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of survival of preterm and very low weight neonates. Infant cry analysis is a suitable noninvasive complementary tool to
assess the neurologic state of infants particularly important in the case of preterm neonates. This article aims at exploit-
ing differences between full-term and preterm infant cry with robust automatic acoustical analysis and data mining
techniques.
Study design. Twenty-two acoustical parameters are estimated in more than 3000 cry units from cry recordings of 28
full-term and 10 preterm newborns.
Methods. Feature extraction is performed through the BioVoice dedicated software tool, developed at the Biomedical
Engineering Lab, University of Firenze, Italy. Classification and pattern recognition is based on genetic algorithms for
the selection of the best attributes. Training is performed comparing four classifiers: Logistic Curve, Multilayer Percep-
tron, Support Vector Machine, and Random Forest and three different testing options: full training set, 10-fold cross-
validation, and 66% split.
Results. Results show that the best feature set is made up by 10 parameters capable to assess differences between pre-
term and full-term newborns with about 87% of accuracy. Best results are obtained with the Random Forest method
(receiver operating characteristic area, 0.94).
Conclusions. These 10 cry features might convey important additional information to assist the clinical specialist in
the diagnosis and follow-up of possible delays or disorders in the neurologic development due to premature birth in this
extremely vulnerable population of patients. The proposed approach is a first step toward an automatic infant cry recog-
nition system for fast and proper identification of risk in preterm babies.
KeyWords: Infant cry analysis–Preterm newborn–Automatic classification–Acoustical parameters–Feature selection.
INTRODUCTION

Scientific and clinical advances in perinatology and neona-
tology have enhanced the chances of survival of preterm and
very low birth weight neonates. Clinical and ethical demands
have emerged regarding the early assessment of these vulner-
able children to detect markers of possible developmental def-
icits. The studies have shown that an early detection of the risks
for vulnerable children would allow implementing prevention
strategies and policies in childhood.1

The crying of newborns and infants is a functional expression
of basic biological needs, and emotional or psychological condi-
tions such as hunger, cold, pain, cramps, and even joy.2 It requires
a coordinated effort of several brain regions, mainly brainstem
and limbic system and is linked to the breath and the lung mech-
anisms. Its characteristics reflect the development and possibly
the integrity of the central nervous system. Thus, infant cry anal-
ysis is a suitable noninvasive complementary tool to assess the
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physical state of infants particularly important in the case of pre-
term neonates. Specifically, the distinction between a regular
wailing and one with anomalies is of clinical interest.
Being cost-effective and contactless, the study of the newborn

infant crying has had an outstanding growth in the last decades.
Several studies concern both the subjective auditory analysis of
voice and speech and the automatic acoustical analysis in adults.
However, with respect to the newborn cry, few automatedmethods
exist, some of them based on classical approaches such as Fourier
transform and autocorrelation analysis2–6 and other on parametric
techniques.7–9 Suchmethods allow estimating the main acoustical
features such as the frequency of vibration of the vocal folds, the
vocal tract resonance frequencies, the cry duration, and so forth.
However, the high variability of the newborn cry signal has
limited the development of methods as robust as those devoted
to the analysis of adult voice for its automated analysis.
Preterm infants and infants with neurologic conditions may

have different cry characteristics when compared to healthy
full-term infants. Qualitative and quantitative research on possible
neurophysiological differences between full-term and preterm in-
fants has been carried on since the 1980s. Most of the studies
investigated possible differences in infant gender, their neuro-
physiological maturity, and risks of brain damage for preterm in-
fants caused by deoxygenation due to prolonged crying.10–16

In general, the automatic infant cry classification process is a
pattern recognition problem. From the infant’s cry (input
pattern), the goal was to classify the kind of cry or pathology
detected on the baby.

