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Abstract In this paper, we study games where the space of players (or types, if the
game is one of incomplete information) is atomless and payoff functions satisfy the
property of strict single crossing in players (types) and actions. Under an additional
assumption of quasisupermodularity in actions of payoff functions and mild assump-
tions on the player (type) space—partially ordered and with sets of uncomparable
players (types) having negligible size—and on the action space—lattice, second count-
able and satisfying a separation property with respect to the ordering of actions—we
prove that every Nash equilibrium is essentially strict. Furthermore, we show how our
result can be applied to incomplete information games, obtaining the existence of an
evolutionary stable strategy, and to population games with heterogeneous players.
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1 Introduction

Strict Nash equilibrium is a solution concept that possesses desirable features.1 In
this paper, we identify a class of games where every pure-strategy Nash equilibrium
is essentially strict. Only pure-strategy Nash equilibria are considered in the paper.
Equilibria in mixed strategies might also be considered, but then a proper definition of
mixed strategies should be carefully provided, tackling the difficulty of modeling the
independence of a continuum of players. We refer the interested reader to Khan et al.
(2015) for a possible solution. More precisely, we consider games with an atomless
space of players (or types, if the game if of incomplete information), and action sets
that are second countable and satisfy a mild separation property.2,3 In addition, we
restrict attention to games where the payoff functions satisfy the strict single crossing
property (MilgromandShannon1994) in players (types) and actions.We are aware that
this is a severe restriction. However, from the one hand, we relax such an assumption
to some extent by considering, first, partial orders on the action sets together with
quasisupermodular utility functions and, second, partial orders on the player (type)
sets together with a comparability property that limits the numerosity of uncomparable
players (types). On the other hand, we think that the strict single crossing property
is less demanding when we come to applied models, where instead the possibility to
work with action spaces such as the real line (or its intervals) is usually appreciated.

Our main contribution is the identification of conditions that guarantee that every
Nash equilibrium is essentially strict (Theorem 1). However, the same conditions do
not guarantee that a Nash equilibrium actually exists. To obtain existence of essen-
tially strict Nash equilibria, one can apply our result together with one of the many
equilibrium existence theorems that the literature provides. Actually, we follow this
line in Sect. 4, where in Sects. 4.1 and 4.2 we provide applications of our main result to
incomplete information games and large games. In particular, we show the existence
of an evolutionarily stable strategy in a general class of incomplete information games,
and strict Nash equilibrium in a class of population games with heterogenous players.

The paper is organized as follows. In Sect. 2, we introduce the assumptions. In
Sect. 3, we state our main result. We conclude with Sect. 4, where we provide a
discussion, first showing how to combine our main result with existence theorems and
then commenting on the assumptions and the findings. The “Appendix” collects one
technical lemma (Lemma 1), its proof, and the proof of Proposition 2.

2 Assumptions

Let us consider a non-atomic gameΓ = 〈I, {(Ti , Ti , τi )}i∈I , {Ai }i∈I , {ui }i∈I 〉, where:

1 When working with a finite set of actions, strict Nash equilibria have been proven to be evolutionary
stable (see, e.g., Crawford 1990) and asymptotically stable (see, e.g., Ritzberger and Weibull 1995).
2 Second countability implies a cardinality less than or equal to the cardinality of the continuum.
3 The separation property that we assume ensures that every two actions that can be strictly ordered can
also be separated by a third action not greater than the largest of the two.
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• I is a finite set of player groups or institutions;4

• for all i ∈ I , (Ti , Ti , τi ) is an atomless probability space with Ti set of players for
group/institution i , Ti σ -algebra and τi probability measure;5

• for all i ∈ I , Ai is the set of actions for players in group i ;
• for all i ∈ I , ui : Ti × F → R is the utility function for all players of group i ,
where F = ∏

j∈I
∏

t∈Tj
A j .

We call f ∈ F a profile of actions, since it maps, for all i ∈ I , every player t ∈ Ti
into an action ft ∈ Ai .6

We denote with f−t the restriction of f to F−t = ∏
j∈N

∏
t ′∈Tj ,t ′ �=t A j , and we

call it a profile of actions by players other than t .7 We write ui (t, a, f−t ) to indicate
the utility accruing to player t ∈ Ti if she chooses action a ∈ Ai and faces a profile of
actions f−t .

We now introduce assumptions on {(Ti , Ti , τi )}i∈I (collected in AT), on {Ai }i∈I
(collected in AA), and on {ui }i∈I (collected in AU).

Assumption (AT). For all i ∈ I :

AT1 (Ti ,≤T
i ) is a partial order;

AT2 for every T ′ ⊆ Ti such that there do not exist t, t ′ ∈ T ′ with either t ≤T
i t ′ or

t ′ ≤T
i t , we have that (1) T ′ ∈ Ti , and (2) τi (T ′) = 0.

