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Stability ofConsensusExtendedKalmanFilter for

DistributedStateEstimation

Giorgio Battistelli aLuigi Chisci a

aUniversità di Firenze, Dipartimento di Ingegneria dell’Informazione (DINFO), Via di Santa Marta 3, 50139 Firenze, Italy.

Abstract

The paper addresses consensus-based networked estimation of the state of a nonlinear dynamical system. The focus is on a
family of distributed state estimation algorithms which relies on the extended Kalman filter linearization paradigm. Consensus
is exploited in order to fuse the information, both prior and novel, available in each network node. It is shown that the
considered family of distributed Extended Kalman Filters enjoys local stability properties, under minimal requirements of
network connectivity and system collective observability. A simulation case-study concerning target tracking with a network
of nonlinear (angle and range) position sensors is worked out in order to show the effectiveness of the considered nonlinear
consensus filter.

Key words: Networked systems; distributed state estimation; sensor fusion; nonlinear filters; stability analysis; consensus;
Kalman filters.

1 Introduction

Consensus is a widely exploited tool for distributing
computations over networks in a scalable way. An es-
pecially important application of consensus, which has
recently received great attention, is networked state
estimation, i.e., distributed estimation of the state of a
dynamical system given measurements provided by a
wireless sensor network. The literature on the subject
is quite vast and includes approaches based on consen-
sus Kalman filtering (Olfati-Saber, 2007; Kamgarpour
and Tomlin, 2008; Kar and Moura, 2011; Cattivelli
and Sayed, 2010; Li and Jia, 2012; Zhou et al., 2013;
Wang et al., 2014), Luenberger-like consensus estima-
tion (Stankovic et al., 2009; Matei and Baras, 2012;
Millan et al., 2013, 2015), consensus H∞ estimation
(Ugrinovskii, 2011, 2013), distributed particle filtering
(Mohammadi and Asif, 2013; Hlinka et al., 2013), and
distributed moving-horizon estimation (Farina et al.,
2010, 2012). The interested reader is referred to the
above-cited papers as well so to the references therein

⋆ This paper is an expanded and revised version of “Stability
of consensus extended Kalman filtering for distributed state
estimation“, presented at the 2014 IFAC World Congress
held in Cape Town, South Africa.

Email addresses: giorgio.battistelli@unifi.it
(Giorgio Battistelli), luigi.chisci@unifi.it (Luigi
Chisci).

for an overview of the different existing approaches. In
the context of networked state estimation, the main
challenge is to design distributed estimation algorithms
that preserve as much as possible the stability, perfor-
mance and robustness requirements of their centralized
counterparts.

With this respect, significant advances have been made,
in the last years, in the linear setting by developing
distributed state estimation (DSE) algorithms able to
guarantee stability under minimal requirements of net-
work connectivity and system collective observability,
i.e. observability from the whole network but not neces-
sarily from individual sensors. Such algorithms include
the consensus on information (CI) filter of Battistelli
et al. (2011); Battistelli and Chisci (2014) and the infor-
mation weighted consensus filter (ICF) of Kamal et al.
(2012, 2013). The CI, in which consensus is carried out
on the posterior information of the network nodes, can
be interpreted in terms of consensus to the average of
the local posteriors according to the pseudo-metric in-
duced by the Kullback-Leibler average (Battistelli and
Chisci, 2014). The ICF algorithm performs a consensus
with a suitable weighting of the prior state and mea-
surement information so as to ensure convergence to the
centralized estimate as the number of consensus steps
goes to infinity. Recently in (Battistelli et al., 2015), it
was shown that both the CI and the ICF belong to a
broader family of DSE algorithms, and a generalization

Preprint submitted to Automatica 4 March 2016



to a nonlinear setting was proposed by exploiting the
Extended Kalman Filter (EKF) linearization argument.
Hereafter, the family of DSE algorithms resulting from
such a generalization will be referred to as Distributed
EKFs (DEKFs).

The present paper provides a contribution by proving
that the family of DSE algorithms of Battistelli et al.
(2015) enjoy nice stability properties also in the more
general nonlinear setting, provided that, similarly to
the linear case, suitable connectivity and collective ob-
servability assumptions hold. In the lines of the classical
results on stability of centralized EKF (La Scala et al.,
1995; Reif and Unbehauen, 1999; Reif et al., 1999),
the stability analysis is based on the idea of writing
the estimation error dynamics in a suitable way so
that the linearized part is separated from the nonlinear
(higher-order) terms. Then, the stability of the linear
part of the estimation error dynamics can be analyzed
via Lyapunov-like methods, and local stability results
can be derived for the overall estimation error dynam-
ics. As a further contribution, an explicit connection is
established between the boundedness of the filter co-
variance matrix and the invertibility of the collective
observability mapping.

Thanks to this result, the considered family of DEKFs
emerges as an effective tool for the solution ofmany prac-
tically relevant distributed nonlinear filtering problems
like, e.g., distributed tracking of a moving object given
measurements of angle, range and/or Doppler wireless
communicating sensors spread over the area of interest;
such sensors, in fact, are highly nonlinear and unable to
individually guarantee observability.

The rest of the paper is organised as follows. Section 2
introduces the problem setting. Section 3 describes the
considered family of DEKF algorithms for networked
state estimation and section 4 analyses its stability prop-
erties. Section 5 demonstrates, via simulation experi-
ments, the effectiveness of such a consensus filter in a
nonlinear target tracking case-study. Section 6 ends the
paper with concluding remarks. All mathematical proofs
are reported in the appendix.

2 Problem setting

This paper addresses Distributed State Estimation
(DSE) over a sensor network consisting of two types of
nodes: communication nodes have only processing and
communication capabilities, i.e. they can process local
data as well as exchange data with neighboring nodes,
while sensor nodes have also sensing capabilities, i.e.
they can sense data from the environment. Notice that
communication nodes are introduced to act as “re-
lays” of information whenever sensor nodes are too far
away to communicate. For insights on the importance
of considering the effect of communication nodes when

studying the properties of a distributed state estima-
tion algorithm we refer the reader to (Kamal et al.,
2013; Wang et al., 2014)(where this type of nodes are
referred to as “naive nodes”). In the sequel, the network
will be denoted by the triplet (S, C,A) where: S is the
set of sensor nodes, C the set of communication nodes,
N = S

⋃
C, A ⊆ N ×N is the set of arcs (connections)

such that (i, j) ∈ A if node j can receive data from node
i (clearly (i, i) ∈ A for all i ∈ N ). Further, for each
node i ∈ N , N i will denote the set of its in-neighbors

(including i itself), i.e. N i △
= {j : (j, i) ∈ A}.

