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ABSTRACT

We study the finite solvable groups in which the orders of the real elements

are either 2-powers or not divisible by 2. Equivalently, we describe the

finite solvable groups in which the centralizer of every involution is 2-

closed.

1. Introduction

The prime graph Γ(G) of a finite group G provides a convenient framework for

many questions about the orders of the elements of G. The vertices of Γ(G)

are the prime divisors of |G| and vertices p and q are connected by an edge if

G contains an element of order pq.

∗ The research of the first author was partially supported by MIUR research pro-

gram “Teoria dei gruppi ed applicazioni”. The research of the third author was

partially supported by MTM2010-15296, and Prometeo/Generalitat Valenciana.
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Reality is of considerable importance in finite group theory. We define the

real prime graph ΓR(G) as follows. The vertices of ΓR(G) are the primes p

such that G contains a real element of order p, and vertices p and q are connected

by an edge if G contains a real element of order pq. In [DMN], the vertices of

ΓR(G) were determined; if p a prime divisor of |G| is not a vertex of ΓR(G) and

G = O2′
(G), then G is non-solvable with abelian p-Sylow subgroups.

Here we investigate the groups G for which 2 is an isolated vertex of ΓR(G),

that is, the finite groups all of whose real elements have 2-power or odd order.

The analogous question for Γ(G) was studied by M. Suzuki in the landmark

paper [S2]. If |G| is even, then 2 is an isolated vertex of Γ(G) if and only if the

centralizer of every involution in G is a 2-group. Suzuki called such groups CIT

groups. He showed that the nonabelian simple CIT groups are the Zassenhaus

groups in characteristic 2, together with L2(q) for certain q, and L3(4), and he

also determined the solvable CIT groups [S1, p. 435-436].

We thank H. Tong-Viet for pointing out a second major connection between

our topic and Suzuki’s work. Tong-Viet shows in Proposition 2.7 below that 2

is an isolated vertex of ΓR(G) if and only if the centralizer of every involution in

G is 2-closed (i.e., it has a normal Sylow 2-subgroup). Suzuki [S2] called groups

satisfying the latter property C-groups. He showed that the simple C-groups are

the simple CIT groups, together with the families L3(2n) and U3(2n). Suzuki

also had something to say about the solvable C-groups [S2, Theorem 5], but

our results are far more detailed.

We recall now that since the real elements of G are the real elements of

O2′
(G), the smallest normal subgroup of G with odd index, when studying the

real elements of a finite group, it is no loss to assume that G = O2′
(G).

Theorem A: Suppose that G is a finite solvable group with O2′
(G) = G.

Assume that every real element of G is either a 2-element or a 2′-element. Let

N = O2(G) and Q ∈ Syl2(G), and assume that G is not a 2-group. Then:

(1) G/N has a normal 2-complement K/N and Q/N is cyclic or quaternion.

If zN is the unique involution of Q/N , then CK/N (Q/N) = CK/N (zN).

(2) Suppose that N > 1. Then N = F(G), Q/N is cyclic and G splits over

N . If |Q/N | > 2, then K/N is cyclic and G is a CIT group. In any case, K/F2

is metabelian and F2/N is abelian, where F2/N = F(G/N). If |G| is coprime

to 3, then K/F2 is abelian.
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Both parts of Theorem A are best possible; part (1) is best possible by

Lemma 2.2 and Theorem 2.4, and part (2) is best possible by Theorem 3.1

and Example 3.10. In the situation of part (2), Theorem 3.9, Proposition 3.5

and Corollary 3.8 provide additional information about G/N . While we have

much to say about the structure of G/N , little can be said, in general, about the

structure of N . Indeed it is not hard to show that the derived length of N can

be arbitrarily large. Character-theoretic methods, in particular Isaacs π-theory,

are used to prove part (1) of Theorem A. To prove part (2), we show that G/N

acts on N so that the centralizers in G/N of the nonidentity elements of N

have normal Sylow 2-subgroups. After extensive analysis, we deduce strong

restrictions on the structure of G/N .

2. The Case O2(G) = 1.

For the sake of brevity, let us say that a finite group G satisfies R if every real

element of G has 2-power order or 2′-order. If H ≤ G and G satisfies R, then

notice that H satisfies R.

Our first lemma gives a character theoretical characterization of solvable

groups satisfying R, which we shall heavily use later on. In order to do this,

we use the so called Isaacs π-theory. Recall if π is a set of primes, in every π-

separable group G, there exists a canonical subset Bπ(G) of the set of irreducible

complex characters Irr(G) of G, containing the trivial character 1G, such that

their restrictions form a basis of the complex space of class functions defined on

the π-elements of G. In particular, |Bπ(G)| is the number of conjugacy classes

of π-elements of G, and the square matrix (ψi(xj)) where ψ ∈ Bπ(G) and xj

is complete set of G-representatives of π-elements, is invertible. (See Theorem

A and Corollary (10.2) of [I2].) From the very definition, one can check that if

N / G is contained in ker(χ) for some χ ∈ Irr(G), then χ ∈ Bπ(G) if and only if

χ̄ ∈ Bπ(G/N), where χ̄ ∈ Irr(G/N) is the character defined by χ̄(Ng) = χ(g).

Lemma 2.1: Suppose that G is solvable. Then every real element of G has

2-power or 2′-order if and only if every real χ ∈ Irr(G) belongs to B2(G) or to

B2′(G).

Proof. First of all notice that for every set of primes π, the number of real

characters in Bπ(G) coincides with the number of real conjugacy classes of

G consisting of π-elements, using Brauer’s Lemma on character tables with
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complex conjugation (Theorem (6.32) of [I]). Second, we claim that if π and

σ are disjoint sets of primes, then Bπ(G) ∩ Bσ(G) consists just of the trivial

character. In order to show this, work by induction on |G|. Let χ ∈ Bπ(G) ∩
Bσ(G) and let N be a minimal normal subgroup of G. Then N is a p-group for

some prime p. Since π and σ are disjoint, let us say that p is not in π. Then

N is contained in the kernel of χ, because χ ∈ Bπ(G) (Corollary (5.3) of [I2]).

Then χ ∈ Irr(G/N) and we apply induction.