Assumption AT2 provides a bound on the cardinality of sets of uncomparable play-
ers, basically requiring for each Ti that any subset of players such that every pair is
uncomparable has negligible size. Indeed, the possibility that some players are not
comparable is left open by AT1, since the order may not be total. We observe that AT2
is trivially satisfied when (Ti ,≤T

i ) is a linear order. More interestingly, AT2 allows us
to consider other cases that might be of interest in applications. For instance, think of
Ti asmade of a finite or countably infinite number of populations, where comparability
is within each population, but not across populations. This is not allowed if Ti is a
linear order, while it is compatible with our assumption. Moreover, AT2 is satisfied
if, for every i ∈ I , Ti is made by a subset of a multidimensional Euclidean space, as
shown in the Proof of Proposition 2.

Assumption (AA). For all i ∈ I :

AA1 (Ai ,≤A
i ) is a lattice, i.e., for every two actions a, a′ ∈ Ai , there exists the least

upper bound a ∨ a′, and the greatest lower bound a ∧ a′;

4 Here we follow the labeling proposed by Khan and Sun (2002), which allows to encompass both games
with many players and games with incomplete information.
5 For games with incomplete information, the set I of groups/institutions has to be interpreted as the set of
players, while the set of players Ti has to be interpreted as the set of types for player i ∈ I .
6 We note that, under this definition of F as uncountable cross product of action sets, measurability issues
can emerge. These issues cannot be settled without imposing further structure, that is however unnecessary
for our main result. Therefore, we choose to take care of measurability only in the applications of Sect. 4.
7 In case of incomplete information games (where i is intepreted as a player and Ti as her set of types),
player i has already known her type t when computing expected utility. So, it is redundant to consider the
actions that would be taken by types in Ti\{t}, and hence, we have to require that ui (t, f ) is constant over
the actions chosen by types t ′ ∈ Ti\{t}.
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AA2 (Ai ,Si ) is a topological space;
AA3 (Ai ,Si ) is second countable, i.e., there exists a countable base for topology Si ;
AA4 (Ai ,Si ) is such that for every two actions a, a′ ∈ Ai , with a <A

i a′, there exists
an open set S ∈ Si such that a′ ∈ S and a′′ /∈ S for every a′′ ≤A

i a.

Beyond imposing a lattice structure (AA1) and a topological structure (AA2) on the
action space, AA contains two further topological properties: AA3, which is a standard
assumption that imposes a bound on the topological size of the space, and AA4, which
is about order separation with respect to the lattice structure and turns out to be a
strengthening of the axiom of separation T0.8

Assumption (AU). For all f ∈ F , i ∈ I , t, t ′ ∈ Ti , and a, a′ ∈ Ai :

AU1 ui is quasisupermodular in actions, i.e., ui (t, a, f−t ) ≥ ui (t, a∧a′, f−t ) implies
ui (t, a∨a′, f−t ) ≥ ui (t, a′, f−t ), and ui (t, a, f−t ) > ui (t, a∧a′, f−t ) implies
ui (t, a ∨ a′, f−t ) > ui (t, a′, f−t );

AU2 ui satisfies strict single crossing in players and actions, i.e., for all t <T
i t ′ and

a <A
i a′, we have that ui (t, a′, f−t ) ≥ ui (t, a, f−t ) implies ui (t ′, a′, f−t ′) >

ui (t ′, a, f−t ′).

Assumption AU1 is always satisfied when Ai is a total order, while it implies a sort of
complementarity in own actions when Ai is a partial order, as for instance when Ai =
[0, 1]k for some k > 1.AssumptionAU2, instead, introduces a sort of complementarity
between actions and players.9

Finally, we present some further definitions. A profile of actions f ∈ F is said to
be (essentially) a Nash equilibrium in pure strategies, or simply a Nash equilibrium,
if, for all i ∈ I , for τi -almost all t ∈ Ti , we have that ui (t, ft , f−t ) ≥ ui (t, a, f−t ) for
all a ∈ At . A Nash equilibrium f is said to be essentially strict if, for all i ∈ I , for
τi -almost all t ∈ Ti , we have that ui (t, ft , f−t ) > ui (t, a, f−t ) for a �= ft such that
ai ∈ Ai , while it is said to be monotone if, for all i ∈ I , for all t, t ′ ∈ Ti , we have that
t ′ >T

i t implies ft ′ ≥A
i ft .

3 Main result

We are ready to state our main result.

Theorem 1 Let Γ be a game that satisfies AT, AA, and AU. Then, every Nash equi-
librium of Γ is essentially strict and monotone.

8 T0 requires that any two distinct points in a set are topologically distinguishable, i.e., the sets of neigh-
borhoods of the two points differ one from the other.
9 We note that AU2 is slightly different from the standard definition of strict single crossing property since
the profile of opponents’ actions, which is a third argument of function u in addition to t and ft , is not
exactly the same in f−t and f−t ′ : Indeed, the behavior of players different from t and t ′ is the same, while
the behavior of t is considered in f−t but not in f−t ′ , and the behavior of t ′ is considered in f−t ′ but not
in f−t . This difference disappears if, for instance, we assume individual negligibility (see discussion at the
end of Sect. 3) or if we constrain players to care only about actions of groups/institutions different from
theirs (as it happens, e.g., in games with incomplete information).
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Proof We first show that every Nash equilibrium is essentially strict. Let Ri,t ( f )
denote the set of best replies to f for player t ∈ Ti , namely Ri,t ( f ) = {a ∈ Ai :
ui (t, a, f−t ) ≥ u(t, a′, f−t ) for all a′ ∈ Ai }. By Lemma 1 (see “Appendix 1”), we
know that, for all i ∈ I , the set {t ∈ Ti : ||Ri,t ( f )|| > 1} is a countable union of sets
havingmeasure zero. Since the countable union of zero-measure sets hasmeasure zero,
we can conclude that τi ({t ∈ Ti : ||Ri,t ( f )|| > 1}) = 0 for all i ∈ I . This, together
with the observation that when f is a Nash equilibrium we have ||Ri,t ( f )|| > 0 for
τi -almost all t ∈ Ti and for all i ∈ I , implies that ui (t, ft , f−t ) > ui (t, a, f−t ) for
τi -almost all t ∈ Ti and for all i ∈ I .