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
mailto:claudia.manfredi@unifi.it
http://dx.doi.org/10.1016/j.jvoice.2015.08.007


Silvia Orlandi, et al Newborn Cry Classification 657
Several authors have proposed classification methods for a
wide range of pathologies. Reyes et al17–19 have investigated
normal, deaf, and asphyxiating newborns using classification
methods such as neural networks, genetic selection, and
fuzzy logic. Some of these powerful techniques are
successfully applied also in the present work and will be
shortly described in the next section. Poel and Ekkel20 present
results concerning the classification of newborn cry into
normal and hypoxia-related disorder using Radial Basis Func-
tion Neural Networks with 85% overall classification perfor-
mance. Lederman et al21 propose the classification of infants
with cleft palate on the basis of parallel Hidden Markov
Models with an average of 91% correct classification rate in
a subject- and age-dependent experiment. Mijovic et al22 pro-
pose Empirical Mode Decomposition techniques to assess the
existence and extent of decoupling in term neonates and its
possible relation to clinical pain expression. Sahak et al23

applied Combined Support Vector Machine (SVM) and Prin-
cipal Component Analysis to recognize the infant cries with
asphyxia with a classification accuracy of 95.86%. Zabidi
et al24 applied a new algorithm to optimize Mel frequency
cepstrum coefficients to extract an optimal feature set for
the diagnosis of hypothyroidism in infants using a Multilayer
Perceptron (MLP) neural network. Nonaka et al25 used a Hid-
den Markov Model architecture. The algorithm yields up to
95% classification precision (86% average) to identify expira-
tory and inspiratory phases from the baby cries. In the study by
Hariharan et al,26,27 a General Regression Neural Network is
used as a classifier for discriminating normal cry signals and
pathologic cry signals from deaf infants and babies with
asphyxia. Etz et al28 propose a decision tree to classify infant
cries to find differences between infants with normal develop-
ment, hearing impairment, and unilateral cleft lip and palate,
whereas Alaie et al29 apply Gaussian mixture models to distin-
guish between healthy full-term and premature infants and
those with specific medical problems with a true positive
(TP) rate of 80.77% and a true negative rate of 86.96%.
Finally, in the study by Singh et al,30 three different types of
infant cries are considered: hunger, pain, and wet diaper.
Gaussian mixture models are used to classify the previously
mentioned cries.

This nonexhaustive list of studies shows that the
newborn cry contains specific features that enable the clas-
sification of various diseases and conditions by automated
techniques.

This article aims at highlighting and differentiating the fea-
tures of newborn cry in the two groups of healthy term and pre-
term infants. To this aim, a robust tool (BioVoice) specifically
developed for the acoustical analysis of newborn cry is
applied16 that provides 22 acoustical parameters both in time
and frequency domain. The proposed classification method
allows pointing out the relevant cry features capable to assess
differences between preterm and full-term newborns with about
87% of accuracy. This result may be a valuable aid to the diag-
nosis of possible delays or disorders in the neurologic develop-
ment due to premature birth in this extremely vulnerable
population of patients.
MATERIALS AND METHODS

Recording protocol

Newborn cry signals were recorded in a quiet room of neona-
tology unit (S. Giovanni di Dio Hospital, Firenze, Italy) and
neonatal intensive care unit (Children Hospital A. Meyer, Fire-
nze, Italy), respectively, for term and preterm infants. All par-
ents of the infants were native Italian speakers, and they
signed informed consent to participate in this study.

A unidirectional microphone (Shure SM58; Shure Inc. Chi-
cago, IL) was positioned at a fixed distance (25 cm) from the
baby’s mouth and equipped with Tascam US-144 (TEAC
Corp. Montebello, CA) portable audio/musical instrument dig-
ital interface (96 kHz/24-bit recording). Recordings were stored
on a multimedia laptop in a single channel audio track. The
sampling rate was Fs ¼ 44 kHz with 16-bit resolution. Each
recording lasts at least 15 minutes to include several cry se-
quences. A cry sequence is defined here as a set of multiple
cries, the so-called cry units (CUs). Cry sequences are spaced
one from the other by a suitable amount of time, lasting more
than 30 seconds.31,32

