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Abstract. Color matching of fabric blends is a key issue for the textile industry, mainly due to the rising need to
create high-quality products for the fashion market. The process of mixing together differently colored fibers to
match a desired color is usually performed by using some historical recipes, skillfully managed by company
colorists. More often than desired, the first attempt in creating a blend is not satisfactory, thus requiring the
experts to spend efforts in changing the recipe with a trial-and-error process. To confront this issue, a number
of computer-based methods have been proposed in the last decades, roughly classified into theoretical and
artificial neural network (ANN)–based approaches. Inspired by the above literature, the present paper provides
a method for accurate estimation of spectrophotometric response of a textile blend composed of differently col-
ored fibers made of different materials. In particular, the performance of the Kubelka-Munk (K-M) theory is
enhanced by introducing an artificial intelligence approach to determine a more consistent value of the non-
linear function relationship between the blend and its components. Therefore, a hybrid K-M+ANN-based
method capable of modeling the color mixing mechanism is devised to predict the reflectance values of
a blend. © 2016 SPIE and IS&T [DOI: 10.1117/1.JEI.25.6.061402]
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1 Introduction
High-quality color reproduction on textiles is one of the most
relevant topics to confront the textile industry. Generally
speaking, it consists of finding the appropriate amount or
proportion of the colorants required to obtain an exact
color match. When dealing with textile fabrics or yarns,
the final product to be introduced in the market often consists
of a blend obtained by mixing together precolored fibers. In
such cases, so-called recipe-based mixing, i.e., the process of
mixing together a number of differently colored fibers in dif-
ferent proportions, is the preferred method for manufacturing
fabrics and yarns. Usually, textile companies perform color
mixing on the basis of their know-how: when a desired color
(i.e., the so-called color target) has to be obtained, the color-
ist typically starts to search the company storehouse for cor-
rectly colored fibers to be mixed according to a given recipe.
Modern companies, in effect, are provided with databases
where spectrophotometric information regarding precolored
fibers is stored together with suggested percentages to be
used for obtaining a given color target. In other words, textile
companies have historical recipes to be used for obtaining
(using processes such as combing, drawing, roving, spin-
ning, or carding1) a final blend.

Once a blend is created, colorists always perform an
instrumental comparison with respect to the color target
with the final aim of determining the color difference.
The comparison is assessed under several color spaces
such as CIELAB or CMCð2∶1Þ2 under a number of standard
illuminants such as D65 or TL843 (see Fig. 1).

Unfortunately, more often than desired, the result obtained
by mixing the fibers is quite different from the reference, even

when companies adopt a consolidated recipe. In most circum-
stances, color differences between the recipe-based reflectance
factors and the spectrophotometric response of the reference,
in terms of CIELAB and CMCð2∶1Þ distances, may be >0.8
when measured using a spectrophotometer (see, for instance,
Fig. 2).

Therefore, it is necessary to change the original recipe to
match the desired color; this leads to the need to produce
several samples in order to reduce the gap between the
color of the final product and the desired one. This trial-
and-error approach is a bottleneck for the entire fabric pro-
duction process, since each trial involves time-expensive
manufacturing and measuring processes.

2 Background
To speed-up the color matching process, several computer-
based approaches have been proposed in literature, mainly
dealing with the spectrophotometric prediction of dyed
fabrics and with particular focus on the study of the color
mixing model. Roughly, such methods can be divided into
two categories: theoretical methods and artificial neural
network (ANN)–based methods. Theoretical methods are
mostly grounded on the widely known Kubelka-Munk
(K-M) theory,4,5 generally used for the analysis of diffuse
reflectance spectra obtained from weakly absorbing samples.

As described in Ref. 6, K-M establishes that internal
reflectance of a colorant composing a shade pðλÞ depends
on absorption Kλ and scattering Sλ coefficients according
to the following equation:
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2pðλÞ ; (1)

where λ is the wavelength in the visible range (usually 380 to
750 nm) and ðK∕SÞλ is the ratio between the absorption and
the scattering (also known as the K-S ratio) coefficients for a
given wavelength. For opaque materials, where the colorants
do not scatter in comparison to the substrate, the K-M equa-
tion may be written as follows:7
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where ðK∕SÞλ;mix and kλ;t∕sλ;t are, respectively, the K-S ratio
of the fabric (obtained by mixing the colored fibers) and of

the fabric substrate, and αi is the percentage of the i’th pre-
colored fiber used for composing the blend.