Now, let clR(G) be the set of the real conjugacy classes of G, let cl2,R(G) be

the set of real classes consisting of 2-elements, and let cl2′,R(G) the set of real

classes consisting of 2′-elements. Also, let IrrR(G) be the set of the irreducible

real characters of G, let B2,R(G) be the set of the real B2-characters, and let

B2′,R(G) be the set of the real B2′ -characters. Then

clR(G)− {1} = (cl2,R(G)− {1}) ∪ (cl2′,R(G)− {1})

if and only if

|clR(G)| = |cl2,R(G)|+ |cl2′,R(G)| − 1

if and only if

|IrrR(G)| = |B2,R(G)|+ |B2′,R(G)| − 1

if and only if

IrrR(G)− {1G} = (B2,R(G)− {1G}) ∪ (B2′,R(G)− {1G}) .

Lemma 2.2: Suppose that G is a finite group and let N / G.

(a) If G satisfies R, then G/N satisfies R.

(b) Assume that G is solvable and that N ≤ Z(G) has odd order. Then G

satisfies R if and only if G/N satisfies R.

Proof. (a) By induction on |G|. If Q ∈ Sylp(N), then NG(Q) satisfies R, and

if Q is not normal in G, by induction NG(Q)/NN (Q) ∼= G/N satisfies R, so we

may assume that N is nilpotent.

Now, suppose that Nx is a real element of G/N of even, non-2-power order.

Then Nx−1 = Nxt for some t ∈ G. If H = 〈x, t〉, then we may assume that

G = HN , by induction. Since G/N is solvable, then we have that G is solvable.

Finally, since G satisfies R, then every real character of G lies in B2(G) or
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B2′(G), and the same happens for every real character of G/N . Hence, G/N

satisfies R, but this is a contradiction.

(b) Suppose that G/N satisfies R, and let χ ∈ Irr(G) be real valued. Let

λ ∈ Irr(N) be under χ. Since χN = χ(1)λ, then λ is real valued and we conclude

that λ = 1. Hence χ ∈ Irr(G/N). Therefore χ ∈ B2(G/N) or χ ∈ B2′(G/N),

and χ ∈ B2(G) or χ ∈ B2′(G). Now, we apply Lemma 2.1.

In order to prove the following key technical lemma, we shall need to use

the Gadjendragadkar special characters. We refer the reader to [Ga] for the

definition and main properties.

Lemma 2.3: Suppose that G is a finite solvable group such that all real elements

of G have 2-power order or 2′-order. If M is a 2′-subgroup of G normalized by

a 2-subgroup D of G, and 1 6= α ∈ Irr(M) is such that αr = ᾱ for some r ∈ D,

then αMD ∈ Irr(MD).

Proof. It is no loss to assume that MD = G. Let T = IG(α) be the stabilizer

in G of α. Since IG(α) = IG(ᾱ), it follows that r normalizes T . We want to

prove that T = M . Suppose that T > M . Then let T/S be a chief factor

of T 〈r〉, where M ≤ S, so that T/S has order 2 and S is r-invariant. Let

1 6= λ ∈ Irr(T/S), and notice that λ is real of order 2 and r-invariant. Now,

by Corollary (6.28) of [Is], α has a unique extension β ∈ Irr(T ) such that

the determinantal order o(β) is odd. Since β̄r is an extension of α with odd

determinantal order, it follows that βr = β̄. Now, λβ ∈ Irr(T |α), and by the

Clifford correspondence, we have that χ = (λβ)G ∈ Irr(G). Now,

χ = (λβ)G = ((λβ)r)G = (λβ̄)G = (λ̄β̄)G = χ̄ ,

and we conclude that χ is real. Therefore χ ∈ B2(G) or χ ∈ B2′(G) by Lemma

2.1. Since T / /G, we conclude that the irreducible constituents of χT all lie

in B2(T ) or in B2′(T ), by Corollary (7.5) of [I2]. Now, β is 2′-special and λ is

2-special (see, for instance, Proposition (2.3) of [Ga]). Hence we conclude that

λβ is both 2 and 2′-factorable (see the definition after Theorem (2.5) of [I2])

and also lies in B2(T ) or in B2′(T ). By Theorem (2.5) of [I2] and Lemma (5.4)

of [I2], this is impossible.

Theorem 2.4: Let G > 1 be a solvable group such that O2′
(G) = G and

O2(G) = 1. Let Q be a Sylow 2-subgroup of G. Then the following are equiva-

lent:
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(a) all real elements of G are either 2-elements or 2′-elements;

(b)G has a normal 2-complementK, Q is either cyclic or generalized quaternion

and CK(Q) = CK(z), where z is the unique involution of Q.

Proof. Assume first that the real elements of G are either 2-elements or 2′-

elements. This hypothesis is inherited by the subgroups of G and their quo-

tients. Also O2(M) = 1 for every M / G. We show that G satisfies (b) by

induction on |G|. Let K = O2′(G) and L/K = O2(G/K). Assume, working by

contradiction, that K is not a 2-complement of G. So, L < G and by induc-

tion a Sylow 2-subgroup Q0 of O2′
(L) is either cyclic or generalized quaternion.

As L/K ∼= Q0, then G/CG(L/K) is either a 2-group or it is isomorphic to a

subgroup of S4. Since CG(L/K) ≤ L (by the Hall-Higman Lemma 1.2.3) and

L/K = O2(G/K), then L/K ∼= Q8. As G has no nontrivial factor group of

odd order, it follows that G/K is either GL(2, 3) or the double cover of S4 with

Q16 Sylow 2-subgroups. These two groups have real elements of order 6, and

this cannot happen by hypothesis and Lemma 2.2. So we conclude that G = L.

Hence, K is the normal 2-complement of G.

Let Q be a Sylow 2-subgroup of G. We wish to show next that Q is cyclic

or generalized quaternion. As O2(G) = 1, F = F(K) = F(G) and Q acts

faithfully on F . Also, FQ satisfies R. By coprime action, we also know that

Q acts faithfully on F/Φ(F ) and FQ/Φ(F ) satisfies R, so in order to show

that Q is cyclic or generalized quaternion, we may assume in this paragraph

that K is abelian and KQ satisfies R. Let 1 6= z ∈ Z(Q) of order 2. Then

D = CK(z) < K and K = D× [K, z]. Notice that z inverts [K, z] and therefore

z inverts K/D. Now D / KQ and KQ/D satisfies R. If 1 6= λ ∈ Irr(K/D),

then λz = λ̄, and by Lemma 2.3, it follows that λKQ ∈ Irr(KQ). Thus we have

that Q acts Frobeniusly on K/D, and we conclude that Q is either cyclic or

generalized quaternion. Also z is the unique involution of Q.