ACU is defined here as a high-energy voiced frame lasting at
least 260 ms. This choice comes from literature where different
time lengths are considered for CUs, ranging from 60 to
500 ms.21,33–36 In fact, CUs of very short duration do not
allow the assessment of some relevant features such as their
melodic shape. Moreover, inspiratory sounds that have
duration less than 200 ms must be disregarded.33
Database

We recorded 28 healthy term newborns (TN, 17 boys and 11
girls) and 10 preterm infants (PN, 5 boys and 5 girls). Gesta-
tional age of TN at birth was between 37 weeks and 2 days
and 42 weeks; the weight was between 2400 and 4250 g. Gesta-
tional age of PN at birth was between 23 weeks and 5 days and
34 weeks. Theweight at birth was between 590 g and 2700 g. At
the recording time (20–30 days after birth), the PN gestational
age was between 35 weeks and 1 day and 43 weeks and 1 day;
the weight ranged between 1380 and 2430 g.

The TN infants were recorded within the first 2 days of life,
whereas PN newborns could be recorded only about 20–30 days
after birth, because of their long staying in the incubator. Spe-
cifically, the PN infants were recorded within the first 45 days
after the normal end of pregnancy (37 weeks). PN infants
were recorded in a quiet room in the Neonatal Intensive Care
Unit at the Children Hospital A. Meyer, Firenze, Italy. The new-
borns were hospitalized because of prematurity and other
diseases: respiratory distress, obstructive sleep apnea, hypogly-
cemia, bowel obstruction, bleeding, and anemia. TN infants
were recorded in a quiet room of the neonatology clinic at S.
Giovanni di Dio Hospital, Firenze, Italy. They did not suffer
from any disease.

We collected an audio recording for each infant of at least
1 hour of duration consisting of at least 10% of crying. Record-
ings were performed before the afternoon feeding. Full-term
infants usually cried without stimulation, whereas for preterm
infants, sometimes a little solicitation was made on the foot



FIGURE 1. Flowchart of the data mining process.
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sole to start crying. From the whole recording, we manually
selected 2 or 3 minutes of crying. Audio analysis was per-
formed with BioVoice on all CUs.

Signal processing

Acoustic analysis of infant’s cry is often performed through
commercial37 or free software.38 However, such tools are not
specifically developed for the analysis of high-pitched quasi-
stationary signals as newborn cries are. Thus, their use may
fail in correctly estimated parameters such as fundamental fre-
quency F0 and vocal tract resonance frequencies F1, F2, and F3

unless specific ranges are manually set.39

Thanks to its high-resolution characteristics cry analysis is
carried out here through the BioVoice tool.16 BioVoice is appli-
cable to the analysis of a wide range of voice signals also lasting
several minutes. It has been successfully compared with most
commonly used software tools on synthesized signals.7,8,32,40

BioVoice provides a user-friendly interface for uploading the
audio file(s), selecting the category (adult male or female, in-
fant, etc) and the type of analysis (adult, singer, newborn,
etc). Several signals can be uploaded and analyzed sequentially
with a considerable time saving. BioVoice does not require any
manual setting thus being well suited also for nonexpert users.

BioVoice automatically detects CUs using a robust voiced/
unvoiced (V/UV) selection procedure.32 This method has
proved successful in preventing improper splitting of a single
voiced frame into several parts. This frequently occurs in the
case of irregular and quasi-stationary signals as newborn infant
cries are. On each CU, F0 is estimated by means of a two-step
procedure that was shown to outperform other methods.7,8 Its
strength comes from the adaptive procedure implemented for
the local definition of the length of each signal frame on
which the acoustic parameters are estimated: the higher the
F0, the shorter the length of the frame. On each CU, BioVoice
computes the number of estimated F0 values. This number is
variable both due to the varying frame length and because the
outliers (the values of F0 outside the range 200–1050 Hz) are
removed. The first three resonance frequencies of the vocal
tract (F1, F2, and F3) are estimated by peak picking in the
power spectral density obtained by a parametric approach that
was found more robust and with higher resolution capability
than the traditional fast Fourier transform–based technique.7,8

Moreover, BioVoice computes the number of CUs, the vocalic
percentage, and the number and length of the voice breaks in
each recording.

