

FLORE Repository istituzionale dell'Università degli Studi di Firenze

Generalized geometry of Norden manifolds

Questa è la Versione finale referat	(Post print/Accepted manuscript	t) della seguente pubblicazione
-------------------------------------	---------------------------------	---------------------------------

Original Citation:

Generalized geometry of Norden manifolds / Nannicini Antonella. - In: JOURNAL OF GEOMETRY AND PHYSICS. - ISSN 0393-0440. - STAMPA. - 99 (2016):(2016), pp. 244-255. [10.1016/J.geomphys.2015.10.011]

Availability:

The webpage https://hdl.handle.net/2158/1015674 of the repository was last updated on 2021-03-25T18:05:27Z

Published version:

DOI: 10.1016/J.geomphys.2015.10.011

Terms of use:

Open Access

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze (https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Publ	lisher	CODY	vriał	nt cl	aim.
· uvi	101101	COP	יפייי	,, ,,	unn.

La data sopra indicata si riferisce all'ultimo aggiornamento della scheda del Repository FloRe - The abovementioned date refers to the last update of the record in the Institutional Repository FloRe

(Article begins on next page)

Generalized geometry of Norden manifolds

Antonella Nannicini

Università di Firenze, Italy

ABSTRACT. Let (M,J,g,D) be a Norden manifold with the natural canonical connection D and let \widehat{J} be the generalized complex structure on M defined by g and J. We prove that \widehat{J} is D-integrable and we find conditions on the curvature of D under which the $\pm i$ -eigenbundles of $\widehat{J}, E_{\widehat{J}}^{1,0}, E_{\widehat{J}}^{0,1}$, are complex Lie algebroids. Moreover we proove that $E_{\widehat{J}}^{1,0}$ and $\left(E_{\widehat{J}}^{1,0}\right)^*$ are canonically isomorphic and this allow us to define the concept of generalized $\overline{\partial}_{\widehat{J}}$ - operator of (M,J,g,D). Also we describe some generalized holomorphic sections. The class of Kähler-Norden manifolds plays an important role in this paper because for these manifolds $E_{\widehat{J}}^{1,0}$ and $E_{\widehat{J}}^{0,1}$ are complex Lie algebroids. 1–2–3

1 Introduction

Generalized complex structures were introduced by N. Hitchin in [6], and further investigated by M. Gualtieri in [8], in order to unify symplectic and complex geometry. In this paper we consider a more general concept of generalized complex structure introduced in [15], [16] and also studied in [17], [18], [3]. Let (M,g) be a smooth pseudo-Riemannian manifold, let T(M) be the tangent bundle, let $T^*(M)$ be the cotangent bundle and let $E = T(M) \oplus T^*(M)$ be the generalized tangent bundle of M. In the previous papers [15], [16], we defined a generalized complex structure of M as a complex structure on E and we studied some classes of such structures, in particular calibrated complex structures with respect to the canonical symplectic structure, $(\ ,\)$, of E. Using a linear connection, ∇ , on M we introduced a bracket, $[\ ,\]_{\nabla}$, on sections of E, the corresponding concept of ∇ -integrability for generalized complex structures and we studied integrability conditions. In [18] we concentrated on the canonical generalized complex structure defined by g, $J^g = \begin{pmatrix} O & -g^{-1} \\ g & O \end{pmatrix}$. We proved that in the case J^g is ∇ -integrable the $\pm i$ -eigenbundles of J^g , $E^{1,0}_{J^g}$, $E^{0,1}_{J^g}$, are complex Lie

¹Mathematics Subject Classification (2010): 53C15, 53D18 53C80 53C38 Key words: General geometric structures on manifolds, Generalized geometry, Norden manifolds, Kähler-Norden manifolds, Lie algebroids.

²Subject Classification:

Real and complex differential geometry, Symplectic geometry.

³Partially supported by PRIN "Proprietà geometriche delle varietà reali e complesse" of MIUR and by GNSAGA of INDAM.

algebroids and, by using the canonical isomorphism between $E_{Jg}^{0,1}$ and $\left(E_{Jg}^{1,0}\right)^*$ induced by the natural symplectic structure of $T\left(M\right)\oplus T^{*}\left(M\right)$, we defined the generalized $\overline{\partial}_{J^g}$ -operator on M. We remark that this case is strictly related to the field of statistical manifolds introduced in [1]. In this paper we observe that Norden manifolds fit naturally in the context of our concept of generalized complex structures and we extend the results of [18] to the case of Norden manifolds. Precisely we prove that on a Norden manifold, (M, J, g), with the natural canonical connection D, the generalized complex structure defined by $\widehat{J} = \begin{pmatrix} J & O \\ g & -J^* \end{pmatrix}$ is D-integrable. Then we describe the $\pm i$ -eigenbundles of \widehat{J} , $E_{\widehat{J}}^{1,0}$, $E_{\widehat{J}}^{0,1}$, we find conditions under which they are complex Lie algebroids and we prove that for $E_{\widehat{J}}^{0,1}$ by the form $E_{\widehat{J}}^{0,1}$ by the second state of $E_{\widehat{J}}^{0,1}$ and $E_{\widehat{J}}^{0,1}$ by the second state of $E_{\widehat{J}}^{0,1$ and we prove that for Kähler-Norden manifolds these conditions are automatically satisfied, that is, for this class of manifolds, $E_{\widehat{J}}^{1,0}$ and $E_{\widehat{J}}^{0,1}$ are complex Lie algebroids. Then we define the generalized $\overline{\partial}_{\widehat{J}}$ -operator on M, from the Jacobi identity on $E_{\widehat{J}}^{1,0}$ it follows that $(\overline{\partial}_{\widehat{J}})^2 = 0$ and, as $\overline{\partial}_{\widehat{J}}$ is the exterior derivative of the Lie algebroid $E_{\widehat{J}}^{1,0}$, we get that $\left(C^{\infty}\left(\wedge^{\bullet}\left(E_{\widehat{J}}^{1,0}\right)\right), \wedge, \overline{\partial}_{\widehat{J}}, [\;,\;]_{D}\right)$ is a difference of the Lie algebroid $E_{\widehat{J}}^{1,0}$. ential Gerstenhaber algebra, where \land denotes the Schouten bracket, [12], [24]. The paper is organized as in the following. In section 2 we introduce preliminary material: first we describe the main geometrical properties of the generalized tangent bundle and of generalized complex structures, then we recall the basic definitions in the setting of Norden manifolds, Kähler-Norden manifolds and complex Lie algebroids. Original results are concentrated in section 3: the geometrical description of the generalized complex structure J associated naturally to a Norden manifold, the definition of the generalized $\overline{\partial}_{\,\widehat{\imath}}$ -operator and the description of some generalized holomorphic sections.

