
Contents lists available at ScienceDirect
Journal of Visual Languages and Computing

Journal of Visual Languages and Computing 31 (2015) 222–229
http://d
1045-92

n Corr
E-m

ivan.bru
nadia.ra
journal homepage: www.elsevier.com/locate/jvlc
Graph databases methodology and tool supporting
index/store versioning

Pierfrancesco Bellini, Ivan Bruno, Paolo Nesi n, Nadia Rauch
DISIT Lab, Department of Information Engineering, University of Florence, Italy
a r t i c l e i n f o

Available online 6 November 2015

Keywords:
RDF knowledge base versioning
Graph stores versioning
RDF store management
Knowledge base life cycle
x.doi.org/10.1016/j.jvlc.2015.10.018
6X/& 2015 Elsevier Ltd. All rights reserved.

esponding author.
ail addresses: pierfrancesco.bellini@unifi.it (P
no@unifi.it (I. Bruno), paolo.nesi@unifi.it (P.
uch@unifi.it) (N. Rauch).
a b s t r a c t

Graph databases are taking place in many different applications: smart city, smart cloud,
smart education, etc. In most cases, the applications imply the creation of ontologies and
the integration of a large set of knowledge to build a knowledge base as an RDF KB store,
with ontologies, static data, historical data and real time data. Most of the RDF stores are
endowed with inferential engines that materialize some knowledge as triples during
indexing or querying. In these cases, deleting concepts may imply the removal and change
of many triples, especially if the triples are those modeling the ontological part of the
knowledge base, or are referred by many other concepts. For these solutions, the graph
database versioning feature is not provided at level of the RDF stores tool, and it is quite
complex and time consuming to be addressed as black box approach. In most cases the
indexing is a time consuming process, and the rebuilding of the KB may imply manually
edited long scripts that are error prone. Therefore, in order to solve these kinds of pro-
blems, this paper proposes a lifecycle methodology and a tool supporting versioning of
indexes for RDF KB store. The solution proposed has been developed on the basis of a
number of knowledge oriented projects as Sii-Mobility (smart city), RESOLUTE (smart city
risk assessment), ICARO (smart cloud). Results are reported in terms of time saving and
reliability.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Large graph databases are getting a strong push in their
diffusion for setting up new kind of big data services for
smart cities, digital libraries, competence modeling, health
care, smart education, etc. This fact is mainly due to their
capability in modeling knowledge and thus on creating
Knowledge-Based, KB, systems [1]. Graph databases may
be implemented as RDF stores (Resource Description Fra-
mework) [2], to create interactive services in which rea-
soning and deductions can be elaborated including infer-
ence engines on top of the store. An RDF store is grounded
. Bellini),
Nesi),
on the concept of triple that puts in relationship two
entities. A vocabulary defines the common characteristics
of things belonging to classes and their relations. A voca-
bulary, also called ontology, is defined by using RDFS (RDF
Schema, RDF Vocabulary Description Language) or the
OWL extension (Ontology Web Language). Recently RDF
store have been also addressed as noSQL stores for big data
[3]. A large set of ontologies and related data sets are now
accessible, see for example the large number of LOD
(linked open data) accessible and related each other via
URI [4,5]. RDF stores may be made accessible via an entry
point to pose semantic queries formalized for example in
SPARQL [6] (SPARQL Protocol and RDF Query Language,
recursive definition). Non trivial RDF stores based
solutions are typically produced by exploiting multiple
ontologies, loading data triples and testing/validating the
obtained results. This means that they are built by using

www.sciencedirect.com/science/journal/1045926X
www.elsevier.com/locate/jvlc
http://dx.doi.org/10.1016/j.jvlc.2015.10.018
http://dx.doi.org/10.1016/j.jvlc.2015.10.018
http://dx.doi.org/10.1016/j.jvlc.2015.10.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvlc.2015.10.018&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvlc.2015.10.018&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvlc.2015.10.018&domain=pdf
mailto:pierfrancesco.bellini@unifi.it
mailto:ivan.bruno@unifi.it
mailto:paolo.nesi@unifi.it
mailto:nadia.rauch@unifi.it
http://dx.doi.org/10.1016/j.jvlc.2015.10.018

P. Bellini et al. / Journal of Visual Languages and Computing 31 (2015) 222–229 223
some ontology building methodology [7,8], integrated
with a knowledge base development life cycles.