The DSE problem over the sensor network (S, C,A) can
be formulated as follows. Consider a dynamical system

xt+1 = f(xt) +wt (1)

and a set of sensors S with measurement equations

yi
t = hi(xt) + vi

t , i ∈ S . (2)

Notice that the above measurement equation is defined
only for sensor nodes, since no measurement is supposed
to be collected by the communication nodes. Then the
objective is to have, at each time t ∈ {1, 2, . . .} and
in each node i ∈ N , an estimate x̂t|t of the state xt

constructed only on the basis of the local measurements
(when available) and of data received from all adjacent
nodes j ∈ N i\{i}.

2.1 Centralized Extended Kalman Filter

Before describing the family of DEKF algorithms under
consideration, it is convenient to briefly recall the equa-
tions of the centralized Extended Kalman Filter, which
is assumed to simultaneously process all measurements
{yik, i ∈ S}. Hereafter, for convenience, the information
filter form will be adopted. The information filter prop-
agates, instead of the estimate x̂t|t−1 and covariance
Pt|t−1, the information (inverse covariance) matrices

Ωt|t−1
△
= P−1

t|t−1, Ωt|t
△
= P−1

t|t

and the vectors

qt|t−1
△
= P−1

t|t−1x̂t|t−1, qt|t
△
= P−1

t|t x̂t|t

that will be referred to as information vectors. Then,
the recursive information filter of Table 1 can be de-
rived (Battistelli et al., 2015), where W and Vi, i ∈ N ,
are given positive definite matrices. A typical choice for
such matrices is to take W as an estimate of the inverse
covariance of the process disturbance wt, and each Vi

as an estimate of the inverse covariance of the measure-
ment noise vi

t affecting the i-th sensor. Notice, however,
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Table 1
Information CEKF Algorithm, to be implemented at each
sampling interval t = 1, 2, . . . starting from initial conditions
x̂1|0, Ω1|0, q1|0 = Ω1|0 x̂1|0.

Correction (measurement-update):

Ci
t =

∂hi

∂x

(

x̂t|t−1

)

, i ∈ S

Ωt|t = Ωt|t−1 +
∑

i∈S

(

Ci
t

)⊤

Vi Ci
t

yi
t = yi

t − hi
(

x̂t|t−1

)

+Ci
tx̂t|t−1, i ∈ S

qt|t = qt|t−1 +
∑

i∈S

(

Ci
t

)⊤

Vi yi

t

Prediction (time-update):

x̂t|t = Ω−1

t|t qt|t, and At =
∂f

∂x

(

x̂t|t

)

Ωt+1|t = W −WAt

(

Ωt|t +A⊤
t WAt

)−1
A⊤

t W

x̂t+1|t = f
(

x̂t|t

)

, and qt+1|t = Ωt+1|t x̂t+1|t

that a specific choice of such matrices is immaterial for
the subsequent developments.

The algorithm of Table 1 generalizes the Information
Kalman Filter algorithm, corresponding to f(x) = Atx
and hi(x) = Ci

tx, to nonlinear systems (1) and/or sen-
sors (2) via the Extended Kalman Filter paradigm of
linearizing the state and measurement equations around
the current estimate. With this respect, the following
assumption is needed.

A1. The functions f and hi, i ∈ S, are twice continu-
ously differentiable on R

n, where n = dim(x).

Notice that, in order to streamline the presentation, here
and in the following it is supposed that the functions f
and hi, i ∈ S, are defined over the whole R

n. However,
all the results presented hereafter could be suitably mod-
ified to account for the case when the system trajectories
are confined to a given set X ⊂ R

n.

3 Distributed Extended Kalman Filter

The focus of this paper is on a family of DSE algo-
rithms proposed in (Battistelli et al., 2015) wherein
each network node runs a local EKF and information
is spread through the network by means of consensus.
As well known, consensus is a widely exploited tool for
distributed computation (e.g. minimization, maximiza-
tion, averaging, etc.) over a network. The basic idea of
consensus is to perform a collective computation over
the whole network by iterating, in each node of the net-
work, regional computations of the same type involving
only the subset of neighboring nodes. In the specific
context of this paper, consensus is applied to fuse the
information on the state xt available in each node with
the one received from the neighbors.

To this end, let us assume that at time t each node
i ∈ N be provided with a local information pair
(

Ωi
t|t−1,q

i
t|t−1

)

. Then, after a novel measurement yi
t

has been collected, the information available in node i
consists of two information pairs:

(i) the information pair
(

Ωi
t|t−1,q

i
t|t−1

)

which repre-

sents the prior information;
(ii) the information pair

(
δΩi

t, δq
i
t

)
which represents

the novel information.

Notice that, for a generic sensor node i ∈ S, one has

δΩi
t =

(
Ci

t

)⊤
Vi

tC
i
t and δqi

t =
(
Ci

t

)⊤
Vi

ty
i
t, where the

linearized output matrices Ci
t, and hence the virtual

measurements yi
t, have to be redefined in terms of the

local state predictions x̂i
t|t−1 instead of the centralized

one x̂t|t−1, which is not available in a distributed set-
ting. For each communication node i ∈ C, we simply let
δqi

t = 0 and δΩi
t = 0.

In the considered family of DEKFs, before combining the
prior information with the novel one, two parallel con-
sensus algorithms are carried out by iterating a certain
number, say L, of regional averages on the two informa-
tion pairs (prior and novel). Specifically, the consensus
on prior information takes the form

qi
t|t−1(ℓ+ 1) =

∑

j∈N i

πi,j q
j
t|t−1(ℓ)

Ωi
t|t−1(ℓ + 1) =

∑

j∈N i

πi,j Ω
j
t|t−1(ℓ)

(3)

for ℓ = 0, 1, . . . , L− 1 with the initialization qi
t|t−1(0) =

qi
t|t−1 and Ωi

t|t−1(0) = Ωi
t|t−1. As for the novel informa-

tion, L consensus steps of the type

δqi
t(ℓ+ 1) =

∑

j∈N i

πi,j δqj
t (ℓ)

δΩi
t(ℓ + 1) =

∑

j∈N i

πi,j δΩj
t (ℓ)

(4)

are performed, where ℓ = 0, 1, . . . , L − 1. For each sen-
sor node i ∈ S, the initial vector δqi

t(0) and the initial
matrix δΩi

t(0) are set equal to δq
i
t and δΩi

t, respectively.

Notice that in both algorithms, in each consensus itera-
tion, each node i computes a regional average, that is a
combination of the values in N i with suitable consensus
weights πi,j , j ∈ N i. In this paper, a convex combina-
tion is adopted by supposing πi,j ≥ 0 and

∑

j∈N iπi,j =
1, ∀i ∈ N .

