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Istituto Nazionale di Alta Matematica, Unità di Ricerca di Firenze c/o DiMaI ‘U. Dini’
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The problem of developing an adaptive isogeometric method (AIGM) for solving elliptic

second-order partial differential equations with truncated hierarchical B-splines of arbi-
trary degree and different order of continuity is addressed. The adaptivity analysis holds

in any space dimensions. We consider a simple residual-type error estimator for which
we provide a posteriori upper and lower bound in terms of local error indicators, taking

also into account the critical role of oscillations as in a standard adaptive finite element

setting. The error estimates are properly combined with a simple marking strategy to
define a sequence of admissible locally refined meshes and corresponding approximate

solutions. The design of a refine module that preserves the admissibility of the hierarchi-

cal mesh configuration between two consectutive steps of the adaptive loop is presented.
The contraction property of the quasi-error, given by the sum of the energy error and

the scaled error estimator, leads to the convergence proof of the AIGM.

Keywords: isogeometric analysis; hierarchical splines; adaptivity.
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1. Introduction

The definition of adaptive schemes that provide local mesh refinement is an active

area of research in the context of isogeometric analysis10,22, an emerging paradigm

for the solution of partial differential equations which combines and extends finite

element techniques with computer aided design (CAD) methods related to spline

models. Since the CAD standard for spline representation in a multivariate setting

relies on tensor-product B-splines, e.g. see Ref. 11, 33, an adaptive isogeometric

model necessarily requires suitable extensions of the B-spline model that give the

1
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possibility to relax the rigidity of the tensor-product structure by allowing hanging

nodes.

There are a few different frameworks for the definition of splines on rectan-

gular tiling with hanging nodes. We mention here T-splines36,37 that have been

used in the context of isogeometric analysis in the pioneering papers1,16, and their

analysis-suitable34 or dual-compatible2,3 versions. Other possibilities are offered by

polynomial splines over (hierarchical) T-meshes13,14 or LR-splines15,6, that have

been tested within an isogeometric framework in Ref. 30 and 23, respectively.

Finally, hierarchical splines based on the construction presented in Ref. 25 is one

of the most promising approach. This is also due to the fact that their construc-

tion and properties are closely related to the ones of hierarchical finite elements.

Hierarchical B-spline constructions and their use, both as an adaptive modeling

tool, as well as a framework for isogeometric analysis that provides local refinement

possibilities, has been recently investigated in a number of papers, see e.g. Ref. 43,

20, 21, 24.

In the present paper we aim at defining and studying an adaptive isogeometric

method (AIGM) based on hierarchical splines. The choice, among the adaptive spline

models mentioned above, of the hierarchical setting have a twofold motivation. On

the one hand, it is a natural extension of the B-spline model that is able to preserve

many key properties directly by construction, and the refinement rules are simple

and straightforward. In addition, although the type of refinement they allow is more

restrictive than other solutions, the locally structured hierarchical approach allows

to defines an effective automatically-driven refinement strategy that, in turns, can

be used to design a fully adaptive method.

We consider the simple elliptic model problem:

−div(A∇u) = f in Ω, u
∣∣
∂Ω

= 0, (1.1)

where Ω ⊂ Rd, d ≥ 1, is a bounded domain with Lipschitz boundary ∂Ω, and f is

any square integrable function and

∀x ∈ Ω, ξ ∈ Rd η1|ξ|2 ≤ A(x)ξ · ξ and |A(x)ξ| ≤ η2|ξ| (1.2)

with 0 < η1 ≤ η2.

By closely following the framework of adaptive finite elements — see e.g., the

recent reviews in Ref. 31, 32 and references therein — for elliptic partial differential

equations, we aim at designing and analyse the four blocks in the following flowchart

associated to an AIGM.

SOLVE → ESTIMATE → MARK → REFINE

At our best knowledge, all previous works on error estimators in isogeometric

analysis were mainly devoted to numerical experiments with some goal–oriented

error estimators based on auxiliary global refinement steps41,12,26.

Our choices for the different steps of the adaptive loop may be detailed as follows.
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SOLVE We want to solve problem (1.1) with hierarchical spline spaces. To this aim,

we define a family of admissible hierarchical meshes, which uses the concept

of truncated basis20, and we consider the Galerkin method on these spaces.

Admissibility is related to the number of levels which are present (with non

zero basis functions) on an element, and it is a fundamental assumption in

our theory.

ESTIMATE We define residual based error estimator for our problem. Thanks to the reg-

ularity of splines, such an estimator reduces to the L2-norm of the element-

by-element residual suitably weighted with the mesh size. We prove that

this estimator is reliable, i.e., it is an upper bound for the error, and effi-

cient, i.e., it is a lower bound of the error (up to oscillations).

MARK We adopt the Dörfler marking strategy17, namely we mark for refinement

all elements with largest error indicator until a certain fixed percentage of

the total error indicator is taken into account by the set of marked elements.

REFINE A refinement procedure constructs the refined mesh starting from the set

of marked elements, by following the structure of the recursive refine mod-

ule generally considered in adaptive finite elements, see e.g. Ref. 28, 29.

We construct this routine so that the admissibility of the refined mesh is

preserved between two consecutive iterations of the adaptive loop.

In general, the refinement procedure identifies the mesh with an increased level of

resolution for the next iteration by refinining not only the marked elements, but

also a suitable set of elements in their neighbourhood, analogously to the concept of

refinement patches in an adaptive finite element method. This allows to construct

a mesh that preserves a certain class of admissibility. The refinement mechanism is

similar to the strategy adopted to bound the number of hanging nodes per side in

the refinement of quadrilateral meshes for finite elements5, and is also related to the

properties of the domain partitions created by the bisection rule that are needed to

prove quasi-optimality of adaptive finite element methods4,9,39,40.

In the present paper we start the numerical analysis of our AIGM method and

we provide a convergence result together with the contraction of the quasi-error

(i.e., the sum of the error and the error indicator), while the complexity of the

refine routine, together with quasi-interpolation operators and optimality of the

AIGM, is left to the companion papers 8, 7.

The paper is organized as follows. Some preliminary aspects of hierarchial tensor-

product B-spline constructions are reviewed in Section 2 together with the definition

of truncated hierarchical B-splines (THB-splines) and related properties, before

introducing the notion of (strictly) admissible meshes. The module SOLVE and

ESTIMATE of the adaptive isogeometric method are discussed in Sections 3 and 4

including an a posteriori error analysis in terms of both upper and lower bound for

the energy error. Section 5 recalls a well-known marking strategy and introduces

a refinement strategy that preserves the class of admissibility during the iterative

loop — module MARK and REFINE. Finally, Section 6 concludes the paper by
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summarizing the key results of the present study, and outlines the spirit of our

companion paper8,7.

2. Hierarchical spline spaces

We start by considering the hierarchical approach to adaptive mesh refinement,

as natural extension of the standard tensor-product B-spline model in a general

multivariate setting. In particular, we focus on the truncated hierachical B-spline

basis, since it allows us to identify a certain class of admissible mesh configurations.

