var-
iance: 1) a parametric model, 2) a local regression model.
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The first is the recommended default but in some data sets could fail to give optimal results.
Sum of square of residuals for local regression is 15311.52 whereas for GLM is 156849.3, so we
can conclude that local regression fits better our data.

We performed cluster analysis using R to check whether samples were correctly classified in
their own biological class. We clustered samples using both full SRNAs expression matrix (917
sRNAs) and filtered, computing Euclidean distance and complete linkage as clustering
method.

To filter the expression matrix at different levels of sSRNAs expression we calculated, for
each sSRNA in the matrix, the sum of expression vector values. Then we performed clustering
analysis under the following conditions 1) considering all the sSRNAs found 2) selecting only
sRNAs over the median (474 miRNAs and 26 moRNAs), 3) filtering only sRNAs over the third
quartile (237 miRNAs and 12 moRNAs).

Differentially expressed sRNAs

We performed a differential expression analysis using DESeq R/Bioconductor package. We
considered those short RNAs that had a total expression throughout all samples higher than
the median. We performed a multiple test correction according to the Benjamini Hochberg
method (FDR). We considered a corrected p-value of 0.05 as threshold to identify differentially
expressed elements.

Validation of differentially expressed sRNAs

We performed individual miRNAs assay by Tagman quantitative real-time PCR (QRT-PCR)
for quantification of abnormally expressed miRNAs in PMF and control granulocytes and in
CD34+ cells. cDNA was synthesized from total RNA using microRNA-specific RT primers
contained in the TagMan microRNA Human Assays (Applied Biosystems). Briefly, single-
stranded cDNA was synthesized from 10 ng total RNA in 15-uL reaction volume with the
High-Capacity cDNA Archive Kit (Applied Biosystems) using 1 mM deoxyribonucleoside tri-
phosphates, 50 U Multiscribe reverse transcriptase, 3.8 U RNase Inhibitor, and 50 nM of miR-
specific RT primers. The reaction was incubated at 16°C for 30 minutes followed by 30 minutes
at 42°C, and inactivation at 85°C for 5 minutes. Each generated cDNA was amplified by
QRT-PCR with sequence-specific primers from the TagMan microRNA Assays on an ABI
Prism 7300 real-time PCR system (Applied Biosystems). PCR reactions included 10 pL 2x Uni-
versal PCR Master Mix (No AmpErase UNG), 2 uL each 10x TagMan MicroRNA Assay Mix
and 1.5 pL reverse-transcribed product; they were incubated in a 96-well plate at 95°C for 10
minutes, followed by 40 cycles of 95°C for 15 seconds and 60°C for 1 minute. Expression varia-
tions were calculated using the RQ method and a t-test p-value of 0.05 was used as threshold to
identify differentially expressed elements.

Target prediction of validated sRNAs and functional enrichment

The complexity of miRNA-mRNA interactions causes ambiguity in target prediction results.
Target genes identification is indeed challenging and many algorithms have been developed.
Target prediction programs can be divided in two classes, distinguished on the basis of the use
or not of the information about evolutionary conservation of interaction[40]. We chose to per-
form a target prediction using two different programs, miRanda[41] and PITA[42], which
implement orthogonal target prediction strategies. Our choice was determined also by code
availability, which allowed us to make custom predictions using as query sequences also iso-
miRs and moRNA sequences.
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We performed a target prediction using both miRanda 3.3a and PITA executable version 6
(31-Aug-08). We applied default parameters of miRanda to predict target of selected miRNAs
and moRNA sequences since these settings are reported to optimize the dynamic programming
miRanda algorithm. We used default parameters for PITA target prediction too. According to
PITA documentation, we considered a binding site with score < -10 likely to be functional in
endogenous microRNA expression levels. We performed a hypergeometric test using an in-
house modified version of the R Category package of Bioconductor, which supports Reactome
annotation maps via the reactome.db R package.

gRT-PCR analysis of target gene expression

For the analysis of expression level of MECOM, MEIS1, AGO1, CAV1, AKRICI, TIMP3, AGO3,
FSTLI, JAKMIP2, TNSF10, BRCA1, PTPN4, MME, TCF4, FKBP10, SYS1, TRPSI and RAN in
CD34+ cells, RNA was reverse-transcribed with random hexamers and Murine Leukemia Virus
(MuLV) reverse transcriptase (Thermo Fisher Scientific). qRT-PCR was carried out with TagMan
Universal PCR master mix, using TagMan gene expression assays (MECOM: Hs00602795_m1,
MEISI: Hs01017441_m1, AGOI: Hs01084653_m1, CAV1: Hs00971716_ml, AKRICI:
Hs04230636_sH, TIMP3: Hs00165949_m1, AGO3: Hs01087121_m1, FSTLI: Hs00907496_m1,
JAKMIP2: Hs00207662_m1, TNSF10: Hs00921974_m1, BRCAI: Hs01556193_m1, PTPN4:
Hs00267762_m1, MME: Hs00153510_m1, TCF4: Hs00162613_m1, FKBP10: Hs0022557_m1,
SYS1: Hs01110991_m1, TRPSI: Hs00936363_m1 and RAN: Hs03044733_g1; Thermo Fisher Sci-
entific) by means of StepOne real-time PCR system (Applied Biosystems). Assays were performed
in quadruplicate. Gene expression profiling was achieved using the RQ method as above, using
RNase-P as the housekeeping gene.

Results and Discussion
Small RNA expression in CD34+ cells of patients with PMF

We considered small RNA sequencing data of 6 CD34+ cells, including 3 samples collected
from 3 pools of bone marrow CD34+ cells of healthy subjects (CTR), and 3 samples of circulat-
ing CD34+ cells of patients affected by primary myelofibrosis (PMF), two of which were from
individual patients while the third constituted a pool obtained by mixing equal amounts of
RNA from 4 PMF patients. Samples and raw reads information are summarized in Table A in
S1 File. The Illumina 2000 sequencing produced a total of 787,913,722 raw reads (131,318,954
per sample on average) that were deposited in Gene Expression Omnibus (GEO Series
GSE69089).