2 Preliminaries

2.1 Generalized geometry

Let M be a smooth manifold of real dimension n and let $E = T(M) \oplus T^*(M)$ be the generalized tangent bundle of M. Smooth sections of E are elements $X + \xi \in C^{\infty}(E)$ where $X \in C^{\infty}(T(M))$ is a vector field and $\xi \in C^{\infty}(T^*(M))$ is a 1- form.

E is equipped with a natural symplectic structure defined by:

$$(X + \xi, Y + \eta) = -\frac{1}{2}(\xi(Y) - \eta(X)) \tag{1}$$

and a natural indefinite metric defined by:

$$\langle X + \xi, Y + \eta \rangle = -\frac{1}{2}(\xi(Y) + \eta(X)).$$
 (2)

<, > is non degenerate and of signature (n, n).

A linear connection on M, ∇ , defines, in a canonical way, a bracket on $C^{\infty}(E)$, $[\ ,\]_{\nabla}$, as follows:

$$[X + \xi, Y + \eta]_{\nabla} = [X, Y] + \nabla_X \eta - \nabla_Y \xi. \tag{3}$$

The following holds:

Lemma 1 ([15]) For all $X, Y \in C^{\infty}(T(M))$, for all $\xi, \eta \in C^{\infty}(T^{*}(M))$ and for all $f \in C^{\infty}(M)$ we have:

- 1. $[X + \xi, Y + \eta]_{\nabla} = -[Y + \eta, X + \xi]_{\nabla}$,
- 2. $[f(X + \xi), Y + \eta]_{\nabla} = f[X + \xi, Y + \eta]_{\nabla} Y(f)(X + \xi),$
- 3. Jacobi's identity holds for $[\ ,\]_{\nabla}$ if and only if ∇ has zero curvature.

We consider the following concept of generalized complex structure, introduced in [15], [16] and further investigated in [17], [18], [3]:

Definition 2 A generalized complex structure on M is an endomorphism \widehat{J} , $\widehat{J}: E \to E$ such that $\widehat{J}^2 = -I$.

A pseudo-Riemannian metric on $M,\,g,$ defines, in a natural way, a complex structure J^g on E by:

$$J^{g}(X+\xi) = -g^{-1}(\xi) + g(X)$$
(4)

where $g:T(M)\to T^*(M)$ is identified to the bemolle musical isomorphism defined by:

$$g(X)(Y) = g(X,Y), (5)$$

in block matrix form, is:

$$J^g = \begin{pmatrix} O & -g^{-1} \\ g & O \end{pmatrix}. \tag{6}$$

Definition 3 A generalized complex structure \widehat{J} is called pseudo calibrated if is (,) -invariant and if the bilinear symmetric form on T(M) defined by (,J) is non degenerate, moreover \widehat{J} is called calibrated if $(,\widehat{J})$ is positive definite, [15].

A direct computation shows that J^g is pseudo calibrated.

Let ∇ be a linear connection on M and let $[\ ,\]_{\nabla}$ be the bracket on $C^{\infty}(E)$ defined by ∇ , the following holds:

Lemma 4 ([16]) Let $\widehat{J}: E \to E$ be a generalized complex structure on M and let

 $N^{\nabla}(\widehat{J}): C^{\infty}(E) \times C^{\infty}(E) \to C^{\infty}(E)$ (7)

defined by:

š

$$N^{\nabla}(\widehat{J})(\sigma,\tau) = \left[\widehat{J}\sigma,\widehat{J}\tau\right]_{\nabla} - \widehat{J}\left[\widehat{J}\sigma,\tau\right]_{\nabla} - \widehat{J}\left[\sigma,J\tau\right]_{\nabla} - [\sigma,\tau]_{\nabla}$$
 (8)

for all $\sigma, \tau \in C^{\infty}(E)$; $N^{\nabla}(\widehat{J})$ is a skew symmetric tensor.

Definition 5 $N^{\nabla}(\widehat{J})$ is called the Nijenhuis tensor of \widehat{J} with respect to ∇ .

Definition 6 Let $\widehat{J}: E \to E$ be a generalized complex structure on M, \widehat{J} is called ∇ -integrable if $N^{\nabla}(\widehat{J}) = 0$.

Proposition 7 ([16]) Let ∇ be a torsion free connection on M and let

$$J^g = \begin{pmatrix} O & -g^{-1} \\ g & O \end{pmatrix} \tag{9}$$

be the generalized complex structure on M defined by a pseudo-Riemannian metric g, J^g is ∇ -integrable if and only if g is a Codazzi tensor, that is for all $X,Y \in C^{\infty}(T(M))$ we have:

$$(\nabla_X g)Y = (\nabla_Y g)X. \tag{10}$$

Definition 8 ([1]), ([4]), ([19]) Let (M, g, ∇) be a pseudo-Riemannian manifold with a torsion free linear connection, if ∇g is symmetric then (M, g, ∇) is called a statistical manifold.

Corollary 9 Let ∇ be a torsion free connection on M and let J^g be the generalized complex structure on M defined by a pseudo-Riemannian metric g, J^g is ∇ -integrable if and only if (M, g, ∇) is a statistical manifold.

2.2 Norden manifolds

Norden manifolds were introduced by A. P. Norden in [20] and then studied also under the names of almost complex manifolds with B-metric and anti-Kählerian manifolds, [2], [9]. They have applications in mathematics and in theoretical physics.

Definition 10 Let (M, J) be an almost complex manifold of real dimension 2n and let g be a pseudo-Riemannian metric on M, if J is a g-symmetric operator then g is called Norden metric and (M, J, g) is called Norden manifold.

Remark 11 We can easily prove that a Norden metric g on a 2n-dimensional almost complex manifold is of (n, n)-signature, that is g is a neutral metric.