2.1. Preliminaries: B-spline hierarchies

Hierarchical B-spline spaces are constructed by considering a hierarchy of N tensor-

product d-variate spline spaces V 0 ⊂ V 1 ⊂ . . . ... ⊂ V N−1 defined on a bounded

closed hyper-rectangle D in Rd together with a hierarchy of domains Ω̂0 ⊇ Ω̂1 ⊇
. . . ⊇ Ω̂N−1, that are closed subsets of D. The depth of the subdomain hierarchy is

represented by the integer N , and we assume Ω̂N = ∅.
For each level `, with ` = 0, 1, . . . , N − 1, the multivariate spline space V ` is

spanned by the tensor-product B-spline basis B̂` of degree p = (p1, . . . , pd) defined

on a given tensor-product Ĝ`. The (non-empty) quadrilateral elements (or cells) Q̂

of Ĝ` are the Cartesian product of d open intervals between adjacent grid values.

For any coordinate direction i, for i = 1, . . . , d the knot sequences associated to the

grids at the different levels contain non-decreasing real numbers so that each grid

value appears in the knot vector as many times as specified by a certain multiplicity.

At level ` = 0, we assume that the knot sequences are open, i.e., in direction i the

first and the last knots are repeated pi + 1 times. At any level `, i.e., for the case of

standard tensor-product B-splines, the multiplicity of each knot may vary between

one (single knots) and pi or pi + 1 for the case of continuous and discontinuos

functions, respectively. In order to guarantee the nested nature of the spline spaces

V ` ⊂ V `+1, we require that every knot of level ` − 1 is also present at level ` at

least with the same multiplicity in the corresponding coordinate direction.

From the classical spline theory, it is known that B-splines are locally linear

independent, they are non-negative, they have local support, and form a partition

of unity11,33. Moreover, there exists a two-scale relation between adjacent bases in

the hierarchy so that any function s ∈ V ` ⊂ V `+1 can be expressed as

s =
∑

β̂∈B̂`+1

c`+1

β̂
(s)β̂, (2.1)

in terms of the coefficients c`+1

β̂
.

The domain Ω` is defined as the union of the closure of elements of Ĝ`−1, namely

Ω̂` =
⋃{

Q̂ : Q̂ ∈ Ĝ`−1
}
.

An element Q̂ of level ` is active if Q̂ ⊂ Ω̂` and any Q̂∗ of level `∗ > ` which

belongs to any Ω̂`+1, . . . , Ω̂N−1 is not a subset of Q̂. We denote the collection of
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active elements of level ` as

Ĝ` :=
{
Q̂ ∈ Ĝ` : Q̂⊂ Ω̂` ∧ @ Q̂∗∈ Ĝ`

∗
, `∗ > ` : Q∗ ⊂ Ω̂`

∗
∧ Q̂∗ ⊂ Q̂

}
. (2.2)

Let Q̂ be the mesh composed by taking the active elements Q at any hierarchical

level, namely

Q̂ :=
{
Q̂ ∈ Ĝ`, ` = 0, . . . , N − 1

}
. (2.3)

For any Q̂ ∈ Q̂, we define hQ̂ := |Q̂|1/d and we assume in what follows that

hQ̂ . diam(Q̂) . hQ̂ (2.4)

where the symbol . is used here and below to mean any inequality which does not

depend on the depth N of the spline hierarchy.

A mesh Q̂∗ is a refinement of Q̂ if each element Q̂∗ ∈ Q̂∗ either also belongs

to Q̂ or is obtained by splitting Q̂ ∈ Q̂ in qd elements via “q-adic” refinement, for

some integer q ≥ 2. The refinement relation between Q̂ and Q̂∗ will be indicated

as Q̂∗ � Q̂. In particular, we will consider the case of standard dyadic refinement

with q = 2.

A basis for the hierarchical B-spline space can be constructed by a suitable selec-

tion of active basis functions at different level of details according to the following

definition, see also Ref. 25, 43.

Definition 1. The hierarchical B-spline (HB-spline) basis Ĥ with respect to the

mesh Q̂ is defined as

Ĥ(Q̂) :=
{
β̂ ∈ B̂` : supp β̂ ⊆ Ω̂` ∧ supp β̂ 6⊆ Ω̂`+1, ` = 0, . . . , N − 1

}
,

where supp β̂ denotes the intersection of the support of β with Ω̂0.

Remark 2. Note that the hierarchical approach is not confined to dyadic or q-adic

(uniform) refinement, but it can also handle different kind of mesh refinements,

including non-uniform configurations. In addition, by assuming that the degrees

may increase (but not decrease) moving from one level to the subsequent in the

hierarchy, nested sequence of tensor-product spline spaces can be also considered in

the context of p- (and k-) refinement.

2.2. The truncated basis

We define the truncation of a function ŝ ∈ V ` with respect to B̂`+1 as the contri-

butions in (2.1) of only basis functions in B̂`+1 that are passive, i.e., not included

in the hierarchical B-spline basis Ĥ(Q̂). More precisely,

trunc`+1ŝ :=
∑

β̂∈B̂`+1, supp β̂ 6⊆Ω̂`+1

c`+1

β̂
(s)β̂, (2.5)
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where c`+1

β̂
(s) is the coefficient of the function s with respect to the basis element

β̂ at level ` + 1 of the B-spline refinement rule (2.1). By recursively applying the

truncation to the HB-splines introduced in Definition 1, we can construct a different

hierarchical basis20.

Definition 3. The truncated hierarchical B-spline (THB-spline) basis T̂ with re-

spect to the mesh Q̂ is defined as

T̂ (Q̂) :=
{

Trunc`+1 β̂ : β̂ ∈ B̂` ∩ Ĥ(Q̂), ` = 0, . . . , N − 1
}
,

where Trunc`+1 β̂ := truncN−1(truncN−2(. . . (trunc`+1(β̂)) . . . )), for any β̂ ∈ B̂` ∩
Ĥ(Q̂).

The level of a truncated B-spline τ̂ ∈ T̂ (Q̂) is the level of the B-spline from

which τ̂ is derived according to the iterative truncation mechanism introduced in

Definition 3. For simplicity, we will denote Ĥ = Ĥ(Q̂), T̂ = T̂ (Q̂) when there will

be no ambiguity in the text.

2.3. Properties of THB-splines

The truncated basis T̂ not only spans the same hierarchical space of classical HB-

splines, namely

(i) span T̂ = span Ĥ,

but it also inherits from the hierarchical B-spline basis Ĥ the following properties:

(ii) non-negativity: τ̂ ≥ 0, ∀ τ̂ ∈ T̂ ;

(iii) linear independence:
∑
τ̂∈T̂ cτ̂ τ̂ = 0⇔ cτ̂ = 0, ∀ τ̂ ∈ T̂ ;

(iv) nested nature of the hierarchical spline spaces for consecutive levels;

(v) the span of a THB-spline basis defined over a sequence of subdomains is

contained in the span of a truncated basis defined over a second sequence

that is the nested enlargment of the original subdomain hierarchy;

(vi) completeness of the basis: for a certain class of admissible configurations of

the hierarchical mesh, span T̂ contains all piecewise polynomial functions

defined over the underlying grid.