After a stringent filtering during the preprocessing and quality control steps, 349,372,534
were aligned to GRCh38 genome “extended” hairpins (Fig A in S1 File). Aligned reads corre-
sponded to 44.3% of initial raw reads, but due to high sequencing depth, the number of consid-
ered reads was still high.

We detected a total of 917 sRNAs, including 784 know miRNAs, expressed in at least one of
the 6 considered CD34+ samples. Notably, 8 known miRNAs (miR-10a-5p, miR-181a-5p,
miR-191-5p, miR-92a-3p, let-7a-5p, miR-146b-5p, miR-26a-5p and let-7f-5p) are highly
expressed and contribute to the total miRNA expression throughout all samples from 2.5% to
25%, representing all together the 80% of the total expression. Moreover, we detected 133 new
sRNAs, including 34 new miRNAs produced from known hairpins, and 99 microRNA-offset
RNAs (moRNAs). Table 1 reports a summary of different types of sSRNAs detected in the con-
sidered samples, according to current miRNA annotations.

Cluster analysis and heatmaps of pairwise sample correlations are represented in Fig B in S1
File. Two heatmap plots were generated, one by considering normalized expression profiles of
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Table 1. Summary of small RNAs expressed in CD34+ cells.

sRNAs CTR PMF Total
known miRNAs 568 760 784
new miRNAs 20 31 34
moRNAs 52 96 99
Total new 72 127 133
Total 640 887 917

doi:10.1371/journal.pone.0140445.1001

all the sSRNAs expressed and another considering only those expressed over the median level.
Both unsupervised analyses indicate that samples are correctly clustered according to sSRNAs
expression, with CTR samples clustered together and separately from PMF samples. Cluster
analyses and heatmaps show that patients and controls sSRNAs profiles are significantly differ-
ent from each other and highlight a characteristic miRNA and moRNA expression profile in
PMF.

New miRNAs in CD34+ cells of PMF

In addition to 784 miRNAs annotated in miRBase, our in-house pipeline miR&moRe let us dis-
cover 34 new miRNAs expressed in considered samples (Table B in S1 File).

To find new miRNAs, we considered all the hairpins precursors annotated in miRBase, to
be used as reference for read mapping and small RNA detection and quantification. Some of
the listed hairpin precursors were known to only generate one mature miRNA with only a
handful of reads reported in miRBase across all NGS experiments surveyed. After identifying
the hairpin region that would most likely pair with annotated mature we classified as new miR-
NAs all the clusters of reads that map there. A consistent number of reads were attributed to
new miRNAs. Since these reads passed stringent quality filtering and mapping criteria, it is
improbable that they originate from sequencing errors. Furthermore, two of these new miR-
NAs, miR-2110* and miR-548ag-2*, resulted highly expressed and showed a mean expression
over the median of expression values calculated on all small RNAs.

miRNAs are mixtures of isoforms contributing to miRNAs expression

Microarray technology, relying on sequence hybridization to appropriately designed annealing
probes, can only detect annotated miRNA sequences. Sequencing-based technology reveals
instead all the repertoire of expressed small RNAs, both the unknown and the annotated miR-
NAs, and is able to detect isomiRs, that contribute to miRNA expression and qualitative char-
acteristics. Our and other previous NGS studies showed that miRNAs are mixtures of
sequences, slightly different from the official mature miRNA, called isomiRs [39,43].

In our dataset, miRNA expression counts indeed consider for each miRNA a group of reads
that not only perfectly match the annotated miRNA (“exact”), but also match the precursor
with a 1-2 nt shorter or longer sequence than the mature miRNA in the 3’ region (“shorter or
longer at 3””), in the 5’ end (“shorter or longer at 5””) or at both the ends (“both”).

Expressed miRNAs with unique sequence are very few, only 165 out of the 784 annotated
miRNAs detected (21%). Unique sequence miRNAs are, in general, weakly expressed: they
were detected at level under the median of the mean expression values distribution. Notably,
the remaining 619 expressed miRNAs have more than one isomiR. We also detected reads
aligning to hairpin precursors with one or two mismatches but we excluded these reads from
the total miRNAs expression estimation.
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Fig 1. Distribution of reads per isomiR category (A) and per type (B) across samples, considering all 818 expressed miRNAs. “Exact’ reads are
identical to the mature miRNA sequence annotated in miRBase, whereas “mismatch” reads present respectively one or two nucleotides different from the
annotated sequence but identical length; the last category includes reads perfecly matching the miRNA precursor (and genomic) sequence but shorter or
longer than the annotated mature miRNA. IsomiR types indicate if the sequence difference fall in the 5’ region of the miRNA, in the 3’ region, or in both
regions. Abundance of reads falling in different isomiR categories (C) and types (D) for miR-10b-5p, showing that isomiRs different from the annotated
mature miRNA sequence are very abundant.

doi:10.1371/journal.pone.0140445.g001

Fig 1A shows that the annotated sequence, called “exact” isomiR, contributes on average to
36.6% of the miRNA expression, whereas a considerable part of the total expression contribute
is given by shorter or longer isomiR sequences (37.3% of expression, in average). Reads align-
ing with mismatches are also represented in display items for comparison (Fig 1A). We investi-
gated if sequence differences observed in non “exact” isomiRs involve the 5 half of the miRNA,
including the seed region crucial for target recognition, the 3” half, or both. Fig 1B shows that,
considering all expressed miRNAs, most differences regard the 3 half of the miRNAs, and iso-
miRs with 5’ region different from the “exact” sequence are very rare. Considering isomiR type
and miRNA region involvement together, we observed that mismatch isomiRs impacting on
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the 5” region were not detected at all (Fig C in S1 File). Considering the top 25% most expressed
miRNAs, the picture is basically unchanged (Fig D-A-C in S1 File). Looking at specific miR-
NAs, the ratio between isomiR types changes. For example, miR-10b-5p is mainly detected in
its “shorter or longer” variant (Fig 1C and 1D).