We now show that every Nash equilibrium is monotone. Suppose that t ′ >T
i t ,

a ∈ Ri,t ( f ), a′ ∈ Ri,t ′( f ) and, ad absurdum, a �
A
i a′. Since a ∈ Rt ( f ), we have

that u(t, a, f−t ) ≥ u(t, a ∧ a′, f−t ), but then u(t, a ∨ a′, f−t ) ≥ u(t, a′, f−t ) by
quasisupermodularity in actions, and u(t ′, a∨a′, f−t ) > u(t ′, a′, f−t ) by strict single
crossing property in players and actions and a ∨ a′ �= a′, which in turn comes from
a �

A
i a′. We simply observe that u(t ′, a∨ a′, f−t ) > u(t ′, a′, f−t ) is in contradiction

with a′ ∈ Ri,t ( f ). �
The fact that f is essentially strict follows from (Ti , Ti , τi ) being atomless for all i ∈ I
and from the set of weakly best responders being countable. Then, a straightforward
application of the property of strict single crossing in players and actions allows
establishing the monotonicity between players and actions in Nash equilibria—this
result following basically from Theorem 4’ of Milgrom and Shannon (1994).

Let us conclude with a remark on players’ negligibility. In Theorem 1, utility
depends on the actions of each single player t ∈ Ti , i ∈ I . We did this in order
to state our findings in a setting which allows for a general form of utility functions.
However, we note that when we have an atomless space of players, it may be rea-
sonable to impose that any single player j �= t is negligible in terms of t’s utility.
This assumption is particularly reasonable if one also assumes continuity of the utility
function (see the discussion in Khan and Sun 2002, Section 2). To introduce negligi-
bility in our framework, it suffices to impose that, for all i ∈ I , the utility function ui
is such that whenever f, f ′ ∈ F agree on a set of measure one according to τi , we
have that ui (t, f ) = ui (t, f ′) for every t ∈ Ti , such that ft = ft ′ . We observe that
such kind of players’ negligibility is implied in the applications of Sect. 4.

4 Discussion

The celebrated result inHarsanyi (1973) says that independently perturbing the payoffs
of a finite normal form game produces an incomplete information game with a contin-
uum of types where all equilibria are essentially pure and essentially strict 10 and that
for any regular equilibrium of the original game and any sequence of perturbed games

10 Note that strict Nash equilibria are called strong Nash equilibria in Harsanyi (1973).
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converging to the original one, there is a sequence of essentially pure and essentially
strict equilibria converging to the regular equilibrium.11,12

For Theorem 1 to have some bite, it needs to be coupled with a result guaranteeing
the existence of a pure-strategy Nash equilibrium. The literatures on incomplete infor-
mation games and large games have provided several of such existence results. We
first discuss some known existence results in non-atomic games. Then, in Sects. 4.1
and 4.2, we illustrate how our contribution can be used to shed light on the strictness
of Nash equilibria in applications to incomplete information games and large games,
respectively. Unless otherwise specified, any topological space in this section is under-
stood to be equipped with its Borel σ -algebra, and the measurability is defined based
on it. Finally, in Sect. 4.3, we comment on the assumptions used in the paper, arguing
in favor of their tightness.

The use of single crossing properties is not new in the literature on games with
many player types. Athey (2001) analyzes games of incomplete information where
each agent has private information about her own type, and the types are drawn from
an atomless joint probability distribution. The main result establishes the existence of
pure Nash equilibria under an assumption called single crossing condition for games
of incomplete information, which is a weak version of the single crossing property in
Milgrom and Shannon (1994).13 In Sect. 4.3, we argue that such a property is not a
sensible generalization for our purposes.

In a finite-player incomplete information game with diffused information, if in
addition players’ information is independent (instead of assuming an order structure),
the existence of a pure Nash equilibrium can be established similarly to the one in a
large game (with a non-atomic space of players). It is now well recognized (see Khan
et al. 2006) that the purification principle due to Dvoretzky et al. (1951) guarantees
the existence of pure Nash equilibria in non-atomic games14 when the action space is
finite as, for example, in large games like Schmeidler (1973), or in games with diffused
information as in Radner and Rosenthal (1982) and Milgrom and Weber (1985) (see
Khan and Sun 2002, for a survey on games with many players).15,16 Existence of pure
Nash equilibria does not extend, however, to general games. For action spaces that