In addition, the truncation mechanism enriches the THB-spline basis functions so

that

(vii) they preserve the coefficients of the underlying sequence of B-splines;

(iix) they form a partition of unity;

(ix) they are strongly stable with respect to the supremum norm, under reason-

able assumptions on the given knot configuration.a

aStrong stability of a basis means that the associated stability constants do not depend on the
number of hierarchical levels.
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Due the two-scale relation (2.1) between adjacent (non-negative) B-spline bases,

the non-negativity of truncated basis functions (ii) is preserved by construction.

Properties (i), (iii)-(v), and (vii)-(ix) are detailed in Ref. 20, 21. For the analysis

of hierarchical spline space in (vi), we refer to Ref. 19 for the bivariate case with

single knots, and to Ref. 27 for the general multivariate setting with arbitrary knot

multiplicities. As a consequence of property (vii), quasi-interpolants in hierarchical

spline spaces can be easily constructed38. Properties (ii) and (iix) imply the convex

hull property, a key attribute for geometric modeling applications.

2.4. Admissible meshes

The truncation mechanism that characterizes the THB-spline basis can be properly

exploited to design suitable refinement strategies that define different classes of

admissible meshes. A mesh of this kind allows to guarantee that the number of basis

functions acting on any mesh point is bounded. In addition, the support of any basis

function acting on a single element of an admissible mesh can be compared with

the size of the element itself in terms of two constants that do not depend on the

overall number of hierarchical levels. These two properties are the key ingredients

for the subsequent analysis — see e.g., Theorem 4.4 related to the a posteriori upper

bound, and the error indicator reduction provided by Lemma 23. We postpone the

presentation of the refinement procedure to Section 5, by simply focusing here on

the desired mesh configuration.

Definition 4. A mesh Q̂ is admissible of class m if the truncated basis functions

in T̂ (Q̂) which take non-zero values over any element Q̂ ∈ Q̂ belong to at most m

successive levels.

For this class of admissible meshes, the number of basis functions acting on a

single mesh element does not depend on the number of levels in the hierarchy but

only on m, that represents the class of admissibility of the mesh.

Corollary 5. For multivariate tensor-product B-splines of degree p = (p1, . . . , pd),

the number of truncated basis functions which are non-zero on each element of an

admissible mesh is less than m
∏d
i=1(pi + 1).

Another important fact that holds for admissible meshes is the following.

Corollary 6. If Q̂ is an admissible mesh of class m, given a truncated basis func-

tion τ̂ ∈ T̂ (Q̂),

|Q̂| . | supp τ̂ | . |Q̂| ∀Q̂ ∈ Q̂ : Q̂ ∩ supp τ̂ 6= ∅, (2.6)

where the hidden constants in the above inequalities depend on m but not on τ̂ ,

neither on Q̂ or N .

Since the interplay between the truncated basis funcions that are non-zero on

a certain mesh element and the overall mesh configuration is strictly related to the
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locality of the basis functions, we naturally focus on the support extension of an

element Q̂ ∈ Ĝ` . For any fixed level `, the support extension collects the elements

intersected by the set of B-splines in B̂` whose support overlaps Q̂. We extend this

definition to the hierarchical setting as follow.

Definition 7. The support extension S(Q̂, k) of an element Q̂ ∈ Ĝ` with respect

to level k, with 0 ≤ k ≤ `, is defined as

S(Q̂, k) :=
{
Q̂′ ∈ Ĝk : ∃ β̂ ∈ B̂k, supp β̂ ∩ Q̂′ 6= ∅ ∧ supp β̂ ∩ Q̂ 6= ∅

}
.

By a slight abuse of notation, we will also denote by S(Q̂, k) the region occupied

by the closure of elements in S(Q̂, k). In order to identify a specific set of admissible

meshes, we also consider the auxiliary subdomains

ω̂` :=
⋃{

Q̂ : Q̂ ∈ Ĝ` ∧S(Q̂, `) ⊆ Ω̂`
}
,

for ` = 0, . . . , N − 1. Any ω̂` represent the biggest subset of Ω̂` so that the set of

B-splines in B̂` whose support is contained in Ω̂` spans the restriction of V ` to ω̂`.

Example 8. A set of admissible meshes of class m = 2 corresponds to the restricted

hierarchies presented in Appendix A of Ref. 21 and relies on the following result.

If Ω̂` ⊆ ω̂`−1 for ` = 1, . . . , N − 1, then for any element Q̂ ∈ Ĝ` the THB-splines

whose support overlaps Q̂ belong to at most two different levels: `−1 and `. Figure 1

shows three examples of this class of admissible meshes related to the bivariate case

of degree (p1, p2) = (p, p) for p = 2, 3, 4.

(a) (p1, p2) = (2, 2) (b) (p1, p2) = (3, 3) (c) (p1, p2) = (4, 4)

Fig. 1. Admissible meshes of class 2 considered in Example 8 with respect to different degrees.

The following proposition generalizes the class of admissible meshes considered

in the previous example to the case of an arbitrary m ≥ 2.

Proposition 9. Let Q̂ be the mesh of active elements defined according to (2.2)

and (2.3) with respect to the domain hierarchy Ω̂0 ⊇ Ω̂1 ⊇ . . . ⊇ Ω̂N−1. If

Ω̂` ⊆ ω̂`−m+1, (2.7)
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for ` = m,m+ 1, . . . , N − 1, then the mesh Q̂ is admissible of class m.

Proof. For any τ̂ ∈ T̂ (Q̂) introduced at level ` − m, the function trunc`−m+1 τ̂

defined by equation (2.5) is a linear combination of basis functions β̂ ∈ B̂`−m+1 so

that β̂|ω̂`−m+1 = 0. Since

ω̂`−m+1 =
⋃{

Q̂ : Q̂ ∈ Ĝ`−m+1 ∧S(Q̂, `−m+ 1) ⊆ Ω̂`−m+1
}
,

if condition (2.7) holds for ` = m,m+ 1, . . . , N − 1, then also trunc`−m+1 τ̂ |Ω̂` = 0.

Consequently, the truncation of a B-spline introduced at level ` −m will be non-

zero on Ω̂`−m \ Ω̂`. This means that any element Q̂ ∈ Ĝ` belongs to the support of

THB-splines of only m different levels: `−m+ 1, . . . , `.

As we will detail later, a relevant set of admissible meshes is the one verifying

condition (2.7) for ` = m,m+ 1, . . . , N − 1, where different values of m ≥ 2 can be

considered.

Definition 10. A mesh Q̂ is strictly admissible of class m if it verifies the assump-

tions of Proposition 9.

The meshes considered in Example 8 are strictly admissible of class 2.

3. The module SOLVE: the Galerkin method

In this section we describe our model problem and introduce its discretization by

means of hierarchical splines. Indeed, we have no aim of generality, we consider

the most simple elliptic problem. As a first step, we give a precise definition of the

domain Ω in which our problem is posed.