The RDF store may grow over time adding new triples,
and may have the capacity to learn if endowed with an
inferential reasoner/engine, i.e., producing new knowledge
as new triples. Thus, the inferential engine associated with
the RDF store materializes new triples during reasoning
(for example at the time of indexing or querying). These
facts are the main motivations to low performances in
indexing, and critical performances in deleting triples of
RDF stores as graph databases since they are involved in
removing the materialized triples. These features impact
on store performances, and thus, in literature, many
benchmarks for the evaluation of RDF stores are present.
When RDF stores are used as a support for a KB, some of
the changes in the RDF store can be destructive for the
graph model, such as changes in the triples modeling the
ontology on which millions of instances are related. In
order to keep the performance acceptable, the RDF store
has to be rebuilt from scratch or from some partial version
to save time in releasing the new version. Thus, the life-
cycle may present multiple cycles in which the RDF store is
built incrementally via progressive refinements mediating
among (i) reusing ontological models, (ii) increasing the
Ontology
Review

Ontology
Integration

Ontology
Selection

Available
Ontology Review

Data Analysis
and Mining

Domain Analysis

Knowledge Base
Indexing Onto

Static Data
Collection

Data
Triplification

Knowledge Base
Indexing Data

RDF Store V & V

RDF Store

Problem
Detected

Problem Detected

Problem
 D

etected

Passed

Ontology
Construction

Static Data
Ingestion

User

Problem
 D

etected

Problem
 D

etected

Inference
Engine

New
Data

New
Concept

Fig. 1. RDF KB life
capability of making deductions and reasoning on the
knowledge base, (iii) maintaining acceptable query per-
formance and rendering performances, (iv) simplifying the
design of the front-end services, (v) satisfying the arrival of
additional data and models and/or corrections, etc. A
commonly agreed lifecycle model to build KBs is not
available yet and many researchers have tried to embed KB
development steps into some conventional software life-
cycle models [9]. In general, development of KB systems is
a multistep process and proceeds iteratively, using an
evolutionary prototyping strategy. A number of lifecycle
models have been proposed specifically for KB systems
[10]. In the lifecycle model, a change in the ontology may
generate the review and regeneration of a wide amount of
RDF triples. The problem of ontology versioning as
addressed in [11,12] can be easily applied if the ontology is
not used as a basis for creating a large RDF KB store.
Moreover, in [13], the versioning of RDF KB has been
addressed similarly to the CVS solutions by using com-
mands as: commit, update, branch, merge, and diff. The
differences are computed at semantic level on files of tri-
ples. At database level, the key performance aspects of an
RDF KB store version management are the storage space
and the time to create a new version [14]. Therefore,
Dynamic Data
Collection

Data
Triplification

 Usage and Maintenance

Knowledge Base
Adding RT Data

Knowledge Base
Enrichment

Concept
Reconciliation

Dynamic Data
Ingestion

 Interface

Enrichment &
Improvement

SPARQL
Support

Data
Triplification

cycle model.

P. Bellini et al. / Journal of Visual Languages and Computing 31 (2015) 222–229224
possible approaches could be to store: (a) each version as
an independent triples store [11–13]; (b) the deltas in
terms of triples between two consecutive versions and
implementing a computational and time consuming chain
of processes to maintain and apply deltas [15].

In this paper, a versioning system for RDF KB proposes to
integrate both (a) and (b) solutions. It manages versioning
of RDF stores by: (i) keeping trace of the set of triples to
build each version, (ii) storing each version and related set
of triples, (iii) providing an automated tool for keeping trace
of triple files, descriptions for store building and stores, (iv)
allowing the versioning of the RDF KB store, (v) reducing
the critical manual error prone operations. This approach
allows to make indexing versioning for RDF stores that
materialize triples at indexing (as OWLIM [http://www.
ontotext.com/]) or at querying (as Virtuoso [http://virtuoso.
openlinksw.com/]) without influencing the RDF store
reconstruction. The resulting time for returning to a pre-
vious version and to reconstruction of a new one is satis-
factory and viable, since some of the RDF stores are very
time consuming in indexing, while other do not allow the
deletion of triples. Therefore, the paper presents an RDF KB
methodology life-cycle suitable for big data graph data-
bases, and a versioning tool for RDF KB stores that has been
developed and tested for SESAME OWLIM and Virtuoso;
and thus it can be simply extended to other RDF stores. The
solutions have been developed for Km4City project [16],
and adopted for other RDF KB oriented projects as Sii-
Mobility Smart City national project and RESOLUTE H2020
European Commission Project. They are large KB oriented
projects in the Smart City, smart cloud, smart railway
domains, developed at the DISIT Lab of the University of
Florence http://www.disit.org/6568.