Features extraction

BioVoice provided 5182 CUs for TN and 1662 CUs for PN ba-
bies. Thus, for classification, the same number of 1662 CUs was
used for both groups, randomly selected in the TN group. On
each CU, the following 22 attributes (parameters) that gained
great scientific interest in the last years31,33,41 were estimated
(CU length is given in seconds, values concerning F0–F3 in
Hz): CU length, F0 median, F0 mean, F0 standard deviation
(F0 std), F0 minimum (F0 min), F0 maximum (F0 max),
number of estimated F0 values, F1 median, F1 mean, F1

standard deviation (F1 std), F1 minimum (F1 min), F1
maximum (F1 max), F2 median, F2 mean, F2 standard
deviation (F2 std), F2 minimum (F2 min), F2 maximum (F2

max), F3 median, F3 mean, F3 standard deviation (F3 std), F3

minimum (F3 min), F3 maximum (F3 max).
Classification

The procedure used for the classification of preterm and term
infant cries is referred to as data mining. Once the features of
the data set are estimated, the following steps are performed:
class allocation, attributes selection, classification, and perfor-
mance evaluation. In data mining, the information is arranged
in a table. Each row corresponds to a CU that is described by
22 parameters (features described by 22 attributes) extracted
with BioVoice and one feature that represents the class: preterm
(PN) and term newborns (TN). Class allocation is reported in
the first and the last half of the last column, respectively, for
TN and PN. Each column represents a property (attribute). In
other words, the rows of the table contain the parameters for
each CU and the columns the attributes. The rows are the
features that must be trained. The size of the table is thus N
3 23, where N is the number of CUs.
Figure 1 shows the data mining process used for classification.
After the first three steps (audio recording, set up of the data

set, and extraction of features) are carried out, the table with at-
tributes and classes is set up, the selection of the best attributes
is carried out, and finally the classification is performed.
The procedurewas carried out using algorithms implemented

in Waikato Environment for Knowledge Analysis (WEKA).42

WEKA is an open-source software issued under the GNU Gen-
eral Public License. It is a collection of machine learning algo-
rithms for data mining tasks. WEKA contains tools for data
preprocessing, classification, regression, clustering, association
rules, and visualization. In this work, algorithm for attributes
selection and data classification were used.

Class allocation. Each CU is assigned to a class: either pre-
term newborn (PN) or term newborn (TN).

Select attributes. To reduce the processing time, it is desir-
able to reduce the size of the attribute vector (22 acoustic pa-
rameters estimated in each CU) without degrading the
efficiency of the classification performance.
In WEKA, to select attributes, one has to choose a search

method and an attribute evaluator. The search method consists
of a search algorithm. In this work, we used the genetic search
method on the basis of a genetic algorithm. Genetic algorithms
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are a family of computational models inspired by biological
evolution which encode a potential solution to a specific prob-
lem on a simple chromosome-like data structure and apply
recombination operators to the structures to preserve relevant
information. Each candidate solution has a number of attributes
that can change or be altered.42,43

The attribute evaluator specifies the weight of each attribute
for the correct classification of CUs. We applied the default
Attribute Evaluator in WEKA named CfsSubsetEval. This
method evaluates the worth of a subset of attributes by consid-
ering the individual predictive ability of each one along with the
degree of redundancy between the attributes. Selected attributes
are thus highly correlated with the class (PN and TN) and have
low correlation with each other. The 22 attributes estimated
with BioVoice on the whole data set underwent the WEKA pro-
cedure for the selection of the best ones. The first step was thus
the select attributes command with the option CfsSubsetEval
for attribute evaluator and genetic search for the search method.

Classification methods. With classification, the learned
models from training data are evaluated using a different data
set to determine whether the models can be generalized to
new cases.44,45

To compare the two classes of infants (PN and TN) with
WEKA, the classification was performed applying the
following methods: Random Forest, MLP, SVM, and Logistic
curve that are shortly described in the following sections.