Given a strictly admissible mesh Q̂0 and the corresponding set of truncated basis

function T̂0, we suppose that the computational domain Ω is provided as a linear

combination of functions in T̂0 and control points:

x ∈ Ω , x = F(x̂) =
∑
τ̂∈T̂0

Cτ̂ τ̂(x̂) x̂ ∈ Ω̂0 (3.1)

where Cτ̂ ∈ Rd. In all that follows, we suppose that the mapping F : Ω̂0 → Ω is a

bi-Lipschitz homeomorphism:

‖DαF‖L∞(Ω̂0) ≤ CF, ‖DαF−1‖L∞(Ω) ≤ c−1
F , |α| ≤ 1 (3.2)

where cF and and CF are independent constants bounded away from infinity.

We consider then problem (1.1). In order to define the variational formulation

of the problem, we consider the space of functions in H1(Ω) with vanishing trace

on ∂Ω

V := H1
0 (Ω) :=

{
v ∈ H1(Ω) : v

∣∣
∂Ω

= 0
}
,
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endowed with the norm ‖u‖2V = ‖∇v‖2L2(Ω)d + ‖v‖2L2(Ω). A weak solution of (1.1) is

a function u ∈ V satisfying

u ∈ V : a(u, v) = 〈f, v〉, ∀ v ∈ V, (3.3)

where a : V× V→ R is the bilinear form

a(u, v) :=

∫
Ω

A∇u∇v, ∀u, v ∈ V,

and 〈·, ·〉 stands for the L2(Ω) scalar product. We assume that f ∈ V∗, where V? is

the dual space to V, endowed with its standard norm:

||r||V∗ := sup {〈r, v〉 : v ∈ V, ||v||V ≤ 1} .

The bilinear form a(u, v) is coercive and continuos with constant α1 and α2, respec-

tively:

a(u, u) ≥ α1‖u‖2V u ∈ V , (3.4)

a(u, v) ≤ α2‖u‖V‖v‖V u , v ∈ V . (3.5)

Moreover, it induces the energy norm: |||v|||Ω := a(v, v)1/2, ∀v ∈ V. The coercivity

and continuity properties of a(u, v) implies the equivalence between the energy and

the H1(Ω) norms on V. In addition, the Lax-Milgram theorem ensures the existence

and uniqueness of the weak solution (3.3).

We construct now our module SOLVE as the Galerkin discretization of (3.3) by

means of hierarchical splines on Ω. To this aim, we first need to introduce a suitable

notation for hierarchical meshes and spaces on Ω.

We consider an admissible mesh Q̂, such that Q̂ � Q̂0 and we denote by T̂ the

corresponding basis truncated basis functions. Moreover, we construct the corre-

sponding mesh and functions of the physical domain via pullback:

Q = {Q = F(Q̂) : Q̂ ∈ Q̂}.

For all τ̂ ∈ T̂ , we construct:

τ(x) = τ̂(x̂), x = F(x̂). (3.6)

and we denote by T the collection of all mapped basis functions, and by S(Q) the

space they generate, S(Q) = span T (Q).

Clearly, Q is a hierarchical mesh on the domain Ω and for it, we will make use

of all the nomenclature introduced in Section 2 by simply removing the ·̂. First,

for all elements Q, we denote by Q̂ its preimage through F, i.e., Q = F(Q̂), and

hQ = |Q|1/d, where |Q| represents the volume of Q. Thanks to the assumptions

(2.4) and (3.2), we have that hQ . diam(Q) . hQ.

Moreover, we set:

• Ω` = F(Ω̂`) and ω` = F(ω̂`);

• G` = {Q ∈ Q : Q̂ ∈ Ĝ`} and G` = {Q ⊂ Ω : Q̂ ∈ Ĝ`};
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• for all Q ∈ G`, its support extension with respect to level k is

S(Q, k) = {Q′ ∈ Gk : Q̂′ ∈ S(Q̂, k)}.

Finally, when Q? is a refinement of Q, we will write Q? � Q, when their pre-images

Q̂? and Q̂ verifies Q̂? � Q̂.

We are finally in the position to describe the discrete problem we want to solve

adaptively. The Galerkin approximation of (3.3) consists in solving:

find U ∈ SD(Q) : a(U, V ) = 〈f, V 〉, ∀V ∈ SD(Q), (3.7)

where

SD(Q) =
{
V ∈ S(Q) : V

∣∣
∂Ω

= 0
}
.

In the subsequent analysis we assume for simplicity SD(Q) ⊂ C1(Ω). This assump-

tion is of course not needed for the development of an adaptive strategy, but it

allows us to simplify the analysis, by also showing the specific changes with respect

to C0 finite elements. The general case could be treated in a similar way following

the classical theory of adaptive finite element methods.

4. The module ESTIMATE: the residual based error indicator

The residual associated to U ∈ S is the functional in V∗ defined by

〈r, v〉 := 〈f, v〉 − a(U, v),

that satisfies

〈r, v〉 = a(u− U, v), ∀ v ∈ V,
a(u− U, V ) = 〈r, V 〉 = 0, ∀V ∈ S.

By recalling that all discrete functions are continuous with continuous derivatives,

we can integrate by parts and obtain

〈r, v〉 =

∫
Ω

fv−A∇U∇v =

∫
Ω

fv+ div(A∇U)v,

where, thanks to our assumption that S ⊂ C1(Ω), the quantity r = f + div(A∇U)

belongs to L2(Ω). In particular, as we expect, this means that the residual does not

contain any edge contribution as in typical finite element indicators42.

One of the fundamental ingredient in the module ESTIMATE is the equivalence

between the primal norm of the error and the dual norm of the residual:

||u− U ||V ≤
1

α1
||r||V∗ ≤

α2

α1
||u− U ||V. (4.1)

As it is standard, in order to use the residual as error indicator, we would like to

replace the norm ‖ · ‖V∗ with the following error indicator

ε2
Q(U,Q) =

∑
Q∈Q

ε2
Q(U,Q) with ε2

Q(U,Q) = h2
Q||r||2L2(Q). (4.2)
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When no confusion is possible, we may also abbreviate the above notation with

ε2
Q(U).

Following Ref. 28 (see also Ref. 32), we will show that the following holds:

||u− U ||V . εQ(U,Q) . ||u− U ||V + oscQ(U,Q), (4.3)

where

osc2
Q(U,Q) =

∑
Q∈Q

osc2(U,Q) with osc(U,Q) = hQ‖r −Πnr‖L2(Q)

and Πn : L2(Q) → Qn, n = (n1, . . . , nd), denotes the L2 projector onto the space

of polynomials of degree nj in the space direction j. The degrees nj , j = 1, . . . , d

can be fixed large enough so that the oscillation are “smaller” than the error5.

Indeed Theorem 12 below, will also provide a local version of the lower bound

in (4.3) that reads:

εQ(U,Q) . ||u− U ||V(Q) + oscQ(U,Q).

4.1. A posteriori upper bound

In this section we prove that the residual based error indicator defined in (4.2) is

reliable, i.e., it is an upper bound for the Galerkin error.