After the two consensus iterations have been carried out,

the two fused information pairs
(

Ωi
t|t−1(L),q

i
t|t−1(L)

)
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Table 2
DEKF Algorithm

Compute the local correction terms
if i ∈ S then

sample the measurement yi
t

Ci
t =

∂hi

∂x

(

x̂i
t|t−1

)

yi
t = yi

t − hi
(

x̂i
t|t−1

)

+Ci
tx̂

i
t|t−1

δqi
t =

(

Ci
t

)⊤
Vi

t y
i
t

δΩi
t =

(

Ci
t

)⊤
Vi Ci

t

else
δqi

t = 0, and δΩi
t = 0

end if
Consensus:
δqi

t(0) = δqi
t, δΩi

t(0) = δΩi
t,

qi
t|t−1(0) = qi

t|t−1, Ωi
t|t−1(0) = Ωi

t|t−1,
for ℓ = 0, 1, . . . , L− 1 do

Fuse the quantities δqj
t(ℓ) and δΩj

t(ℓ) as in (4)

and the quantities qj

t|t−1
(ℓ) and Ωj

t|t−1
(ℓ) as in (3)

end for
Correction:
qi
t|t = qi

t|t−1(L) + γi
t δq

i
t(L)

Ωi
t|t = Ωi

t|t−1(L) + γi
t δΩ

i
t(L)

x̂i
t|t =

(

Ωi
t|t

)−1
qi
t|t

Prediction:

x̂i
t+1|t = f

(

x̂i
t|t

)

, and Ai
t =

∂f

∂x

(

x̂i
t|t

)

Ωi
t+1|t = W −WAi

t

(

Ωi
t|t + (Ai

t)
⊤WAi

t

)−1
(Ai

t)
⊤W

qi
t+1|t = Ωi

t+1|tx̂
i
t+1|t

and
(
δΩi

t(L), δq
i
t(L)

)
are suitably combined in the cor-

rection step. Summing up, the DEKF algorithm of Ta-
ble 2 is obtained. It is worth noting that, in the DEKF
algorithm, each network node performs three main op-
erations: EKF prediction, computation of the local cor-
rection term, and consensus. The first two operations
make use only of the local information and hence have
the same complexity of a local EKF. Further, the com-
plexity of the consensus iteration depends on the num-
ber of neighbors and not on the total number |N | of
network nodes. These properties, together with the fact
(shown in the following) that stability is guaranteed for
any number L of consensus steps irrespective of the net-
work size, ensure the scalability of the approach. A few
remarks on the considered algorithm are in order.

Remark 1 First of all notice that, in the correction step
of each network node i, the fused novel information re-
sulting from the consensus iteration is multiplied by some
suitable scalar weight γi

t. Hence, Table 2 actually pro-
vides a family of distributed filters corresponding to dif-
ferent choices of the scalar weights γi

t . For instance, when
γi
t = 1, the consensus on information filter of Battistelli

and Chisci (2014); Battistelli et al. (2011) is retrieved.
If instead γi

t is taken equal to |N |, the number of nodes
in the network, then the resulting CEKF algorithm coin-
cides with the EKF-based generalization of the informa-
tion weighted consensus proposed by Kamal et al. (2012,

2013) in a linear setting.

Remark 2 When a large number of consensus steps per
sampling interval is performed, consensus on novel in-
formation can be sufficient to ensure stability and per-
formance. This is precisely the idea exploited in the ap-
proaches of Olfati-Saber (2007); Kamgarpour and Tom-
lin (2008); Li and Jia (2012) wherein consensus is per-
formed only on the novel information so as to approxi-
mate, in a distributed way, the correction step of the cen-
tralized filter. However, this kind of approaches has an
intrinsic limitation in the fact that stability can be guar-
anteed only when a sufficiently large number L of consen-
sus steps is performed, so that the local information pro-
vided by the innovation pairs can spread throughout the
whole network (since in this case information collected at
time t is spread only at time t). See also (Battistelli and
Chisci, 2014; Battistelli et al., 2015) for a discussion on
this issue. On the other hand, by performing a consensus
also on the prior information, the information collected
at time t is spread also in the subsequent sampling in-
tervals t+1, t+2, . . . through the predictions. Hence, as
proved in the subsequent part of the paper, we can have
stability for any number L of consensus steps.

Remark 3 As discussed by Battistelli and Chisci
(2014), in the linear Gaussian case the consensus on the
prior information has a meaningful interpretation, from
the information-theoretic point of view, as a consen-
sus among the local Gaussian prior probability density
functions (PDFs) in the pseudo-metric defined by the
Kullback-Leibler divergence. The EKF-paradigm allows
to readily extend such concepts to a nonlinear setting
by approximating each local prior PDF with a Gaussian
(see also Battistelli et al., 2014).

Remark 4 The scalar weights γi
t are introduced in order

to counteract the possible underweighting of novel infor-
mation. To elaborate more on this issue, notice that in the
correction step of the centralized EKF the novel informa-
tion is represented by the pair (∂Ωt, ∂qt) where ∂Ωt =
∑

i∈S

(
Ci

t

)⊤
Vi

tC
i
t and ∂qt =

∑

i∈S

(
Ci

t

)⊤
Vi

ty
i
t. On

the other hand, even assuming a balanced choice of the
consensus weights, consensus on the novel information
would provide at convergence the averages ∂Ωt/|N | and
∂qt/|N |. This implies the necessity for rescaling the con-
sensus outcome bymeans of multiplication with the scalar
weight γi

t. For example, the choice γi
t = |N |, which has

been proposed by Kamal et al. (2012, 2013), has the ap-
pealing feature of giving rise to a distributed algorithm
converging to the centralized one as L tends to infinity.
However, when only a moderate number of consensus
steps per sampling interval can be afforded, other choices
can be more convenient. For a discussion on this issue as
well as an alternative choice for the weights γi

t, the inter-
ested reader is referred to Battistelli et al. (2014, 2015).

Remark 5 Whenever the weights γi
t are node-independent,

i.e. γi
t = γt, ∀i ∈ N , it is possible to perform jointly
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the two parallel consensus algorithms of Table 2 so as to
save bandwidth by considering the combined information

pair
(

Ωi
t|t−1 + γtδΩ

i
t,q

i
t|t−1 + γtδq

i
t

)

.

For the purposes of this paper, the particular choice of
the scalars γi

t is immaterial as it is just sufficient to make
the following assumption.

A2. There exist two positive scalars γ and γ̄ such that

0 < γ ≤ γi
t ≤ γ̄, for any i ∈ N and t ≥ 0.

4 Stability analysis

In this section, the stability properties of the DEKF al-
gorithm of Section 3 are analyzed. To this end, notice
first that under assumption A1 the function f can be
expanded as

f(xt)− f(x̂i
t|t) = Ai

t(xt − x̂i
t|t) +ϕ(xt, x̂

i
t|t) (5)

with Ai
t as in the DEKF algorithm and ϕ(·) a suitable

continuous function going to zero as x̂t|t tends to xt.