Now that we have that Q is cyclic or generalized quaternion, let us come back

to our original notation, where G = KQ, and K is a normal 2-complement.

Assume finally that CK(Q) < CK(z) = D. Then Q acts non-trivially on

CK(z). Then there exists 1 6= x ∈ D such that xu = x−1 for some u ∈ Q,

by Lemma (3.1.d) of [DMN], for instance. Then there exists 1 6= η ∈ Irr(D)

such that ηu = η̄. (Consider the action of Q × 〈σ〉 on the classes of D and of

the characters of D, and apply Brauer’s lemma on character tables, where σ is

complex-conjugation: see Lemma (6.1) of [NT].) Now, by the z-Glauberman
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correspondence, there exists 1 6= θ ∈ Irr(K) such that θ is z-invariant and

θu = θ̄. (The z-Glauberman correspondent of θ is η, and it follows that θu =

θ̄ because the Glauberman correspondence commutes with Galois and group

automorphisms.) Now, by Lemma 2.3, we conclude that θG ∈ Irr(G). However,

this is impossible, since θ is z-invariant. We conclude that CK(Q) = CK(z).

Suppose, conversely, that Q is cyclic or generalized quaternion, that G has

a normal 2-complement K and that CK(Q) = CK(z), where z is the unique

involution of Q. Let g be a real element of G and denote by a and b the

2′-part and the 2-part of g, respectively. Up to conjugation, we can assume

b ∈ Q. Note that both a and b are real elements of G, using the definition.

Assume that g is not a 2′-element. Then b 6= 1, so z is a power of b and hence

a ∈ CK(z) = CK(Q). Hence NG(〈a〉)/CG(〈a〉) has odd order and then, as a is

real, it follows that a = 1.

Recalling that if Q is either a cyclic 2-group or if Q is generalized quaternion

group, Q 6= Q8, then Aut(Q) is a 2-group, one immediately gets the following:

Corollary 2.5: Let G be a solvable group such that all real elements of G are

either 2-elements or 2′-elements. Assume that O2(G) = 1. Then there exists

a normal subgroup N of G, with |G : N | ∈ {1, 3}, such that N has a normal

2-complement.

A group G is said to be p-closed, for a prime p, if it has a normal Sylow

p-subgroup. The following result describes the structure of finite groups which

have no nontrivial real element of odd order.

Lemma 2.6: A group G has no nontrivial real element of odd order if and only

if G is 2-closed.

Proof. This follows from Proposition 6.4 in [DNT].

We recall that a group G is called a C-group if the centralizer of every in-

volution is 2-closed (see [S2]). We thank H. Tong-Viet for pointing out the

following:

Proposition 2.7 (H. Tong-Viet): A group G is a C-group if and only if G

satisfies R.

Proof. Clearly, we can assume that G has even order.
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Suppose first that G satisfies R. Let x be an involution of G and H = CG(x).

In order to show that G is a C-group, by Lemma 2.6 we have to show that H

has no nontrivial real element of odd order. By way of contradiction, suppose

that y ∈ H is a nontrivial real element of odd order m > 1. Then yg = y−1 for

some g ∈ H. Consider z = xy ∈ H. As x ∈ Z(H) we have

zg = (xy)g = xgyg = xy−1 = y−1x−1 = z−1 .

Therefore, z is a real element of H, and hence of G, of order 2m, a contradiction.

Since x is an arbitrary involution, we deduce that G is a C-group.

Conversely, assume that G is a C-group. Working by contradiction, assume

that G has a real element z whose order is even but not a 2-power. As any

power of a real element is also real, we can assume that z has order 2m, where

m > 1 is odd. Then x = zm is an involution and y = z2 ∈ CG(x) has order m.

As z is a real element of G, there exists a g ∈ G such that zg = z−1. It follows

that xg = x−1 = x, so g ∈ CG(x), and yg = y−1. Hence, y is a nontrivial real

element of CG(x), against Lemma 2.6.

3. The Case O2(G) > 1.

In order to prove the second part of Theorem A, it is convenient to state the

following:

Standard Hypotheses. Let G = KQ, where K > 1 is normal of odd order,

Q ∈ Syl2(K) is cyclic or quaternion and CK(Q) = CK(z), where 〈z〉 = Ω1(Q).

Suppose also that O2′
(G) = G. Assume that G acts on a 2-group V and that

CG(v) has a normal Sylow 2-subgroup (equivalently, CG(v) = O2(CG(v)) ×
O2′(CG(v))) for all 1 6= v ∈ V . In this case, we say that G satisfies the

Standard Hypotheses with respect to V .

Our aim in this section is to pin down the structure of the groups G satisfying

the Standard Hypotheses. Before we go deep into analyzing these groups, it

might be convenient to show how the hypotheses of Theorem A have naturally

led us to the Standard Hypotheses.

Theorem 3.1: Suppose that G is a finite solvable group with O2′
(G) = G.

Assume that G satisfies R and that G > O2(G) = N > 1. Then there exists a
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subgroup H of G such that G = NH, with N ∩ H = 1, such that H satisfies

the Standard Hypotheses with respect to N . Moreover, O2′(G) ≤ Z(G).

Conversely, if H = KQ satisfies the Standard Hypotheses with respect to V ,

then the semidirect product G = V H satisfies R.