11 See also Dubey et al. (1980) for a related use of strict equilibria in large games.
12 The work of Harsanyi (1973) has been extended by a series of contributions providing more general
conditions for the existence of pure equilibria, but disregarding the issue of approachability and the existence
of strict equilibria (see Morris 2008 and references there in).
13 Reny and Zamir (2004) prove the existence of pure- strategy Nash equilibria under a slightly weaker
condition.McAdams (2003) further extends the analysis to multidimensional type spaces and action spaces,
while Reny (2011) extends it to more general partially ordered type spaces and action spaces.
14 Interest in games with many players has recently spanned across different settings (see, e.g., Alós-
Ferrer and Ritzberger 2013, for extensive form games and Balbus et al. 2013, for games with differential
information), and different notions of equilibrium (see, e.g., Correa and Torres-Martínez 2014, can exists
when the make for essential equilibria).
15 Mas-Colell (1984) deals with the issue of Schmeidler (1973) using a different approach based on dis-
tributions rather than measurable functions. See Khan et al. (2013b) for a recent discussion of related
issues.
16 Approximated versions of the result in Schmeidler (1973) have been given for a large but finite number
of players (Rashid 1983; Carmona 2004, 2008).
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are countable and compact, conditions for the existence of pure Nash equilibrium are
given in Khan and Sun (1995) and then generalized in Yu and Zhang (2007). When
the action space is an uncountable compact metric space, saturated probability spaces
can be used to guarantee the existence of a pure-strategy Nash equilibrium, as shown
in Keisler and Sun (2009) and Khan et al. (2013a).17

4.1 An application to incomplete information games

We now show how Theorem 1 can be used to shed light on the strictness of a Nash
equilibrium in a Bayesian setting. We use the setup given by McAdams (2003),18

which is a generalization of the one in Athey (2001). More precisely, we consider the
incomplete information game Γ I = 〈I, ([0, 1]h, φ), A, {ui }i∈I 〉, where:
• I is the set of players with cardinality ||I || = n ∈ N;
• for all i ∈ I , ([0, 1]h, φ) describes the h-dimensional common type space, with

φ : R
nh → R++ the positive and bounded joint density on type profiles;

• for all i ∈ I , A ⊂ R
k is the set of actions for types of player i ,19 with A being

either a finite sublattice with respect to the product order or [0, 1]k ;
• for all i ∈ I , uI

i (ti , ai ,α−i ) = ∫
[0,1]h(n−1) Ui (ai ,α−i (t−i ))φ(t−i |ti )dt−i is the util-

ity function for all types of i , where α−i (t−i ) is the vector of others’ actions as a
function of their type, t−i is the vector of others’ types, φ(t−i |ti ) is the conditional
density of t−i given ti , andUi is bounded, Lebesguemeasurable and, if A = [0, 1]k ,
also continuous in a ∈ An .

InΓ I a strategy for player i can be described by function αi : [0, 1]h → A. So, we can
say that a strategy profile (α1, . . . , αn) is a Nash equilibrium of game Γ I if it induces
a profile of actions such that for all i ∈ I , for all t ∈ [0, 1]h , ui (t, αi (t),α−i ) ≥
ui (t, a,α−i ) for all a ∈ A.

By construction, Γ I satisfies AA and AT. So, if Γ I also satisfies AU, then by virtue
of our Theorem 1 every Nash equilibrium of Γ I is essentially strict, and monotone in
types and actions. Moreover, existence of a Nash equilibrium follows from Theorem
1 in McAdams (2003) that can be applied since AU2 implies the single crossing
condition—which is required by the Theorem.

Perhaps more interestingly, we can use the setup of incomplete information games
to show what Theorem 1 can say from the perspective of evolutionary game theory.20

Indeed, although the notion of evolutionarily stable strategy remains a prominent
solution concept in evolutionary game theory, its use has some shortcomings when

17 SeeCarmona andPodczeck (2009) for a discussion on the relationship between alternative formalizations
of non-atomic games and existence results, with a focus on large games. See also Fu and Yu (2015) for a
discussion of the connection between the class of large games and the class of finite-player Bayesian games.
18 McAdams (2006) applies and extends this setup to prove existence of pure Nash equilibria in multiunit
auctions.
19 As noted by McAdams (2003), the assumptions of a common support for types and a common set for
actions are just for notational simplicity and can be safely removed.
20 Evolution in the context of Bayesian games is analyzed in Ely and Sandholm (2005) and Sandholm
(2007).
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continuous strategy spaces are employed.21 If an order structure is imposed on types,
ourTheorem1can allow to tackle the issue. This follows a seminal idea inRiley (1979),
where incomplete information and a form of the strict single crossing property are used
to show existence of an evolutionarily stable strategy in the “war of attrition”.

For this purpose, we restrict attention to a game Γ I that is symmetric, i.e., we focus
on game Γ I S = 〈I, ([0, 1]h, φ), A, u〉. We also provide some further useful notation
and definitions.