Equation (2), often referred to as the two-constant K-M
function, leads to problems in practical use due to the irra-
tionality of the additivity assumption, rather than the K-M
turbid medium theory itself.8 Moreover, it is a valid choice
when fiber blends are obtained by adding colorants on a sub-
strate, but tends to fail when fabrics are obtained by mixing
together precolored fibers.

To overcome these limitations, several studies related to
the tristimulus-matching algorithm based on the Stearns-
Noechel (S-N) model9 (and its implementations10) have
been proposed to predict formulas for matching a given
color standard by blending predyed fibers.

The S-N model estimates the spectrophotometric
response of a blend obtained by mixing differently colored
fibers once an empiric constant M is known. In more detail,

Fig. 1 Recipe-based mixing conceptual process.

Fig. 2 Example of spectral responses, obtained using a spectrophotometer, for color target (reference)
and obtained fabric.
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S-N proposes the following empirical additive formula for
the function F :

EQ-TARGET;temp:intralink-;e003;63;730F ðλÞ ¼ ð1 − λÞ
½Mðλ − 0.01Þ þ 0.01� ; (3)

where M is an empirical constant to be determined experi-
mentally (for instance, its value is estimated equal to 0.15 for
fine wool blends and 0.109 for cotton). The value of the
empirical constant has been evaluated for a range of different
materials in the literature.11,12 Nevertheless, even when M is
accurately determined, the S-N model provides reliable
results only for blends composed of a maximum of five to
six differently colored fibers of the same material, thus limit-
ing the approach to a lower number of cases since most com-
panies mix together up to 15 to 20 differently colored fibers,
often made of different materials such as wool, nylon, poly-
ester, etc.13,14

Therefore, although the above-mentioned theoretical
approaches provide excellent results for predicting the
color of turbid media, they may lead to unsuitable results
in forecasting the reflectance factors of blends obtained
by mixing precolored fibers. As a consequence, further
experiments and studies need to be carried out to reach accu-
rate recipe predictions. With these aims in mind, recent
approaches have focused on the integration of standard the-
ories with more practical methods. In fact, since textile com-
panies always create a first-attempt fabric using their recipe,
it is possible to have as additional information the actual
spectrophotometric response of at least one blend (whose
reflectance values are often near the reference ones). This
allows, for instance, introducing theoretical approaches
using a comparison between expected and actual blend
reflectance values. In effect, as demonstrated in Ref. 15,
methods like K-M and even subtractive mixing may be suc-
cessfully applied to the problem of blend color matching,
especially using some exemplificative hypothesis, e.g.,
(1) the turbid mixing mechanism of fibers only slightly
changes by varying the original recipe and (2) the nonlinear
function relationship between the reflectance spectrum of a
blend and the components is approximately constant when
the recipe is varied within a limited range (e.g., 5%).

ANN-based methods have proven to provide a reliable
and very practical approach for helping the colorist in
color matching. This is demonstrated in Ref. 13, where a
transfer function linking the color spectrum obtained by a
linear combination of the spectra of each component with
the measured reflectance values of a first-attempt blend is
determined. The approach proved to be effective for blends
composed of more than 15 components, since the average
color difference between the predicted spectra and the real
spectra of the carded fibers for an experimental set of blends
is <0.55 for the CMCð2∶1Þ tolerancing system. The main
limitation is that the proposed approach is reliable only
for variations of a recipe in the range �5% and using
only a single material (e.g., wool). When the operators
need to create a fabric composed of a combination of differ-
ent materials, the transfer function defined in Ref. 13 cannot
be used even for a small variation of the recipe.

To solve this issue, in Ref. 14, an ANN-based approach is
proposed and validated. It consists of training a neural net-
work on the basis of the information obtained by the spectra

of each colored raw material composing the blend. Once
trained, a system of ANNs is able to provide a predicted
spectrum whose colorimetric distance with the actual blend
response is, in terms of CMCð2∶1Þ, lower than 0.45 for
a given set of blends.

Theoretical approaches introduce assumptions for the
mixing mechanism that lead to lower performance in
color matching with respect to ANN-based methods; never-
theless, these last ones require huge training sets for ANN
training. As a consequence, it could be useful to devise
a method able to provide reliable color matching without
the need of large training datasets by combining the (valid)
prediction obtained using theoretical models together with
the advantages of ANN-based approaches.