Proof. Assume that G statisfies R and that N = O2(G) is a proper nontrivial

subgroup of G. Let Q0 ∈ Syl2(G). Since O2(G/N) = 1, by Lemma 2.2(a)

we have that G/N satisfies the hypothesis of Theorem 2.4. Hence, G/N has

a normal 2-complement L/N and Q0/N is either cyclic or quaternion, with

CL/N (zN) = CL/N (Q0/N), where zN is the unique involution of Q0/N . Let

K be a 2-complement in G and H = NG(K). By the Frattini Argument, we

have that G = NH. If N ∩H = CN (K) > 1, then H would contain a central

involution x. Now, a Sylow 2-subgroup of H acts nontrivially on K, as K > 1

and O2′
(H) = H, so there exists a nontrivial element y ∈ K such that y is real

in H (see [DMN, Lemma 3.1], for example). Thus xy is a real element of H, and

so of G, against R. Hence, H is a complement of N in G. Write H = KQ, where

Q ∼= Q0/N is either cyclic or quaternion, and observe that CK(Q) = CK(z),

where z is the involution of Q. Let X ≤ N be a non-trivial cyclic subgroup and

let x be the involution in X. Let C = CH(x), M the normal 2-complement of

C and T ∈ Syl2(C). If T does not act trivially on M , then we know that there

is 1 6= y ∈ M and t ∈ T such that yt = y−1. Thus, (xy)t = xy−1 = (xy)−1

and xy is a real element of G whose order is divisible by 2 and is not a 2-power,

a contradiction. Therefore T acts trivially on M and C has a normal Sylow

2-subgroup. Since CH(X) ≤ C, the same is true for CH(X). Hence, H satisfies

the Standard Hypotheses with respect to N .

As N > 1, there exists a non-trivial element x0 ∈ N ∩Z(Q0). Now, O2′(G) ≤
CH(N) ≤ CH(x0) and Q0 / CH(x0) by the previous paragraph. So Q0 ≤
CG(O2′(G)) / G. Since O2′

(G) = G, we have that O2′(G) ≤ Z(G).

Conversely, assume that H satisfies the Standard Hypotheses with respect

to V . Assume, working by contradiction, that there exists a real element g of

G = V H whose order is even and not a 2-power. By taking a suitable power,

we can assume that the order of g is 2 times an odd number. We can write

g = xt, where x ∈ H has odd order, t ∈ G is an involution and [x, t] = 1.

So, there is a 2-element z ∈ G such that (xt)z = (xt)−1 = x−1t and hence z

centralizes t and inverts x. Since H satisfies R by Theorem 2.4, and xtV is a
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real element of G/V , we have t ∈ V . Thus 〈x, z〉 ≤ CH(t), contradicting the

Standard Hypotheses.

Let now introduce another set of assumptions that lends itself more conve-

niently to induction. Recall that, given a group action of Q on K, A/B is a

Q-invariant p-section of K (p a prime) if A,B are Q-invariant subgroups of K,

B / A and A/B is a p-group.

Hypotheses H2. Let G be a group with a cyclic Sylow 2-subgroup Q > 1 and

a normal 2-complement K. Assume that O2′
(G) = G and CK(Q) = CK(z),

where 〈z〉 = Ω1(Q). Assume also that, for every (odd) prime p and for every

Q-invariant p-section A/B of K, [A/B,Q] is cyclic,

Lemma 3.2: Assume the Hypotheses H2 for G and let N be a normal subgroup

of G, N ≤ K. Then also G/N satisfies the Hypotheses H2.

Proof. Write Ḡ = G/N . Clearly, O2′
(Ḡ) = Ḡ, Q̄ 6= 1 is a cyclic Sylow 2-

subgroup of Ḡ, K̄ the normal 2-complement and z̄ the only involution of Q̄.

Every Q̄-invariant p-section of Ḡ is of the form Ā/B̄, where A and B are

subgroups of G containing N . So A/B is a Q-invariant p-section of G and

[Ā/B̄, Q̄] = [A/B,Q] is cyclic. Finally, by coprimality, CK̄(Q̄) = CK(Q) =

CK(z) = CK̄(z̄). So, Ḡ satisfies the Hypotheses H2.

In the following, we denote by π(G) the set of the prime divisors of the order

of a group G.

Lemma 3.3: Let G = K〈z〉, where K = O2′(G) and z is an involution. Suppose

that G acts on a 2-group V and CG(v) has a normal Sylow 2-subgroup for all

nonidentity v ∈ V .

Then

(a): If A is a z-invariant abelian subgroup of K, then [A, z] is cyclic and

[A, z] acts Frobeniusly on V .

(b): Let p ∈ π(K) and let P be a z-invariant p-subgroup of K. Then

[P, z] is cyclic.

Proof. We note that the hypotheses are inherited by every subgroup of G that

contains z. To prove (a), let A be a z-invariant abelian subgroup of K and

let B = [A, z]. Since B is abelian, we have CB(z) = 1 and so z inverts every

element of B. If 1 6= b ∈ B, then the dihedral group 〈z, b〉 acts on CV (b). If
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CV (b) > 1, then z fixes a nonidentity element v of CV (b), and so 〈z, b〉 fixes

v, contrary to the hypothesis. Hence B acts Frobeniusly on V and then B is

cyclic.

To prove (b), we proceed by induction on |P |. We may assume that P = [P, z].

Let B < P be a maximal z-invariant subgroup. Since P 〈z〉 is supersolvable,

|P : B| = p. Let y ∈ P \ B. Then [y, z] 6∈ B, since z does not centralize P/B.

Let x = [y, z]. Then z inverts x and P = B〈x〉. Now, B = [B, z]CB(z), so

P = 〈x〉[B, z]CB(z). Since P = [P, z], it follows that z inverts every element of

P/Φ(P ). Hence CB(z) ≤ Φ(P ), and so P = 〈x〉[B, z]. Since z inverts 〈x〉, we

have xp ∈ [B, z]. Hence |P | = |〈x〉||[B, z]|/|〈xp〉| and so |P : [B, z]| = p. Thus

B = [B, z].

By induction, B is cyclic. Since P has a cyclic subgroup of index p, [Go, 5.4.4]

yields that P is either abelian or a modular group Mm(p) of order pm for some

m ≥ 3. Suppose that P = Mm(p). Then W = Ω1(P ) is elementary abelian

of order p2 by [Go, 5.4.3]. But z inverts both W ∩ B and W/W ∩ B ∼= P/B.

Hence [W, z] = W , contradicting part (a). We conclude that P is abelian, and

so P = [P, z] is cyclic by part (a).

Proposition 3.4: Suppose G = KQ satisfies the Standard Hypotheses. Then

G satisfies Hypotheses H2. Also F(K) = F(G).

Proof. Note that F(G) has odd order; otherwise z ∈ O2(G) and K = CK(z) =

CK(Q) would be a direct factor of G, against the assumptions that K > 1 and

O2′
(G) = G.

Thus F(G) = F(K). There exists a Sylow subgroup P of F(K) such that

[P, z] 6= 1. Since z is the only involution in Q, we see that Q acts faithfully on

[P, z]. Since [P, z] is cyclic by Lemma 3.3, we conclude that Q is abelian and

hence cyclic.