Similarly, each function hi, i ∈ S, can be expanded as

hi(xt)− hi(x̂i
t|t−1) = Ci

t(xt − x̂i
t|t−1) + χ

i(xt, x̂
i
t|t−1)

(6)
with Ci

t as in the DEKF algorithm and χ
i(·) a suitable

continuous function going to zero as x̂i
t|t−1 tends to xt.

Here, the functions ϕ and χ
i in (5) and (6) represent

the remainders of the Taylor expansion of f and, respec-
tively, hi (see also Reif et al., 1999). By exploiting such
expansions, it is possible to write the estimation error
dynamics so that the linearized part is separated from
the nonlinear terms. To this end, let us denote by Π
the consensus matrix, whose elements are the consensus
weights πi,j for any i, j ∈ N . Further, let πi,j

ℓ be the

(i, j)-th element ofΠℓ, i.e. the ℓ-th power of the consen-
sus matrix Π. Then the following result holds.

Proposition 1 Let assumptions A1-A2 hold and let the
DEKF algorithm be initialized at time t = 1 with positive
definite information matrices Ωi

1|0. Then, for any i and

any t, the matrices Ωi
t|t are invertible and the estimation

errors eit = xt − x̂i
t|t−1 obey the recursion

eit+1 =
∑

j∈N

Φ
i,j
t e

j
t + rit + sit (7)

where

Φ
i,j
t = πi,j

L Ai
t

(

Ωi
t|t

)−1

Ω
j
t|t−1 ,

rit =ϕ(xt, x̂
i
t|t)

+
∑

j∈S

πi,j
L γi

tA
i
t

(

Ωi
t|t

)−1

(Cj
t )

⊤Vj
χ

j(xt, x̂
j
t|t−1) ,

sit =wt −
∑

j∈S

πi,j
L γi

tA
i
t

(

Ωi
t|t

)−1

(Cj
t )

⊤Vjv
j
t .

�

In order to study the stability of the estimation error
dynamics (7), the following assumption on the consensus
weights is needed.

A3. The consensus matrix Π is row stochastic and
primitive 1 .

Notice that assumption A3 can always be satisfied pro-
vided that the network is connected. For instance, in this
case, the Metropolis weights (Xiao et al., 2005; Calafiore
and Abrate, 2009) satisfy A3. While taking the consen-
sus matrix Π row stochastic is sufficient for stability, a
doubly stochastic Π would also ensure that all the ele-
ments of ΠL tends to 1/|N | as L → +∞.

Let now p denote the Perron-Frobenius left eigenvector
of the matrix ΠL and let pi denote its i-th component.
Further, consider the candidate Lyapunov function

Vt(et) =
∑

i∈N

pi
(
eit
)⊤

Ωi

t|t−1e
i
t (8)

for the overall estimation error dynamics, where et =
col

(
eit, i ∈ N

)
. Notice that, by virtue of assumption

A3, the eigenvector p has strictly positive components
pi, i ∈ N , and satisfies the equation p⊤ΠL = p⊤, i.e.,
∑

j∈N pjπj,i
L = pi. The following result concerning the

linearized part of the error dynamics can now be stated.

Lemma 1 Let assumptions A1-A3 be satisfied. Further,
suppose that the following conditions hold:

i) there exist nonnegative reals ā and c̄ such that

‖Ai
t‖ ≤ ā, ‖Ci

t‖ ≤ c̄

for any i and any t;

1 Recall that a non-negative square matrixΠ is row stochas-
tic if all its rows sum up to 1. Further, it is primitive if there
exists an integer m such that all the elements of Πm are
strictly positive.
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ii) there exist positive reals ω, ω̄ such that

0 < ωI ≤ Ωi
t|t ≤ ω̄I

for any i and any t;
iii) the matrix Ai

t is invertible for any i and any t.

Then, there exists a nonegative scalar β̃ < 1 such that,
for any t, the candidate Lyapunov function defined in (8)
satisfies

Vt+1(Φtet) ≤ β̃ Vt(et)

where Φt is the block matrix whose block elements are
given by the matrices Φi,j

t defined in Proposition 1. �

Notice that conditions (i)-(iii) are taken preliminarily as
hypotheses for deriving Lemma 1, which has to be re-
garded as an intermediate step for obtaining the main
stability result of the paper which is Theorem 2. As
shown in Section 4.1, such conditions automatically hold
provided that system (1)-(2) enjoys some basic regular-
ity and observability assumptions. For instance, condi-
tion i) holds when the functions f and hi, i ∈ S, are glob-
ally Lipschitz or, in view of assumption A1, when the es-
timated trajectories x̂i

k|k, i ∈ N , are bounded. Further,

condition ii) is closely related to the collective observ-
ability of the state xt from the measurements yi

t, i ∈ S,
collected by all the available sensors, while condition iii)
is related to the time reversibility of the system dynam-
ics. For the sake of clarity, we defer the detailed dis-
cussion on these conditions to Section 4.1 and proceed
now to derive another intermediate result concerning the
overall estimation error dynamics.

To this end, recall that the functions ϕ and χ
i in (5) and

(6) represent the remainders of the Taylor expansion of f
and, respectively, hi and hence, under suitable assump-
tions, go to zero with order of convergence greater than
1. With this respect, in the lines of Reif et al. (1999), the
following assumption is made.

A4. There exist positive reals ǫϕ, κϕ, ǫχi , κχi , i ∈ S,
such that the nonlinear functions ϕ and χ

i in (5)
and (6), respectively, are bounded as

‖ϕ(x, x̂)‖ ≤ κϕ ‖x− x̂‖2 (9)

‖χi(x, x̂)‖ ≤ κχi ‖x− x̂‖2 (10)

for any pair x, x̂ ∈ R
n such that ‖x− x̂‖ ≤ ǫϕ and

‖x− x̂‖ ≤ ǫχi , respectively.

By exploiting Lemma 1 and assumption A4 the following
local stability result can be derived.

Theorem 1 Let assumptions A1-A4 be satisfied. Fur-
ther, suppose that conditions i)-iii) of Lemma 1 hold.
Then, the estimation error eit turns out to be bounded in

all the network nodes, i.e., there exists a positive real ǫ
such that

lim sup
t→∞

‖eit‖ ≤ ǫ (11)

for any i, provided that the initial estimation errors sat-
isfy

‖ei1‖ ≤ ǫ0 (12)

for some suitable constant ǫ0 > 0 and the disturbances
satisfy

‖wt‖ ≤ ǫw, ‖vi
t‖ ≤ ǫvi , i ∈ S (13)

for suitable constants ǫw > 0 and ǫvi > 0, i ∈ S. �

It is worth noting that, when the disturbance amplitudes
ǫw > 0 and ǫvi > 0 decrease, the asymptotic bound ǫ de-
creases as well and, in particular, the following corollary
to Theorem 1 holds.