Inspired by the above literature, the present paper pro-
vides a method for accurate estimation of the spectrophoto-
metric response of a textile blend composed of differently
colored fibers, made of different materials. In particular,
the performance of the K-M method proposed in Ref. 15
is enhanced by introducing an artificial intelligence approach
to determine a more consistent value of the nonlinear func-
tion relationship between the K-S ratio of the blend and the
K-S ratio of its components. As a consequence, a hybrid
K-M+ANN-based method capable of modeling the color
mixing mechanism is devised to predict the reflectance val-
ues of a blend. Since the hybrid method requires a dataset
to be trained, and this may be a drawback when confronted
with theoretical approaches, a more practical formulation is
eventually proposed to replace the ANN software in every-
day common use by colorists.

3 Statement of the Problem
Let piðλÞ ði ¼ 1;2; : : : ; nÞ be the spectral reflectance factors
of the i’th component of a fabric (n being the total number of
components). Now, let RFðλÞ be the spectral reflectance fac-
tors of the fabric obtained by mixing the components piðλÞ
according to a given recipe A ¼ ½α1; α2; : : : ; αn� withP

n
i¼1 αi ¼ 1.
The general relationship between RFðλÞ and the vectors

piðλÞ may be stated by the following formula:

EQ-TARGET;temp:intralink-;e004;326;311RFðλÞ ¼ F ½A; piðλÞ�; (4)

where λ indicates the wavelength, varying in the range 400 to
700 nm. The size of vectors piðλÞ and Rðλ; αiÞ is 1 × 31.

According to Eq. (4) (and graphically explained in Fig. 3),
the color matching problem may be expressed as the problem
of finding the transfer function F between the spectral
reflectance factors of a fabric RFðλÞ and the input data αi
and piðλÞ.

As mentioned in Sec. 1, the determination of the transfer
function is not straightforward, especially for blends com-
posed of more than five to six components (i.e., for n > 6)
when theoretical approaches such as K-M and S-N have
been demonstrated to provide inaccurate results.

For this reason, to evaluate the transfer function F , it is
necessary to derive supporting information from the spectral
response of a first-attempt blend created using a given recipe.
This first-attempt recipe, as explained below, allows intro-
ducing a number of simplifications to reduce the complexity
of Eq. (4).

Summing up, the remainder of the paper confronts the
following question:
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How is it possible to determine a transfer function between the
reflectance factors of a blend obtained by varying a given rec-
ipe and fiber spectral responses once (1) the spectrum of each
component is known, (2) the reference and first-attempt recipe
spectra are measured, and (3) the original recipe is provided?

4 Hybrid Kubelka-Munk Artificial Neural
Network–Based Method

The hybrid K-M+ANN method consists of the following
three steps:

1. Definition of the equivalent fabric substrate using the
simplified model described in Ref. 15.

2. Training an ANN to infer recipe variations to the sub-
strate K-S ratio; such a ratio is then used to predict the
spectral response of the fabric blend. The combination
of steps 1 and 2 constitutes the hybrid K-M+ANN
method.

3. Deriving (from the K-M+ANN method) a practical
chart that can approximately replace the ANN soft-
ware in everyday common use.

4.1 Definition of the Equivalent Fabric Substrate
Equation (2) states a correlation between the K-S ratio of a
blend and the K-S ratio of singular components to be mixed
together plus the substrate kλ;t∕sλ;t. Unfortunately, the defi-
nition of substrate for fabric blends is weak, since they are
obtained by mixing fibers and not by dipping a neutral
monochrome fabric in a dye bath. In other words, Eq. (2)
loses its physical meaning for fabric blends. Fortunately,
the model proposed in Ref. 15 demonstrates that it is still
possible to use Eq. (2) under the hypothesis that the turbid
mixing mechanism of fibers only slightly changes by varying
the original recipe (i.e., by changing the values αi). In detail,
the model proposed in the mentioned prior work takes into
account that colorists always create a first-attempt blend
using their historical recipe; as a consequence, the actual
reflectance factors of the blend are known, together with
the recipe and the spectra of each component. This additional
information is used to evaluate the K-S ratio of an equivalent
fabric substrate ψ�

sðλÞ as follows:

EQ-TARGET;temp:intralink-;e005;326;541ψ�
sðλÞ ¼

�
K
S

�
λ;mix

−
�
α1

�
kλ;1
sλ;1

�
þ : : : þ αn

�
kλ;n
sλ;n

��

¼ ψFðλÞ − ψCðλÞ; (5)

where ψFðλÞ is the K-S ratio of the fabric and ψCðλÞ is the
weighted average of fiber K-S ratios.

In Fig. 4, the terms ψ�
sðλÞ and ψCðλÞ for a given blend

(i.e., sample 1 of Tables 1 and 2) are plotted in the range of
400 to 700 nm. As further explained in Sec. 4.2, Eq. (5) will
be used to derive the K-M+ANN hybrid method.