Now let A be a Q-invariant subgroup of K. Then [A,Q] = [A, z] as follows.

Indeed, since [A, z] ≤ [A,Q] and A = [A, z]CA(z), we have

[A,Q] = [A,Q,Q] = [[A, z]([A,Q] ∩CA(z)), Q] .

Since Q centralizes CA(z) by assumption, and since Q normalizes both A and

〈z〉, we have [A,Q] = [[A, z], Q] ≤ [A, z], as desired.
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Next, ifB is aQ-invariant normal subgroup ofA, then [A/B,Q] = [A,Q]B/B.

In fact, Q acts trivially on (A/B)/([A,Q]B/B) ∼= A/[A,Q]B, and so [A/B,Q] ≤
[A,Q]B/B; the other inclusion is straightforward. Similarly, [A/B, z] = [A, z]B/B.

Now let A/B be a Q-invariant p-section of G. Then, by coprime action,

A = BP , where P is a Q-invariant Sylow p-subgroup of A. Using the natural

isomorphism between the Q-invariant sections A/B and P/(P ∩ B), one sees

that [A/B,Q] ∼= [P/(P ∩ B), Q], and similarly for z. By the two paragraphs

above, we conclude that [A/B,Q] ∼= [P/(P ∩ B), z] ∼= [P, z](P ∩ B)/(P ∩ B)

is a homomorphic image of [P, z], and hence is cyclic by Lemma 3.3. Thus G

satisfies (H2).

Note that if G satisfies (H2), then G is solvable. Thus every chief factor X

of G is an elementary abelian p-group for some prime p; in this case, we say

X is a p-chief factor. As usual, if X is elementary abelian of order pn, we call

n the rank of X. We recall that an A-group is a solvable group whose Sylow

p-subgroups are abelian, for all primes p. An A-group has p-length 1 for every

prime p.

Proposition 3.5: Suppose G satisfies (H2). Let p ∈ π(K) and let X be a

p-chief factor of G. Let Ḡ = G/CG(X). Then

(a): rank(X) ≤ 3; if |Q| > 2, then rank(X) = 1 and K ≤ CG(X).

(b): Ḡ is an A-group of p′-order.

(c): K̄ has derived length at most 2. If (3, |K̄|) = 1, then K̄ is cyclic.

Proof. We observe first that CG(X) ≤ K; otherwise CX(z) = X and so

CX(Q) = X by coprime action and (H2). Since Ḡ = O2′
(Ḡ), X would then be

central in G, which is not the case.

So by Lemma 3.2, Ḡ satisfies (H2). If |X| = p, then Ḡ is abelian. Since

Ḡ = O2′
(Ḡ), it follows that Ḡ is a 2-group. Hence K ≤ CG(X).

Assume from now on that rank(X) > 1. We will show that |Q̄| = 2 and

that Ḡ is either a dihedral group of order 2d, where d is an odd divisor of p+ 1

or p − 1, or Ḡ is an extension of S3 by an abelian group C̄, where |C̄| divides

(p− 1)2 and (|C̄|, |S3|) = 1.

As Q maps injectively into Ḡ, we often identify Q with its image in Ḡ. We

observe also that |F(Ḡ)| is odd. Indeed if O2(Ḡ) > 1, then z ∈ Z(Ḡ) and so

[X, z] = X. Since |[X, z]| = p by (H2), this contradicts our assumption that

rank(X) > 1.
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First suppose that G acts primitively on X and F(Ḡ) is abelian. By primi-

tivity, F(Ḡ) is cyclic and, since X is a faithful irreducible Ḡ-module, F(Ḡ) acts

Frobeniusly on X. Let φ be the Brauer character of Ḡ afforded by X ⊗GF(p).

Since F(Ḡ) is a normal self-centralizing cyclic subgroup of Ḡ, we have φ = αḠ

for a faithful character α of F(Ḡ). It follows that φ(z) = 0, so CX(z) has

rank [φ〈z〉, 1〈z〉] = rank(X)/2. Similarly, if y ∈ Q has order 4, then CX(y)

has rank equal to rank(X)/4. Since [X, z] has rank 1, however, we have

rank(CX(z)) = rank(X) − 1. It follows that rank(X) = 2 and Q = 〈z〉.
Now [MW, Theorem 2.11] yields that Ḡ is a subgroup of the semilinear group

Γ(p2). Since O2′
(Ḡ) = Ḡ, it follows that Ḡ is dihedral of order 2d, where

d = |K̄| divides p+ 1.

Next suppose G acts primitively on X and F(Ḡ) is nonabelian. By [MW,

1.9], F(Ḡ) = ĒZ̄, where each Sylow subgroup of Ē is extraspecial of prime

exponent, Z̄ = Z(F(Ḡ)) is cyclic, and Ē / Ḡ. Choose D̄ to be a Sylow subgroup

of Ē of maximal order. Let |D̄| = r2m+1 for a prime r 6= p and m ≥ 1. Faithful

absolutely irreducible D̄-modules have dimension rm, so if z does not centralize

Z(D̄), then every irreducible 〈z〉D̄-submodule W of X ⊗GF(p) has dimension

2rm. Since z interchanges the two irreducible GF(p)[D̄]-summands of W , we

have dim(CW (z)) = dim([W, z]) = rm. Hence [X, z] has rank at least rm,

contradicting the fact that [X, z] has rank 1. We conclude that z centralizes

Z(D̄).

Now z preserves the nondegenerate symplectic commutator form on D̄/Z(D̄).

It follows that [D̄/Z(D̄), z] has even rank; see [D, Lemma 2.2] for example. Since

[D̄/Z(D̄), z] is cyclic by (H2), we conclude that z centralizes D̄/Z(D̄). Since

z also centralizes Z(D̄), we have [D̄, z̄] = 1. Let D / G with D/CG(X) = D̄.

Then D = CD(z)CG(X) = CD(Q)CG(X) by coprime action and (H2). Hence

[D̄,Q] = 1. Since Ḡ = O2′
(Ḡ), we have D̄ ≤ Z(Ḡ), which is absurd.

We may therefore assume that G acts imprimitively on X. Let X = X1 ⊕
· · · ⊕Xk be an imprimitivity decomposition for the action of G (so k > 1). Let

C =

k⋂
i=1

NG(Xi) .