IsomiRs, initially discarded as sequencing/alignment artifacts or poor quality RNAs,[44-47]
were lately demonstrated to be highly expressed with an elevated degree of confidence. They
were experimentally validated and characterized as tissues, conditions and cell types specific
[48-50]. Despite isomiR biogenesis being still unclear, tissue specificity and differential expres-
sion during different development stages suggest to be ruled by a fine-tuned mechanism. Sev-
eral lines of evidence suggest that isomiRs could be processed by an alternative Drosha/Dicer
cleavage of the pre-miRNA[51-53] or by editing/nucleotide addition of the mature annotated
miRNA[54].

Regarding isomiR biological role, they were demonstrated to be biologically functional and
to work similarly to the canonical miRNA. In fact, Azuma-Mukai et al. [48] and Chin Tan et al.
[50] co-immunoprecipitated isomiRs with Ago proteins, supporting isomiRs biological activity.
Cloonan et al.[55] biotin-labeled miRNAs and isomiRs, to pull down endogenous mRNA tar-
gets: after ultra-deep miRNA-seq in different tissues, isomiRs expression levels resulted compa-
rable to the canonical miRNAs. Reportedly, isomiRs are incorporated into RISC complexes
binding endogenous mRNAs. The fact that 5’ isomiRs are also under selection during evolution
witnesses their functional importance[50].

Anyway, sequence differences, and notably those in the seed region can potentially direct
different isomiRs to diverse target mRNAs. Indeed 5’isomiRs target different mRNAs than
their canonical counterparts[50]. Chan et al.[56] showed that different miR-31 isomiRs are
expressed in different cell types and, notably, that even sharing the same seed region, slightly
different miR-31 isomiRs exert different degree of repression of verified target genes.

Considering that different isomiRs can characterize different tissues or conditions, as tumor
respect to normal tissues, and that diverse isomiR could impact differently on target genes and
pathways, isomiR deregulated expression could be implicated in disease. We thus considered
the possibility that peculiar genetic characteristics of the considered PMF cells would result in
specific isomiR sequences, or could be related to variations of isomiRs expression level in dis-
ease. We searched for mismatch isomiRs expressed in PMF samples and not in CTR samples,
possibly due to genetic mutations: 44 isomiRs belonging to 30 expressed miRNAs were identi-
fied only in PMF samples, but they resulted weakly expressed, with a read count lower than
400, and/or not accounting for at least the 25% of the corresponding miRNA expression (data
not shown).

We searched also for differentially expressed isomiRs comparing PMF and CTR samples.
133 isomiRs from 59 miRNAs were associated to a Log of Fold change at least 1 and adjusted t-
test p-value lower than 0.05. Considering all isomiRs accounting each for at least 10% of
mature miRNA expression, we observed that isomiRs and miRNA expression profiles were
highly correlated (75% of pairwise correlation values over 0.699, median correlation of 0.917;
Fig E-A in S1 File). Similarly, also differentially expressed isomiRs resulted highly correlated
with miRNAs (75% of pairwise correlation values over 0.743, median correlation of 0.895; Fig
E-Bin Sl File).

Anyway, since miRNAs are de facto mixtures of isomiRs, specific variations of isomiRs
expression impact also on miRNAs expression. Thus, we considered isomiR counts for miRNA
expression calculations and for the following analyses aiming at investigating the impact of
miRNAs and on moRNAs in specific functions and pathways.
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moRNAs discovery

As anticipated, we also detected in our samples sequences aligning to hairpins outside known
and novel miRNAs, that correspond to expressed microRNA-offset RNAs, called moRNAs
(Table 1). moRNAs sequences partially overlap miRNA regions but generally span the Drosha
cutting sites, letting us hypothesize a non canonical processing of the hairpin precursor in
moRNA biogenesis[39].

A complete list of all the detected moRNAs is in Table C in S1 File. Noteworthy, 28 moR-
NAs were highly expressed, 26 of them over the median of the short RNAs expression values
distribution and 12 of them even over the third quartile (Table 2).

We classified moRNAs on the basis of the hairpin precursor arm they where processed
from: 5-moRNAs mapping to the 5" hairpin arm, and 3’-moRNAs spanning over the 3’ hairpin
arm. 5’-moRs were significantly more abundant respect to 3’-moRs. Out of 99 moRNAs
expressed in considered samples, only 16 (16.2%) were processed from the 3” hairpin arm,
while 83 (83.8%) were 5°-moRs. According to our data, seven hairpins were processed produc-
ing two moRNAs each (Table Cin S1 File).

5’-moRs estimated expression values were 10 times higher than 3’-moRs, ranging from
summed up normalized values over all samples of 5 to 40,739, compared to a 3’-moRs range of
6 to 7,478. Both 3’-moRs and 5’-moRs are more expressed in controls than in PMF patient
samples.

Considering the 9 most expressed moRNAs, Fig 2A shows expression estimations in PMF
and CTR samples of all the expressed small RNAs that are produced from the same hairpins
precursor. Specific hairpins, as hsa-mir-421 and hsa-mir-941-1, reported in Fig 2A, express
two moRNAs each.