4.2 Artificial Neural Network Training and Prediction
of the Blend Spectral Response

The hypothesis that the turbid mixing mechanism of fibers
changes only slightly by varying the original recipe (math-
ematically speaking, this means that ψ�

s is assumed to be con-
stant when the recipe is varied) is the main drawback of the
previous work.15 In fact, the equivalency between the actual
fabric and the hypothetical fabric obtained using a dye-
dipping process has proved valid only for small changes
in the recipe (e.g., �5% of the maximum variation for
each component).

To strengthen the accuracy of the color prediction, the
present paper aims to derive a more general rule for

Fig. 4 Terms ψ�
sðλÞ and ψCðλÞ for a given blend.

Fig. 3 Color matching consists of determining the transfer function F between the fiber spectra and the
blend reflectance factors.
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determining the function ψ�
s valid also for large variations of

recipes.
With the aim of considering the recipe variation as a var-

iable for the problem, the definition of the equivalent fabric
substrate is changed by considering it as a function not only
of wavelength but also of A (original recipe) and of the vec-
tor Â ¼ ½α̂1; α̂2; : : : ; α̂n� describing the new recipe

EQ-TARGET;temp:intralink-;e006;63;180ψ�
s ¼ f½λ;A;A��: (6)

Accordingly, the problem is reduced to the evaluation of the
function f linking the recipe variation, for a given wave-
length, to the substrate K-S ratio.

To determine such a transfer function, a possible method
could be to devise an ANN-based approach using a number
of modified recipes as the training set and the equivalent fab-
ric substrate obtained for the blends physically manufactured
using such recipes as the target set.

As is widely recognized,16 ANNs are computational sys-
tems that simulate the microstructure of a biological nervous
system. ANNs can be trained to perform a particular func-
tion, either from information from outside the network or by
the neurons themselves in response to the input.17 A properly
trained ANN is capable of generalizing the information on
the basis of the parameters acquired during the training
phase; therefore, it requires a dataset of modified recipes
to be used. Therefore, the application of this method is rec-
ommended only when textile companies involved in the
experimentation have a consistent database. In the present
work, more than 1000 differently colored blends were avail-
able, thanks to the collaboration of an important company,
New Mill S.P.A., working in Prato (Italy). Among them, a
set of 120 blends with both first-attempt AjðλÞ and sec-
ond-attempt ÂjðλÞ recipes (with j ¼ 1: : : 120) was selected.

To prepare the 240 fabrics composed according to the
AjðλÞ and ÂjðλÞ recipes, a laboratory carding machine is
used. Equipped with a single licker-in, used to open the
fiber stock prior to sending them to a main cylinder, this
small-scale machine allows us to create a felt textile (with
size approximately equal to 150 × 120 mm) with a density
in the range of 0.150 to 0.250 g∕cm3 depending on the
fiber fineness. Such a felt textile, whose thickness is in
the range of 1.5 to 2 mm, is actually used for color control
instead of woven fabrics. The reason behind this choice is
that, usually, in textile practice, the color control is per-
formed preferably by comparing felts (more often than
desired, the customer provides the company only with small
remnants). This is particularly true when dealing with yarn
color control; in effect, in this case, it is rather difficult to
measure the reflectance factors of yarns due to their small
diameter (when compared to the spectrophotometer sensor
area), thus forcing textile companies to measure felts instead
of yarns. Obtained density values and fabric thickness
assure a correct acquisition using the spectrophotometer
(i.e., to avoid the acquisition of empty spaces between fibers
and minimize the effect of transmitted light through the
sample).

Felt textiles are conditioned at a temperature of 23°C for
20 min and subsequently processed by using an acquisition
system consisting of a Hunterlab Ultrascan VIS reflectance
spectrophotometer. The spectrophotometer provides the
value of light reflectance in the wavelength range of 400
to 700 nm, with a step of 10 nm. The resulting spectrum
is obtained using a scattered light measurement in specular
component excluded (SCE) mode. The scan was made with a
neutral white background using an 8-deg angle between the
light source (D65 illuminant) and the sample. A zero calibra-
tion was used to compensate for the effects of stray light due
to the changing flare characteristics of the optical system.
Such a calibration is performed by removing the spectropho-
tometer protective cap from the aperture and aiming the aper-
ture into the air so that no objects are within 1 m and no light
source is aimed at. The white calibration of the spectropho-
tometer, used to set the maximum reflectance to 100%, was
performed at the beginning of data acquisition using a
Hunterlab-standard white cap whose reflectance is known
to be equal to 1. Once acquired under controlled conditions
(i.e., temperature 23� 1°C and SCE mode on the spectro-
photometer), the actual cap spectral response is used to nor-
malize the fabric acquisitions, i.e., to obtain a new measured

Table 1 Original and modified recipe for two samples.