The paper is organized as follows. Section 2 presents
the RDF knowledge base life-cycle model and methodol-
ogy for development. In Section 3, the RDF KB indexing
flow and requirements for the RDF Indexing Manager tool
are presented. Section 4 describes the RDF Index Manager
tool, detailing the architecture, and the XML formal model
for index descriptors. In Section 5, experimental results are
reported providing data related to real cases, in terms of
time and managed complexity. Conclusions are drawn in
Section 6.
2. A knowledge base life-cycle

Building a RDF KB is a challenging practice that needs a
well-defined methodology and lifecycle to keep under
control the entire development process. RDF KBs are
mainly developed thanks to a cycle approach that allows
checking and validating the advances made, and if needed,
to make adjustments when a problem is identified. As
stated above, the lifecycle proposed in this paper has been
derived from the DISIT Lab experience cumulated while
developing a number of big data RDF KBs.

The proposed methodology and lifecycle for RDF KB is
reported in Fig. 1. The life-cycle presents 4 vertical pillars
and one horizontal block that represents the RDF Store
usage and Maintenance. The life-cycle spans from the
ontology creation to the RDF Store usage on the front-end
where also real time data are added.

The pillars refer to the
Ontology construction, from domain analysis the

setup of the RDF Store containing triples of the selected
ontologies and possible additional triples to complete the
domain model (Knowledge Base Ontology, KBO). The
combined ontology is reviewed and possible problems
may lead to more or less deep redefinition of the process.

Static data ingestion: this phase is related to the
loading of the data instances of the ontological classes and
attributes. Despite their name, static data may change
rarely over time, for example, the position of bus stops
may be considered static data even if they change sea-
sonally. They come from several sources (static, statistical,
historical, etc.), and have to be converted in triples
according to the KBO coming from the previous phase.
Then, they are finally indexed by using several sets of tri-
ples, maybe thousands. The indexing produces a KB
including the former KBO, plus many data instances; thus,
allowing performing the RDF Store V&V, Verification and
Validation. The V&V allows to identify some problems, that
may constrain the experts to (i) wrong data or incomplete
data to need a review of the data mapping to the ontology
(restart from the first step of this phase of data collection),
(ii) missing ontology aspects and classes, thus leading to
the review of the ontology built (returning to Ontology
Review), (iii) problems in data collected that may be
wrongly mapped to ontology classes (returning to Data
Analysis and Mining), (iv) mistakes in data mapping that
may lead to revise the whole Domain Analysis, and suc-
cessive steps. If this phase is passed, the RDF Store passes
to the phase of RDF Store Usage and Maintenance. Addi-
tional static data sets may be added to the KBO if the
ontological model supports them without deletion,
otherwise a review is needed.

Enrichment and improvement, E&I: this phase allows
detecting and solving problems that may be present in the
produced RDF Store. E&I processes may take advantage
from the access to the partially integrated KB, exploiting
for examples solutions of Link Discovering [17,18], and/or
making specific semantic queries. Additional processes of
E&I may be added to the RDF Store if the model supports
them without performing some delete otherwise a model
review is needed.

Dynamic data ingestion: when the RDF store is in use,
collected data from real time information (for example,
bus delay with respect to the arrival time, weather fore-
cast, likes on the user profile, status of sensors, status of
cloud processes, etc.) can be added to the RDF Store and
saved into the repository of the historical triples. Addi-
tional dynamic data sources may be added to the RDF
Store if the model supports them without performing
some delete otherwise a model review is needed. Please
note that dynamic data should not need to validate and
verify process since the data to be added in real time are
new instances of data already mapped and integrated as
historical data. They may need monitoring to be sure that
the data quality received is conformant with the
planned one.

http://www.ontotext.com/
http://www.ontotext.com/
http://virtuoso.openlinksw.com/
http://virtuoso.openlinksw.com/
http://www.disit.org/6568

P. Bellini et al. / Journal of Visual Languages and Computing 31 (2015) 222–229 225
3. RDF indexing flow and requirements

As described in the previous section, there are several
reasons for which into the RDF KB life cycle the process may
lead to (i) revise the ontology (and thus to revise the data
mapping and triplification invalidating the indexing and the
materialization of triples), (ii) revise the data ingestion
including a new data mapping, quality improvement,
reconciliation, enrichment and triplification. As stated in
the previous section, the life-cycle model foresees two steps
where the Knowledge Base Indexing has to be performed:
KBIO for obtaining the first RDF store with the ontology
only, and KBID adding to KBIO the triples of static data. On
the other hand, as pointed out in the introduction, in most
of the RDF store models, the versioning is not provided as
an internal feature. This is due to the fact that it cannot be
easily performed at index level and stored triples for their
complexity in removing them, due to the triples materi-
alization by inference. According to the proposed RDF KB
life cycle, the modeling of a chain of connected versions of
indexes/RDF Stores, with incremental complexity may be
very useful to keep under control the evolving index with
the aim of saving time by exploiting intermediate versions
in generating the RDF Store/index for the successive
deployment. For example, in the case of Smart City, the
layered versions of the index may include the ontology,
static and dynamic data, historical data, etc.