Random Forest. Random Forests are weighted combinations of
tree classifiers that use a random selection of attributes to build
the decision taken at each node. Random forests are built by
combining through averaging the predictions of several deci-
sion trees, each one trained in isolation. The forest consists of
K trees. In this work, k¼ 10. The method selects a random num-
ber N of attributes for all trees. After the trees have grown, new
samples are classified by each tree and their results are com-
bined, giving a membership probability for each class.46

Multilayer Perceptron. The architecture of an MLP47–49

consists of a three-layer feed-forward neural network: one
input, one hidden, and one output layer. With WEKA, the
user can select

- the number of hidden layer;
- the learning rate factor, that is the amount the weights are
updated;

- the momentum applied to the weights during updating;
- thenumberof epochs throughall the records in the trainingset;
- the validation threshold, to terminate validation testing: its
value dictates how many times in a row the validation set
error can get worse before training is terminated;

- the number of random seeds, to initialize the random num-
ber generator: random numbers are used for setting the
initial weights of the connections between nodes and
also for shuffling the training data.

In this work, the parameters for the MLP are: hidden
layer ¼ 1; learning rate ¼ 0.3; momentum ¼ 0.2; number of
epochs¼ 500; validation threshold¼ 20; and random seed¼ 0.
Support Vector Machines. Kernel methods are a class of algo-
rithms for data mining whose best known member is the SVM.
The Sequential Minimal Optimization (SMO) is one of the
most popular algorithms for classification by SVM50 and is
implemented in WEKA. To obtain proper probability estimates,
SMO uses the option that fits logistic regression models to the
outputs of the SVM. In our work, a polynomial kernel is used.

Logistic regression. Logistic regression is a well-known
technique for classification that describes the relationship
between a dichotomous dependent variable (classes) and a set
of independent variables (features).42 In this work, the
WEKA default parameters for the maximum number of
iterations and the ridge were used.
Classifier performance

The evaluation of the performance of classifiers is an important
point in pattern recognition because it helps to understand the
quality of an algorithm and to adjust its parameters. There are
several metrics for evaluating the predictive performance of
classifiers. Here, we applied the following: receiver operating
characteristic (ROC), precision, and F-measure.

ROC curve is widely used to calculate the trade-off between
TP and false positive (FP) rates. Precision helps to find how
many of the classified cases are correct thus giving a measure
of the performance. Performance can be measured through
the so-called F-measure that is the harmonic mean of precision
and sensitivity.
RESULTS

In this section, the results of the analysis and classification of
the CUs in the recorded cry signals are presented according
to the flowchart in Figure 1.

The first step was the automated detection of the CUs with
the Voiced/Unvoiced (V/UV) selection procedure implemented
in BioVoice. As explained in the sectionMaterials and methods,
the acoustical analysis was performed on the same number of
1662 CUs both for PN and TN newborns. On each CU, the at-
tributes F0, F1, F2, and F3 are estimated with BioVoice that also
provides their minimum, maximum, mean, median, and stan-
dard deviation. Thus, a total of 22 acoustic parameters (attri-
butes) are obtained.

Table 1 summarizes the mean values of the 22 parameters
over the whole data set for both TN and PN newborns. The re-
sults show that all the parameters have lower mean values in TN
with respect to PN. The t test confirms a statistically significant
difference between the two groups.

The WEKA command classify was used to build a model of
the relationships between the set of attributes and the corre-
sponding class (TN and PN). A procedure consisting of several
trials was applied, with a twofold aim: minimize the number of
significant attributes and optimize the percentage of success in
the classification.

With WEKA, the select attributes command was applied
with the option CfsSubsetEval for attribute evaluator and ge-
netic search for the search method. The procedure resulted in
the following eight attributes out of the full set: mean of F0,



TABLE 1.