Fabric
Number of

raw materials
Original

recipe (%) Material
Modified
recipe (%)

Sample 1 10 6.0 Wool 6.0

3.0 Wool 7.0

3.5 Wool 2.0

12.0 Wool 10.0

14.0 Wool 13.0

11.0 Wool 11.0

10.0 Wool 10.5

8.0 Polyester 10.5

22.5 Polyester 20.0

10.0 Polyester 10.0

Sample 2 11 7.5 Wool 6.0

4.0 Wool 3.0

3.5 Wool 5.5

46.5 Wool 47.0

6.0 Wool 6.0

4.2 Wool 4.2

4.2 Wool 4.2

1.1 Polyester 1.6

13.0 Polyester 13.0

9.0 Polyester 9.0

1.0 Polyester 0.5
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Table 2 Aggregate results obtained by comparing proposed methods with the ones described in Refs. 12, 13, and 15.

CMCð2∶1Þ distance from reference (actual fabric
with modified recipe)

Sample
Number of
components

Mass density
(g∕cm3)

Thickness
(mm) ε

K-M+ANN
method

Practical
chart

K-M–based
approach15

Subtractive mixing–
based approach15

Theoretical
approach12

ANN-based
approach13

1 10 0.18 1.5 2.5 0.7011 0.7095 0.7121 0.577 0.7753 0.6944

2 11 0.21 2.0 1.5 0.3714 0.3787 0.3821 0.2804 0.7266 0.2801

3 10 0.22 2.0 1.5 0.4532 0.4656 0.4797 0.4496 0.7117 0.3881

4 8 0.25 2.0 5.6 0.1113 0.1222 0.1283 0.1285 0.4243 0.1302

5 8 0.18 1.5 6.1 0.5764 0.5993 0.6003 0.6022 0.6412 0.6121

6 9 0.15 2.0 3.2 0.2123 0.2221 0.2106 0.2036 0.5511 0.1058

7 12 0.15 1.5 2.5 0.4445 0.4887 0.4914 0.4423 0.5766 0.4521

8 9 0.20 2.0 1.5 0.4287 0.4672 0.4727 0.4295 0.5444 0.4354

9 15 0.25 2.0 1.5 0.6329 0.6543 0.6632 0.6229 0.7622 0.6121

10 16 0.20 2.0 1 0.6632 0.7083 0.7102 0.6811 0.8215 0.6311

11 10 0.20 1.5 2.2 0.5255 0.5493 0.5423 0.5263 0.612 0.3342

12 12 0.20 2.0 2.3 0.3287 0.3577 0.3621 0.3323 0.5312 0.2508

13 11 0.18 2.0 2.6 0.6421 0.6421 0.6521 0.7211 0.7989 0.5559

14 18 0.20 2.0 1.5 0.9752 0.9812 0.9912 1.0121 1.1231 0.9982

15 9 0.20 2.0 6 0.3488 0.3454 0.3782 0.333 0.5212 0.3432

16 12 0.22 2.0 4.7 0.6033 0.6063 0.6169 0.6319 0.6752 0.6091

17 14 0.25 2.0 5.5 0.4532 0.4438 0.4994 0.4651 0.6982 0.2245

18 9 0.22 2.0 3 0.4992 0.5009 0.5109 0.4232 0.7129 0.3943

19 8 0.22 2.0 3 0.2989 0.3198 0.3298 0.3422 0.6633 0.3703

20 10 0.25 2.0 5.5 0.7982 0.8232 0.8827 0.8726 1.021 0.5315

21 10 0.15 1.5 6 0.5211 0.5346 0.5548 0.5291 0.9782 0.544

22 12 0.15 1.5 3.5 0.3279 0.3982 0.4002 0.3832 0.4231 0.2885

23 12 0.15 1.5 2.2 0.4387 0.4793 0.4993 0.4293 0.6752 0.4157

24 14 0.18 2.0 1.2 0.4065 0.4994 0.5024 0.5102 0.8893 0.3971

25 9 0.20 2.0 2 0.5432 0.6135 0.6235 0.5562 1.032 0.4815

26 8 0.22 2.0 2.5 0.5129 0.5438 0.5538 0.5103 0.9372 0.5079

27 9 0.25 2.0 2.4 0.6652 0.7062 0.7162 0.6239 1.132 0.527

28 10 0.25 2.0 4.5 0.3358 0.4247 0.4391 0.3722 0.7392 0.3259

29 11 0.25 2.0 6 0.5222 0.4571 0.4792 0.4825 0.7832 0.4955
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reflectance varying in the range 0 to 1. The data were stored
in a PC in the form of a 31-element vector representing the
reflectance values versus the wavelength for an examined
sample. To ensure adequate robustness and representative-
ness of results, the largest (25.4 mm) measuring area of
the spectrophotometer was selected. The final results of
this experimental setup are the spectral responses of the
120 samples obtained using the standard recipe, the 120
spectral responses for the modified recipe, and the spectra
of each raw material composing the blends. For each recipe,
moreover, the substrate functions ψ�

j and ψ̂�
j are evaluated

using Eq. (5).
In order to teach the ANN to provide a prediction of the

transfer function f, the training input data are represented by
the following matrix M:

EQ-TARGET;temp:intralink-;e007;63;150

M ¼ ½A1ðλ1Þ; : : : ;A1ðλ31Þ; : : : ;A120ðλ1Þ; : : : ;A120ðλ31Þ;
Â1ðλ1Þ; : : : ; Â1ðλ31Þ; : : : ; Â120ðλ1Þ; : : : ; Â120ðλ31Þ� (7)

It is important to remark that the size of vectors Aj and Âj
may differ from blend to blend (some of them may, for
instance, consist of five differently colored fibers mixed

together, while others may be composed of 20 fibers).
Accordingly, to process the data into the ANN, each vector
size is considered equal to 1 × n, where n is the maximum
size among the given recipe vectors. In the present work, n is
set equal to 20. Obviously, recipes composed of k < n differ-
ently colored fibers (e.g., 10) will have values in positions
from kþ 1 to n equal to zero.

Accordingly, the final size of the input set M is
20 × 7440. The target set T (size 1 × 7440) consists of the
actual values ψ�

j and ψ̂�
j evaluated for all wavelengths

using, respectively, the recipes Aj and Âj.

EQ-TARGET;temp:intralink-;e008;326;194T ¼ ½ψ�
1; : : :ψ

�
120; ψ̂

�
1; : : : ψ̂

�
120�: (8)

The ANN, developed by using the Artificial Neural Network
Toolbox® working in the MATLAB® environment, has the
following characteristics:

– Three layers: input, hidden, and output.
– A hidden layer made of log-sigmoid neurons followed

by an output layer of linear neurons.
– Twenty input, h hidden, and 1 output units.

Table 2 (Continued).

CMCð2∶1Þ distance from reference (actual fabric
with modified recipe)

Sample
Number of
components

Mass density
(g∕cm3)