Theorem 11. Let u be the exact weak solution of the model problem (3.3). The

error of the Galerkin approximation U ∈ S(Q) in (3.7) is bounded in terms of the

error indicator εQ(U) introduced in (4.2) as follows:

||u− U ||V ≤ CupεQ(U), (4.4)

where the constant Cup is independent on the mesh size and on the level of hierarchy.

Proof. This proof follows exactly the lines of the classical proof of upper bound

in residual based error estimators. For completeness we repeat here the steps that

can be found in, e.g., Theorem 6 in Ref. 32.

Using (4.1), we have ‖u−U‖V .
1

α1
‖r‖V? , and we will prove that ‖r‖V? . εQ(U).

We recall that T forms a partition of unity and we denote by T0 the collection

of all basis functions that vanish at the boundary ∂Ω. It holds:

〈r, v〉 =
∑
τ∈T
〈r, τ v〉 =

∑
τ∈T0

inf
cτ∈R
〈r, τ (v − cτ )〉+

∑
τ∈T \T0

〈r, τ v〉

By standard Cauchy-Schwarz inequality, we estimate the terms in the right hand

side as follows

〈r, τ (v − cτ )〉 =

∫
Ω

r τ(v − cτ ) ≤ ‖r τ1/2‖L2(Ω)‖τ1/2(v − cτ )‖L2(Ω),
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and the same holds for cτ = 0. We denote by ωτ = supp τ and by hωτ = | supp τ |1/d,
i.e., its size. We can deduce by Poincaré inequality that for all v ∈ SD(Q):

‖τ1/2(v − cτ )‖L2(ωτ ) . hωτ ‖∇v‖L2(ωτ )d ∀τ ∈ T0,

‖τ1/2v‖L2(ωτ ) . hωτ ‖∇v‖L2(ωτ )d ∀τ ∈ T \ T0.

By taking into account Corollaries 5 and 6, we have

(1)
∑
τ∈T ‖∇v‖2L2(ωτ )d . ‖∇v‖2L2(Ω)d ;

(2) let h be the piecewise constant function which takes values h(x) = |Q|1/d, x ∈ Q
for all Q ∈ Q. It holds:∑

τ∈T
h2
ωτ ‖r τ

1/2‖2L2(ωτ ) .
∑
τ∈T

∫
ωτ

h2 r2τ =

∫
Ω

h2 r2 = ε2
Q(U).

The estimate (4.4) follows.

4.2. A posteriori lower bound

In this section we prove that the residual based error indicator defined in (4.2) is

efficient, i.e., it is a lower bound of the Galerkin error up to oscillations.

Theorem 12. Let u be the exact weak solution of the model problem (3.3). The

error of the Galerkin approximation U ∈ S(Q) in (3.7) bounds the error indicator

εQ(U) introduced in (4.2) up to oscillations:

εQ(U,Q) ≤ Clb

(
||u− U ||V(Q) + oscQ(U,Q)

)
, (4.5)

where the constant Clb does not depend on Q.

Proof. Again, this proof is classical, and we repeat the steps of the proof in The-

orem 7 of Ref. 32. First, it is easy to see that

‖r‖V∗(Q) . ‖∇(u− U)‖L2(Q)

and that the following Poincaré estimate is true:

‖r‖V∗(Q) . hQ‖r‖L2(Q).

Moreover, let Qn, n = (n1, . . . , nd), be the space of polynomials of degree nj in the

space direction j, then we know that the inverse inequality holds:

‖r̄‖V∗(Q) & hQ‖r̄‖L2(Q) ∀r̄ ∈ Qn,

where the hidden constant does not depend on Q but it deteriorates with n.

Finally, if we choose r̄ = Πnr, it holds that

‖r̄‖V∗(Q) . ‖r‖V∗(Q) + hQ‖r − r̄‖L2(Q).
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Now, all these ingredients can be used together in the following estimate, with

r̄ = Πnr:

hQ‖r‖L2(Q) ≤ hQ‖r̄‖L2(Q) + hQ‖r − r̄‖L2(Q)

. ‖r̄‖V∗(Q) + hQ‖r − r̄‖L2(Q)

. ‖r‖V∗(Q) + hQ‖r − r̄‖L2(Q) .

(4.6)

The proof is completed by setting oscQ(U,Q) = hQ‖r − r̄‖L2(Q).

Remark 13. It should be noted that the lower bound we have proved here will

not be used in the sequel of the present paper. In fact, contraction of the error can

be proved without using explicitly the lower bound. We have reported this simple

proof here in order to collect the main properties of the estimator we are using. On

the other hand, this lower bound will be needed in the companion paper7 where

optimality will be addressed.

5. The modules MARK and REFINE

We now briefly describe the considered marking strategy, before introducing a refine

module that preserves the class of admissibility of a given strictly admissible mesh —

see Section 2.4 — and its properties. Finally, we conclude this section by discussing

the contraction property of our AIGM and its convergence.

5.1. MARK: the marking strategy

Given an admissible mesh Q, the Galerkin solution U ∈ V(Q), the module

M = MARK
(
{εQ(U,Q)}Q∈Q ,Q

)
,

selects and marks a set of elements M ⊂ Q according to the so-called Dörfler

marking17, i.e., by considering a fixed parameter θ ∈ (0, 1] so that

εQ(U,M) ≥ θ εQ(U,Q). (5.1)

This marking strategy simply guarantees that the set M of marked elements gives

a substantial contribution to the total error indicator.

5.2. REFINE: the refinement strategy

Analogously to the support extension S(Q̂, k) of an element Q̂ ∈ Ĝ` with respect

to level k, with 0 ≤ k ≤ ` introduced in Definition 7, we denote by S(Q, k) the

support extension of the physical element Q.

In order to guarantee that a mesh after refinement is admissible, we aim at

imposing that each active element at level `, Q ∈ G`, belongs to the support of

basis functions of at most levels `−m+ 1, . . . , `. To achieve this, given an element
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Q ∈ G` that we want to refine, we select the elements that are active at level `−m+1

and such that their intersection with S(Q, ` −m + 2) is not empty. We collect all

these elements in a neighbourhood of Q, denoted by N (Q, Q,m) and defined here

below in Definition 14. Clearly, when Q is refined, all elements in N (Q, Q,m) have

to be refined as well and this procedure has to be applied recursively in order to

guarantee that the final mesh is strictly admissible.

Definition 14. The neighbourhood of Q ∈ Q∩G` with respect to m is defined as

N (Q, Q,m) :=
{
Q′ ∈ G`−m+1 : ∃Q′′ ∈ S(Q, `−m+ 2), Q′′ ⊆ Q′

}
,

when `−m+ 1 ≥ 0, and N (Q, Q,m) = ∅ for `−m+ 1 < 0.

Figure 2 shows the the neighbourhood of an element Q with respect to m = 2

when, for simplicity, the identity map is considered.

(a) (p1, p2) = (2, 2)

(b) (p1, p2) = (3, 3)

(c) (p1, p2) = (4, 4)

Fig. 2. Neighbourhood N (Q, Q, 2) (light gray) of an element Q (represented by any of the four

cells in dark grey) when dyadic refinement is considered for some low degree cases. Note that the

neighbourhood is always aligned with the grid lines of a previous hierarchical level.
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An automatic REFINE module which allows to define strictly admissible meshes

is presented in Figure 3. The core of the refinement strategy relies on the internal

recursive module REFINE RECURSIVE. Any element Q on which the recursive

procedure is called will be subdivided into its children. Lemma 15 and Proposition 16

below shows the distinguishing properties of this procedure.