Table 2. List of most abundant moRNAs in considered CD34+ samples, which are expressed over the third quartile of all sSRNAs expression. For
each moRNA, the table reports expression (per sample group normalized read count), position and sequence.

moRNA Average read Average read Strand Position Sequence
count CTR count PMF
moR-128-2- 2493 0 + chr3:35744548— CCCTACTGTGTCACACTCCTA
3p 35744568
moR-21-5p 2946 2437 + chr17:59841243— ACATCTCCATGGCTGTACCACCTTGTCGG
59841271
moR-24-2- 5971 1719 - chr19:13836350- TGCCTGGCCTCCCTGGGCTCTGCCTCC
5p 13836376
moR-27a-5p 1752 312 - chr19:13836510— CGAAGCCTGTGCCTGGCCTGAGGAG
13836534
moR-3651- 0 1266 - chr9:92292537— ATGGACAGCTCTCCAGTGGATTCGATGGG
5p 92292565
moR-421-5p 848 2784 - chrX:74218449— CCTAATCCGGTGCACATTGTAGGC
74218472
moR-6724- 683 280 + chr21:8205298— TGTGGGGGAGAGGCTGTCGCTGCGCTTCTGGGCCC
1-5p 8205332
moR-6724- 683 280 + chr21:8249488— TGTGGGGGAGAGGCTGTCGCTGCGCTTCTGGGCCC
2-5p 8249522
moR-6724- 683 280 + chr21:8388345— TGTGGGGGAGAGGCTGTCGCTGCGCTTCTGGGCCC
3-5p 8388379
moR-6724- 683 280 + chr21:8432513— TGTGGGGGAGAGGCTGTCGCTGCGCTTCTGGGCCC
4-5p 8432547
moR-941-4- 6564 2531 + chr20:63919746— CACCCGGCTGTGTGCACATGTGC
5p 63919768
moR-941-5- 9780 3800 + chr20:63919858— CACCCGGCTGTGTGCACATGTGC
5p 63919880

doi:10.1371/journal.pone.0140445.t002
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between expression profiles of moRNAs and miRNAs produced from the same hairpin arm, considering all moRNAs detected in CD34+ cells.

doi:10.1371/journal.pone.0140445.9002

Considering the miRNA and the moRNA produced from the same hairpin arm, we noted
that in 4 out the 9 reported in Fig 2A the moRNA is more expressed than the miRNA and in
one the miRNA close to the moRNA is not detected at all. Moreover, some hairpins show a
similar trend toward up- or down-regulation for both the miRNA and the moRNA, whereas in
others the two sSRNAs show opposite behavior. We then compared the expression behavior of
all expressed moRNAs with that of the miRNA coming from the same hairpin arm. The
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boxplot in Fig 2B shows the distribution of 93 Pearson correlation values calculated pairwise
between expression profiles of detected moRNAs and miRNAs from the same hairpin arm: the
values range from -0.93 to +1, with median and mean values of 0.17 and 0.21, indicating a very
slight tendency toward positive correlation, the presence of abundant anticorrelated pairs (36,
38.7%). Considering the statistical significance of correlation, only 7 pairs (7.5%) resulted sig-
nificantly correlated (with a q-value at most 0.1); since they include an anticorrelated pair
(5'moR-93 and miR-93-5p) and do not overlap with the group of highly expressed moRNAs,
we can conclude that moRNA expression is largely independent from that of the close miRNA.

Even if moRNAs mechanism of action is still unknown, their considerable high expression
level in this dataset together with previously reported observations [39,43,57] offers an indirect
but intriguing indication of a biological role.

Identification of SRNA differentially expressed in PMF vs CTR

Since myeloproliferative disorders are clonal hematopoietic stem cell neoplasias, miRNA and
moRNA deregulation can be implied in tumor physiopathology.

We recognized 37 sRNAs significantly differentially expressed (DE) in PMF patient samples
respect to control CD34+ (Table D in S1 File). Fig 3A shows the logarithm of the mean expres-
sion ratio in PMF and control cells for DE miRNAs and moRNAs. While only five small RNAs
are downregulated, the majority of DE sRNAs resulted upregulated in PMF patients.

Noteworthy, among the differentially expressed sSRNAs, 2 moRNAs (5-moR-542 and 3’-
moR-128-2) are included. Incidentally, the two miRNAs (miR-542-5p and miR-128-3p) that
are produced by the same hairpin arm of differentially expressed moRNAs are not differentially
expressed in the same sample comparison. 5°-moR-542 is up-regulated in PMF with a log,FC
of 3.5. 3’-moR-128-2 is highly expressed in normal CD34+ cells, at levels over the third quartile
of the overall small RNA expression distribution, and dramatically downregulated in PMF
patients: the moRNA was not detected in considered PMF samples. We mapped 3’-moR-128-2
sequence to the whole human genome to exclude multiple matching loci and to rule out map-
ping or annotations artifacts. We can thus exclude that moRNA-associated reads could come
from different or contaminating RNAs. An additional UCSC Blat[58] analysis confirmed that
the moRNA sequence only aligned to a single genomic locus (chr3:35786042-35786062). We
are therefore confident that the detected small RNA is a moRNA derived from the non-canoni-
cal processing of the human mir-128-2 hairpin.

Validations of selected differentially expressed miRNAs in PMF
granulocytes

We selected the most significantly deregulated and highly expressed miRNAs for further analy-
sis. Specifically, we considered 6 miRNAs among the differentially expressed for a quantifica-
tion with Real-time PCR (RT-PCR) in granulocytes collected from an independent and
sizeable cohort of normal controls (N = 10) and PMF (N = 50), PV (N = 30) or ET (N = 30)
patients. miR-10b-5p and moR-128-2 resulted significantly downregulated in PMF granulo-
cytes samples, as according to RNA-seq data in CD34+ cells (Figs 3B and 4B). Two additional
miRNAs (miR-379-5p and miR-543) showed in PMF granulocytes the same trend toward
upregulation in PMF granulocytes (Fig 3B) as in CD34+ cells by RNA-seq data. Both miR-29a-
3p and miR-19b-3p resulted significantly downregulated in PMF granulocytes (Fig 3B).
Furthermore, among the six small RNAs considered for validation in PMF granulocytes, 5
showed the same trend of changes also in ET or PV granulocytes, whereas miR-543 resulted
upregulated in PMF and ET, and downregulated in PV, with small variations (Fig F in S1 File).
miR-379-5p was upregulated in ET and in PV, as in PMF; miR-543 was slightly increased in
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doi:10.1371/journal.pone.0140445.9003
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doi:10.1371/journal.pone.0140445.9004

ET, as in PMF, but not in PV; miR-19b-3p and moR-128-2 showed a similar trend, being
decreased both in ET and in PV, but at a lower extent than in PMF; miR-10b-5p was decreased
in ET and in PV, also more than in PMF. Notably, considering the statistical significance of the
observed variation, miR-10b-5p is significantly downregulated both in PV and ET samples,
indicating that it is associated with MPN in general more than being specific for PMF.