Thickness
(mm) ε

K-M+ANN
method

Practical
chart

K-M–based
approach15

Subtractive mixing–
based approach15

Theoretical
approach12

ANN-based
approach13

30 20 0.20 2.0 1.5 0.8766 0.9792 0.9992 0.9892 1.2132 0.8878

31 18 0.22 2.0 1 0.9565 1.0424 1.0924 1.028 1.3238 0.9232

32 20 0.18 1.5 4.5 0.8985 1.0232 1.0821 0.9321 1.4272 0.8872

33 9 0.20 2.0 6.4 0.4199 0.4019 0.4234 0.3992 0.8728 0.4193

34 10 0.20 2.0 7.2 0.6098 0.5452 0.5892 0.6092 0.8253 0.6131

35 10 0.20 2.0 5.4 0.3434 0.3872 0.4023 0.3452 0.5624 0.353

36 8 0.25 2.0 4.3 0.5099 0.5002 0.505 0.4491 0.8725 0.4558

37 8 0.18 1.5 7 0.3657 0.4872 0.5251 0.4039 0.7556 0.304

38 10 0.18 2.0 6 0.5324 0.7542 0.7623 0.6732 0.8843 0.5255

39 12 0.18 1.5 3 0.2998 0.3132 0.3182 0.2998 0.5421 0.3171

40 12 0.22 2.0 5 0.4309 0.4342 0.4489 0.4392 0.7825 0.4232

Mean value 0.5146 0.5478 0.5633 0.526 0.7886 0.4761

Median value 0.5046 0.4998 0.508 0.4738 0.7589 0.4438

Max value 0.9752 1.0424 1.0924 1.028 1.4272 0.9982

Min value 0.1113 0.1222 0.1283 0.1285 0.4231 0.1058

Coefficient of variation 0.0384 0.0441 0.0472 0.0454 0.0541 0.0409
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It is possible to select the best network within a set of
candidate configurations. For this purpose, the number of
hidden units was varied from 9 to 30 with a step of 3
units, monitoring the performance of response using the
training subset. As is known, during the training, the
weights and biases of the network are iteratively adjusted
to minimize the network error function. The network error
used in this work is the mean square error corresponding to
the training set elements. This error is monitored during the
training process and will normally decrease during the ini-
tial phase of the training. However, when the network
becomes excessively specialized in reproducing the training
data, the early stopping error will typically begin to rise.
When the early stopping error increases for a specified
number of iterations, the training is stopped, and the
weights and biases at the minimum early stopping error
are returned. The selected network is characterized by
h ¼ 15 units. The training was carried out using a training
rule based on the gradient descent backpropagation algo-
rithm with an adaptive learning rate.18 Optimal training
was achieved in 64 epochs. In Fig. 5, the ANN performance
is depicted in terms of linear regression between datasets
(split into the typical subsets: training, validation, and
testing).

Once trained, the network is able to correlate the training
set elements to the target ones. In other words, the ANN is
able to receive (as input) any vector of 20 elements (e.g., a
modified recipe) and to give as output the prediction of the
corresponding ψ�

sðλÞ value.

Finally, the K-S ratio for any given variation of the recipe
ψ�
FnewðλÞ can be evaluated as follows:

EQ-TARGET;temp:intralink-;e009;326;360ψ�
FnewðλÞ ¼ ψ�

sðλÞ þ ψ̄CðλÞ; (9)

where ψ̄CðλÞ is the linear combination of fibers’ K-S ratio
using the modified recipe.

Solving Eq. (1) for RFðλÞ allows the estimation of the
blend reflectance factors using the hybrid K-M+ANN
method.

EQ-TARGET;temp:intralink-;e010;326;274ψ�
FnewðλÞ ¼

½1 − RFðλÞ�2
2RFðλÞ

: (10)

4.3 Deriving a Practical Chart to Be Used by
Colorists

As already stated, the above-described procedure, i.e., the
hybrid K-M+ANN method, is based on a training procedure
requiring experimental data whose retrieval is time-con-
suming. As a consequence, even when the prediction is
extremely improved with respect to similar approaches,
the method still has the drawback of requiring training ses-
sions and ANN simulation. Therefore, it is useful to derive a
more practical (still approximate) method to determine the
ψ�
sðλÞ value. As a consequence, a practical chart to be

used by practitioners without the need of using ANN is pro-
posed. The chart is built using the information coming from
ANN, but, once built, it can be used with new inputs without

Fig. 5 ANN performance in terms of linear regression.
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simulating the ANN (i.e., it can also be used in cases where
the ANN has not been devised at all).

First, the ANN is simulated in the whole wavelength
range by randomly varying values α̂i so that

EQ-TARGET;temp:intralink-;e011;63;471 max jÂ − Aj ¼ ε; (11)

with ε varying in the range 1 to 12 with a step of 1.
Results of simulations are then compared in order to

evaluate how the equivalent fabric substrate changes when
recipe changes are artificially imposed. Accordingly, it is
possible to build a set of curves showing the influence of
recipe changes on the substrate K-S ratio. In detail, the
curves show the trend of the ratio ψ̂�∕ψ� as a function of
ε for different ranges of reflectance and for varying values
of reflectance for the first-attempt recipe. The chart depicting
the resulting curves (see Fig. 6) represents a simplified model
of the turbid mixing mechanism and, as demonstrated in
Sec. 5, proves to be useful for technicians, enabling them
to forecast blend color without the need to use ANN. It is
also worth noting that for small variations of recipes,
e.g.,max jÂ − Aj < 2, the equivalent fabric substrate remains
approximately constant, thus proving the correctness of the
assumptions made in Ref. 15, at least for these cases.

5 Results
The prediction method described above has been validated,
thanks to the collaboration of the staff of the textile company
New Mill s.p.a., Prato (Italy), by using the (validation) set of
40 samples obtained, respectively, adopting their standard
recipe and a modified version using the same procedure
described in Sec. 4.2. In particular, the validation set consists
of felt textiles typically processed by the company in its
everyday work. To maximize the validation as much as pos-
sible, samples with different numbers of mixed fibers and
with different colors have been selected.

In Table 1, the original and modified recipes of two samples
among the 40 chosen for validating the procedure are listed.

The predicted spectra obtained using the proposed appro-
aches (hybrid method and practical chart) are compared in
terms of CMCð2∶1Þ distance with the actual measurement
of the real fabrics obtained using the modified recipes.
Moreover, a comparison between the results obtained using
the four approaches provided, respectively, by Refs. 13–15
is proposed. In Table 2, the results of the comparison for the
40 samples are shown.