Let (M, J, g) be a complex Norden manifold, that is a Norden manifold with J integrable, then there exists a natural canonical connection on M, precisely the following holds:

Theorem 12 ([9]) On a complex manifold with Norden metric (M, J, g) there exists a unique linear connection D with torsion T such that:

$$(D_X g)(Y, Z) = 0 (11)$$

$$T(JX,Y) = -T(X,JY) \tag{12}$$

$$g(T(X,Y),Z) + g(T(Y,Z),X) + g(T(Z,X),Y) = 0$$
(13)

for all vector fields X, Y, Z on M. D is called the natural canonical connection of the Norden manifold or B-connection and it is defined by:

$$D_X Y = \nabla_X Y - \frac{1}{2} J(\nabla_X J) Y \tag{14}$$

where ∇ is the Levi-Civita connection of g.

We remark that (14) is equivalent to:

$$D_X Y = \frac{1}{2} \left(\nabla_X Y - J \nabla_X J Y \right) \tag{15}$$

then, by direct computation we get the following Proposition.

Proposition 13 If D is the natural canonical connection of the complex Norden manifold (M, J, g) then

$$DJ = 0. (16)$$

Definition 14 Let (M, J, g) be a Norden manifold and let

$$\widetilde{g}(X,Y) = g(JX,Y). \tag{17}$$

for all X and Y vector fields on M. \tilde{g} is a pseudo-Riemannian metric on M with (n,n)-signature and (M,J,\tilde{g}) is a Norden manifold. \tilde{g} is called the associated metric to g. \tilde{g} is also called the twin or the dual metric of g.

2.3 Kähler-Norden manifolds

Kähler-Norden manifolds are strictly related with complex analysis and they will be the main object of our theory. We recall here the definition and the main properties of Kähler-Norden manifolds, for details see [2],[11], [23].

Definition 15 Let (M, J, g) be a Norden manifold and let ∇ be the Levi-Civita connection of g, if $\nabla J = 0$ then (M, J, g) is called Kähler-Norden manifold.

We remark that for a Kähler-Norden manifold (M, J, g) the structure J is integrable and the natural canonical connection is the Levi-Civita connection.

Moreover the following holds:

Theorem 16 ([22]) Let (M, J, g) be a Kähler-Norden manifold, the Levi-Civita connection of g coincides with the Levi-Civita connection of the associated metric \widetilde{g} , in particular the Riemann curvature tensors of g and \widetilde{g} coincide.

A large class of Kähler-Norden manifolds is given by complex parallelisable manifolds, ([2]).

An interesting property of Kähler-Norden manifolds is the following:

Proposition 17 ([2]) Let (M, J, g) be a Kähler-Norden manifold then, extending g by \mathbb{C} -linearity to the complexified tangent bundle $T(M) \otimes \mathbb{C}$, the components of the complex extended metric, \widehat{g} , are holomorphic functions.

We recall that on a complex manifold (M, J) an element $X \in C^{\infty}(TM)$ is an infinitesimal automorphism of the complex structure J on M if and only if X satisfies the following condition:

$$[X, JY] = J[X, Y] \tag{18}$$

for all $Y \in C^{\infty}(TM)$.

On Kähler-Norden manifolds, from the condition $\nabla J=0$, (18) can be written as:

$$\nabla_{JY}X = \nabla_Y JX. \tag{19}$$

The Riemannian curvature tensor of a Kähler-Norden manifold has interesting properties, precisely we have the following:

Theorem 18 ([11]), ([22]) In a Kähler-Norden manifold the Riemannian curvature tensor, R^{∇} , of the Norden metric g is pure in all arguments, that is, for all $X, Y, Z, W \in C^{\infty}(T(M))$:

$$g(R^{\nabla}(JX,Y)Z,W) = g(R^{\nabla}(X,JY)Z,W)$$

$$= g(R^{\nabla}(X,Y)JZ,W)$$

$$= g(R^{\nabla}(X,Y)Z,JW).$$
(20)

2.4 Complex Lie algebroids

Lie algebroids were introduced by J. Pradines in [21]; we recall here the definition and the main properties.

Definition 19 A complex Lie algebroid is a complex vector bundle L over a smooth real manifold M such that: a Lie bracket $[\ ,\]$ is defined on $C^{\infty}(L)$, a smooth bundle map $\rho: L \to T(M)$, called anchor, is defined and, for all $\sigma, \tau \in C^{\infty}(L)$, for all $f \in C^{\infty}(M)$ the following conditions hold:

1.
$$\rho([\sigma, \tau]) = [\rho(\sigma), \rho(\tau)]$$

2.
$$[f\sigma, \tau] = f([\sigma, \tau]) - (\rho(\tau)(f))\sigma$$
.

Let L and its dual vector bundle L^* be Lie algebroids; on sections of $\wedge L$, respectively $\wedge L^*$, the *Schouten bracket* is defined by:

$$[\ ,\]_L: C^{\infty}\left(\wedge^p L\right) \times C^{\infty}\left(\wedge^q L\right) \longrightarrow C^{\infty}\left(\wedge^{p+q-1} L\right) \tag{21}$$

$$\left[X_1\wedge\ldots\wedge X_p,Y_1\wedge\ldots\wedge Y_q\right]_L=$$

$$\delta = \sum_{i=1}^{p} \sum_{j=1}^{q} (-1)^{i+j} \left[X_i, Y_j \right]_L \wedge X_1 \wedge ...^{\widehat{i}} ... \wedge X_p \wedge Y_1 \wedge ...^{\widehat{j}} ... \wedge Y_q$$
(22)

and, for $f \in C^{\infty}(M)$, $X \in C^{\infty}(L)$

$$[X, f]_L = -[f, X]_L = \rho(X)(f);$$
 (23)

respectively, by:

$$[\ ,\]_{L^*}: C^{\infty}\left(\wedge^p L^*\right) \times C^{\infty}\left(\wedge^q L^*\right) \longrightarrow C^{\infty}\left(\wedge^{p+q-1} L^*\right) \tag{24}$$

$$\left[X_1^*\wedge\ldots\wedge X_p^*,Y_1^*\wedge\ldots\wedge Y_q^*\right]_{L^*}=$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{q} (-1)^{i+j} \left[X_i^*, Y_j^* \right]_{L^*} \wedge X_1^* \wedge ..^{\hat{i}} ... \wedge X_p^* \Lambda Y_1^* \wedge ..^{\hat{j}} ... \wedge Y_q^*$$
 (25)

and, for $f \in C^{\infty}(M)$, $X \in C^{\infty}(L^*)$

$$[X, f]_{L^*} = -[f, X]_{L^*} = \rho(X)(f).$$
 (26)