To better describe the process of RDF Index versioning,
it is necessary to put in evidence the differences between
the “index” and “index descriptor”. An RDF KB store is in
substance an “index”, while content can be accessed via
URI cited in the triples elements. The index is created by
loading the triples into the RDF store, and as a result a
binary index is built, maybe materializing additional tri-
ples according to the ontological model and the specific
RDF store inferential engine adopted. The recipe to create
the RDF Store index, that is the collection of atomic files
containing triples (including triples of ontologies as well as
those related to data sets: static, historical, dynamic), can
be called as the “index descriptor”, that may be used to
generate a script for index generation. The script syntax
fil
e

File 1

File N

…
….

1.4

1.31.2

1.2

1.1

1.1 1.3 1.4

1.1

1.1

1.2

1.2

1.3

1.3

1.4

1.4

Fig. 2. Example of set o
can be different from an RDF Store to another, since their
commands for loading and indexing can be different. This
approach implies to have aside each pair “index” and
“index descriptor” also the history of files containing triples
with their versions, last update dates, and dependencies
from other files. For example, see Fig. 2, where the
reconciliation of triples connecting parking locations (File
1, ver 1.5) with respect to civic numbers depends on the
ontology and on the parking area data sets. Thus leading to
create a set of triples connected with dashed lines.

Definition. Let F ¼ ff 1; f 2; f 3;…g be the set of triple files
that are available for indexing and DS¼ fds1;ds2; ds3;…g is
the set of datasets and ontologies that are available for
ingestion. The function ds: F-DS associate the file to the
dataset it belongs to, function time: F -ℕ associate each
file with the time when it was created and function
dep: F-℘ðFÞ associate each triples file with a set of files
that it depends on (e.g. ontologies), ℘ðXÞ is the power set
of set X. The dep function must not introduce a cyclic
dependency among files. Moreover, a file should not
depend on files created in the future:

8 f AF; 8 sAdep fð Þ: time sð Þotimeðf Þ
Example DS ¼ km4c; otn; roads; services; busses

� �
,

F ¼ fkf 1; kf 2; of 1; rf 1; rf 2; sf 1; sf 2; bf 1; bf 1; bf 2; g;

ds¼ fðkf 1-km4cÞ; ðkf 2-km4cÞ; ðof 1-otnÞ;
ðrf 1-roadsÞ; ðrf 2-roadsÞ; ðsf 1-servicesÞ;
ðsf 2-servicesÞ; ðbf 1-bussesÞ; ðbf 2-bussesÞg

time¼ fðkf 1-2Þ; kf 2-5
� �

; ðof 1-1Þ; ðrf 1-3Þ;
ðrf 2-8Þ; ðsf 1-2Þ; ðsf 2-8Þ; ðbf 1-3Þ; ðbf 2-8Þg

dep¼ fðkf 1- of 1
� �Þ; ðkf 2- of 1

� �Þ; ðrf 1- kf 1
� �Þ;

rf 2- kf 2
� �� �

; sf 1- kf 1
� �� �

; sf 2- kf 2
� �� �

;

ðbf 1- kf 1
� �Þ; ðbf 2- kf 2

� �Þg
Definition A subset S of F is indexable iff

8 f ; f 0AS; f a f 0-dsðf Þadsðf 0Þ
Meaning that files need to be associated with different

datasets. Example the set fkf 1; of 1; rf 1; sf 1g is indexable
time

1.6

1.5

1.5 1.6

1.5

1.5

1.6

1.6

f file versioning.

P. Bellini et al. / Journal of Visual Languages and Computing 31 (2015) 222–229226
while fkf 1; rf 1; rf 2g is not indexable because dsðrf 1Þ ¼
ds rf 2
� �¼ roads.
Definition The function C:℘ðFÞ-℘ðFÞ associates a

subset of F with closure of the subset with respect to the
dep() function. It can be computed using the recursive
function:

C Sð Þ ¼ S[Cðdep Sð Þ=SÞ Sa∅
∅ S¼∅

(
where

dep Sð Þ ¼ [sA SdepðsÞ

Example C rf 1; sf 2
� �� �¼ fkf 1; kf 2; of 1; rf 1; sf 2g

Definition Let I¼ i1; i2; i3; …
� �[fεg be the set of

indexes produced and ε is the empty index. The function
f rom: I-I associates an index with the index it was started
from and the function f iles: I-℘ðFÞ associate an index
with the set of files to be added to the index we are
starting from. Consider that the “from” function must not
introduce a cyclic dependency among indexes.