The following expression denotes ex-ante utility for a player choosing strategy α

when all other players choose strategy α′:

V (α, α′) =
∫

[0,1]h

(∫

[0,1]h(n−1)
U (α(t),α′−i (t−i ))φ(t−i |t)dt−i

)

φi (t)dt,

where φi (t) is the marginal density function of types for player i .
Given two strategies α, α′, we define D(α, α′) as the set of types that pick different

actions in α and α′, i.e., D(α, α′) = {t ∈ [0, 1]h : α(t) �= α′(t)}.
The following definition adapts the standard definition of evolutionarily stable strat-

egy to our setup. A strategy α is an evolutionarily stable strategy (henceforth, ESS) if
and only if there exists ε > 0 such that, for all α′ such that

∫
D(α,α′) φi > 0:

(1 − ε)V (α, α) + εV (α, α′) > (1 − ε)V (α′, α) + εV (α′, α′).

Basically, the above definition requires that a strategy performs strictly better than any
invading strategy that differs non-negligibly from the incumbent strategy.

While an evolutionarily stable strategy may not exist in general, we are able to
prove the following result (see “Appendix 2” for the proof).

Proposition 2 Suppose Γ I S satisfies AU. Then, (1) every pure-strategy Nash equi-
librium is an evolutionarily stable strategy, and (2) an evolutionarily stable strategy
exists.

Weobserve that our Proposition 2 is not implied by theHarsanyi’s purification theorem,
which applies only to games with a finite number of strategies for each player, while
we allow for continuous strategies as well.

4.2 An application to large games

Apure Nash equilibrium is not necessarily a strict Nash equilibrium, so our Theorem 1
can be usefully employed to establishNash strictness in gameswhere this is a desirable
property (e.g., in games where the local stability of a Nash equilibrium is a crucial
property). Below, we provide an example of such applicability.

Consider the following game, which is an instance of the class of games considered
in Khan et al. (2013a) (see discussion at p. 1130), and that represents a slight gen-
eralization of a static population game (see Sandholm 2010, for a formal definition

21 Alternative notions of evolutionary stability have been proposed in the literature (Vickers and Cannings
1987; Bomze and Pötscher 1989; Oechssler and Riedel 2001, 2002).
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of population games). There is a large population of heterogeneous players whose
characteristics consist of both an individual payoff structure and an ordered numerical
trait, with a player’s payoff depending on own action and societal summary of actions
traits. In particular, a player’s payoff depends on her own action and type as well as the
sum of the traits of the players choosing each action.22 Formally, consider the game
Γ P = 〈([t, t], φ), (B, β), A, uP 〉 where:
• there is a unit-mass population of players distributed over [t, t] according to the
positive and bounded probability density φ;

• B = {b1, . . . , bn} is a finite and totally ordered set of traits, with β : [t, t] → B a
measurable function that assigns each player to a trait;

• A = {1, . . . ,m} is a finite and totally ordered set of actions, common to all players;
• uP (t, a,α) = U (t, a, (σ11, . . . , σmn)) is agents’ utility function, which we assume
to be measurable in t and continuous in (σ11, . . . , σmn), and where α : [t, t] → A
is a measurable function representing the actions chosen by every player in the
population, and σ jk = ∫

(α,β)−1( j,bk )
φt measures the amount of players with trait

bk who play action j ∈ A.

We observe that if, in addition to AA and AT which are satisfied by construction,
Γ P also satisfies AU, then Theorem 1 implies that every Nash equilibrium of Γ P

is essentially strict, and monotone in players and actions.23 So, we know that all
Nash equilibria of Γ P are locally stable with respect to dynamics typically applied in
population games (see e.g., Sandholm 2015).

We think that considering the heterogeneity of characteristics in a population is a
natural addition to population games.Also, assuming the strict single crossing property
in players and actions appears to us, at least in some cases, a reasonable hypothesis.
Think of this variant of a congestion game, where the trait is the length of the car
possessed, and the congestion along a route depends on the overall length of cars in
that route. If a longer route is preferred by the owner of some car, then it means that
the shorter route has heavier traffic. Hence, it is reasonable to assume that the owners
of longer cars prefer a fortiori the shorter route, since a larger car typically performs
relatively worse under heavy traffic.

4.3 Discussion of assumptions

Negligibility of sets of uncomparable players (AT2) This assumption cannot be dis-
pensed with, in the sense that a positive measure of uncomparable players would allow
the existence of Nash equilibria that are not essentially strict. Indeed, if there exists a
non-negligible set of players such that every pair cannot be ordered, then the strict sin-
gle crossing property cannot be employed to rule out that all such players are weakly
best responders in equilibrium, and therefore, Nash equilibria need not be essentially
strict. The following example illustrates why. Let ||I || = 1, and let the set of actions

22 This last assumption can be easily generalized to any form of trait aggregation, in the same way as it is
typically done for aggregative games (see, e.g., Acemoglu and Jensen 2013).
23 We also note that the existence of a Nash equilibrium is not an issue in this game, e.g., one can invoke
Theorem 1, point (i), in Khan et al. (2013a).
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A be equal to the real segment [0, 1]. Also, let the set T be such that no t, t ′ ∈ T
are comparable, so that AT1 is trivially satisfied while AT2 fails. Finally, suppose that
ui (t, f ) = τ({t ′ : ft ′ = ft }), meaning that t’s payoff only depends on the fraction
of players coordinating on her action ft . It is straightforward to see that any profile
where a measure of τ(T )/k players coordinate on k distinct actions (with k a natural
number) is a Nash equilibrium, since each t obtains a payoff of τ(T )/k which cannot
be improved upon by deviating. However, for k ≥ 2, all t ∈ T are indifferent between
any of the k actions played, and so the Nash equilibrium is not essentially strict.