Moreover the exterior derivatives d and d_* associated with the Lie algebroid structure of L and L^* are defined respectively by:

$$d: C^{\infty} \left(\wedge^{p} L^{*} \right) \longrightarrow C^{\infty} \left(\wedge^{p+1} L^{*} \right) \tag{27}$$

$$(d\alpha)(\sigma_0,...,\sigma_p) =$$

$$= \sum_{\substack{i=0 \ j}}^{p} (-1)^{i} \rho\left(\sigma_{i}\right) \alpha\left(\sigma_{0}, ...\widehat{i}..., \sigma_{p}\right) + \sum_{i < j} (-1)^{i+j} \alpha\left(\left[\sigma_{i}, \sigma_{j}\right]_{L}, \sigma_{0}, ...\widehat{i}...\widehat{j}..., \sigma_{p}\right)$$

$$(28)$$

for $\alpha \in C^{\infty}(\wedge^{p}L^{*})$, $\sigma_{0},...,\sigma_{p} \in C^{\infty}(L)$, and:

$$d_{\star}: C^{\infty} \left(\wedge^{p} L \right) \longrightarrow C^{\infty} \left(\wedge^{p+1} L \right)$$

$$\left(d_{\star} \alpha \right) \left(\sigma_{0}, ..., \sigma_{p} \right) =$$

$$(29)$$

$$= \sum_{i=0}^{p} (-1)^{i} \rho\left(\sigma_{i}\right) \alpha\left(\sigma_{0}, ...^{\widehat{i}}..., \sigma_{p}\right) + \sum_{i < j} (-1)^{i+j} \alpha\left(\left[\sigma_{i}, \sigma_{j}\right]_{L^{*}}, \sigma_{0}, ...^{\widehat{i}}...^{\widehat{j}}..., \sigma_{p}\right)$$

$$(30)$$

for $\alpha \in C^{\infty}(\wedge^{p}L)$, $\sigma_{0},...,\sigma_{p} \in C^{\infty}(L^{*})$.

3 Generalized geometry of Norden manifolds

3.1 Generalized complex structures

Let (M, J, g) be a Norden manifold, the almost complex structure J and the pseudo Riemannian metric g define, in a natural way, a complex structure \widehat{J} on E by:

$$\widehat{J}(X+\xi) = J(X) + g(X) - J^*(\xi)$$
(31)

where $J^*: T^*(M) \to T^*(M)$ is the dual operator of J defined by:

$$J^*(\xi)(X) = \xi(J(X)). \tag{32}$$

In block matrix form, is:

$$\widehat{J} = \begin{pmatrix} J & O \\ g & -J^* \end{pmatrix}. \tag{33}$$

Remark 20 From the g-symmetry of J it follows immediately that \widehat{J} is a pseudo calibrated generalized complex structure on M, see also [16].

A direct computation gives the following:

Proposition 21 Let (M, J, g) be a Norden manifold and let ∇ be a linear connection on M with torsion T, let \widehat{J} be the generalized complex structure defined by J and g, we have:

$$N^{\nabla}(\widehat{J})(X,Y) = (\nabla_{JX}J)Y - J(\nabla_XJ)Y - (\nabla_{JY}J)X + J(\nabla_YJ)X +$$

$$-T(JX,JY) + JT(X,JY) + JT(JX,Y) + T(X,Y) +$$

$$+g((\nabla_YJ)X - (\nabla_XJ)Y) + g(T(X,JY) + T(JX,Y)) +$$

$$+(\nabla_{JX}g)Y - (\nabla_{JY}g)X + (\nabla_Xg)JY - (\nabla_Yg)JX$$

$$(34)$$

$$N^{\nabla}(\widehat{J})(X,\xi) = -J^*(\nabla_X J^*)\xi - (\nabla_{JX} J^*)\xi \tag{35}$$

$$N^{\nabla}(\widehat{J})(\xi,\eta) = 0 \tag{36}$$

for all $X, Y \in C^{\infty}(T(M))$ and for all $\xi, \eta \in C^{\infty}(T^{*}(M))$.

Corollary 22 \hat{J} is ∇ -integrable if and only if the following conditions hold:

$$(37) \qquad (\nabla_{JX}J) = J(\nabla_XJ)$$

$$T(JX, JY) - JT(X, JY) - JT(JX, Y) - T(X, Y) = O$$
 (38)

$$g((\nabla_Y J)X - (\nabla_X J)Y) + g(T(X, JY) + T(JX, Y)) + + (\nabla_{JX} g)Y - (\nabla_{JY} g)X + (\nabla_X g)JY - (\nabla_Y g)JX = O$$
(39)

for all $X, Y \in C^{\infty}(T(M))$.

Corollary 23 If \widehat{J} is ∇ -integrable then J is integrable.

Proof. Let N(J) be the Nijenhuis tensor of the almost complex structure J, we have:

$$N(J)(X,Y) = (\nabla_{JX}J)Y - J(\nabla_XJ)Y - (\nabla_{JY}J)X + J(\nabla_YJ)X + -T(JX,JY) + JT(X,JY) + JT(JX,Y) + T(X,Y)$$
(40)

for all $X, Y \in C^{\infty}(T(M))$, then the statement follows from Corollary 22.

As we are interested in integrable generalized complex structures in the following we will assume that (M, J, g) is a complex Norden manifold. In particular we get:

Proposition 24 Let (M, J, g) be a complex Norden manifold and let D be the natural canonical connection on M, let \widehat{J} be the generalized complex structure defined by J and g, then \widehat{J} is D-integrable.

Proof. It follows from the properties of D described in Theorem 12 and in Proposition 13. \blacksquare

Analogous statement can be given for the associated metric, precisely the following holds:

Proposition 25 Let (M, J, g) be a complex Norden manifold and let \widetilde{D} be the natural canonical connection of the associated metric \widetilde{g} , let \widetilde{J} be the generalized complex structure defined by J and \widetilde{g} , then \widetilde{J} is \widetilde{D} -integrable.