Mean Values of the 22 Attributes Estimated With

BioVoice on a Set of 1662 CUs for Term (TN) and Preterm

(PN) newborns

Attributes TN PN

1. Length (s) 0.89 0.79

2. F0 median (Hz) 410.69 449.62

3. F0 mean (Hz) 414.09 451.12

4. F0 std (Hz) 72.79 87.67

5. F0 min (Hz) 242.94 266.94

6. F0 max (Hz) 579.13 647.87

7. Number of F0 values (a.u.) 86.11 82.21

8. F1 median (Hz) 1025.69 1530.54

9. F1 mean (Hz) 1062.23 1524.04

10. F1 std (Hz) 358.47 364.14

11. F1 min (Hz) 498.24 817.45

12. F1 max (Hz) 2470.97 2439.56

13. F2 median (Hz) 3176.78 3689.65

14. F2 mean (Hz) 3392.18 3791.14

15. F2 std (Hz) 906.38 914.00

16. F2 min (Hz) 2217.97 2354.52

17. F2 max (Hz) 6614.65 6642.10

18. F3 median (Hz) 5921.64 6822.52

19. F3 mean (Hz) 6204.94 6879.19

20. F3 std (Hz) 1435.88 1561.55

21. F3 min (Hz) 4177.32 4337.12

22. F3 max (Hz) 10978.52 11268.45
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median, mean, minimum and maximum of F1, median and
mean of F2, and median of F3.

Classification was performed through the Random Forest and
Logistic Regression methods. For testing, we used the
following options: full training set, percentage split at 66%,
and 10-fold cross-validation. This step is indeed crucial to
select the best classification with different attributes. Classifica-
tion was applied first both to thewhole set of 22 attributes and to
a subset of 16 attributes: mean, median, maximum and mini-
mum of F0, F1, F2, and F3. This subset was considered as it
makes use of the same parameters (mean, median, maximum,
and minimum) for both F0 and F1–F3 that is a consistent set
of attributes.

In a second step, we used only the eight best attributes listed
previously. However, in this case, a worsening in the results for
TABLE 2.

Comparison of the Results of Accuracy of the Logistic Regressi

Options (Full Training Set, 10-Fold Cross-Validation, and 66% S

Number of

Attributes

Training Logistic,

Full Training

Set (%)

Classification

Logistic,

Cross-Validation

(%)

Classifi

Logis

Percen

Split

22 81.016 80.505 80.7

16 79.663 79.512 81.5

8 78.971 78.880 80.2

10 79.362 79.121 80
both the two classifiers (Random Forest and Logistic Regres-
sion) was found. Thus, to recover the classification accuracy,
we added two out of the previously eliminated attributes (me-
dian of F0 and mean of F3) to the eight parameters. With these
10 parameters, we obtained an improvement in the overall
results.
Table 2 summarizes the results obtained with 22, 16, 8, and

10 attributes applying the Logistic Regression and Random
Forest methods.
The best results are obtained with 10 attributes and Random

Forest with 87.34% of proper classification (highlighted in
bold). Notice the small difference with the other sets of attri-
butes and in particular with the case of 22 attributes. Thus,
the choice of 10 attributes would be preferable as it allows
reducing the computation time.
Tables 3 and 4 summarize the rate of TP and FP results, the

precision, the F-measure, and the ROC area obtained with the
Random Forest method, respectively, with 22 and 10
attributes. Again, using only 10 attributes instead of 22 does
not worsen the results that are comparable ranging between
0.85 and 0.99 for TP and 0.01 and 0.14 for FP.
This result allowed selecting the following 10 best attributes:

mean and median of F0, median, mean, minimum, and
maximum of F1, and median and mean of F2 and of F3.
To assess the results, the following classification algorithms

were compared: Random Forest, SVMs, MLP, and Logistic
regression (Logistic). These methods were tested with the per-
centage split (66%) option and 10 attributes. Again, the best re-
sults were obtained applying the Random Forest classifier
though with slight differences with the other approaches. The
results are reported in Table 5. The best result 0.941 is high-
lighted in bold.
On the basis of these results, we carried out a more detailed