Corollary 1 Let the system dynamics (1) and the mea-
surement equations (2) be noise-free, i.e.,

wt = 0, vi
t = 0

for any i and any t. Then, under the same assumptions
of Theorem 1, the estimation error goes to zero in all the
network nodes, i.e.,

lim
t→∞

‖eit‖ = 0

for any i, provided that the initial estimation errors sat-
isfy

‖ei1‖ ≤ ǫ0

for some suitable constant ǫ0 > 0. �

4.1 Connection with collective observability

This section is devoted to discussing how conditions i)-
iii) of Lemma 1 can be related to specific properties of
system (1)-(2). To this end, let h = col(hi, i ∈ S) be the
collective output function, and let F[M ](x) be the collec-
tive observability mapping defined over a time window
of length M , i.e.

F[M ](x) =












h(x)

h ◦ f(x)
...

h ◦ f ◦ · · · ◦ f
︸ ︷︷ ︸

M times

(x)












where ◦ denotes composition. In words, given a time win-
dow {t−M, . . . , t}, F[M ](x) coincides with the mapping
from the state x at time t−M to the vector made up of
the noise-free collective outputs at times t−M, . . . , t.
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Supposing that the system trajectory lies within some
compact set X , the following assumptions are now
needed.

A5. For any x ∈ X , ∂f(x)/∂x is non-singular.
A6. There exist a positive integer M such that, for

any x ∈ X , rank
{
∂F[M ](x)/∂x

}
= n where n =

dim(x).

Notice that assumption A5 amounts to requiring that
the state transition function f(x) is a diffeomorphism
on X and, hence, reversible. Further, as well known, as-
sumption A6 ensures that collective observability, in the
sense of the invertibility of the mapping F[M ](x), holds.

The following intermediate result can now be stated.

Lemma 2 Let the system trajectory belong to a compact
set X , i.e. {xt} ⊂ X , and suppose that assumptions A1-
A6 are satisfied and that the DEKF algorithm is initial-
ized at time t = 1 with positive definite information ma-
tricesΩi

1|0. Then, conditions i)-iii) of Lemma 1 hold pro-

vided that, for any i and t, the estimation errors satisfy

‖eit‖ ≤ ǫ̂ (14)

for some suitable constant ǫ̂ and the disturbances satisfy

‖wt‖ ≤ ǫ̂w, ‖vi
t‖ ≤ ǫ̂vi , i ∈ S (15)

for suitable constants ǫ̂w > 0 and ǫ̂vi > 0, i ∈ S. �

Notice that in the above lemma the boundedness of the
estimation error (14) is taken as an assumption just as
an intermediate step. In fact, by exploiting Lemma 2
and Theorem 1, it turns out that the following stability
result can be proven which summarizes all the foregoing
derivations.

Theorem 2 Let the system trajectory belong to X , i.e.,
{xt} ⊂ X , and suppose that assumptions A1-A6 are sat-
isfied and that the DEKF algorithm is initialized at time
t = 1 with positive definite information matrices Ωi

1|0.

Then, the estimation error eit turns out to be bounded in
all the network nodes, i.e., there exists a positive real ǫ̃
such that

‖eit‖ ≤ ǫ̃ (16)

for any i, provided that the initial estimation errors sat-
isfy

‖ei1‖ ≤ ǫ̃0 (17)

for some suitable constant ǫ̃0 > 0 and the disturbances
satisfy

‖wt‖ ≤ ǫ̃w, ‖vi
t‖ ≤ ǫ̃vi , i ∈ S (18)

for suitable constants ǫ̃w > 0 and ǫ̃vi > 0, i ∈ S. �

5 Simulation results

The aim of this section is to corroborate the theoretical
analysis by showing the effectiveness of the DEKF algo-
rithm in a target tracking case study. To this end, the
target motion is modeled by a linear (nearly constant
velocity) model

xt+1 = Axt +wt

with

A =










1 Ts 0 0

0 1 0 0

0 0 1 Ts

0 0 0 1










, Q =










T 3

s

3
T 2

s

2 0 0
T 2

s

2 Ts 0 0

0 0
T 3

s

3
T 2

s

2

0 0
T 2

s

2 Ts










q

where: xt = [xt, ẋt, yt, ẏt]
⊤
is the kinematic target state

at sampling time tmade up of the Cartesian coordinates
of position (xt, yt) and of velocity (ẋt, ẏt); Ts is the sam-
pling interval; q is the variance of the random fluctua-
tions of target speed and Q the covariance matrix of the
disturbance wt.

The target position is measured by two types of non-
linear sensors measuring angle or, respectively, dis-
tance. These two sensors, from now on indicated by
the acronyms DOA (Direction Of Arrival) and TOA
(Time Of Arrival), are characterized by the following
measurement functions:

hi(x) =







atan2
(
x− xi, y − yi

)
, if i is a DOA sensor

√

(x− xi)
2
+ (y − yi)

2
, if i is a TOA sensor

where atan2 is the 4-quadrant inverse tangent function
and (xi, yi) denotes the position of the i-th sensor. Over-
all, the network consists of 100 communication nodes, 5
TOA sensor nodes, and 5 DOA sensor nodes. Graphical
representations of the sensor network is provided in Fig.
1. Notice that each sensor is unable by itself to ensure
observability of the whole state vector, but collective ob-
servability holds.

The measurement noise is assumed to have σθ = 2◦ stan-
dard deviation for DOA sensors, and σr = 10 m stan-
dard deviation for TOA sensors. Other parameters of
the simulations are fixed to sampling interval Ts = 1 and
q = 0.5 m2/s3. The DEKF algorithm described in Sec-
tion 3 is compared with the CEKF of Section 2.1. The
matricesW andVi for both algorithms are taken as the
inverse of the disturbance and, respectively, measure-
ment noise covariances. The consensus weights used in
the simulations of the DEKF algorithm are set equal to
the Metropolis weights (Xiao et al., 2005; Calafiore and
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Fig. 1. Nonlinear sensor network used in the simulations.

Abrate, 2009). Further, for the sake of comparison, we
consider different numbers L of consensus steps, rang-
ing from 1 to 5, as well as three different choices for
the weights γi

t : 1) γ
i
t = 1; 2) γi

t generated by means of
the binary consensus algorithm described in (Battistelli
et al., 2015); and 3) γi

t = |N |. For brevity, hereafter, we
denote the distributed filters resulting from such three
different choices of γi

t as DEKF1, DEKF2, and DEKF3,
respectively.

Overall, 200 independent Monte Carlo trials have been
performed and the position root mean square error
(PRMSE) has been computed as performance index.
The resulting PRMSE time behaviors are reported in
Fig. 2 for the considered filters. For the CEKFs, we
report the results corresponding to L = 1 (in the top
plot) and L = 5 (in the bottom one). Further, Table
3 shows the PRMSE averaged over time, Monte Carlo
trials, and nodes for different values of L. For each fil-
ter and each L two values are reported: the top one
refers to the PRMSE computed over all the simulation
horizon, whereas the bottom one refers to the PRMSE
computed after the transient period (i.e., in the last 50
time instants of the simulation horizon).