3.2 Generalized $\bar{\partial}_{\hat{j}}$ -operator

Let (M, J, g) be a complex Norden manifold and let \widehat{J} be the generalized complex structure on M defined by J and g, let

$$E^{\mathbb{C}} = (T(M) \oplus T^{*}(M)) \otimes \mathbb{C}$$
(41)

be the complexified generalized tangent bundle. The splitting in $\pm i$ eigenspaces of \hat{J} is denoted by:

$$E^{\mathbb{C}} = E_{\widehat{\tau}}^{1,0} \oplus E_{\widehat{\tau}}^{0,1} \tag{42}$$

with

$$E_{\hat{i}}^{0,1} = \overline{E_{\hat{i}}^{1,0}}. (43)$$

A direct computation gives:

$$E_{\widehat{J}}^{1,0} = \left\{ Z - iJZ + g(W + iJW - iZ) \mid Z, W \in T(M) \otimes \mathbb{C} \right\}, \tag{44}$$

equivalently $E_{\widehat{J}}^{1,0}$ is generated by elements of the following type:

$$X - iJX - ig(X)$$
 with $X \in C^{\infty}(TM)$, (45)

$$g(Y+iJY)$$
 with $Y \in C^{\infty}(TM)$. (46)

Analogously we have:

$$\stackrel{\delta}{=} E_{\widehat{J}}^{0,1} = \{ Z + iJZ + g(W - iJW + iZ) \mid Z, W \in T(M) \otimes \mathbb{C} \}$$
 (47)

and $E_{\widehat{I}}^{0,1}$ is generated by elements of the following type:

$$X + iJX + ig(X)$$
 with $X \in C^{\infty}(TM)$, (48)

$$q(Y - iJY) \text{ with } Y \in C^{\infty}(TM).$$
 (49)

Moreover, for any linear connection ∇ , the following holds:

Lemma 26 $E_{\widehat{J}}^{1,0}$ and $E_{\widehat{J}}^{0,1}$ are $[\ ,\]_{\nabla}$ -involutive if and only if $N^{\nabla}(\widehat{J})=0$.

Proof. Let $P_+:E^{\mathbb{C}}\to E^{1,0}_{\widehat{J}}$ and $P_-:E^{\mathbb{C}}\to E^{0,1}_{\widehat{J}}$ be the projection operators:

$$P_{\pm} = \frac{1}{2}(I \mp i\widehat{J}),\tag{50}$$

for all $\sigma, \tau \in C^{\infty}(E^{\mathbb{C}})$ we have:

$$P_{\mp} \left[P_{\pm}(\sigma), P_{\pm}(\tau) \right]_{\nabla} = P_{\mp} \left[\frac{1}{2} \left(\sigma \mp i \widehat{J} \sigma \right), \frac{1}{2} \left(\tau \mp i \widehat{J} \tau \right) \right]_{\nabla}$$

$$= -\frac{1}{8} (N^{\nabla}(\widehat{J}) (\sigma, \tau) \pm i \widehat{J} N^{\nabla}(\widehat{J}) (\sigma, \tau)) = -\frac{1}{4} P_{\mp} \left(N^{\nabla}(\widehat{J}) (\sigma, \tau) \right).$$
(51)

From yow on we suppose that (M,J,g,D) is a complex Norden manifold with the natural canonical connection. A direct computation of the bracket associated to D on $E^{1,0}_{\widehat{J}}$ and $E^{0,1}_{\widehat{J}}$ gives the following:

or

$$\sigma = X - iJX - ig(X)$$

$$\tau = Y - iJY - ig(Y)$$

$$v = Z - iJZ - iq(Z).$$
(66)

Let us compute

$$\int dz \left[[g(X+iJX), Y-iJY-ig(Y)]_D, Z-iJZ-ig(Z) \right]_D.$$
 (67)

We have:

$$\left[\left[g(X+iJX),Y-iJY-ig(Y)\right]_{D},Z-iJZ-ig(Z)\right]_{D}=g(K+iJK) \quad (68)$$

$$[[Y - iJY - ig(Y), Z - iJZ - ig(Z)]_D, g(X + iJX)]_D = g(L + iJL)$$
 (69)

$$g[[Z - iJZ - ig(Z), g(X + iJX)]_D Y - iJY - ig(Y)]_D = g(H + iJH)$$
 (70)

where

$$K = D_Z D_Y X + D_Z J D_{JY} X + J D_{JZ} D_Y X + J D_{JZ} J D_{JY} X$$
 (71)

$$L = D_{[Y,Z]}X + JD_{J[Y,Z]}X - D_{[JY,JZ]}X - JD_{J[JY,JZ]}X$$
 (72)

$$H = -D_{Y}D_{Z}X - JD_{Y}D_{JZ}X - JD_{JY}D_{Z}X + D_{JY}D_{JZ}X.$$
 (73)

Then we get

$$Jac\left[\left[\sigma,\tau\right]_{D},\upsilon\right]_{D} = O\tag{74}$$

if and only if

$$K + L + H = O (75)$$

or, by direct computation, if and only if:

$$R^{D}(JY, JZ) - JR^{D}(JY, Z) - JR^{D}(Y, JZ) - R^{D}(Y, Z) - JD_{JN(J)(Y,Z)} = O$$
 (76)

where N(J) is the Nijenhuis tensor of J. By using the integrability of J, we have the first condition.

Let us compute

$$Jac[[X - iJX - ig(X), Y - iJY - ig(Y)]_{D}, Z - iJZ - ig(Z)]_{D}.$$

$$(77)$$

We have:

$$[[X - iJX - ig(X), Y - iJY - ig(Y)]_{D}, Z - iJZ - ig(Z)]_{D} =$$

$$= A - iJA - ig(A) + g(B + iJB)$$
(78)

where

$$A = [[X, Y] - [JX, JY], Z] - [J[X, Y] - J[JX, JY], JZ]$$
(79)

and

$$B = D_{JZ}[X,Y] + D_{JZ}T^{D}(JX,JY) - D_{J[X,Y]}Z + + D_{J[JX,JY]}Z - D_{Z}D_{JY}X + D_{Z}D_{JX}Y$$
(80)

where T^D denotes the torsion tensor of the connection D.

Fom the Jacobi identity of [,] we have that Jac(A) = O, then it is enough to compute Jac(B).