Of interest, miR-10b-5p resulted downregulated both in PMF CD34+ and granulocytes.
Accordingly, miR-10b-5p has been previously reported to be deregulated in breast cancer[59-
61]and involved in chemoresistance related pathway[62]. It has been validated as downregu-
lated in endometrial carcinoma[63], bladder cancer [64], in advanced stage of small cell carci-
noma of the cervix (SCCC)[65] and in clear cell renal cell carcinoma (ccRCC) and its
expression level has been also included in a linear model that capture the metastatic tumor sig-
nature and patient prognosis[66].

We found miR-29a-3p upregulated in patients CD34+ respect to controls, but downregu-
lated in the same comparison when considering committed granulocytes. This observation is
in accordance with results previously obtained by Han et al.[67] who showed that miR-29a-3p
is expressed at lower levels in hematopoietic progenitors compared to lineage-committed pro-
genitors, including granulocytes, overall indicating that its expression level increases along
with commitment. Therefore, we point to miR-29a as a deregulated small RNA in PMF, whose
expression is uniquely modulated along myeloid differentiation of PMF CD34+ cells. Consis-
tently with our finding, Han et al. also showed also that sustained expression of miR-29a-3p in
mouse HSC/progenitors pushed myeloid progenitors to self-renewal capacity, to biased myelo-
poiesis and to the onset of a myeloproliferative disorder that progressed to acute myeloid leuke-
mia. Additional data supporting miR-29a-3p deregulation derives from a previous study by
Norfo et al.[38], in which miRNA expression profiling was obtained by Affymetrix miRNA 2.0
array analysis in a cohort of 42 PMF patients CD34+ cells and 31 healthy donors. In that study,
miR-29a-3p was found upregulated in CD34+ from PMF patients as well as, miR-29a-3p upre-
gulation in PMF CD34+ cells was validated by RT-PCR (with TagMan probes) in an indepen-
dent set of CD34+ cells from 10 PMF patients and 8 healthy subjects.

In the study of Norfo et al., also the upregulation of miR-379-5p, miR-543 and miR-19b-3p
were validated in PMF CD34+. In present study, we were unable to confirm a statistically sig-
nificant upregulation of these miRNAs in PMF, although there was a trend toward for miR-
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379-5p and miR-543. Interestingly, Norfo et al. validated microarray-based observations using
two sets of QRT-PCR experiments, conducted on CD34+ cells and on granulocytes, showing
that PMF-specific variations of a few miRNAs may be observed in CD34+ cells unlike in granu-
locytes. Indeed, miR-486-3p was significantly downregulated in PMF granulocytes and upregu-
lated in PMF in CD34+ cells.

In summary, available evidence indicate that miR-10b-5p and moR-128-2 are downregu-
lated in PMF CD34+ cells, whereas miR-19b-3p, miR-379-5p and miR-543 are upregulated.
For these miRNAs the evidence of differential expression in PMF was robust, since it was
detected by NGS and also validated technically (by qRT-PCR) and biologically (in independent
samples).

3'-moR-128-2

3’-moR-128-2, a newly annotated small RNA, resulted expressed in CD34+ while it was not
detected in PMF. We evaluated its expression level with qRT-PCR both in CD34+ cells and in
granulocytes. RT-PCR validation in CD34+ cells were conducted considering 8 normal con-
trols and 20 PMF patients, whereas the validation in granulocytes was done with the same
design and samples used for miRNA validation. Fig 4 shows the consistent downregulation of
3’-moR-128-2 in PMF patients according to RNA-seq (Fig 4A) and RT-PCR data in CD34+
(Fig 4B) and to RT-PCR data in granulocytes (Fig 4C). Moreover, 3’-moR-128-2 was
decreased, but at a lower extent, without reaching statistical significance, also in PV and ET
granulocytes (data not shown).

Intrigued by the striking expression pattern of the newly discovered 3'-moR-128-2 we
looked in details into sequence, structure, expression and functional differences of 3'-moR-
128-2 and miR-128-3p.

In Fig 5 we show additional sequence information regarding miR-128-3p and 3’-moR-128-
2. Since the moRNA sequence is not contained in the canonical hairpin (Fig 5A), the moRNA
probably derives from the processing of an alternative hairpin precursor. In Fig 5B we show
the RNAfold predicted minimum free energy (MFE) folding structure of the canonical hairpin
and of a longer sequence from which the moRNA can be derived. Fig 5C shows that mir-128
locus is inside an intron of ARPP21 gene, and displays the genomic region Mammals UCSC
base-wise PhyloP conservation score.