We claim that z 6∈ C. Suppose the contrary. Since the Xi are G-conjugate and

all the involutions in G are conjugate, it follows that |[Xi, z]| = |[Xj , z]| for all

i, j. Since [X, z] 6= 1, all [Xi, z] are nontrivial, and so |[X, z]| ≥ pk > p. This

contradicts (H2), proving the claim.
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Thus Q maps injectively into G/C. If z interchanges Xi and Xj , then |[Xi⊕
Xj , z]| = |Xi|. It follows that each |Xi| = p and that z acts as a transposition on

the set {X1, . . . , Xk}. Since this holds for every imprimitivity decomposition

of X, it follows that k = logp|X| for all such decompositions, and so G/C

acts faithfully and primitively on {X1, . . . , Xk}. Thus G acts monomially on

X. Since G/C is a primitive permutation group containing a transposition,

a theorem of Jordan (see [H, II.4.5] for example) yields that G/C ∼= Sk. By

solvability, k ≤ 4. Since G is 2-nilpotent, k ≤ 3. Hence |X| ≤ p3, as desired.

Since |Q| divides |G/C| = |Sk|, we have |Q| = 2, as desired.

We may view Ḡ as a subgroup of the wreath product W = Cp−1 o Sk. Let B

be the base group of W . If k = 2, then B has a cyclic direct summand of order

p− 1 that is central in W . Since Ḡ = O2′
(Ḡ), it follows that C̄ = K̄ is cyclic of

order dividing p− 1, and hence Ḡ is dihedral of order 2|C̄|. Thus all assertions

of Proposition 3.5 hold when k = 2.

Suppose that k = 3. We show first that (3, |C̄|) = 1. Let M̄ = Ω1(O3(C̄)).

Then M̄ is a GF(3)[S3]-submodule of P̄ , the natural GF(3)[S3]-permutation

module. Now P̄ is uniserial, with only two proper nontrivial submodules,

namely S̄ and T̄ of ranks 1 and 2, respectively. We have [S̄, z] = 1 and

[T̄ /S̄, z] = T̄ /S̄. Let x̄ ∈ Ḡ \ C̄ be a 3-element inverted by z̄. If |x̄| > 3,

then 〈x̄〉 ∩ M̄ would be a rank 1 submodule of P̄ which is inverted by z̄, which

is impossible. Hence x̄ has order 3.

Suppose first that M̄ = S̄. Then O3(C̄) is a cyclic group centralized by 〈x̄, z̄〉.
It follows that 〈x̄, z̄〉×O3(C̄) is a factor group of Ḡ, contradicting Ḡ = O2′

(Ḡ).

Suppose next that M̄ contains T̄ . Then 〈x̄〉T̄ /S̄ is a noncyclic 3-section of Ḡ

inverted by 〈z〉 = Q, contradicting (H2). We conclude that M̄ = 1, and so

(3, |C̄|) = 1. In particular, Ḡ is an A-group. As in the case k = 2, B now has

a cyclic direct summand of order p− 1 that is central in W , and so |C̄| divides

(p− 1)2. Also K̄
′′

= 1.

Finally suppose, to get a contradiction, that p = 3. Then |C̄| divides (p− 1)2

and |C̄| is odd, so C̄ = 1. Hence Ḡ ∼= S3 and so X is not an irreducible Ḡ-

module, a contradiction. Thus (b) holds when k = 3, completing the proof.

Lemma 3.6: Let G satisfy (H2) and let F = F(G). If K > 1, then F = F(K).

In any event G/F has p-length 1 for every prime p ∈ π(G/F ).

Proof. As in the proof of Proposition 3.4, if z ∈ O2(G), then G = Q × K.

This contradicts O2′
(G) = G if K > 1. The other assertion follows from
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Proposition 3.5 and the fact that F is the intersection of the centralizers of all

the chief factors of G.

Proposition 3.7: Let G satisfy (H2). Let p ∈ π(K) and let P = Op(G),

R = Φ(G) ∩ P and X = P/R. If X 6= 1, then X is a noncentral chief factor of

G, P ∈ Sylp(G), and R = Φ(P ).

Proof. First we remark that if M ≤ K is a nontrivial normal subgroup of G and

M is complemented in G, then [M, z] > 1. Otherwise M ≤ CK(z) = CK(Q),

and so G/CG(M) has odd order. Since O2′
(G) = G, we have M ≤ Z(G). Since

M is complemented in G, we see that G has a factor group isomorphic to M ,

contradicting G = O2′
(G).

We may assume that X 6= 1. By [H, III.3.4(b)], we have Φ(G/R) = Φ(G)/R,

and so Φ(G/R)∩ (P/R) = 1. Now [H, III.4.4] yields that P/R is complemented

in G/R. We have X = P/R = Op(G/R). Hence to prove that X is a chief

factor of G and P ∈ Sylp(G), we may assume that R = 1. Note that G/R

satisfies (H2) by Lemma 3.2. Write G = XH with X = Op(G), X ∩ H = 1,

and Q ≤ H. Clearly, X 6≤ Z(G).

Since X is isomorphic to a subgroup of F(G)/Φ(G), X is a completely re-

ducible G-module by [H, III.4.5]. Suppose X = X1 × X2, with X1 and X2

nontrivial normal subgroups of G. Then, by the first paragraph, [Xi, z] > 1 for

i = 1, 2. But (H2) implies that [X, z] is cyclic, a contradiction. We conclude

that X is a noncentral chief factor of G.

Let F = F(G). By Lemma 3.6, H/H ∩ F ∼= G/F has p-length 1. Since

X = Op(G), it follows that H ∩ F is a p′-group, and so H has p-length 1.

By Proposition 3.5, C = CG(X) contains a Sylow p-subgroup P0 of H. Let

N = Op′(C) / G. Now C/XN has p-length 1 and Op′(C/XN) = 1. Hence

XP0N/XN is a normal Sylow p-subgroup of C/XN and of G/XN , and so

XP0N/N is a normal Sylow p-subgroup of G/N . Let Ḡ = G/N . Then [P̄0 ×
X̄, z] is cyclic by (H2). Since [X̄, z] is nontrivial, it follows that CP̄0

(z) =

CP̄0
(Q) = P̄0. Since Ḡ = O2′

(Ḡ), we conclude that P̄0 ≤ Z(H̄). Since P̄0 is a

Sylow subgroup of H̄ and H̄ = O2′
(H̄), we have P̄0 = 1. Thus P0 = 1 and X

is a Sylow subgroup of G.