analysis with the 10 best attributes and the Random Forest clas-
sifier. The 1662 CUs for each class (thus 3324 instances) were
randomly divided into two groups: a training set (2194 CUs)
and a test set (1130 CUs) corresponding to 66% and 34%,
respectively, of the whole set, and the WEKA ‘‘split‘‘ option
was applied.
In Table 6, the confusion matrix shows the best results ob-

tained with the Random Forest method. The results with
Random Forest classification algorithm are very good both as
far as the values of the performancemeasures, and the statistical
on and Random Forest Classifiers Under Different Testing

plit) and 22, 16, 8, and 10 Attributes

cation

tic,

tage

(%)

Training

Random

Forest, Full

Training

Set (%)

Classification

Random

Forest,

Cross-Validation

(%)

Classification

Random

Forest,

Percentage

Split (%)

96 99.548 86.702 87.079

04 99.398 86.221 86.460

66 99.489 84.988 86.195

99.187 85.649 87.345



TABLE 5.

Comparison of the Performance Measures for the

Classification Algorithms Considered (Random Forest,

Support VectorMachines [SVMs],Multilayer Perceptron,

and Logistic Regression [Logistic]) and the 66%

Percentage Split

Classifier

TP

Rate

FP

Rate Precision F-Measure

ROC

Area

Random

Forest

0.873 0.126 0.874 0.873 0.941

Logistic 0.843 0.153 0.847 0.843 0.918

SMO 0.843 0.154 0.846 0.843 0.845

Multilayer

Perceptron

0.893 0.106 0.894 0.894 0.934

TABLE 3.

Performance Metrics for the Random Forest Algorithm

With 22 Attributes

Classifier

TP

Rate

FP

Rate Precision F-Measure

ROC

Area

Random Forest,

full training

set

0.99 0.01 0.99 0.99 1

Random Forest,

10-fold

validation

0.86 0.13 0.86 0.86 0.94

Random Forest,

percentage

split (66%)

0.87 0.12 0.87 0.87 0.93
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errors are concerned with 86.6% of correct classification for
TN. A slightly lower percentage of correct classification
(85.2%) occurs with PN. This might be due to the greater irreg-
ularity and lower intensity of crying in PNwith respect to TN as
well as possible disturbances for the more difficult conditions of
recording performed in the intensive care unit.
DISCUSSION

The aim of this work was the assessment of a reliable set of
acoustical parameters of newborn cry for the classification of
preterm (PN) and term (TN) infants through the application
of the most adequate classifier.

The first step, of fundamental importance for the subsequent
ones, was the acoustical analysis of the neonatal cry.We applied
here the software tool BioVoice entirely developed at the
Biomedical Engineering Lab, University of Firenze, Italy, that
enables the robust analysis of this kind of signals. In addition
to avoiding the inevitable human errors due to manual selection,
BioVoice allows processing a considerable amount of data in a
very short time with obvious advantages for clinical applica-
tions. It has allowed obtaining in an automatic way a proper
distinction between the voiced and nonvoiced parts of a signif-
icant number of audio recordings carried out in Florentine
pediatric clinics. The acoustical analysis was made on about
TABLE 4.

Performance Metrics for the Random Forest Algorithm

With 10 Attributes

Classifier

TP

Rate

FP

Rate Precision F-Measure

ROC

Area

Random Forest,

full training

set

0.992 0.008 0.992 0.992 1

Random Forest,

10-fold

validation

0.856 0.144 0.857 0.856 0.927

Random Forest,

split (66%)

0.873 0.126 0.874 0.873 0.941
7000 CUs. BioVoice provided 22 acoustic parameters both in
the time domain and in the frequency domain.

With the proposed classification approach, the following 10
best parameters were detected: mean and median of F0, median,
mean, minimum and maximum of F1, median and mean of F2

and of F3. Notice that F2 and F3 are among the 10 best attri-
butes. These parameters are seldom considered in literature
because of the difficulty of obtaining their reliable estimate,
especially in the case of neonatal cry. Thanks to the high
resolution and robustness features of BioVoice they could be
successfully included among the attributes used in the classifi-
cation procedure proposed here.