moRNA biological roles and mechanisms of function still deserve investigation. Very likely,
moRNAs can function as miRNAs in post-transcriptional gene silencing, guiding RISC to com-
plementary target mRNAs. This was first demonstrated by Umbach and colleagues, that used a
luciferase-based indicator assay to demonstrate that a viral moRNA (moR-rR1-3-5p) has
inhibitory activity against an artificial mRNA bearing a perfect target site [68,69]. Beyond this
proof of principle experiment, a recent study reported moRNA specific expression in human
embryonic stem cells[70] (hESCs). In the same study, moRNA and miRNA transfection exper-
iments and microarray quantification of gene expression were conducted and identified gene
silenced by moR-103a-2-3p, one of the most abundantly expressed moRNAs in hESCs, and by
miR-103a. In line with these previous studies, we assumed that 3’-moR-128-2 can act as a
miRNA, and investigated its possible impact on target gene silencing and on specific pathways
or biological processes. To this end, we considered how sequence variants (isomiRs) of these
two small RNAs relate to each other (Fig 6). For miR-128-3p, we identified 7 variants expressed
in considered CD34+ samples: one exact isomiR, corresponding to the miRBase annotated
mature form, and 6 “shorter or longer” variants (miR-128-3p-SL-1 to miR-128-3p-SL-6),
whereas only 2 3'-moR-128-2 isomoR were found out (3'-moR-128-2-1 and 3'-moR-128-2-2)
(Fig 6A).
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According to the conservative hypothesis that interprets moRNA as byproducts of Drosha
cleavage[71] one should expect comparable mean levels of miRNA and moRNA cognate vari-
ants (i.e. obtained from a single endonucleolytic cleavage cut) in PMF and CTR samples. The
observation that 3'-moR-128-2-1, the most abundant isomoR, is expressed only in CTR sam-
ples and its only viable cognate partner is the miR-128-3p-exact variant that is highly and
nearly equally expressed in CTR and PMF samples (with 3,739 and 2,256 normalized reads,
respectively)(Fig 6A) does not point in this direction. Neither do the poor correlation of
expression levels, in CTR and PMF samples, of cognate isomiRs and isomoRs, the fact that
some abundant isomiRs are not associated to detected isomoR sequences, the good conserva-
tion of moRNA sequence (Fig 5C), and the previously reported observation that both isomoRs
are not contained in the canonical hairpin (Figs 5A and 5B and 6A).

Genes and pathways targeted by the sRNAs deregulated in PMF

We conducted a preliminary functional characterization of the possible biological role of
sRNAs DE in PMF, by a double strategy. First we investigated possible target genes and path-
ways of the group of validated DE sRNAs, considered as a whole. Then, we focused on one of
the most novel elements emerged by our results, 3°-moR-128-2, to get specific insights on its
possible functions in CD34+ and, in turn, in PMF disease.

Target predictions of miR-10b-5p, miR-19b-3p, miR-29a-3p, miR-379-5p, miR-543 and of
moR-128-2 were performed by using two different programs, miRanda[41] and PITA[42],
which implement orthogonal target prediction strategies, and for which the code availability
allowed us to make custom predictions of possible miRNA and moRNA target genes, by using
as query sequences the identified isomiR and isomoR sequences.
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doi:10.1371/journal.pone.0140445.9005
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Fig 6. Origin, sequence variability, and relations beween 3’-moR-128-2 and the adjacent miR-128-3p. A) 3-moR-128-2 and miR-128-3p map to the
same locus and both shows sequence variability (isomiRs and isomoRs). Both the major and the minor isomoRs are found in normal CD34+ cells and not in
PMF samples. Red and blue colors indicate isomiR and isomoR groups that can be produced with an unique sequence cutting sites. The most expressed
isomoR is not associated to the corresponding most expressed isomiR. Moreover, expression levels, in CTR and PMF samples, of isomiRs and isomoRs are
poorly correlated intragroup. These observations, point against the moRNA being simply a by-product of the miRNA biogenesis. A similar indication is given
by the fact that some abundant isomiRs are not associated to detected isomoR sequences. B) 3-moR-128-2 and miR-128-3p have different, poorly
overlapping, sets of predicted targets. C) 3-moR-128-2 sequence can stably bind a target site in the 3'UTR of the RAN mRNA, causing post transcriptional
silencing.

doi:10.1371/journal.pone.0140445.g006

Among different isomiRs detected for each considered miRNA, we considered the most
expressed, even if it was different from the annotated sequence (Table E in S1 File). We also con-
sidered those isomiRs that were significantly contributing to miRNA total expression, and which
were differently expressed in patients respect to controls (t-test p-value <0.05 and [log,FC|>1),
according to RNA-seq data. Accordingly, both isomoRs were considered for moR-128-2.

A functional enrichment analysis, based on Reactome annotation maps, of targets predicted
by both methods was obtained using a hypergeometric test.

Table F in S1 File reports, the Reactome pathways enriched (q-value < = 0.05) among the
union of predicted target genes of miRNAs and moRNAs differentially expressed in PMF vs
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CTR samples, giving some hints on the pathway more specifically targeted, collectively, by
short RNAs deregulated in PMF. These enrichments are based on the subset (1,521; 36%) of
4,222 predicted target genes that are currently annotated in Reactome.

Table G in S1 File reports Reactome pathways resulting enriched among predicted targets of
each of the considered isomiRs belonging to differentially expressed sSRNAs, giving details of
pathways most enriched among the targets of specific miRNAs and also indicates that different
miRNAs target genes converge to the same enriched pathways, as “Signaling in FGFR in dis-
ease”, “DAP12 signaling”, “Oncogene induced senescence” and “Post-transcriptional silencing
by small RNAs”.

Human fibroblast grow factor receptors (FGFRs) are a family of four tyrosine kinase recep-
tors (FGFR1-4), which are involved, in a variety of cellular processes. They are indeed key reg-
ulators of fibrogenesis, embryogenesis, angiogenesis, metabolism, and many other processes of
proliferation and differentiation[72,73]. Deregulation of FGFR signaling has been observed in
numerous tumors.[74,75]

DAP12 is an immunoreceptor tyrosine-based activation motif (ITAM)-bearing transmem-
brane adapter molecule and it is reported to be signaling partner of activating natural killer
receptors. DAP12 complex to TREM-1 and MDL-1 receptors to form receptor complexes
involved in macrophage differentiation[76] and apoptosis in M1 leukemia cells[77], significant
monocytic activation of myeloid cell, calcium mobilization and inflammatory response[78,79].
Its elevated expression levels are associates with enhanced cytotoxic characteristics in large
granular lymphocyte leukemia[80].