It can be seen that the DEKF provides satisfactory per-
formance in all the considered settings, even for a low L,
and that the lack of local observability does not compro-
mise the stability of the estimation error. On the other
hand, the choice of the parameters L and γi

t can affect
the filter behavior. In fact, in general, performance im-
proves as the number L of consensus steps increases.
Further, in accordance with the discussion of Remark 4,
by taking γi

t greater than 1 it is possible to substantially
improve the filter performance both in the transient and
in the asymptotic error (see also Battistelli et al., 2015,
for additional insights on this issue).
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Fig. 2. Behavior of the PRMSE, averaged over all the nodes,
for the considered filters. For the DEKFs, the number L of
consensus steps is 1 in the top plot and 5 in the bottom one.

Table 3
Performance comparison

PRMSE [m] DEKF1 DEKF2 DEKF3

426.51 266.11 190.63
L = 1

22.60 16.74 23.11

335.45 183.43 131.27
L = 2

18.61 12.44 15.61

297.23 162.74 111.41
L = 3

17.09 10.89 12.79

273.42 146.26 97.94
L = 4

17.02 10.54 11.40

258.21 135.80 91.09
L = 5

15.33 9.20 10.26

6 Conclusions

A family of consensus EKFs for networked estimation
has been analyzed, including the consensus on informa-
tion filter of Battistelli and Chisci (2014) as well as the
information weighted consensus filter of Kamal et al.
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(2013). In the considered family of algorithms, consen-
sus is applied both to the predicted and the novel infor-
mation in the EKF information form. A collective Lya-
punov function has been constructed for the dynamics
of the estimation errors over the network. Then, it has
been shown that, under network connectivity and collec-
tive observability, the proposed consensus EKF guaran-
tee local stability in all network nodes. An open problem
that deserves further investigation is whether similar, or
even stronger, stability properties can be achieved by
means of different distributed nonlinear state estimation
techniques, for example based on the Unscented Kalman
Filter (Julier and Uhlmann, 2004).

A Proofs

Proof of Proposition 1: Since the predicted and filtered
covariances can be written as

Ωi
t+1|t =

(

Ai
t(Ω

i
t|t)

−1(Ai
t)

⊤ +W−1
)−1

(A.1)

and, respectively,

Ωi
t|t =

∑

j∈N

πi,j
L Ω

j
t|t−1 + γi

t

∑

j∈S

πi,j
L

(

C
j
t

)⊤

VjC
j
t (A.2)

it is immediate to see that Ωi
1|0 > 0, i ∈ N , implies that

Ωi
t|t > 0, i ∈ N , for any finite t. Notice now that

eit+1 = f(xt)− f(x̂t|t) +wt = Ai
t(xt − x̂i

t|t)

+ϕ(xt, x̂
i
t|t) +wt . (A.3)

Further, the estimate x̂i
t|t can be expressed as

x̂i
t|t =

(

Ωi
t|t

)−1

×

[
∑

j∈N

πi,j
L Ω

j
t|t−1x̂

j
t|t−1 + γi

t

∑

j∈S

πi,j
L

(

C
j
t

)⊤

Vj ȳ
j
t

]

with ȳ
j
t as in Table 2. Notice also that, by virtue of (A.2),

the following identity holds

xt =
(

Ωi
t|t

)−1

×

[
∑

j∈N

πi,j
L Ω

j
t|t−1xt + γi

t

∑

j∈S

πi,j
L

(

C
j
t

)⊤

VjC
j
txt

]

.

Since

C
j
txt − ȳ

j
t =C

j
t (xt − x̂

j
t|t−1)− y

j
t + hj(x̂j

t|t−1)

=C
j
t (xt − x̂

j
t|t−1) + hj(x̂j

t|t−1)− hj(xt)− v
j
t

=χ
j(xt, x̂

j
t|t−1)− v

j
t ,

with straightforward calculation one gets

xt − x̂i
t|t =

(

Ωi
t|t

)−1
(

∑

j∈N

πi,j
L Ω

j
t|t−1(xt − x̂i

t|t−1)

+ γi
t

∑

j∈S

πi,j
L (Cj

t )
⊤Vj(χj(xt, x̂

i
t|t−1)− v

j
t )

)

. (A.4)

Then, equation (7) can be derived by combining (A.4)
with (A.3). �

Proof of Lemma 1: Exploiting the fact that

Ωi

t+1|t ≤ β̃(Ai
t)

−⊤Ωi

t|t(A
i
t)

−1

for some positive real β̃ < 1 (see point iii) in Lemma 1
of Battistelli and Chisci (2014)), it turns out that




∑

j∈N

Φ
i,j
t e

j
t





⊤

Ωi
t+1|t

∑

j∈N

Φ
i,j
t e

j
t

≤ β̃




∑

j∈N

πi,j
L Ω

j
t|t−1e

j
t





⊤
(

Ωi
t|t

)−1 ∑

j∈N

πi,j
L Ω

j
t|t−1e

j
t

≤ β̃
∑

j∈N

πi,j
L

(

e
j
t

)⊤

Ω
j
t|t−1e

j
t

where the latter inequality follows from the fact that
Ωi

t|t ≥
∑

j∈N πi,j
L Ω

j
t|t−1 and from Lemma 2 of Battistelli

and Chisci (2014). As a consequence, it is possible to
write

Vt+1(Φtet) =
∑

i∈N

pi




∑

j∈N

Φ
i,j
t e

j
t





⊤

Ωi
t+1|t

∑

j∈N

Φ
i,j
t e

j
t

≤ β̃
∑

i,j∈N

piπi,j
L

(

e
j
t

)⊤

Ω
j
t|t−1e

j
t

= β̃
∑

j∈N

pj
(

e
j
t

)⊤

Ω
j
t|t−1e

j
t = β̃ Vt(et)

which concludes the proof. �

Proof of Theorem 1: Since the predicted covariance can
be written as in (A.1), it is easy to verify that condition
ii) implies also that there exist suitable positive con-
stants ω+, ω̄+ such that 0 < ω+I ≤ Ωi

t+1|t ≤ ω̄+I for

any i and any t. This, in turn, implies that there exist
suitable positive constants α, ᾱ such that

α ‖e‖2 ≤ Vt(e) ≤ ᾱ ‖e‖2 (A.5)
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for any t and any e (recall that all pi are positive). Ob-
serve now that, by triangular inequality, one has

[Vt+1(et+1)]
1/2

≤ [Vt+1(Φtet)]
1/2

+ [Vt+1(rt)]
1/2

+ [Vt+1(st)]
1/2

≤
[

β̃Vt(et)
]1/2

+ [Vt+1(rt)]
1/2

+ [Vt+1(st)]
1/2

(A.6)

where rt = col(rit, i ∈ N ), st = col(sit, i ∈ N ), and the
latter inequality follows from Lemma 1.