Separability versus second countability (AA3) Aspace is called separable if it contains
a countable dense subset. Separability is a topological property which is weaker than
second countability but plays a similar role: It constrains the topological size of the
space.

However, ifwe assume that the action sets are separable instead of second countable,
then our results fail. The following example, which is a modification of a standard
argument to illustrate that a separable space need not be second countable, shows
that if we replace second countability with separability then there may exist Nash
equilibria that are not essentially strict. We consider a unique group of players, and we
let the set T be the real line, denoted with R. We let the action set A be the Cartesian
product R × {0, 1}. We give A the lexicographic order, i.e., (r, i) < (s, j) if either
r < s or else r = s and i < j . For every profile of actions f , t’s utility function is
u(t, f ) = −(t− f ′

t )
2,where f ′

t = s if ft = (s, i). In the order topology, A is separable:
The set of all points (q, 0) with q rational is a countable dense set. However, f such
that ft = (t, 0) for all t ∈ T is a Nash equilibrium that is not essentially strict since
every agent t is indifferent between (t, 0) and (t, 1).

Axioms of separation (T0, T1) versus order separation (AA4) Intuitively, our assump-
tion on order separation ensures that different weakly best responders can be assigned
to actions that are substantially different, in the sense that each action can be associated
with a distinct base set. Then, second countability of the action set ensures that this
function relating actions to base sets is enumerable.

One might hope to weaken our assumption to something that is more in line with
standard separation axioms (like T 0 or T 1): For all a > a′, there exists an open set
S(a, a′) such that a ∈ S(a, a′) and a′ /∈ S(a, a′). However, we stress that this attempt
would contrast with our technique of proof. Indeed, following the Proof of Lemma 1
(see the “Appendix”), a t that is a weakly best responder might be associated with a
set Ŝ obtained as

⋂
t ′∈Ri,t ( f ),t>T

i t
′ S(gi,1(t), gi,1(t ′)). But then an infinite intersection

of open sets need not be open, and this does not allow us to conclude that a base set
exists that is included in Ŝ and contains the action gi,1(t).

Single crossing versus strict single crossing (AU2) Games of incomplete informa-
tion are a very important class of games where single crossing properties are usually
assumed in order to prove existence of pure Nash equilibria. In these cases, we can
apply our Theorem 1 to obtain the existence of an essentially strict Nash equilibrium
(see Sect. 4.1). We stress that this result is based on a strict version of the single cross-
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ing property, while existence results in games of incomplete information (Athey 2001;
McAdams 2003) use weaker assumptions. In particular, they are weaker under two
respects. First, they assume single crossing instead of strict single crossing. Second,
they require that the property of single crossing holds on a smaller domain: for each
player, whenever all other players adopt strategies such that higher types take higher
actions. Therefore, one may wonder whether our results still hold if we consider each
of the two weakenings of strict single crossing.With respect to the first weakening, the
following straightforward counterexample shows that single crossing is not enough.
Assume that every agent has a constant utility function, so that everyone is always
indifferent between any of her actions. Single crossing property is satisfied, and what-
ever profile of actions is a weak Nash equilibrium. This trivial example also shows that
we cannot recover our main result even if we replace the property of single crossing
with the stronger one of increasing differences—i.e., for all f ∈ F , i ∈ I , t ′ >T

i t and
a′ >A

i a, we have that u(t, a′, f−t ) − u(t, a, f−t ) ≤ u(t ′, a′, f−t ′) − u(t ′, a, f−t ′).
With respect to the second weakening, we observe that restricting the domain to

profiles that are monotone in types and actions for other players is a clever general-
ization of single crossing when the purpose is to prove the existence of pure Nash
equilibria. However, a strict version of this weaker property of single crossing does
not work when we want to show that every Nash equilibrium is essentially strict. The
reason is that it would allow the existence of some weak Nash equilibrium with a
profile of actions for which no property of strict single crossing must hold.

Strict increasing difference versus strict single crossing (AU2) One may wonder
whether the result in Theorem 1 can be refined to prove strict monotonicity instead
of monotonicity. It turns out that this is not the case, even if we adopt the stronger
property of strict increasing differences in players (or types) and actions—i.e., for
all f ∈ F , i ∈ I , t ′ >T

i t and a′ >A
i a, we have that u(t, a′, f−t ) − u(t, a, f−t ) <

u(t ′, a′, f−t ′)−u(t ′, a, f−t ′)—instead of strict single crossing. The following example
illustrates why. Let ||I || = 1 and let both set T and set A be equal to the real segment
[0, 1]. For every profile of actions f , the utility function of t is u(t, f ) = (1+ t) ft . It
is clear that there exists a unique Nash equilibrium where everybody plays action 1.
Hence, monotonicity holds, but strict monotonicity does not.

Acknowledgments We are particularly indebted to an associate editor and four anonymous referees for
their useful suggestions that helped us to improve the paper. All mistakes remain ours.

Appendix 1: Lemma 1 and its proof

A key result for the Proof of Theorem 1 is that any set of weakly best responders is a
countable union of sets having measure zero. Lemma 1 below provides such result.