From the properties of the torsion tensor T^D we get:

$$Jac(B) = (R^{D}(JX,Y) + R^{D}(X,JY))Z + + (R^{D}(JZ,X) + R^{D}(Z,JX))Y + (R^{D}(Y,JZ) + R^{D}(JY,Z))X.$$
(81)

Analogous computations for $E_{\widehat{J}}^{0,1}$ gives exactly the same conditions, then the Proof is complete. ■

Remark 29 We observe that (61) is equivalent to:

$$(R^D)^{(0,2)} = O (82)$$

where $(R^D)^{(0,2)}$ denotes the (0,2)-part of the curvature with respect to the complex structure J on M. Moreover, if the torsion is zero, from the first Bianchi identity with zero torsion, we get that (62) is automatically satisfied; instead, from the first Bianchi identity with torsion:

$$R^{D}(X,Y)Z + R^{D}(Y,Z)X + R^{D}(Z,X)Y +$$

$$-T^{D}(X,[Y,Z]) - T^{D}(Y,[Z,X]) - T^{D}(Z,[X,Y]) +$$

$$-D_{X}T(Y,Z) - D_{Y}T(Z,X) - D_{Z}T(X,Y) = O,$$
(83)

we obtain that (62) is equivalent to the following:

$$(R^{D}(JX, JY) - R^{D}(X, Y)) Z + (R^{D}(JZ, JX) - R^{D}(Z, X)) Y + (R^{D}(JY, JZ) - R^{D}(Y, Z)) X = O.$$
(84)

From Proposition 26 we get in particular the following:

Proposition 30 If $R^D = O$ then $E_{\widehat{I}}^{1,0}$ and $E_{\widehat{I}}^{0,1}$ are complex Lie algebroids.

In this sense the following result provides a class of examples, ([10]), ([13]).

Theorem 31 ([10]), ([13]) Each hyper-Kaehler NH-manifold is a flat pseudo-Riemannian manifold of signature (2n, 2n).

More generally we have the following:

š

Theorem 32 Let (M, J, g) be a Kähler-Norden manifold then $E_{\widehat{J}}^{1,0}$ and $E_{\widehat{J}}^{0,1}$ are complex Lie algebroids.

Proof. In this case the natural canonical connection D is the Levi-Civita connection ∇ and, as its torsion is zero, (62) is automatically satisfied. Moreover from (20) we get that (61) is equivalent to:

$$R^{\nabla}(Y,Z) + R^{\nabla}(JY,Z)J = O \tag{85}$$

and, by using again the fact that R^{∇} is a pure tensor, we have that, for all $Y, Z, W \in C^{\infty}(T(M))$, (85) becomes:

$$R^{\nabla}(Y,Z)W + R^{\nabla}(Y,Z)JJW = O$$
(86)

which is automatically satisfied. Thus the proof is complete.

Remark 33 Analogous statement can be given for $E_{\widetilde{J}}^{1,0}$ and $E_{\widetilde{J}}^{0,1}$. In the following we will consider only \widehat{J} .

The following holds:

Proposition 34 The natural symplectic structure on E defines a canonical isomorphism between $E_{\widehat{J}}^{0,1}$ and the dual bundle of $E_{\widehat{J}}^{1,0}$, $\left(E_{\widehat{J}}^{1,0}\right)^*$.

$$\varphi: E_{\widehat{J}}^{0,1} \to \left(E_{\widehat{J}}^{1,0}\right)^* \tag{87}$$

by:

$$(\varphi(Z+iJZ+g(W-iJW+iZ)))(X-iJX+g(Y+iJY-iX)) =$$

$$= (Z+iJZ+g(W-iJW+iZ), X-iJX+g(Y+iJY-iX))$$
(88)

for all $X, Y, Z, W \in T(M) \otimes \mathbb{C}$. We get:

$$(\varphi(Z + iJZ + g(W - iJW + iZ)))(X - iJX + g(Y + iJY - iX)) = = g(Y, Z) - g(W, X) + i(g(W, JX) + g(Y, JZ) - g(X, Z))$$
(89)

and we extend by linearity. We have immediately that φ is injective and furthermore φ is an isomorphism. \blacksquare

The canonical isomorphism φ between $E_{\widehat{J}}^{0,1}$ and the dual bundle $\left(E_{\widehat{J}}^{1,0}\right)^*$ allows us to define the $\overline{\partial}_{\widehat{J}}$ – operator associated to the complex structure \widehat{J} as in the following:

let $f \in C^{\infty}(M)$ and let $df \in C^{\infty}(T^{*}(M)) \hookrightarrow C^{\infty}(T(M) \oplus T^{*}(M))$, we pose

$$\overline{\partial}_{\widehat{J}}f = 2\left(df\right)^{0,1} = df + i\widehat{J}df \tag{90}$$

or:

$$\overline{\partial}_{\widehat{J}}f = df - iJ^*(df)
= df - i(df) J;$$
(91)

moreover we define:

$$\overline{\partial}_{\widehat{J}}: C^{\infty}\left(E_{\widehat{J}}^{0,1}\right) \to C^{\infty}\left(\wedge^{2}\left(E_{\widehat{J}}^{0,1}\right)\right) \tag{92}$$

via the natural isomorphism

$$E_{\widehat{J}}^{0,1} \stackrel{\varphi}{\simeq} \left(E_{\widehat{J}}^{1,0}\right)^* \tag{93}$$

as:

$$\overline{\partial}_{\widehat{J}}: C^{\infty}\left(\left(E_{\widehat{J}}^{1,0}\right)^{*}\right) \to C^{\infty}\left(\wedge^{2}\left(E_{\widehat{J}}^{1,0}\right)^{*}\right) \tag{94}$$

$$\left(\overline{\partial}_{\widehat{J}}\alpha\right)(\sigma,\tau) = \rho(\sigma)\alpha(\tau) - \rho(\tau)\alpha(\sigma) - \alpha([\sigma,\tau]_D)$$
(95)

$$\text{for }\alpha\in C^{\infty}\left(\left(E_{\widehat{J}}^{1,0}\right)^{*}\right)\!,\,\sigma,\tau\in C^{\infty}\left(E_{\widehat{J}}^{1,0}\right).$$

In general:

$$\overline{\partial}_{\widehat{J}}: C^{\infty}\left(\wedge^{p}\left(E_{\widehat{J}}^{1,0}\right)^{*}\right) \to C^{\infty}\left(\wedge^{p+1}\left(E_{\widehat{J}}^{1,0}\right)^{*}\right) \tag{96}$$

is defined by:

$$(\widehat{\partial}_{\widehat{J}}\alpha) (\sigma_{0}, ..., \sigma_{p}) =$$

$$= \sum_{i=0}^{p} (-1)^{i} \rho(\sigma_{i}) \alpha \left(\sigma_{0}, ...^{\widehat{i}} ..., \sigma_{p}\right) + \sum_{i \lessdot j} (-1)^{i+j} \alpha \left(\left[\sigma_{i}, \sigma_{j}\right]_{D}, \sigma_{0}, ...^{\widehat{i}} ...^{\widehat{j}} ..., \sigma_{p}\right)$$
for $\alpha \in C^{\infty} \left(\wedge^{p} \left(E_{\widehat{J}}^{1,0}\right)^{*}\right), \sigma_{0}, ..., \sigma_{p} \in C^{\infty} \left(E_{\widehat{J}}^{1,0}\right).$

$$(97)$$

Definition 35 $\overline{\partial}_{\widehat{J}}$ is called generalized $\overline{\partial}$ – operator of (M, J, g, D) or generalized $\overline{\partial}_{\widehat{J}}$ – operator.