Q? = REFINE(Q,M,m)

for all Q ∈ Q ∩M
Q = REFINE RECURSIVE(Q, Q,m)

end
Q? = Q

Q = REFINE RECURSIVE(Q, Q,m)

for all Q′ ∈ N (Q, Q,m)

Q = REFINE RECURSIVE(Q, Q′,m)

end

if Q has not been subdivided

subdivide Q and

update Q by replacing Q with its children

end

Fig. 3. The REFINE and REFINE RECURSIVE modules.

Lemma 15. (Recursive refinement) Let Q be a strictly admissible mesh of class

m. The call to Q∗ = REFINE RECURSIVE(Q, Q,m) terminates and returns a

refined mesh Q∗ with elements that either were already active in Q or are obtained

by single refinement of an element of Q.

Proof. For every marked element Q ∈ G` ∩M the REFINE RECURSIVE routine

is recursively called on any element of level `′ = `−m+ 1 that belongs to the

neighbourhood of Q with respect to m while `′ is greater or equal than zero. Since

at each recursive call the level `′ of interest is strictly decreasing, the termination

condition will be satisfied after a finite number of steps. In addition, any element

Q touched by a call to REFINE RECURSIVE is subdivided in its children only

the first time it is reached in the return phase after the set of recursive calls. Every

element of Q is then refined at most once in the refinement process that generates

Q∗ from Q.

By exploiting the truncation mechanism in the context of strictly admissible

meshes — see Definition 10 — it is possible to show that only the supports of

truncated basis functions of level `−m+ 1, `−m+ 2, . . . , ` will contain an element

Q ∈ G`, for every refined mesh generated by the REFINE RECURSIVE module.

Proposition 16. Let Q be a strictly admissible mesh of class m ≥ 2 and let

QM be an active element of level `, for some 0 ≤ ` ≤ N − 1. The call to Q∗ =

REFINE RECURSIVE (Q, QM,m) returns a strictly admissible mesh Q∗ � Q of

class m.
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Proof. Let Ω0 ⊇ . . . ⊇ ΩN−1 ⊇ ΩN , with ΩN = ∅, be the domain hierarchy

associated to mesh Q. The refined mesh Q∗ = REFINE RECURSIVE (Q, QM,m)

contains active elements Q∗ ∈ G`,∗ with respect to the domain hierarchy Ω0,∗ ⊇
. . . ⊇ ΩN−1,∗ ⊇ ΩN,∗ where

Ω0,∗ ≡ Ω0 and Ω`,∗ ⊇ Ω`, (5.2)

for ` = 1, . . . , N . Note that the maximum level of refinement in Q∗ is necessarily N

according to Lemma 15.

Let Q∗ ∈ G`,∗ be an active element of Q∗, then Q∗⊂Ω`,∗ \Ω`+1,∗, for some 0 ≤ ` ≤
N . We have two possibilities: either Q∗ belongs also to Ω` or not.

• If Q∗⊂Ω` then 0 ≤ ` ≤ N − 1. Since the initial mesh Q is strictly admissible of

class m, we have: Ω` ⊆ ω`−m+1, namely Q∗⊂ω`−m+1. Now, the refined subdo-

main hierarchy is a nested enlargement of the original one according to (5.2),

and, consequently, ω`−m+1 ⊆ ω`−m+1,∗, which implies Q∗⊂ω`−m+1,∗.

• If Q∗⊂Ω`,∗ \ Ω`, then Lemma 15 guarantees that Q∗ has been obtained by

applying a single refinement to an element of Q. Hence, there exists Q#
M ∈ G`−1

so that Q#
M⊃Q∗. Condition 2.7 on Q implies

Q#
M⊂ ω`−m =

⋃{
Q :Q ∈ G`−m ∧S(Q, `−m) ⊆ Ω`−m

}
and, consequently,

S(Q#
M, `−m) ⊆ Ω`−m. (5.3)

Since Q#
M is an active element of Q that has been subdivided in the refine-

ment process from Q to Q∗, the REFINE RECURSIVE module has been called

over this element. More precisely, the call REFINE RECURSIVE (Q#, Q#
M,m)

belongs to the chain of recursive calls activated by REFINE RECURSIVE

(Q, QM,m) for some intermediate mesh Q# so that Q∗ � Q# � Q. This

mean that the recursive routine has been called on any Q′ ∈ N (Q#, Q#
M,m)

with

N (Q#, Q#
M,m) =

{
Q′ ∈ G`−m,# : ∃Q′′ ∈ S(Q#

M, `−m+ 1), Q′′ ⊆ Q′
}
.

By combinining (5.3) with S(Q#
M, ` − m + 1) ⊆ S(Q#

M, ` − m), we obtain

S(Q#
M, `−m+ 1) ⊆ Ω`−m. Hence, the coarsest elements in S(Q#

M, `−m+ 1)

are exactly the ones of level ` −m. All these Q′ elements of level ` −m have

been subdivided into their children of level ` − m + 1 in the refinement step

from Q# to Q∗ in order to guarantee that

S(Q#
M, `−m+ 1) ⊆ Ω`−m+1,∗.

Then Q∗⊂ω`−m+1,∗.

In both cases, Q∗⊂ω`−m+1,∗ implies Q̂∗⊂ ω̂`−m+1,∗. Condition (2.7) is then satis-

fied.



June 26, 2015 19:41 WSPC/INSTRUCTION FILE aigmrev1

18 A. Buffa & C. Giannelli

The previous results guarantees that the strict class of admissibility of the mesh

is preserved by the REFINE RECURSIVE module. This result extends to the RE-

FINE procedure.

Corollary 17. Let Q be a strictly admissible mesh of class m ≥ 2 and M the

set of elements of Q marked for refinement. The call to Q∗ = REFINE (Q,M,m)

terminates and returns a strictly admissible mesh Q∗ � Q of class m.

Proof. The termination of the REFINE module is directly implied by Lemma 15.

Since every marked element Q activates a call to REFINE RECURSIVE(Q, Q,m),

in order to prove that the final refined mesh Q∗ preserves the satisfation of (2.7)

and, consequently, the class m of admissibility of Q, it is sufficient to prove that this

property holds after every recursive call. This is guaranteed by Proposition 16.

In view of the above corollary, we know that the refine mesh Q∗ preserves the

class of admissibility of the initial mesh Q and, consequently, Corollaries 5 and 6

hold.

Example 18. An example for the case m = 2 and the identity map is shown

Figure 4.

(a) initial mesh (b) marked elements

Fig. 4. The admissible meshes in Fig. 1 related to the cases (p1, p2) = (i, i) for i = 2, 3, 4 are
generated by the call to Q∗ = REFINE (Q,M, 2) to the mesh Q depicted in (a) with the marked

set M of elements shown in (b).