Example: I ¼ i1; i2; i3; i4
� �

from¼ f i1-εð Þ; i2-i1ð Þ; ði3-i2Þ; ði4-i2Þg
files¼ f i1- kf 1

� �� �
; i2- rf 1; bf 1

� �� �
; i3- sf 1

� �� �
;

i4-fsf 2g
� �g

Definition Function ϕ: I-℘ðFÞ provides for each index
the set of files that are indexed, it is defined recursively as:

ϕ ið Þ ¼ ϕðf rom ið ÞÞ[f ilesðiÞ iaε
∅ i¼ ε

(

Example ϕ i1ð Þ ¼ fkf 1g, ϕ i2ð Þ ¼ fkf 1; rf 1; bf 1g,
ϕ i3ð Þ ¼ fkf 1; rf 1; bf 1; sf 1g, ϕ i4ð Þ ¼ fkf 1; rf 1; bf 1; sf 2g

Definition An index iA I is correct if CðϕðiÞÞ is indexable
meaning that in the closure of files in the index are not
present different versions of files of the same dataset.
Example the indexes i1; i2; i3 are correct while i4 is not
correct because Cðϕ i4ð ÞÞ ¼ fkf 1; kf 2; of 1; rf 1; bf 1; sf 2g is not
indexable.

Since the RDF KB building is an evolving process, it is
not possible to predict whether one has to keep a specific
previously created version of the index or not. Any small
change could be used to generate a new version, while the
suggestion is to save versions every time a consolidated
point is available similarly to virtual machine snapshots.
Moreover, since the triples associated with each single
data set are accessible, reconstruction of partial inter-
mediate versions are also possible, saving time in gen-
erating triples. Furthermore, each times some ontologies
change, most of triples must be generated again, and
therefore, for the same dataset, more triples versions
could exist.

3.1. Requirements for RDF Index Manager tool

On the basis of the above presented model, the RDF KB
indexing versioning activities described can be supported
by means of an RDF Index Manager (RIM), that should
allow

� keep tracing RDF KB Store Versions, RKBSV, in terms of
files of triples, index-description, and RDF Index,
� maintaining a repository of RKBSVs where they could be
stored and retrieved,

� selecting a RKBSV from the repository for modification,
to examine changes and the history version, to be used
as base for building a new version,

� managing the index descriptor as a list of files containing
triples,

� generating a RDF KB index on the basis of an RKBSV
independently from the RDF store kind automatically,
and in particular for SESAME OWLIM and Virtuoso,

� monitoring the RDF KB index generation and the
feeding state,

� suggest the closest version of the RKBSV with respect to
the demanded new index in terms of files of triples, and

� avoiding manually managing the script file of indexing,
since it is time consuming and an error prone process.
4. RDF Index Manager tool

The RDF Index Manager tool satisfy the above pre-
sented requirements, creates and manages index descrip-
tors, and files of triples, and generates automatically the
corresponding indexes independently from the RDF store
type. The index descriptor, as mentioned before, is a list of
ontologies and related data sets described with their triple
files and version. The chosen approach with generation
and update is to: (i) build the entire index (build all) by
loading triples when ontologies and related data set
change, (ii) extend the index when only new data sets and
triples have to be added (incremental building), (iii) make a
physical copy (clone) of a consolidated RDF index when an
index descriptor is built starting from an older con-
solidated descriptor. The big amount of triples to load in
the index suggested exploiting the bulk data loading
supported by many RDF stores.

The main functionalities provided by the tool are
described as following: setup of a new index descriptor, to
create an empty index descriptor; clone a previous index
descriptor to create a new version that it is populated with
the same data sets and triples version of the parent with
some addition. A clone of the parent RDF index is made
and used to build the new store loading the new additional
data sets; copy a previous index with updated versions to
create a new version populated with same data sets of
parent and new versions of triples. This allows speeding
up the creation of an update version of the index
descriptor. A new RDF index will be created and loaded
from scratch; edit the index descriptor to add a data set
(ontology, static, historical and reconciliations), select tri-
ples version; update triples version of a data set; remove a
data set; Import/Export the index descriptions as XML
representations that could be used for backup/restore and
share; RDF Index Generation by producing a scripted
procedure (for Windows and Linux) according to the index
descriptor and the selected RDF store kind. The procedure
may be incremental or for reconstructing the index from
scratch; monitoring the RDF Index Generation by con-
trolling the store feeding as: the queue of data sets to be
loaded, the data sets already in the store, time indicators
(time spent, max time to upload a data set, etc..),

P. Bellini et al. / Journal of Visual Languages and Computing 31 (2015) 222–229 227
progression and output of building process; logging
building data related to RDF store building for further
access (i.e. statistical and verification analysis).