We get the following:

š

Proposition 36 If (61) and (62) hold then $(\overline{\partial}_{j})^{2} = 0$ and $(\partial_{j})^{2} = 0$.

Proof. It follows from the fact that Jacobi identity holds on $E_{\hat{J}}^{1,0}$ and $\left(E_{\hat{J}}^{1,0}\right)^*$.

From now on we suppose that (61) and (62) hold. We have immediately that $\overline{\partial}_{\widehat{J}}$ is the exterior derivative, d_L , of the Lie algebroid $L=E_{\widehat{J}}^{1,0}$. Moreover the exterior derivative d_{L^*} of $L^*=\left(E_{\widehat{J}}^{1,0}\right)^*$ is given by the operator $\partial_{\widehat{J}}$ defined by:

$$\partial_{\widehat{J}^g}: C^{\infty}\left(\wedge^p\left(E_{\widehat{J}}^{1,0}\right)\right) \to C^{\infty}\left(\wedge^{p+1}\left(E_{\widehat{J}}^{1,0}\right)\right) \tag{98}$$

$$(\partial_{\widehat{\jmath}}\sigma) \left(\alpha_0^*, \dots, \alpha_p^*\right) =$$

$$= \sum_{i=0}^{\stackrel{\bullet}{p}} (-1)^i \rho\left(\alpha_i^*\right) \sigma\left(\alpha_0^*, \dots^{\widehat{i}}, \alpha_p^*\right) + \sum_{i < j} (-1)^{i+j} \sigma\left(\left[\alpha_i^*, \alpha_j^*\right]_D, \alpha_0^*, \dots^{\widehat{i}}, \dots^{\widehat{j}}, \alpha_p^*\right)$$

$$(99)$$

for
$$\sigma \in C^{\infty}\left(\wedge^{p}\left(E_{\widehat{J}}^{1,0}\right)\right), \, \alpha_{0}^{\star}, ..., \alpha_{p}^{\star} \in C^{\infty}\left(\left(E_{\widehat{J}}^{1,0}\right)^{\star}\right)$$

3.3 Generalized holomorphic sections

Definition 37 Let $\alpha \in C^{\infty}\left(\wedge^{p}\left(E_{\widehat{J}}^{1,0}\right)^{*}\right)$, α is called generalized holomorphic section if $\overline{\partial}_{\widehat{J}}\alpha=0. \tag{100}$

We remark that for all $f \in C^{\infty}(M)$ we have $\overline{\partial}_{\widehat{J}}f = 0$ if and only if df = 0, so the generalized holomorphic condition for functions gives only constant functions on connected components of M.

Proposition 38 Let $W \in C^{\infty}(T(M))$ and let $\sigma = g(W - iJW) \in E_{\widehat{J}}^{0,1}$ then $\overline{\partial}_{\widehat{J}}\sigma = 0$ if and only if for all $X, Y \in C^{\infty}(T(M))$ holds:

$$g(D_X W - D_{JX} JW, Y) = g(D_Y W - D_{JY} JW, X).$$
 (101)

Proof. Let $X, Y \in C^{\infty}(T(M))$, from (95), direct computations give:

$$(\overline{\partial}_{\widehat{J}}\sigma)\left(g(X+iJX),g(Y+iJY)\right)=0 \tag{102}$$

$$\left(\overline{\partial}_{\widehat{J}}\sigma\right)\left(g(X+iJX),Y-iJY-ig(Y)\right)=0\tag{103}$$

$$\left(\overline{\partial}_{\widehat{J}}\sigma\right)\left(X-iJX-ig(X),Y-iJY-ig(Y)\right)=$$

$$= g(-D_X W + D_{JX} J W + i(D_{JX} W + i J D_X W, Y) + + g(D_Y W - D_{JY} J W - i(D_{JY} W + J D_Y W), X).$$
(104)

In particular we have $(\overline{\partial}_{i}\sigma) = 0$ if and only if:

$$g(-D_X W + D_{JX} JW + i(D_{JX} W + iJD_X W, Y) + +g(D_Y W - D_{JY} JW - i(D_{JY} W + JD_Y W), X) = 0$$
(105)

and then, by separating real and imaginary parts, we get the statement.

Equivalently we can state Proposition 36 as follows:

Proposition 39 Let $W \in C^{\infty}(T(M))$ and let $\sigma = g(W - iJW) \in E_{\widehat{J}}^{0,1}$ then $\overline{\partial}_{\widehat{J}}\sigma = 0$ if and only if for all $X, Y \in C^{\infty}(T(M))$ holds:

$$(d(g(W)))(X,Y) = (d(g(W)))(JX,JY).$$
 (106)

Proof. We have:

$$(d(g(W)))(X,Y) = Xg(W,Y) - Yg(W,X) - g(W,[X,Y])$$

= $g(D_XW,Y) - g(D_YW,X) - g(W,T^D(X,Y)).$ (107)

On the other hand:

$$(d^{\{g(W)\}})(JX, JY) = JXg(W, JY) - JYg(W, JX) - g(W, [JX, JY])$$

$$= g(D_{JX}W, JY) - g(D_{JY}W, JX) - g(W, T^{D}(JX, JY))$$

$$= g(D_{JX}JW, Y) - g(D_{JY}JW, X) - g(W, T^{D}(JX, JY)).$$

$$(108)$$

From the property (12) of the torsion T^D of the natural canonical connection we get the conclusion.