Suppose now that the disturbances satisfy (13) and let
ǫd = max {ǫw; ǫvi , i ∈ S}. Then, thanks to the bounded-
ness of the time-varying quantities γi

t ,A
i
t, (Ω

i
t|t)

−1, and

C
j
t , one has that

[Vt+1(st)]
1/2 ≤ σ1 ǫd

for some positive scalar σ1.

The only term that remains to be bounded in (A.6) is
the one dependent on rt. To this end, let us suppose for
the sake of argument that, at time t, all the estimates
x̂i
t|t, i ∈ N , and x̂i

t|t−1, i ∈ S, satisfy the conditions

‖xt − x̂i
t|t‖ ≤ κϕ , (A.7)

‖xt − x̂i
t|t−1‖ ≤ κχi . (A.8)

Then, by exploiting assumption A4, it is an easy matter
to derive the upper bound

[Vt+1(rt)]
1/2 ≤ ᾱ1/2‖rt‖ ≤ ᾱ1/2

∑

i∈N

‖rit‖

≤ ᾱ1/2
∑

i∈N

(

‖xt − x̂i
t|t‖

2 + κ1‖xt − x̂i
t|t−1‖

2
)

(A.9)

for some positive scalar κ1. Since xt− x̂i
t|t can be written

as in (A.4), then condition (A.8) implies that there exist
positive scalars κ̃1, κ̃2, and σ̄ such that

‖xt − x̂i
t|t‖

≤
∑

j∈N

(

κ̃1‖xt − x̂
j
t|t−1‖+ κ̃2‖xt − x̂

j
t|t−1‖

2
)

+ σ̄ǫd

≤ κ̃1‖et‖+ κ̃2‖et‖
2 + σ̄ǫd

≤ κ̄1 [Vt(e)]
1/2

+ κ̄2Vt(e) + σ̄ǫd (A.10)

with κ̄1 = κ̃1/α
1/2 and κ̄2 = κ̃2/α. In view of (A.9)

and (A.10), it is immediate to conclude that there exist
positive scalars κ1, κ2, σ2 such that

[Vt+1(rt)]
1/2 ≤ κ1Vt(e) + κ2 [Vt(e)]

2
+ σ2ǫ

2
d .

Summing up, it has been proved that, under conditions
(A.7) and (A.8), the following inequality holds

[Vt+1(et+1)]
1/2 ≤

[

β̃Vt(et)
]1/2

+ κ1Vt(e) + κ2 [Vt(e)]
2

+ σ1ǫd + σ2ǫ
2
d . (A.11)

Suppose now that we can find a pair (ǭ, ǫd) such that

Vt(et) ≤ ǭ2 (A.12)

implies that conditions (A.7) and (A.8) are satisfied and
also that

Vt+1(et+1) ≤ ǭ2 . (A.13)

Then, if such a pair exists, it is sufficient to suppose that
the initial estimates x̂i

1|0, i ∈ N , are such that condition

(A.12) holds at time t = 1 in order to conclude, by
induction, that it must hold also for any t. This, in turn,
would imply that, by taking ǫ0 = ǭ/(ᾱ |N |)1/2 in (12),
condition (11) would be satisfied with ǫ = ǭ/α1/2.

Hence, in order to conclude the proof, it is sufficient to
show that a pair (ǭ, ǫd) enjoying such desired properties
always exists. To see this, notice first that, when (A.12)
holds, one has

‖xt − x̂i
t|t‖ ≤ κ̄1ǭ + κ̄2ǭ

2 + σ̄ǫd ,

[Vt+1(et+1)]
1/2 ≤ β̃1/2ǭ+ κ1ǭ

2 + κ2ǭ
4 + σ1ǫd + σ2ǫ

2
d

by virtue of (A.10) and (A.11). Hence, in order for (A.7),
(A.8), and (A.13) to jointly hold, it is sufficient that

κ̄1ǭ+ κ̄2ǭ
2 + σ̄ǫd ≤ κϕ

ǭ/α1/2 ≤ κχi , i ∈ S

β̃1/2ǭ + κ1ǭ
2 + κ2ǭ

4 + σ1ǫd + σ2ǫ
2
d ≤ ǭ .

The proof is concluded by noting that, since β̃ < 1, such
a system of inequalities always admit strictly positive
solutions (ǭ, ǫd) of sufficiently small norm. �

Proof of Corollary 1: Since the candidate Lyapunov func-
tion Vt(·) satisfies (A.5), the statement can be proved by
showing that Vt(et) goes to 0 as t → ∞ provided that
the initial estimation errors are sufficiently small. To see
this, consider a positive scalar β such that β̃ < β < 1.
Then, the convergence to 0 of Vt(et) can be ensured
provided that there exist a positive scalar ǭ such that,
whenever Vt(et) ≤ ǭ2, one has that conditions (A.7) and
(A.8) are satisfied and also that

Vt+1(et+1) ≤ βVt(et) . (A.14)

Proceeding as in the proof of Theorem 1 (details are
omitted for the sake of brevity), it can be shown that,
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in order for (A.7), (A.8), and (A.14) to jointly hold, it is
sufficient that

κ̄1ǭ+ κ̄2ǭ
2 ≤ κϕ (A.15)

ǭ/α1/2 ≤ κχi , i ∈ S (A.16)

(β̃1/2 + κ1ǭ+ κ2ǭ
3) [Vt(et)]

1/2 ≤ [βVt(et)]
1/2

(A.17)

which are always satisfied for suitably small values of ǭ,
since β̃ < β by construction. �

Proof of Lemma 2: Condition i) is a straightforward con-
sequence of assumption A1 and of the fact that, under
condition (14), all the estimated state trajectories {x̂i

t|t}

and {x̂i
t+1|t = f(x̂i

t|t)}, i ∈ N , are guaranteed to lie on

a compact set when {xt} ⊂ X . As for condition iii),
since ∂f/∂x is invertible for any x ∈ X by virtue of as-
sumption A5, the continuity of the matrix inverse en-
sures that there exists an open neighborhood X+ of X
(i.e., an open set X+ with the property that X ⊂ X+)
such that ∂f/∂x is invertible on X+. This, in turn, en-
sures that Ai

t = ∂f(x̂i
t|t)/∂x is invertible provided that

x̂i
t|t ∈ X+, which can always be ensured by choosing ǫ̂

suitably small in (14).