5.3. Contraction of the quasi-error and convergence

Following the approach by Ref. 9 (see also Ref. 32), we can prove the contraction of

the quasi-error, defined as the contribution given by the energy error together with

the estimator scaled by a positve factor γ:

|||u− U |||2Ω + γ ε2
Q(U,Q)



June 26, 2015 19:41 WSPC/INSTRUCTION FILE aigmrev1

Adaptive isogeometric methods with hierarchical splines: error estimator and convergence 19

where, we remind the energy norm is just ||| · |||Ω = a(·, ·)1/2 as defined in Section 3.

Note that neither the energy error |||u−U |||Ω, nor the estimator εQ(U,Q) considered

alone may satisfy a similar contraction property between two consecutive steps of

the adaptive procedure in the general setting32.

In the case of adaptive finite elements, monotonicity of the error is proved only

under additional assumptions, see e.g., Ref. 28 and 29, and indeed, we will not study

this property in the present paper.

We present here only the statement of the contraction theorem. Since its proof

follows the analogous one for finite elements with only minor changes, we postpone

it to the Appendix.

Theorem 19. Let θ ∈ (0, 1] be the Dörfler marking parameter introduced in (5.1),

and let {Qk,S(Qk), Uk}k≥0 be the sequence of strictly admissible meshes, hierarchi-

cal spline spaces, and discrete solution computed by the adaptive procedure for the

model problem (1.1). Then, there exist γ > 0 and 0 < α < 1, independent of k such

that for all k > 0 it holds:

|||u− Uk+1|||2Ω + γ ε2
Qk+1

(Uk+1,Qk+1) ≤ α2
[
|||u− Uk|||2Ω + γ ε2

Qk(Uk,Qk)
]
. (5.4)

An immediate consequence of this theorem is the convergence of the error and

of the estimator:

Corollary 20. Under the same assumption of Theorem 19, both the error and the

estimator converge geometrically to 0. I.e., there exists γ > 0, 0 < α < 1 and a

constant M such that

|||u− Uk+1|||Ω + γ εQk+1
(Uk+1,Qk+1) ≤Mαk,

where M depends on the bounds (1.2) and (3.2), but not on k.

Remark 21. The questions related to convergence for other marking strategies

remain open and may require additional assumptions on the refinement module

which should be further investigated. On the other hand, it seems very plausible

that any other error estimator verifying the upper bound provided by Theorem 11

could be used to replace the simple residual based error indicator proposed in this

paper. As a side remark, we also note that the proof of Theorem 19 does not require

the lower bound presented in Theorem 12.

6. Closure

A posteriori residual-type estimators for the error associated to the Galerkin ap-

proximation of a simple model problem have been presented, based on the truncated

basis for hierarchical splines with respect to some class of admissible meshes and a

certain multilevel refinement. In the case of the upper bound, two key properties

of the basis are exploited together with standard inequalities of (adaptive) finite

element methods. First, the partition of unity property and, second, the bound for
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the number of basis functions that assume non-zero value on any mesh element. In

the case of the lower bound, classical arguments of finite element estimates can be

directly applied. By taking into account the a posteriori upper bound previously

computed (ESTIMATE) and a classical marking strategy (MARK), we introduce a

specific refinement procedure (REFINE) to proof the contraction of the quasi-error

and, consequently, the convergence of the adaptive isogeometric methods.

Corollary 20 states convergence, but complexity is not analyzed at this stage. In

other words, we have not proven any connection between the error and the number

of degrees of freedom that are needed to compute the iterate Uk. As it is known from

the AFEM theory, this can be studied by analyzing the complexity of REFINE. In

order to do this, we need to understand how the refinement module controls the

interplay between the number of refined elements #Qk − #Q0 introduced up to

step k (that influences the degrees of freedom added during the refinement) and

the total number of marked elements. Among other things, an estimate of the type:

there exists a certain constant Λ0 > 0 such that

#Qk −#Q0 ≤ Λ0

k−1∑
j=0

#Mj

is in need. This kind of complexity estimate has been derived for adaptive finite

elements in Ref. 4, 39 for two- and three-dimensional problems, respectively. We will

prove an analogous estimate for the adaptive isogeometric method here introduced,

together with optimal convergence rates, in the companion papers Refs. 8, 7.

Suitable extensions of our adaptive framework may be investigated in order

to consider less restrictive mesh configurations. For example, the use of analysis-

suitable T-splines combined with semi–structured hierarchical construction has been

recently investigated35,18. The possibility of extending the adaptivity theory here

presented to this case is a challenging issue, but the wide modeling capabilities of

T-splines encapsulated into the hierarchical model would provide a powerful refine

module.
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Appendix

This appendix is devoted to the proof of Theorem 19. Here we basically reproduce

the proof of the statement as it was first proved for finite elements. In our presen-

tation, we closely follow Chapter 5 of Ref. 32. We are not adding something new,

and the value of this appendix is only show that the same arguments used for finite

elements apply also to our case with very minor changes. Indeed, some of the proofs

are made easier by the fact that our error indicator does not contain jump terms.
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Before proving Theorem 19, we need a few preparatory lemmas.

This first Lemma is nothing else than the Pytaghoras theorem. See Lemma 12

in Ref. 32.

Lemma 22. Let Q be an admissible mesh and Q∗ be a refinement of Q, i.e.,

Q∗ � Q. Let U and U∗ be the Galerkin solution of problem (3.7) on SD(Q) and

SD(Q∗), respectively. It holds:

|||u− U∗|||2Ω = |||u− U |||2Ω − |||U∗ − U |||2Ω. (.1)

Proof. This is an immediate consequence of the Galerkin orthogonality.

The next Lemma provides a measure of the reduction of the error indicator

εQ(U) with respect to the mesh Q, see Lemma 13 in Ref. 32.

Lemma 23. Let Q be a stricty admissible mesh , M be a set of marked elements

and Q∗ the corresponding refined mesh. i.e., Q∗ = REFINE(Q,M). Then, for all

U ∈ SD(Q) it holds

ε2
Q∗(U,Q∗) ≤ ε2

Q(U,Q)− λε2
Q(U,M) (.2)

where 0 < λ < 1.

Proof. For each Q ∈ M, we denote by Q∗(Q) the collection of elements of Q∗
that are created by splitting Q. We know that, by construction, for all Q? ∈ Q∗(Q),

it holds hQ̂∗ ≤
1

2
hQ̂. Due to (3.2), there exists then a constant c(F), c(F) < 1,

independent of Q such that hQ? ≤ c(F)hQ.

If we adopt the notation

ε2
Q∗(U,Q) =

∑
Q∗∈Q∗(Q)

h2
Q∗‖r(U)‖2L2(Q∗),

it clearly holds:

∀Q ∈M εQ∗(U,Q) ≤ c(F) εQ(U,Q).

Moreover, since the mesh size does not increase for all elements in Q\M, we have:

∀Q ∈ Q \M εQ∗(U,Q) ≤ εQ(U,Q).

Summing up for all Q ∈ Q, we obtain:

ε2
Q∗(U,Q

∗) ≤ ε2
Q(U,Q \M) + c2(F) εQ(U,M)

which implies then (.2) with λ = 1− c2(F).