Moreover:

Proposition 40 Let $Z \in C^{\infty}(T(M))$ and let $\sigma = Z + iJZ + ig(Z) \in E_{\widehat{J}}^{0,1}$ then $\overline{\partial}_{\widehat{J}}\sigma = 0$ if and only if for all $X, Y \in C^{\infty}(T(M))$ the following conditions hold:

$$D_{JY}JZ = -D_YZ \tag{109}$$

$$g(D_X Z, Y) = g(D_Y Z, X). \tag{110}$$

Proof. Let $X, Y \in C^{\infty}(T(M))$, direct computations give:

$$(\overline{\partial}_{\widehat{J}}\sigma)\left(g(X+iJX),g(Y+iJY)\right) = 0 \tag{111}$$

$$(\overline{\partial}_{\widehat{J}}\sigma)(g(X+iJX),Y-iJY-ig(Y)) =$$

$$= -g(D_YZ+D_{JY}JZ,X)+ig(D_{JY}Z-D_YJZ,X)$$
(112)

$$\left(\overline{\partial}_{\widehat{J}}\sigma\right)\left(X-iJX-ig(X),Y-iJY-ig(Y)\right)=$$

$$\begin{aligned}
& = -g(iD_XZ + D_{JX}Z, Y) + g(iD_YZ + D_{JY}Z, X) \\
& = g(D_{JY}Z, X) - g(D_{JX}Z, Y) + i(g(D_YZ, X) - g(D_XZ, Y)).
\end{aligned} \tag{113}$$

and, by separating real and imaginary parts, we get the following conditions:

$$D_{JY}JZ + D_YZ = O (114)$$

$$g(D_{JY}Z, X) - g(D_{JX}Z, Y) = 0;$$
 (115)

From (114) we get

$$D_{JY}Z = JD_YZ \tag{116}$$

and, substituting in (115), we have

$$g(D_Y Z, JX) - g(D_{JX} Z, Y) = O$$
 (117)

for all $X, Y \in C^{\infty}(T(M))$, then we get the statement.

Corollary 41 Given $Z \in C^{\infty}(T(M))$, infinitesimal automorphism of J, Z defines the following generalized holomorphic sections of $E_{\hat{I}}^{0,1}$:

$$\sigma = g(Z - iJZ) \tag{118}$$

$$\tau = Z + iJZ + ig(Z) \tag{119}$$

if and only if for all $X, Y \in C^{\infty}(T(M))$ the following condition hold:

$$g(D_X Z, Y) = g(D_Y Z, X). \tag{120}$$

In particular for Kähler-Norden manifolds, as D is the Levi-Civita connection and then torsion free, condition (120) is equivalent to the d-closure of g(Z), and, by using a classical result in symplectic geometry, [14], we have:

Proposition 42 Let M be a Kähler-Norden manifold and let $Z \in C^{\infty}(T(M))$ be an infinitesimal automorphism of J then g(Z-iJZ) and Z+iJZ+ig(Z) are generalized holomorphic sections of $E_{\widehat{J}}^{0,1}$ if and only if g(Z) is a Lagrangian submanifold of $T^{*}(M)$ with respect to the standard symplectic structure.

References

- S. Amari, "Differential-Geometrical Methods in Statistics" Lectures Notes in Statistics 28 (1985)
- [2] A. Borowiec, M. Francaviglia, I. Volovich, "Anti-Kählerian manifolds" Diff. Geom. Appl. 12 (2000), 281-289.
- [3] L. David, "On cotangent manifolds, complex structures and generalized geometry" (math.DG/1304.3684v1).

- [4] D. Djebbouri, S. Ouakkas, R. Nasri, "Dualistic structures on generalized warped products" arXiv:1501.00308v1 math.DG.
- [5] N. Hitchin, "The moduli space of special Lagrangian submanifolds" Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), 503-515.
- [6] N. Hitchin, "Generalized Calabi-Yau manifolds" Quart. J. Math. Oxford 54, 281-308, (2003), (math.DG/0209099).
- [7] N. Hitchin, "Lectures on generalized geometry" arXiv:1008.0973v1 [math.DG].
- [8] M. Gualtieri, "Generalized Complex Geometry" PhD Thesis, Oxford University (2003), (math.DG/0401221).
- [9] G. Ganchev, V. Mihova, "Canonical connection and the canonical conformal group on an almost complex manifold with B-metric" Ann. Univ. Sofia Fac. Math. et Inf. 81, (1987) 195-206.
- [10] K. Gribacev, M. Manev, S. Dimiev, "On the almost hypercomplex pseudo-Hermitian manifolds" arXiv:0809.0784 1,2,3,4.
- [11] M. Iscan, A. A. Salimov, "On Kähler-Norden manifolds" Proc. Indian Acad. Sci. (Math. Sci.) vol. 119, No. 1, (February 2009), 71-80.
- [12] Y. Kosmann-Schwarzbach, "Exact Gerstenhaber Algebras and Lie Bialgebroids" Acta Applicandae Mathematicae 41, (1995), 153-165.
- [13] M. Manev, "Quaternionic Kaehler manifolds with hermitian and Norden metrics" arXiv:0906.5052v1 [math.DG].
- [14] D. McDuff, D. Salamon, "Introduction to Symplectic Topology" Oxford Mathematical Monographs, Oxford Science Publications (1995).
- [15] A. Nannicini, "Calibrated complex structures on the generalized tangent bundle of a Riemannian manifold" Journal of Geometry and Physics 56 (2006), 903-916.
- [16] A. Nannicini, "Almost complex structures on cotangent bundles and generalized geometry" Journal of Geometry and Physics 60 (2010), 1781-1791.
- [17] A. Nannicini, "Special Kähler manifolds generalized geometry" Differential Geometry and its Applications 31 (2013), 230-238.
- [18] A. Nannicini, "Generalized geometry of pseudo-Riemannian manifolds and generalized $\overline{\partial}$ -operator" (2014), to appear in Adv. in Geometry.
- [19] M. Nogushi, "Geometry of statistical manifolds" Differential Geometry and its Applications 2 (1992), 197-222.
- [20] A. P. Norden, "On a class of four-dimensional A-spaces" Russian Math. (Izv VUZ) 17 (4) (1960), 145-157.

- [21] J. Pradines, "Théorie de Lie pour les groupoides différentiables. Calcul différentiel dans la catégorie des groupoides infinitésimaux" C.R.Acad. Sc. Paris, t. 264, Série A, (1967), 245-248.
- [22] A. Salimov, "On operators associated with tensor fields" J. Geom. (2010), 107-145
- [23] K. Słuka, "On the curvature of Kähler-Norden manifolds" Journal of Geometry and physics 54 (2005) 131-145.
- [24] P. Xu, "Gerstenhaber algebras and BV-algebras in Poisson geometry" arxiv:dg-ga/9703001v1.

Author's address:

Dipartimento di Matematica e Informatica "U. Dini"

Piazza Ghiberti, 27 - 50122 Firenze

email: antonella.nannicini@unifi.it