A comparison between the results obtained using the pro-
posed K-M+ANN method and the ANN-based approach
described in Ref. 15 has been assessed using a paired t-test.
The evaluated p value for such a test result equals 0.0013,
thus implying that the difference, in terms of performance, is
statistically significant. Therefore, it can be stated that the
proposed method outperforms the ANN-based ones. In addi-
tion, the use of a practical chart roughly equals the K-M-based
approach for small variations of recipes and allows more accu-
rate prediction when ε > 4.5, thus proving its effectiveness in
forecasting the final color of the mixed blend.

It is worth noting that the prediction error, i.e., the color
distance, increases for blends characterized by a high number
of raw materials as shown, for example, for samples 30, 31,
and 32, where the CMCð2∶1Þ distance exceeds the recom-
mended value of 0.8. However, a prediction error <1.2 for
such cases (i.e., samples with a large number of components)
is considered still acceptable by many companies19 working
in the textile field. As a final remark, the results demonstrate
that both methods (K-M+ANN and practical chart) average
a closer prediction when compared with the theoretical
approach proposed in Ref. 13.

6 Conclusions
The present paper described a hybrid K-M+ANN method
for predicting the spectral response of a fabric obtained by

Fig. 6 Practical chart obtained by simulating the hybrid K-M+ANN
method: it can be considered a simplified model of the turbid mixing
mechanism (simulated by using ANN).

Table 3 Results obtained by using a second-attempt recipe as reference for evaluating the blend color using the hybrid K-M+ANN method.

CMCð2∶1Þ distance from reference
(actual fabric with modified recipe)

CMCð2∶1Þ distance from reference (actual fabric with
second-attempt modified recipe)

Sample Number of components K-M+ANN method Practical chart

K-M–based approach
(using second-attempt

recipe)

Subtractive mixing–based
approach (using second-

attempt recipe)

30 20 0.8766 0.9792 0.3234 0.2998

31 18 0.9565 1.0424 0.3562 0.3223

32 20 0.8985 1.0232 0.2903 0.2237
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mixing precolored fibers. In detail, the simplified K-M
method proposed in Ref. 15 is enhanced by introducing a
more intelligent evaluation of the K-S ratio of the equivalent
substrate. Moreover, a practical chart is built by simulating
the ANN under specific recipe variations so that a method
not requiring the ANN can be stated. The approach proved
to be effective in forecasting the spectral response of
the blend within an average color distance in terms of
CMCð2∶1Þ, <0.6.

The effectiveness of the method is mainly due to the fact
that the knowledge of the first-attempt spectrum allows one
to immediately validate the exemplificative assumptions for
any color blend. On the other hand, the main limitation is that
it is not able to estimate the spectrophotometric response of
a blend when the information on the reflectance factors
measured for the first-attempt fabric is not provided.
Accordingly, even if the method described here overcomes
the performance of the K-M and S-N approaches, it is on the
understanding that literature-established methods also work
well when the first-attempt spectrum is not known. Accord-
ingly, for general-purpose color matching problems, the lit-
erature methods still have to be considered the best available
option.

The authors, consequently, want to encourage other
researchers working in the field of colorimetry and spectro-
photometry to provide a large number of results of their
experiments using the provided equations and to propose
improvements to the system. By way of example, possible
improvements could be linked to textile praxis in creating
fabric blends. In fact, in cases where the prediction is not so
accurate (e.g., samples 30, 31, and 32), it could be possible to
further explore practical solutions based on the creation of a
second-attempt fabric to be used as the new reference for the
proposed methods. On the basis of a preliminary study, pro-
posed here and shown in Table 3, such an approach could
allow one to substantially reduce the color distance between
the predicted spectrum and the actual one (i.e., the third-
attempt fabric). Examples in Table 3 refer to results obtained
by applying the proposed hybrid method using as equivalent
fabric substrate the mean value between the first- and sec-
ond-attempt recipes. This allows us to obtain a closer pre-
diction of the term ψ�

sðλÞ, thus leading to more accurate
predictions of RFðλÞ.

Of course, this last approach requires the technicians to
physically create a new fabric, thus increasing the overall
time for assessing the final recipe. It should be noted, how-
ever, that for a high number of precolored materials to be
mixed together, the traditional definition of the final recipe
usually involves a high number of attempts (often 8 to 10).
Diminishing the number of attempts from such a number to 3
could be an effective strategy anyway. Further analysis is,
however, required prior to drafting more consistent conclu-
sions about this possible improvement.
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