4.1. Architecture, RDF Index Generation and evolution

The RDF Index Manager is constituted by the following
components. The RDF Store Manager manages different
versions of RDF Stores exploiting the Version Manager
which provides the triples files version for all the data sets.
The Index Manager API REST Interface consists of a set of
REST calls to be invoked by the indexing script during the
RDF store building to keep trace of the indexing process
status. The Index Builder Manager generates the scripts
according to the RDF Store kind. The section contains a list
of ontologies/files and each file is described by: an unique
identifier corresponding to the name, the reference to the
index, the version of triples to use, the operation to per-
form add, update, remove and commit, and an entity for
setting if it was inherited by a cloning (Clone). The his-
torical data differs from other sections for the presence of
time interval that defines the triples to use (date and time
for TripleStart and TripleEnd).

For the RDF Index generation the RDF Index Manager
produces a script according to the index descriptor and the
RDF store target. The script is structured in the following
steps: (i) setup of script, (ii) initialization of RDF store, (iii)
bulk uploading of triples into the store, (iv) RDF store
finalization, (v) create possible additional indexes as tex-
tual indexes, geographical indexes that need additional
database commands, and (vi) update index building status.
Fig. 3. RDF index bui
The RDF Index Manager has been realized as a PHP 5.5.x
web applicationwith MySQL support running under Ubuntu.
The Fig. 3 shows the Building Monitor View when a batch
script is running. This view provides different information
panels: the output of script in real-time on top, the queue of
data set to insert, the progress and the total time spent for
the committed data set. Such information allows also eval-
uating the time necessary to build a repository using the two
RDF Stores.
5. Experimental results

In Table 1, examples of results are reported. The data
refer to the comparison of the usage of the RIM and ver-
sioning in building a Smart City RDF store. The RDF stores
currently managed are Virtuoso 7.2 as open source RDF
store and the commercial OWLIM SE ver. 4.3 and
GraphDB 6.1.

The measures reported have been performed by means
of an incremental building of the RDF Store for the three
solutions. The building started with 12 files of triples
including ontologies (first column), then each column of the
table refers to the added triples/files (street graphs, smart
city services, enrichment and reconciliations, historical data
of real time data for 1 month). The time estimated for the
cases of total indexing include: create, load, finalize; while
those for incremental indexing include: clone, load, finalize.
The three RDF store kinds have a different behavior. OWLIM
and GraphDB create inferred triples at the indexing; this
determines a higher number of triples with respect to Vir-
tuoso, i.e., 73.4 wrt 46.2 million; and a higher indexing
lding monitor.

Table 1
Saving time using Index Manager with respect to rebuilding. Data collected on Ubuntu 64 bit, 16 core x 2 GHz, 500 Gbyte HD.

Ontologies þStreet graphs þSmart city
services

þEnrich and
reconciliations

þHistorical data
1 month

Indexing process
Final number of triples 15,809 33,547,501 34,462,930 34,557,142 44,218,719
Final number of files 12 137 178 185 27,794
Added triples with respect to pre-
vious version

15,809 33,531,692 915,429 94,212 9,661,577

Added files with respect to previous
version

12 125 41 7 27,609

OWLIM SE 4.3
Indexing time without RIM (s) 18 6536 6198 7516 12,093
Indexing time with RIM (s) 11 6029 514 343 5745
% of saved time, RIM versioning 38.9 7.8 91.7 95.4 52.5
Final number of triples (including
geoþ inferred)

16,062 57,486,956 59,395,432 59,486,748 73,441,126

Disk space in Mbyte 310 8669 8936 9039 13,110

VIRTUOSO 7.2
Indexing time without RIM (s) 146 806 964 1000 2487
Indexing time with RIM (s) 156 833 421 296 1932
% of saved time, RIM versioning �6.8 �3.3 56.3 70.4 22.3
Final number of triples (including
geo, no inferred)

21,628 35,452,613 36,301,322 36,420,445 46,232,510

Disk space in Mbyte 68 1450 1632 1631 2294

GraphDB 6.1
Indexing time without RIM (s) 9 7818 7929 7671 12,915
Indexing time with RIM (s) 2 6791 454 214 4849
% of saved time, RIM versioning 77.8 13.1 94.3 97.2 62.45
Final number of triples (including
geoþ inferred)