Senescence is the stable cell growth arrest. Oncogene senescence (OIS) occurs when the acti-
vation of an oncogene is triggered; in this case it is termed oncogene-induced senescence. OIS
acts as a barrier against tumour progression by driving stable growth arrest of cancer progeni-
tor cells [81-83].

As anticipated, we then considered 3'-moR-128-2 and miR-128-3p targets for comparison.
We predicted the targets of the four most expressed miR-128-3p isomiRs (miR-128-3p-exact,
miR-128-3p-SL-2, miR-128-3p-SL-3, and miR-128-3p-SL-4) and targets of the two 3'-moR-
128-2 isomoRs (3'-moR-128-2-1 and 3'-moR-128-2-2)(Fig 6A), assuming that they would act
as miRNA, as indicated by the available experimental data[69,70]. We compared the union of
predicted targets of miR-128-3p variants and the union of predicted targets of 3-moR-128-2
variants, to understand if and how much the moRNA function can be related to that of the cog-
nate miRNA, as previously supposed[70]. As shown in the Venn diagram in Fig 6B, only a
small fraction of 3-moR-128-2 target genes, less than 17%, is putatively targeted also by at least
one of the miR-128-3p isomiRs.

According to Reactome-based functional enrichments, performed as explained in the previ-
ous paragraph, different pathways are enriched in predicted targets of 3’-moR-128-2 and of
miR-128-3p. miR-128-3p targets are enriched in genes that are part of cellular pathways for the
most part related to NGF, FGFR, ERBB4, ERBB2 signaling and transduction and to calcium
ion homeostasis and signal transduction.

Targets of 3’-moR-128-2 are enriched too in genes part of several, distinct, pathways related
to cellular signaling in growth and proliferation as “Signaling by Notch®, “Signaling by
ERBB4”, “Signaling by FGFR in disease” but also, quite interestingly, in genes part of the “Post-
transcriptional silencing by small RNAs” and of the more general “Regulatory RNA pathways”
(Table H in S1 File).

Remembering that 3’-moR-128-2 is highly expressed in normal and not detected in PMF
CD34+, it is worth notice that, 4 out of 7 genes of the “Post-transcriptional silencing by small
RNAs” path, namely AGO1, AGO3, TNRC6A, and TNRC6B can be targeted by at least one
isomoR of 3-moR-128-2 (Table 3). Moreover, both considered 3-moR-128-2 isomoRs could
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Table 3. Putative targets of 3’-moR-128-2 variants in the “Regulatory RNA” pathway.

Short RNA variant
3'-moR-128-2-1

3-moR-128-2-1

3'-moR-128-2-1

3-moR-128-2-2
3-moR-128-2-2
3-moR-128-2-2
3'-moR-128-2-2
doi:10.1371/journal.pone.0140445.t003

Sequence

CCCTACTGTGTCACACTCCTAAT
CCCTACTGTGTCACACTCCTAAT
CCCTACTGTGTCACACTCCTAAT
CCTACTGTGTCACACTCCTAAT
CCTACTGTGTCACACTCCTAAT
CCTACTGTGTCACACTCCTAAT

Target Genes

AGO3—Argonaute 3

RAN—RAN, member RAS oncogene family

POLR2H - Polymerase (RNA) Il (DNA directed) polypeptide H
AGO1—Argonaute 1

RAN—RAN, member RAS oncogene family

TNRCG6A - Trinucleotide repeat containing 6A

CCTACTGTGTCACACTCCTAAT TNRCE6B - Trinucleotide repeat containing 6B

also target RAN (Table 3), the RAS-related nuclear protein, member of the RAS Oncogene
Family, which is required for RNA export from the nucleus (Fig 6C).

In principle 3’-moR-128-2, where it is expressed, as in CD34+ hematopoietic stem cells,
could affect the expression of genes important for the entire process of miRNA-based silencing.
It can indeed target genes essential for post-transcriptional silencing both by translation repres-
sion, as AGO1/3, and by mRNA degradation, as TNRC6A/B. AGO1 and AGO3 are required
for post-transcriptional translation repression activity; AGO1 is also involved in transcriptional
silencing of promoters[84], and AGO3 is also putatively involved into the modulation of
mature miRNA incorporation to the RISC complex, thus controlling the ratio between micro-
RNA guide and passenger strand [85]. TNRC6A, and TNRC6B play a role in miRNA-depen-
dent translation repression and endonucleolytic cleavage, by recruiting specific deadenylase
complexes.

The multifunctional protein RAN is involved in many processes and diseases: it controls
cell cycle progression and it is a potential therapeutic target for treatment of cancers with acti-
vation of the PI3K/Akt/mTORCI and Ras/MEK/ERK pathways[86]. Specifically in relation to
the above mentioned findings, as known, RAN play a key role in RNA export from the nucleus
and for the biogenesis of all miRNAs. Thus, RAN silencing by 3’-moR-128-2 can impair pre-
miRNA transportation to the cytoplasm and output a reduction of miRNA biogenesis. A simi-
lar situation was documented by a recent study that identified, in B. mori, a virus-encoded
miRNA that suppresses the host miRNA biogenesis, exactly by targeting the host exportin-5
RAN cofactor [87].

Validation of potential MRNA targets

Bioinformatics predictions yielded several hundreds putative target genes for each selected
small RNA (moR-128-2, miR-379-5p, miR10b-5p, miR-19b-3p, miR-29a-3p and miR-543).
Because only a few predicted targets have been experimentally validated in vitro or in vivo, and
in order to narrow the analysis to a manageable number of variables, we choose to focus on
possible targets eventually selected based on their potential pathogenetic role in PMF.