The logic of the Proof of Lemma 1 goes as follows. The joint use of quasisuper-
modularity in actions (AU1) and strict single crossing in players and actions (AU2)
is similar to that in Theorem 4 of Milgrom and Shannon (1994), and it allows to
arrange multiple best replies of different players in a linear order. The crucial eco-
nomic assumption is the strict single crossing property in players and actions, which
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implies that the sets of weakly best replies of any two distinct players intersect at most
at an extreme point and hence are—roughly speaking—rather separated one from the
other. The technical assumptions on countability (AA3) and separation (AA4) com-
plete the job, allowing at most a countable number of such sets (see Sect. 4.3 for a
discussion on the importance of the countability and separation properties). Therefore,
there can exist only a countable number of comparable players that are weakly best
responders; for any such player, there can be many (even uncountable) players that are
all uncomparable and weakly best responders, but for the comparability assumption
(AT2) their measure is null. This leads to conclude that the set of weakly best respon-
ders is formed by countably many sets having measure zero, and hence, its measure
is zero as well.

Preliminarily, we define Ri,t ( f ) as the set of best replies to f for t ∈ Ti , namely
Ri,t ( f ) = {a ∈ Ai : ui (t, a, f−t ) ≥ u(t, a′, f−t ) for all a′ ∈ Ai }.

Lemma 1 Let Γ be a game that satisfies AT, AA, and AU. Then, for every i ∈ I ,
{t ∈ Ti : ||Ri,t ( f )|| > 1} is a countable union of sets having measure zero.

Proof This is the outline of the proof. For a generic i ∈ I , first we define a function
gi that maps every t ∈ {t ∈ Ti : ||Ri,t ( f )|| > 1} into a pair (a, a′) of her best replies,
then we define a function hi , and we use it to assign (a, a′) to a base set. We show that
function hi is injective and that function gi is such that any set of players assigned to
the same pair of actions has measure zero. Finally, we invoke the fact that there exists
only a countable number of base sets to obtain the desired result.

For each i ∈ I , we consider the partial orders assumed inAA1 (lattice structure) and
AT1 (partial ordering) and we take a function gi : {t ∈ Ti : ||Ri,t ( f )|| > 1} → A2

i
such that gi (t) = (gi,0(t), gi,1(t)) with gi,0(t), gi,1(t) ∈ Ri,t ( f ), gi,0(t) <A

i gi,1(t),
and gi,1(t) ≤A

i gi,0(t ′) for t ′ >T
i t . The following two arguments show that such a

function exists for each i ∈ I . First, a ∈ Ri,t ( f ) and a′ ∈ Ri,t ( f ) imply a ∨ a′ ∈
Ri,t ( f ), so thatwe can set gi,0(t) = a and gi,1(t) = a∨a′, with a∨a′ existing thanks to
AA1 (lattice structure). In fact, ui (t, a, f−t ) ≥ ui (t, a∧a′, f−t ) sincea ∈ Ri,t ( f ), and
hence, ui (t, a ∨ a′, f−t ) ≥ ui (t, a′, f−t ) by AU1 (quasisupermodularity in actions),
which in turn implies that ui (t, a ∨ a′, f−t ) = ui (t, a, f−t ) = ui (t, a′, f−t ) since
a ∈ Ri,t ( f ) and a′ ∈ Ri,t ( f ). Second, a ∈ Ri,t ( f ) and a′ ∈ Ri,t ′( f ) for t ′ >T

i t imply
a ≤A

i a′. This is true since ui (t, a, f−t ) ≥ ui (t, a ∧ a′, f−t ) due to a ∈ Ri,t ( f ), and
hence, ui (t, a ∨ a′, f−t ) ≥ ui (t, a′, f−t ) by AU1 (quasisupermodularity in actions),
and therefore, ui (t ′, a ∨ a′, f−t ) > ui (t ′, a′, f−t ) by AU2 (strict single crossing in
players and actions), with a ∧ a′ existing thanks to AA1 (lattice structure).

For all i ∈ I , by AA2 (topology structure), Ai has a topology and by AA3 (second
countability) we can take a countable base Bi for such a topology. For each i ∈ I , we
take a function hi : gi ({t ∈ Ti : ||Ri,t ( f )|| > 1}) → Bi such that a1 ∈ hi (a0, a1)
and a /∈ hi (a0, a1) for all a ≤A

i a0. To see that such a function hi exists, note that
by AA4 (order separation) for each (a0, a1) ∈ gi ({t ∈ Ti : ||Ri,t ( f )|| > 1}) there
exists some open set Sa1 ⊂ Ai such that a1 ∈ S and a /∈ S for all a ≤A

i a0; since Bi

is a base, there must exist some Ba1 ∈ Bi such that a1 ∈ Ba1 and Ba1 ⊆ Sa1 . We set
hi (a0, a1) = Ba1 .
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We check that, for all i ∈ I , gi is such that, for all (a, a′) ∈ A2
i , g

−1
i (a, a′) has

measure zero. For all t, t ′ ∈ {t ∈ Ti : ||Ri,t ( f )|| > 1}, t <T
i t ′, we have that

gi,0(t) < gi,1(t) ≤ gi,0(t ′) < gi,1(t ′) from the definition of function gi . Therefore,
t, t ′ ∈ g−1

i (a, a′) implies t �
T
i t ′ and t ′ �

T
i t , and AT2 (negligibility of sets of

uncomparable players) guarantees that τi (g
−1
i (a, a′)) = 0.