Returning to the original notation, we have shown that P ∈ Sylp(G) and X

is a noncentral chief factor of G. Let T = Φ(P ); observe that T ≤ R. By

coprimeness, P/T is a direct product X0×X1 of G-submodules, with X ∼= X0.

As above, (H2) implies that [X1, z] = [X1, Q] = 1, whence X1 ≤ Z(G/T ). Since
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X1 is complemented in G/T and since O2′
(G/T ) = G/T , we have X1 = 1 and

so T = R, as desired.

Corollary 3.8: Suppose G satisfies (H2), p ∈ π(K), and P ∈ Sylp(G). Then

G has p-length 1 and P has class at most 2. Moreover G contains normal Hall

subgroups Hi (1 ≤ i ≤ |π(K)|) such that 1 < H1 < . . . < H|π(K)| = K.

Proof. If Op(G) 6≤ Φ(G), then P / G by Proposition 3.7. Suppose Op(G) ≤
Φ(G). Lemma 3.6 implies that G/Op(G) has p-length 1. Hence G/Φ(G) has

p-length 1. By [H, VI.6.4(e)], G has p-length 1. Thus G has p-length 1 in all

cases.

To prove that P ′ ≤ Z(P ), we can work in G/Op′(G) by Lemma 3.2. Then

P = F(G) and so the p′-group G/P acts faithfully on P/Φ(P ). In particular,

[P/Φ(P ), z] 6= 1. By Proposition 3.7, P/Φ(P ) is a noncentral chief factor of G.

Let P0 = Π[P, t], where t ranges over all involutions of G. Since P0 6≤ Φ(P ), we

have Φ(P )P0 = P and so P0 = P . Since each [P, t] is cyclic and normal in P ,

we have [P ′, [P, t]] = 1. Thus [P ′, P ] = 1 and so P ′ ≤ Z(P ).

To prove the final assertion, note that, since Φ(G) < F(G), Proposition 3.7

implies that G has a nontrivial normal Sylow subgroup H1. Since G/H1 satisfies

(H2), the final assertion follows by induction.

Theorem 3.9: Let G satisfy (H2) with K > 1. Let p ∈ π(K) and P ∈ Sylp(G).

Then P is homocyclic abelian of rank at most 3. We have Z(G) = 1. If p divides

|K/K ′|, then P is cyclic.

Proof. We show first that P is abelian. Since G has p-length 1 and G/Op′(G)

satisfies (H2), we may assume that Op′(G) = 1 and P / G. By Proposition 3.7,

X = P/Φ(P ) is a chief factor of G. Working by induction on |P |, we may

assume that P ′ is the unique minimal normal subgroup of G.

By Proposition 3.5, |X| = pk with k ≤ 3. If k = 1, then |P/Φ(P )| = p

and so P is cyclic. Observe also that if P has exponent p, then P is abelian.

Indeed the proof of Corollary 3.8 shows that P = Π[P, t], where t ranges over

the involutions of G. Since each subgroup [P, t] is cyclic by (H2), each such

subgroup has order p and therefore lies, by normality, in Z(P ). Thus P = Z(P )

is abelian. We therefore assume that exp(P ) = pn > p. We will show that

|P | = pkn.

Let A = f1(P ) = 〈xp : x ∈ P 〉. Since exp(P ) > p, we have A > 1 and hence

P ′ ≤ A.
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Since p is odd and P ′ ≤ Z(P ), we have exp(Ω1(P )) = p. This follows from

the identity (xy)p = xpyp[x, y]p(p−1)/2 for x, y ∈ P . Since P ′ has exponent p,

the same identity shows that the pth power map from P to A is a surjective

homomorphism. Hence A = {xp : x ∈ P}.
Let Pa be the additive abelian group whose elements coincide with those of

P , under the operation x + y = xy[x, y]−
1
2 . This is the “Baer trick”; see [I1,

Lemma 4.37]. If x ∈ P , then x has the same order in Pa as it does in P . Hence

Ω1(P ) = Ω1(Pa) = {x ∈ P : xp = 1} and f1(P ) = f1(Pa) = {xp : x ∈ P}.
Now P ′ ≤ Φ(P ) and P ′ ≤ A = f1(P ) = f1(Pa) = Φ(Pa). If M is a subset of

P containing P ′, then the addition formula shows that M is a subgroup of P

if and only if M is a subgroup of Pa. It then follows from the definition of the

Frattini subgroup that Φ(P ) = Φ(Pa).

If g ∈ G, then the automorphism of P induced by g is also an automorphism of

Pa, by [I1, Lemma 4.37]. It follows that P/Φ(P ) and Pa/Φ(Pa) are isomorphic

G-modules. Let H be a p-complement in G. If Pa were a nontrivial direct prod-

uct P1 × P2 of H-invariant subgroups, then Pa/Φ(Pa) = P1/Φ(P1)× P2/Φ(P2)

would be a reducible G-module, contradicting Pa/Φ(Pa) ∼= X. We conclude

that Pa is indecomposable under the action of H. By [Go, 5.2.2], Pa is ho-

mocyclic, and so |Pa| = |Pa/Φ(Pa)|m = |X|m, where pm = exp(Pa). But

exp(Pa) = exp(P ) = pn. Hence |P | = |X|n = pkn, as desired.

Suppose that k = 3. We claim that X = [X, z1]× [X, z2]× [X, z3] for suitable

involutions z1, z2, z3 ∈ G. To see this, let Y = Π[X, t], as t ranges over the

involutions of G. Since Y is a nontrivial G-submodule of X, we have Y = X.

Hence there certainly exist involutions z1 and z2 such that [X, z1] 6= [X, z2].

By (H2), each |[X, zi]| = p, and so [X, z1][X, z2] is an hyperplane in X. Since

Y = X > [X, z1][X, z2] the claim follows.

Let Yi = [P, zi] for 1 ≤ i ≤ 3. By (H2), each Yi is a (normal) cyclic subgroup

of P . We have P = Y1Y2Y3Φ(P ) = Y1Y2Y3. Since exp(P ) = pn, we have

|Yi| ≤ pn for each i. Now p3n = |Y1Y2Y3| ≤ |Y1Y2||Y3| ≤ |Y1||Y2||Y3| ≤ p3n.