TagMan assays were carried out for 18 putative target genes in an independent cohort of
CD34+ cells from 20 PMF patients and 10 healthy subjects (Table 4). Using real-time RT-PCR,
we found that TNSF10, MME, TCF4, TRPS1 and SYS1 were all significantly reduced in PMF
CD34+ compared with healthy controls, whereas BRCA1 and FKBP10 were increased. Other
genes, probably due to the limited number of samples, did not reach a statistically significant
difference yet they showed the expected trend of expression changes. In particular, we found
that MECOM, MFIS1, AGO1, AGO3, RAN, CAV1, AKR1IC1, TIMP3, ESTL1 were increased
in CD34+ of PMF patients compared with normal subjects, while JAKMIP2 and PTPN4 were
reduced.
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Table 4. Expression pattern of 18 mRNAs potentially targeted by miRNAs, according to qRT-PCR data. For each mRNA, miRNA and moRNA, we
report if it is increased (I) or decreased (D) in the PMF VS CTR sample comparison; the mRNAs p-values associated to a significant difference are listed; the
last column indicates if the expression of observed target mRNA variation is inversely related to the corresponding miRNA or moRNA.

miRNA name
moR-128-2
moR-128-2
moR-128-2
moR-128-2
moR-128-2
moR-128-2
moR-128-2
miR-379-5p
miR-379-5p
miR-379-5p
miR-379-5p
miR-379-5p
miR-379-5p
miR-19b-3p
miR-19b-3p
miR-19b-3p
miR-29a-3p
miR-543
miR-10b-5p
miR-10b-5p
miR-10b-5p
miR-10b-5p

miRNA I/D

O O O 0O O O O

O O O

D

doi:10.1371/journal.pone.0140445.t004

mRNA target gene name mRNA I/D mRNA DE p-value Opposite variation
MECOM | NS YES
MEISA | NS YES
AGO1 | NS YES
AGO3 | NS YES
RAN | NS YES
CAV1 | NS YES
TNSF10 D 0.0001 NO
MME D 0.0001 YES
SYSH D 0.0005 YES
TCF4 D 0.05 YES
BRCA1 | 0.05 NO
AKR1C1 | NS NO
TIMP3 | NS NO
TRPSH D 0.04 YES
PTPN4 D NS YES
FKBP10 | 0.02 NO
AGO3 | NS NO
TRPS1 D 0.04 YES
FSTL1 | NS YES
AGO3 | NS YES
JAKMIP2 D NS NO
PTPN4 D NS NO

According to miRNAs expression levels, and considering only significantly differentially
expressed genes, an opposite behavior of expression variation was found for miR-379-5p and
MME, TCF4 and SYS1; miR-19b-3p and miR-543 with TRPS1. Moreover, miR-10b-5p and
FSTL1 showed opposite behavior and 5 tested genes (AGO1, RAN, MECOM, MEISI, and
CAV1) putative targets of moR-128-2 showed a trend toward increase in PMF, opposite to the
moRNA.

Table 4 reports results of mRNA expression tests, indicating, for each miRNA-mRNA pair,
if the observed variations are in the same or in the opposite sense. However, before one can
reliably conclude that these predicted interactions do play a role in PMF cell abnormalities and
disease pathogenesis, functional studies of miRNA modulation will be required.

Conclusions

In this study, we reported the results of the first RNA-seq project aiming at studying small
RNAs in PMF CD34+ cells compared with control CD34+ cells. We detected 784 know miR-
NAs expressed in CD34+ cells and discovered 34 new miRNAs produced from known hair-
pins. We showed that expressed miRNAs with unique sequence are rare and that most
miRNAs are isomiR mixtures, whose expression needs to be considered for miRNA expression
estimation and for differential expression detection. Moreover, we discovered 99 microRNA-
offset RNAs (moRNAs) probably produced from alternative microRNA precursors.

Cluster analyses and heatmaps of samples demonstrated that patients and controls small
RNAs profiles are significantly different and highlighted a characteristic miRNA and moRNA
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expression profile in PMF. In fact, according to RNA-seq data, we identified several sSRNAs
expressed at significantly different level in patient compared to control CD34+. Subsequent
analysis in granulocytes from independent patients and controls samples strengthened the evi-
dence of 6 differentially expressed sSRNAs, including 3’-moR-128-2. Predicted targets of these
differentially expressed miRNAs are enriched in many remarkable pathways involved in tumor
development and progression, as “signaling by FGFR”, “DAP12 signaling” and “Oncogene
Induced Senescence”. Moreover, we validated the differential expression of 7 predicted target
mRNAs, and identified 5 miRNA-target pairs that show variations in the opposite sense in the
PME vs control CD34+ cell comparison.

We investigated in detail sequence, structure, expression and possible functions of the
newly discovered 3'-moR-128-2, also by comparison with the cognate miR-128-3p, showing
that the miRNA and moRNA expression profiles are poorly correlated. At the functional level,
assuming that moRNAs may act as miRNAs, we noticed that 3'-moR-128-2 and miR-128-3p
potential target genes and pathways are markedly different. Interestingly, 3'-moR-128-2, that
was expressed in normal CD34+ cells and resulted absent in PMF cells, may target pathways
related to the control of cell growth and proliferation and, strikingly, target several genes
involved in microRNA biogenesis or in miRNA-mediated silencing.

Opverall, in this study, we provided novel data regarding the expression profile of small RNA
expressed in PMF CD34+ as well as in healthy control cells, by NGS analysis and their possible
impact on specific genes and pathways; in addition, we described for the first time new moR-
NAs as possible contributors to disease pathogenesis. This information may represent the basis
for further studies aimed at a deeper knowledge of the role on miRNAs and moRNAs in nor-
mal and pathological hematopoiesis.
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