We check that, for all i ∈ I , hi is injective. For all (a0, a1), (a′
0, a

′
1) ∈ gi ({t ∈ Ti :

||Ri,t ( f )|| > 1}), (a0, a1) �= (a′
0, a

′
1), we know that either a0 < a1 ≤ a′

0 < a′
1 or

a′
0 < a′

1 ≤ a0 < a1. Suppose, without loss of generality, that a0 < a1 ≤ a′
0 < a′

1.
Then, by the definition of function hi , we know that a1 ∈ hi (a0, a1), a′

1 ∈ hi (a′
0, a

′
1),

and a1 /∈ hi (a′
0, a

′
1) since a1 ≤ a′

0. Hence, hi (a0, a1) �= hi (a′
0, a

′
1).

Therefore, g ◦ h maps {t ∈ Ti : ||Ri,t ( f )|| > 1} into Bi in such a way that
for every B ∈ Bi such that there exists t ∈ Ti with h(g(t)) = B, we have that
τi ({t ∈ Ti : h(g(t)) = B}) = 0. Since Bi is countable, we can conclude that {t ∈ Ti :
||Ri,t ( f )|| > 1} is the countable union of sets having measure zero. �

Appendix 2: Proof of Proposition 2

We start by checking that Theorem 1 can be applied to Γ I S . Clearly, Γ I S is a special
case of Γ I . First, we note that Γ I is a specific instance of Γ . To see this, set i’s type
space Ti = [0, 1]h , with associated probability space (Ti , Ti , τi )where Ti is the sigma
algebra of all Lebesgue measurable subsets of Ti and measure τi is the one induced by
φi , implying that τi is atomless since φi is bounded. Furthermore, set i’s action space
Ai = A. Finally, note that utility uI

i is a special case of ui where the utility of type t
does not depend on the actions chosen by other types of the same player role.

We next check that all hypotheses of Theorem 1 are satisfied.
AU is satisfied by assumption.
We check AT. Since [0, 1]h is a partial order, AT1 is satisfied. Take a set T̂ ⊆

[0, 1]h which is made of types that are all uncomparable. For any (t1, t2, . . . , th−1) ∈
[0, 1]h−1, there exists at most one th ∈ [0, 1] such that (t1, t2, . . . , th−1, th) ∈ T̂ ;
otherwise, we would have two elements belonging to T̂ that are comparable. This
shows that T̂ is contained in the graph of a function from [0, 1]h−1 to [0, 1], which
constitutes an hypersurface in [0, 1]h . We know that an hypersurface has Lebesgue
measure equal to zero and hence T̂ as well. Therefore, the measure of T̂ according to
the marginal density function φi is null, since the integration of φi over a zero-measure
set is zero. So, AT2 is satisfied.

We check AA. If A is a finite lattice, then AA1–AA4 hold trivially. If A = [0, 1]k ,
then AA1 and AA2 are satisfied by considering, respectively, the standard order and
the Euclidean topology on [0, 1]k . It is well known that the Euclidean space (and any
of its subsets) is second countable (it is enough to consider as base the set of all open
balls with rational radii and whose centers have rational coordinates). So AA3 is also
satisfied. Finally, consider a, a′ ∈ [0, 1]k such that a′

i ≥ ai , a′ �= a. Then take an
open ball centered at a′ with radius lower than the Euclidean distance between a′ and
a; clearly, a′ belongs to the ball, while every a′′ ∈ [0.1]k such that a′′

i ≤ ai does not
belong to the ball. This shows that AA4 is satisfied.
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So, we can apply Theorem 1 to conclude that every pure-strategy Nash equilibrium
must be essentially strict and monotone in types and actions.

Consider now a symmetric pure-strategy Nash equilibrium where every player
chooses strategyα. Consider also any strategyα′, withα′ �= α.Wehave already shown,
by exploiting Theorem 1, that α is essentially strict, and so uI (t, α(t),α−i (t−i )) >

uI (t, α′(t),α−i (t−i )) for almost all t ∈ [0, 1]h . Therefore,
∫

[0,1]h
(
u(t, α(t),α′−i (t−i ))

)
φi (t)dt >

∫

[0,1]h
(
u(t, α′(t),α−i (t−i ))

)
φi (t)dt, (1)

which means that V (α, α) > V (α′, α). Hence, for ε small enough, we can conclude
that (1−ε)V (α, α)+εV (α, α′) > (1−ε)V (α′, α)+εV (α′, α′).Wehave so established
that α is an ESS.

Finally, to show that an ESS exists, we can rely on Theorem 1 in McAdams (2003)
that can be applied sinceAU2 implies the single crossing condition—which is required
by the Theorem. Such theorem, if applied to symmetric games, establishes the exis-
tence of a symmetric pure-strategy Nash equilibrium.24 By the previous argument, we
conclude that the strategy played in such equilibrium must be an ESS.
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