Hence |Yi| = pn for each i and |Y1Y2| = p2n. Thus Y1 ∩Y2 = 1 and so [Y1, Y2] ≤
Y1 ∩ Y2 = 1. Similarly, [Y1, Y3] = [Y2, Y3] = 1, and so P = Y1 × Y2 × Y3 is

abelian.

When k = 2, a similar argument shows that P is a direct product of two

cyclic subgroups of order pn. Thus P is abelian in all cases, as desired.

We claim next that P ∩ Z(G) = 1. To see this, we may still assume that

Op′(G) = 1 and P / G. Since P is abelian and indecomposable under the action
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of a p′-group, it follows as above that P is homocyclic. Moreover the only G-

invariant subgroups of P are of the form Ωi(P ), with i ≤ n, and all p-chief

factors of G are isomorphic to X (as G-modules); see [Ha]. Since G = O2′
(G),

we have P 6≤ Z(G). Hence X is not central in G and so P ∩ Z(G) = 1 for all

p ∈ π(K), as claimed. Since O2(G) = 1 by Lemma 3.6, we have Z(G) = 1, as

desired.

Finally, suppose p divides |K/K ′|. To prove that P is cyclic, we may assume

once more that Op′(G) = 1 and P / G. Since a nontrivial quotient of X =

P/Φ(P ) is central in K, it follows that X is central in K, and that X = [X, z]

has rank 1. Hence P is cyclic, as desired.

Proof of Theorem A. The first part of Theorem A follows by Lemma 2.2 and

Theorem 2.4. Suppose then that N = O2(G) > 1. By Theorem 3.1, G = NH,

where N ∩ H = 1 and H = KQ satisfies the Standard Hypotheses with re-

spect to N . By Proposition 3.4, H satisfies (H2). In particular, Q is cyclic.

By Theorem 3.9, Z(H) = 1. By Theorem 3.1, O2′(G) ≤ Z(G). Hence

O2′(G)N/N ≤ Z(G/N) ∼= Z(H) = 1. Thus O2′(G) = 1 and N = F(G).

Suppose |Q| > 2. Then Proposition 3.5 implies that every chief factor X

of H is centralized by K. Hence K ≤ F(H) = F(K) and so K is nilpotent.

Hence K = [K,Q] = Πp∈π(K)[Op(H), Q] is cyclic by (H2). Thus CK(Q) = 1

and CK(z) = CK(Q) = 1 by (H2). Then H = KQ is a Frobenius group. By

Lemma 3.3(a), NK is also a Frobenius group, and so G is a CIT group.

We may now assume that |Q| = 2. Since F = F(K) = F(H) is the inter-

section of the centralizers CH(X), where X ranges over all the chief factors of

H, we see that K/F is a subdirect product of the corresponding factor groups

K/CK(X). By Proposition 3.5, (K/F )
′′

= 1 and (K/F )
′

= 1 when (3, |K|) = 1.

By Theorem 3.9, all Sylow subgroups of K are abelian. In particular, F is

abelian.

Thus all assertions of Theorem A hold.

The following example shows that K/F can be nonabelian when G = KQ

satisfies the Standard Hypotheses.

Example 3.10: There is a group G satisfying the Standard Hypotheses such that

K has derived length 3.
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In the wreath product Z25 wrS3, let U = [(Z25)3, S3], so that U is isomorphic

to Z25 × Z25. Let D be dihedral of order 18. Then D maps onto S3 with

kernel D0 of order 3, and so D acts on U with kernel D0. Let U0 = Ω1(U)

and let U∗ = U/U0. Then U∗ acts faithfully and diagonally on A = GF(101)3,

and U∗ : S3 acts faithfully, monomially, and irreducibly on A. Thus DU acts

irreducibly and monomially on A, with kernel of order 75.

Let z be a fixed involution in D. Let T = D′. Then [z, T ] = T, [z, TU ] = TU ,

and [z, TUA] = TUA. Let K = TUA. Then [z,K] = K and K has derived

length 3. Let G = 〈z〉K.

Let δ be a fixed non principal linear character of D0. Choose µ ∈ Irr(U0) so

that no involution in DU inverts ker(µ). This is possible because DU acts on

U0 as S3. Thus only 3 of the 6 one-dimensional subspaces of U0 are inverted by

involutions in DU . Next choose λ ∈ Irr(A) so that ker(λ) does not contain [A, t],

for any involution t in DU . This is possible because DU/CDU (A) contains 15

involutions, and for each such involution t, 102 hyperplanes in A contain [A, t].

Thus at most 15 ·102 of the 1012 +101+1 hyperplanes in A contain some [A, t].

Let χ ∈ Irr(G) lie over δ × µ× λ. Since no involution in G fixes δ, Clifford’s

theorem implies that χ = θG for some θ ∈ Irr(K). Now θ ∈ IBr(K), and

(θG)0 = χ0 is the Brauer character of an irreducible G-module V .

Let 0 6= v ∈ V . Since G has a cyclic Sylow 3-subgroup T and the restriction

of χ to D0 is a multiple of δ + δ−1, it follows that (3, |CG(v)|) = 1. We claim

that v is centralized by no dihedral group of order 10. Suppose the contrary.

Since 〈z〉U is a Hall {2, 5}-subgroup of G, we may assume, after replacing v by

a conjugate vector, that v is centralized by a D10 subgroup 〈t〉〈u〉, with u ∈ U0

and t an involution in DU . Since every constituent of χU0
is a DU -conjugate

of µ, there must exist x ∈ DU such that 〈u〉 = ker(µx). Then t inverts ker(µx),

and so some involution in DU inverts ker(µ), contrary to the definition of µ.

This proves the claim.

We claim next that v is centralized by no dihedral group of order 202. Suppose

the contrary. Since 〈z〉 is a Sylow 2-subgroup of G, we may assume that v is

centralized by by a D202-subgroup 〈z〉〈a〉, with a ∈ A. Since every constituent

of χA is a DU -conjugate of λ, there must exist x ∈ DU such that 〈a〉 ≤ ker(λx).

Then ker(λx) contains 〈a〉 = [A, z] and so ker(λ) contains [A, xzx−1], contrary

to the definition of λ. This proves the claim. Thus CG(v) is the direct product

of a 2-group and a {5, 101}-group.
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