We turn now to the Lipschitz property of the error indicator εQ(U,Q), for any

Q, with respect to the trial function U , see Lemma 14 in 32.
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Lemma 24. Let Q be an admissible mesh and V , W ∈ SD(Q). There exists a

Λ > 0 such that the following holds for all Q ∈ Q

|εQ(V,Q)− εQ(W,Q)| ≤ ΛηQ(A, Q)||∇(V −W )||L2(Q), (.3)

where ηQ(A, Q) = hQ‖div(A)‖L∞(Q) + ‖A‖L∞(Q).

Proof. By definition, we have:

r(V )− r(W ) = div(A∇(V −W )) = div(A) · ∇(V −W ) + A : D2(U −W ),

where D2· stands for the Hessian matrix. Using the inverse inequality ‖D2(U −
W )‖L2(Q) . h−1

Q ‖∇(V −W )‖L2(Q), applying Cauchy-Schwarz and triangle inequal-

ity, we obtain:

|εQ(V,Q)− εQ(W,Q)| . hQ‖r(V )− r(W )‖L2(Q)

. (hQ‖div(A)‖L∞(Q) + ‖A‖L∞(Q))‖∇(V −W )‖L2(Q)

which ends the proof.

We can combine the previous results to obtain the last preparatory Lemma. See

Proposition 3 in Ref. 32.

Lemma 25. Let Q be a strictly admissible mesh, M be a set of marked elements

and Q∗ the corresponding refined mesh. i.e., Q∗ = REFINE(Q,M). There exists

Λ > 0 so that, ∀V ∈ SD(Q), V ∗ ∈ S∗D(Q∗) and any δ > 0,

ε2
Q∗(V

∗,Q∗) ≤ (1 + δ)
[
ε2
Q(V,Q)− λε2

Q(V,M)
]

+ (1 + δ−1)Λ2η2
Q(A,Q)|||V ∗−V |||2Ω

(.4)

with η2
Q∗ = supQ∗∈Q∗ η

2
Q∗(A, Q

∗).

Proof. Applying triangle inequality and Lemma 24, we have:

ε2
Q∗(V

∗, Q∗) ≤ (1 + δ)ε2
Q∗(V,Q

∗) + (1 + δ−1) |εQ∗(V ∗, Q∗)− εQ∗(V,Q∗)|2

≤ (1 + δ)ε2
Q∗(V,Q

∗) + η2
Q∗(A,Q

∗)Λ‖∇(V − V ∗)‖2L2(Q∗).

Summing over the elements, we obtain:

ε2
Q∗(V

∗,Q∗) ≤ (1 + δ)ε2
Q∗(V,Q∗) + η2

Q∗‖(V − V ∗)‖2V.

The statement follows by applying Lemma 23.

Finally we are now ready to prove Theorem 19.

Proof of Theorem 19. By summing up the error orthogonality (.1) with the

estimator reduction (.4) scaled by a constant γ > 0, we obtain

|||u− Uk+1|||2Ω + γ ε2
Qk+1

(Uk+1,Qk+1) ≤ |||u− Uk|||2Ω
+
[
γ (1 + δ−1)Λ0 − 1

]
|||Uk+1 − Uk|||2Ω

+ γ (1 + δ)
[
ε2
Qk(Uk,Qk)− λ ε2

Qk(Uk,Mk)
]
,
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where we have used (.4) withQ = Qk,Q∗ = Qk+1, V = Uk, V
∗ = Uk+1, and we have

set Λ0 = Λη2
Q0

(A,Q0) ≥ Λη2
Qk(A,Qk). The choice γ = 1/[(1 + δ−1) Λ0] together

with the Dörfler marking property (5.1) leads to

|||u− Uk+1|||2Ω + γ ε2
Qk+1

(Uk+1,Qk+1) ≤ |||u− Uk|||2Ω
+ γ (1 + δ)

[
ε2
Qk(Uk,Qk)− λ θ2 ε2

Qk(Uk,Qk)
]

= |||u− Uk|||2Ω + γ (1 + δ)(1− λ θ2) ε2
Qk(Uk,Qk).

By choosing the parameter δ so that (1 + δ)(1 − λ θ2) = 1 − λ θ2/2, the above

inequality reduces to

|||u−Uk+1|||2Ω + γ ε2
Qk+1

(Uk+1,Qk+1) ≤ |||u−Uk|||2Ω + γ

(
1− λ θ2

2

)
ε2
Qk(Uk,Qk).

The second term on the right-hand side may be written as

−γ λ θ
2

4
ε2
Qk(Uk,Qk) + γ

(
1− λ θ2

4

)
ε2
Qk(Uk,Qk),

so that taking into account the a posteriori upper bound (4.4) and the associated

constant Cup, we obtain the inequality (5.4) with α = max
{

1− γ λ θ2

4Cup
, 1− λ θ2

4

}
<

1.

References

1. Y. Bazilevs, V. M. Calo, J. A. Cottrell, J. Evans, T. J. R. Hughes, S. Lipton, M. A.
Scott, and T. W. Sederberg. Isogeometric Analysis using T-splines. Comput. Methods
Appl. Mech. Engrg., 199:229–263, 2010.

2. L. Beirão da Veiga, A. Buffa, D. Cho, and G. Sangalli. Analysis-Suitable T-splines are
Dual-Compatible. Comput. Methods Appl. Mech. Engrg., 249–252:42–51, 2012.

3. L. Beirão da Veiga, A. Buffa, G. Sangalli, and R. Vázquez. Analysis-suitable T-splines
of arbitrary degree: definition, linear independence and approximation properties.
Math. Models Methods Appl. Sci., 23:1979–2003, 2013.

4. P. Binev, W. Dahmen, and R. DeVore. Adaptive Finite Element Methods with con-
vergence rates. Numer. Math., 97:219–268, 2004.

5. A. Bonito and R. H. Nochetto. Quasi-optimal convergence rate of an adaptive discon-
tinuous Galerkin method. SIAM J. Numer. Anal., 48:734–771, 2010.

6. A. Bressan. Some properties of LR-splines. Comput. Aided Geom. Design, 30:778–794,
2013.

7. A. Buffa and C. Giannelli. Adaptive isogeometric methods with hierarchical splines:
optimality and convergence rates. In preparation, 2015.

8. A. Buffa, C. Giannelli, P. Morgenstern, and D. Peterseim. Complexity of hierarchical
refinement for a class of admissible mesh configurations. In preparation, 2015.

9. J. M. Cascón, C. Kreuzer, R. H. Nochetto, and K. G. Siebert. Quasi-optimal conver-
gence rate for an adaptive finite element method. SIAM J. Numer. Anal., 46:2524–
2550, 2008.

10. J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs. Isogeometric Analysis: Toward Inte-
gration of CAD and FEA. John Wiley & Sons, 2009.

11. C. de Boor. A practical guide to splines. Springer, revised ed., 2001.



June 26, 2015 19:41 WSPC/INSTRUCTION FILE aigmrev1

24 A. Buffa & C. Giannelli
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