The parameter values for PN infants were found generally
higher than those of the TN newborns. The t test applied to
the whole 22 parameters (including the ‘‘best’’ 10) showed sig-
nificant differences (P < 0.05) between PN and TN cry. In
particular, for the 10 selected parameters, all the differences
were highly significant (P < 0.01) except for F0 (P ¼ 0.04).

We recall that preterm infants were recorded between
35 weeks and 43 weeks of gestational age, close to that of the
term newborns. The results thus show that there is a difference
between term and preterm newborns even when the preterm
reaches a gestational age similar or equal to that of the term in-
fant. This might indicate a delay lasting beyond the normal
gestational age in the development of neuromotor control for
the preterm baby that thus would require a longer time to fully
recover.

We point out that the procedure used for classification,
although based on open-source software tool, was arranged
and carried out rigorously, comparing several options and solu-
tions. To the authors’ knowledge, this was never done before.
TABLE 6.

ConfusionMatrix of the Test Set ClassifiedWith Random

Forest 66% Percentage Split

Random Forest—Confusion Matrix

TN PN Class

485 75 TN

84 486 PN
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This allowed us to make the best choice not only of the param-
eters but also of the selection criterion for the classification
which therefore could be used and standardized for clinical ap-
plications of this type of signals. Specifically, the different ex-
periments performed allowed assessing the robust behavior of
the Random Forest algorithm in classifying infant cry thanks
to its appropriateness for managing high-dimensional data
and because it can handle continuous, categorical, and binary
data. Given that the best overall results were obtained with
the Random Forest classifier, we suggest this pattern recogni-
tion model for classification of newborn cry features.

As regards the specific application, the main strengths of the
present work are as follows:

- Once the signal is recorded, the acoustical parameters are
estimated without any manual intervention;

- Recordings were made according to a specific protocol:
they are consistent as regards the newborn age and concern
hunger cry;

- The classification procedure is rigorous but easily
manageable also by a nonexpert user;

- With reference to the existing literature, results are
extremely good with 87% of correct classification.
CONCLUSIONS

The classification of the neonatal cry is a completely noninva-
sive and inexpensive method that can provide useful clinical in-
formation on the neurologic status of the newborn. The research
study proposed here was focused on the definition of possible
differences in neonatal cry among the category of healthy
term newborns and that of premature babies who typically un-
dergo to the risk of neurodevelopmental disorders. To this aim,
the most significant acoustical parameters were detected with
the BioVoice tool, ensuring good discrimination of the charac-
teristics of the neonatal cry between healthy term and preterm
infants. The classification was carried out using algorithms im-
plemented in WEKA.

The results showed that this differentiation is achieved with
high accuracy on the basis of a limited but specific set of 10 sig-
nificant acoustical parameters that concern not only the vibration
of the vocal folds but also the anatomical and physiological char-
acteristics of the vocal apparatus of the newborn. These 10 cry
features might convey important additional information to assist
the clinical specialist in the diagnosis and follow-up of possible
delays or disorders in the neurologic development due to prema-
ture birth in this extremely vulnerable population of patients.

The results show that the Random Forest classifier has the
best performance along the different experiments. The high
and consistent results obtained with the selected model, sup-
ported by the different performance measures applied show
that the proposed approach is reliable.When applied to acoustic
parameters obtained with a reliable software tool, this classifi-
cation procedure could provide a valuable support to the
perceptive analysis made by the clinician reducing the required
amount of time often prohibitive in daily clinical practice.
Therefore, the proposed approach might be a first step toward
an automated infant cry recognition system for fast and proper
identification of risk in preterm babies.
Moreover, it is a first step toward the assessment of normative

ranges of the newborn cry acoustical parameters.
A future development could concern additional classification

experiments with the proposed methodology and the compari-
son of infants with neurologic disorders to healthy babies.
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