15,809 57,486,415 59,394,891 59,487,551 73,441,929

Disk space in Mbyte 96 4276 4466 4643 5714

P. Bellini et al. / Journal of Visual Languages and Computing 31 (2015) 222–229228
time. In both cases, the percentage of saved time, for non-
small RDF stores, is very high, greater than the 22% up to
the 97% of saved time. For small stores, Virtuoso can be
indexed in shorter time, and thus it could be better to
rebuild instead of cloning and versioning.
6. Conclusions

Graph databases are used in many different applica-
tions: smart city, smart cloud, smart education, etc., where
large RDF KB store are created with ontologies, static data,
historical data and real time data. Most of the RDF stores
are endowed with inferential engines that materialize
some knowledge as triples during indexing or querying. In
these cases, the delete of concepts may imply the removal
and change of many triples, especially if the triples are
those modeling the ontological part of the knowledge
base, or are referred by many other concepts. For these
solutions, the graph database versioning feature is not
provided at level of the RDF stores tool, and it is quite
complex and time consuming to be addressed as black box
approach. In most cases, the RDF store rebuilt by indexing
is time consuming, and may imply manually edited long
scripts that are error prone. In order to solve this kind of
problem, in this paper, a lifecycle methodology and our
RIM tool for RDF KB store versioning are proposed. The
results have shown that saving time up to 95% are possible
depending on the number of triples, files and cases to be
indexed.
Acknowledgment

The authors would like to thank to the coworkers who
have contributed to the experiments in the several pro-
jects, and in particular to Km4City: Giacomo Martelli,
Mariano Di Claudio. Thanks also to Ontotext for providing
a trial version of their tools.

References

[1] C. Grosan, A. Abraham, Intelligent Systems: A Modern Approach,
Springer-Verlag, Berlin, 2011.

[2] G. Klyne, J. Carroll, Resource Description Framework (RDF): Concepts
and Abstract Syntax-W3C Recommendation (2004).

[3] P. Bellini, M. Di P. Nesi N. Rauch, Tassonomy and review of big data
solutions navigation, In: Rajendra Akerkar (Ed.). Big Data Computing,
Western Norway Research Institute, Norway, Chapman and Hall/CRC
Press 2013 ISBN 978-1-46-657837-1.

[4] T. Berners-Lee, Linked Data, 〈http://www.w3.org/DesignIssues/Lin
kedData.html〉, 2006.

[5] C. Bizer, A. Jentzsch, R. Cyganiak, State of the LOD cloud, 〈http://lod-
cloud.net/state/〉 (retrieved 05.07.14).

[6] O. Hartig, C. Bizer, J.C. Freytag, Executing SPARQL queries over the
web of linked data, in: Proceedings of the ISWC'09, Springer, 2009,
293–309.

http://refhub.elsevier.com/S1045-926X(15)00075-0/sbref1
http://refhub.elsevier.com/S1045-926X(15)00075-0/sbref1
http://refhub.elsevier.com/S1045-926X(15)00075-0/sbref2
http://refhub.elsevier.com/S1045-926X(15)00075-0/sbref2
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://lod-cloud.net/state/
http://lod-cloud.net/state/
http://refhub.elsevier.com/S1045-926X(15)00075-0/sbref4
http://refhub.elsevier.com/S1045-926X(15)00075-0/sbref4
http://refhub.elsevier.com/S1045-926X(15)00075-0/sbref4
http://refhub.elsevier.com/S1045-926X(15)00075-0/sbref4

P. Bellini et al. / Journal of Visual Languages and Computing 31 (2015) 222–229 229
[7] N.F. Noy, M.A. Musen., Ontology versioning in an ontology man-
agement framework, IEEE Intell. Syst. 19 (4) (2004) 6–13.

[8] M. Fernandez Lopez, Overview of methodologies for building
ontologies, In: Proceedings of the IJCAI99 Workshop on Ontologies
and Problem-Solving Methods: Lessons Learned and Future Trends,
Stockholm, 1999.

[9] Feras A. Batarseh, Avelino J. Gonzalez, Incremental lifecycle valida-
tion of knowledge-based systems through CommonKADS, IEEE
Trans. Syst. Man Cybern.: Syst. 43 (3) (2013) 643–654.

[10] L. Milette, Improving the Knowledge-Based Expert System Lifecycle,
UNF Report, 2012.