Hence, only condition ii) remains to be proven. The ex-
istence of an upper bound on Ωi

t|t readily follows from

(A.2), from the fact that Ωi
t+1|t ≤ W, for any i and

t > 1, and from condition i) (which holds as discussed
above). As for the existence of a positive definite lower
bound on Ωi

t|t, recall that, as pointed out at the begin-

ning of the proof of Proposition 1, Ωi
1|0 > 0, i ∈ N , im-

plies that Ωi
t|t > 0, i ∈ N , for any finite t. Hence, if we

restrict our attention to a finite time interval {1, . . . , T },

it follows that condition ii) holds by taking ω = ω0
△
=

mini∈N ,t≤T λ(Ωi
t|t), where λ(·) denotes the minimum

eigenvalue of a matrix. Consider now a time instant
t > T and observe that, due to the linearization, each
Ωi

t|t can be written as a function of the estimates x̂j
τ |τ

and x̂
j
τ |τ−1 for τ ∈ {t− T, . . . , t}. Then, we can exploit

the fact that such estimates are supposed to belong to a
neighboorhood of the true system state and use a suit-
able continuity argument.

To this end, given the state xt−T at time t − T , let us
denote by xt−T,k the k-step-ahead prediction

xt−T,k = f ◦ · · · ◦ f
︸ ︷︷ ︸

k times

(xt−T ) .

We will show in the last part of the proof that when T
is large enough and the estimates in the interval {t −
T, . . . , t− 1} coincide with the predicted trajectory, i.e.,

x̂
j
t−T+k|t−T+k = x̂

j
t−T+k|t−T+k−1 = xt−T,k for any k =

0, . . . , T , then it is possible to find a positive scalar ω1
such that Ωi

t|t ≥ ω1I. In view of such a result, the lower

bound in condition ii) can be easily derived. In fact, by
taking ǫ̂, ǫ̂w and ǫ̂vi , i ∈ S, suitably small in (14) and
(15), respectively, it is possible to make the estimates
in the interval {t− T, . . . , t− 1} arbitrarily close to the
predicted trajectory. This, by continuity of Ωi

t|t, implies

that it is possible to choose ǫ̂ and ǫ̂w, ǫ̂vi , i ∈ S, so as
to ensure that Ωi

t|t ≥ ω2I with 0 < ω2 < ω1. Hence,

the lower bound in condition ii) can be established with
ω = min{ω2, ω0}.

In order to conclude the proof, let us now suppose that
x̂
j
t−T+k|t−T+k = x̂

j
t−T+k|t−T+k−1 = xt−T,k for any k =

0, . . . , T and consider the resulting covariance matrix
Ωi

t|t. Notice that, in this case, the linearized matrices

can be obtained as

A
j
t−M+k = ∂f(xt−T,k)/∂x , j ∈ N (A.18)

C
j
t−M+k = ∂hj(xt−T,k)/∂x , j ∈ S. (A.19)

Hence, we can drop the superscript j from A
j
t−M+k and

simply write At−M+k. By recalling (A.2) and invoking
fact ii) in Lemma 1 of Battistelli and Chisci (2014), one
gets

Ωi
t|t ≥ β̌A−⊤

t−1




∑

j∈N

πi,j
L Ω

j
t−1|t−1



A−1
t−1

+ γi
t

∑

j∈S

πi,j
L

(

C
j
t

)⊤

VjC
j
t

for some positive real β̌. By recursively applying such
inequality T times, it is possible to write

Ωi
t|t ≥ β̌TA−⊤

t−T,t−1




∑

j∈N

πi,j
(T+1)LΩ

j
t−T |t−T−1



A−1
t−T,t−1

+

t∑

τ=t−T

β̌t−τA−⊤
τ,t−1



γi
τ

∑

j∈S

πi,j
(t−τ+1)L

(
Cj

τ

)⊤
VjCj

τ





×A−1
τ,t−1

where, for the sake of compactness, we have defined

Aτ,t−1 =

{

At−1At−2 · · ·Aτ if τ ≤ t− 1

I otherwise
.

Since the consensus matrix Π is primitive, the elements
πi,j
(t−τ+1)L are all positive provided that t−τ+1 is greater

than a certain integer, sayN . Then, if T is chosen so that
T > N +M , with M as in assumption A6, it is an easy
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matter to see that there exists a positive real ρ such that

Ωi
t|t ≥ ρ

t−T+M∑

τ=t−T

A−⊤
τ,t−1




∑

j∈S

(
Cj

τ

)⊤
VjCj

τ



A−1
τ,t−1 .

(A.20)

By defining Ck = col(Cj
k, j ∈ S) and recalling that we

are supposing that (A.18)-(A.19) hold, it is immediate
to see that

∂F[M ](xt−T )

∂x
=










Ct−T

Ct−T+1At−T

...

Ct−T+MAt−T,t−T+M−1










.

Thus, (A.20) can be rewritten as

Ωi
t|t ≥ ρA−⊤

t−T,t−T+M−1

(
∂F[M ](xt−T )

∂x

)⊤

×V[M ] ∂F
[M ](xt−T )

∂x
A−1

t−T,t−T+M−1 (A.21)

whereV[M ] is a block-diagonal matrix made up ofM+1
copies of V = diag(Vi, i ∈ S). Then, the proof can be
concluded by noting that under the stated assumptions
the right-hand side of (A.21) is always positive definite
for any xt−T ∈ X and, hence, by continuity there exists
a positive scalar ω1 such that Ωi

t|t ≥ ω1I. �

Proof of Theorem 2: Let the constants ǫ̂, ǫ̂w > 0, and
ǫ̂vi > 0, i ∈ S, be as in the statement of Lemma 2.
Further, let us consider two constants ǫ̌ and ǫ̌d with the
following properties:

(a) conditions (A.15)-(A.17) are satisfied for any ǭ ≤ ǫ̌
and for any ǫd ≤ ǫ̌d;

(b) ǫ̌ ≤ α1/2 ǫ̂.

Notice that, as discussed at the end of the proof of
Theorem 1, such constants can always be found. Sup-
pose that the disturbances are bounded as in (18) with
ǫ̃w = min{ǫ̂w, ǫ̌d}, and ǫ̃vi = min{ǫ̂vi , ǫ̌d}, i ∈ S. Then,
the proof can be given by induction. To see this, suppose
that the inequalities

Vτ (eτ ) ≤ ǫ̌2 (A.22)

‖eit‖ ≤ ǫ̂, ∀i (A.23)

hold up to time τ , i.e., for τ = 1, 2, . . . , t. Then, by virtue
of Lemma 2, we have that conditions i)-iii) hold up to
time t as well. Then, by proceeding as in the proof of The-
orem 1 and exploiting property (a) above, we can show
that condition (A.22) holds also for τ = t+1. Hence, by
virtue of property (b), we also have that condition (A.23)

holds for τ = t+ 1 (recall inequality (A.5)). The induc-
tion argument can be concluded by noting that we can
ensure the fulfillment of (A.22) and (A.23) for τ = 1 by
taking ǫ̃0 = min{ǫ̂, ǫ̌/(ᾱ|N |)1/2} (recall again inequality
(A.5)). Hence, Theorem 2 holds with ǫ̃ = ǫ̂. �
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