[11] M. Klein, D. Fensel, A. Kiryakov, D. Ognyanov, Ontology versioning
and change detection on the web, In: Proceedings of the 13th Eur-
opean Conference on on Knowledge Engineering and Knowledge
Management (EKAW02), Springer, 2002, 197–212.

[12] Natalya F. Noy, Deborah L. McGuinness, Ontology development 101:
A guide to creating your first ontology, Stanf. Med. Inform. (2001).

[13] M. Volkel, W. Winkler, Y. Sure, S.R. Kruk, M. Synak, SemVersion: a
versioning system for RDF and ontologies, In: Proceedings of the 2nd
European Semantic Web Conference, ESWC’05, Heraklion, Crete,
May 29–June 1, 2005.

[14] Yannis Tzitzikas, Yannis Theoharis, Andreou Dimitris, On Storage
Policies for Semantic Web Repositories That Support Versioning. The
Semantic Web: Research and Applications, Springer, 2008, 705–719.

[15] D. Zeginis, Y. Tzitzikas, V. Christophides, On the foundations of
computing deltas between RDF models, In: Proceedings of the 6th
International Semantic Web Conference, ISWC/ASWC’07, Busan,
Korea, 2007, 637–651.

[16] P. Bellini, M. Benigni, R. Billero, P. Nesi, N. Rauch, Km4City ontology
bulding vs data harvesting and cleaning for smart-city services, Int.
J. Vis. Lang. Comput. (2013).

[17] R. Isele, C. Bizer, Active learning of expressive linkage rules using
genetic programming, Web Semantics: Sci. Serv. Agents World Wide
Web 23 (2013) 2–15.

[18] A.C.N. Ngomo, S. Auer, Limes – a time-efficient approach for large-
scale link discovery on the web of data, Integration 15 (2011) 3.

http://refhub.elsevier.com/S1045-926X(15)00075-0/sbref5
http://refhub.elsevier.com/S1045-926X(15)00075-0/sbref5
http://refhub.elsevier.com/S1045-926X(15)00075-0/sbref5
http://refhub.elsevier.com/S1045-926X(15)00075-0/sbref6
http://refhub.elsevier.com/S1045-926X(15)00075-0/sbref6
http://refhub.elsevier.com/S1045-926X(15)00075-0/sbref6
http://refhub.elsevier.com/S1045-926X(15)00075-0/sbref6
http://refhub.elsevier.com/S1045-926X(15)00075-0/sbref7
http://refhub.elsevier.com/S1045-926X(15)00075-0/sbref7
http://refhub.elsevier.com/S1045-926X(15)00075-0/sbref7
http://refhub.elsevier.com/S1045-926X(15)00075-0/sbref7
http://refhub.elsevier.com/S1045-926X(15)00075-0/sbref7
http://refhub.elsevier.com/S1045-926X(15)00075-0/sbref8
http://refhub.elsevier.com/S1045-926X(15)00075-0/sbref8
http://refhub.elsevier.com/S1045-926X(15)00075-0/sbref9
http://refhub.elsevier.com/S1045-926X(15)00075-0/sbref9
http://refhub.elsevier.com/S1045-926X(15)00075-0/sbref9
http://refhub.elsevier.com/S1045-926X(15)00075-0/sbref9
http://refhub.elsevier.com/S1045-926X(15)00075-0/sbref10
http://refhub.elsevier.com/S1045-926X(15)00075-0/sbref10
http://refhub.elsevier.com/S1045-926X(15)00075-0/sbref10
http://refhub.elsevier.com/S1045-926X(15)00075-0/sbref10
http://refhub.elsevier.com/S1045-926X(15)00075-0/sbref10
http://refhub.elsevier.com/S1045-926X(15)00075-0/sbref11
http://refhub.elsevier.com/S1045-926X(15)00075-0/sbref11
http://refhub.elsevier.com/S1045-926X(15)00075-0/sbref11
http://refhub.elsevier.com/S1045-926X(15)00075-0/sbref12
http://refhub.elsevier.com/S1045-926X(15)00075-0/sbref12
http://refhub.elsevier.com/S1045-926X(15)00075-0/sbref12
http://refhub.elsevier.com/S1045-926X(15)00075-0/sbref12
http://refhub.elsevier.com/S1045-926X(15)00075-0/sbref13
http://refhub.elsevier.com/S1045-926X(15)00075-0/sbref13

	Graph databases methodology and tool supporting index/store versioning
	Introduction
	A knowledge base life-cycle
	RDF indexing flow and requirements
	Requirements for RDF Index Manager tool

	RDF Index Manager tool
	Architecture, RDF Index Generation and evolution

	Experimental results
	Conclusions
	Acknowledgment
	References

