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Abstract 

This thesis is based on three main trials. The overall aim of the present PhD 

thesis was to investigate the effect of some infra vitam and post mortem factors on 

oxidative stability of fish muscle. Killing procedures, such as percussion, asphyxia in 

air, and asphyxia by carbon monoxide (CO) were tested. Moreover, the effect of the 

utilization of mechanical separation technique (MSM) on oxidative stability of fish 

muscle was also investigated. 

 

The first research was conducted in order to investigate the effect of 

slaughtering procedures on oxidative stress and oxidative stability of muscle of 

farmed rainbow trout (Oncorhynchuss mykiss). Specifically, asphyxia in air was 

utilized as stressful method whilst percussion as a no-stress one. Stress at slaughter 

was assessed both by nucleotides analysis of muscle and lipid mediators detection in 

fish plasma. Moreover, the overall aim was to verify if stress during slaughter is 

reflected by the presence of some oxidative biomarkers in plasma, and if such as 

stress may affect the oxidative stability of fish muscle during a long term frozen 

storage (-10 °C, 165 days). Results revealed that stress during slaughter can greatly 

influence oxidative stress and oxidative stability of rainbow trout fillets. In fact, 

asphyxia, which was the most stressful method, induced a higher production of some 

lipid mediators such as hydroperoxides and EPA-derived prostaglandins, such as 12-

HpHEPE/15-HpHEPE and PGD3/PGE3. As a consequence, fillets derived from 

asphyxiated fish were less stable in terms of oxidative stability and showed lower 

shelf-life. 

 

In the second research, Atlantic salmon was utilized as target species in order to 

evaluate the effect of different stunning/killing procedures on lipid and cholesterol 

oxidation during 14 days of refrigerated storage. Carbon monoxide (CO) has been 

recently utilized as a new stunning/killing procedure for Atlantic salmon (Salmo salar), 
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however no studies on its effect on fillets quality were previously performed. For this 

reason, lipid and cholesterol oxidation of fillets were evaluated at two times of 

refrigerated (2.5 °C) storage, T0 (64 h after death) and T14 (14 days from T0). The use 

of CO was compared with the percussion (P) method, considered as control. Results 

revealed that fatty acid profile, primary (conjugated dienes) and secondary (TBARS) 

oxidation products, cholesterol oxidation products (COPs) and carotenoids were 

unaffected by the killing method. Despite the low oxidative status of lipids (0.66 and 

0.60 mg malondialdehyde kg
-1

 muscle in P and CO fish, respectively), cholesterol was 

found to be highly oxidized (0.17 and 0.13 mg COPs kg
-1

). Moreover, storage was found 

to significantly affect the oxidative stability of fish muscle by increasing oxidation 

products. Interestingly, TBARS content doubled while the increase for COPs was not 

homogeneous: α- and β-epoxycholesterol increased by 25%, whereas triol and 7-

ketocholesterol increased by 48 and 62% respectively. In conclusion, the quality of 

salmon fillets just after slaughtering and after 14 days of refrigerated storage at 2.5 °C 

did not change, irrespective of the killing method adopted, suggesting that the CO 

method may be applied without any detrimental effect on the quality of fish fillets. 

Neverthless, storage time was confirmed to be a critical phase in order to maintain 

unaltered fish fillets quality. 

 

In the third study instead, the effect of a post mortem factor such as mechanical 

separation process for obtaining “mechanically separated meat” (MSM) from 

decapitated and eviscerated fish was studied. Mechanically separated meat has been 

utilized in certain meat and meat products, especially from pork, beef and chicken. 

This process however, is not so applied in European fish industries. The overall aim of 

this third research was to evaluate the effect of that process on physical and chemical 

properties of three species farmed in the European aquaculture as well as European 

sea bass (Dicentrarchus labrax), gilthead sea bream (Sparus aurata), and rainbow trout 

(Oncorhynkus mykiss). Specifically, MSM-burgers were compared with minced-burgers 

and whole fillets by evaluating colour, dienes, TBARS, and fatty acid profiles during 

storage. 
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Riassunto 

 Questa tesi si basa su tre studi principali. L'obiettivo generale della presente 

tesi di dottorato è stato quello di studiare l'effetto di alcuni fattori infra vitam e post 

mortem sulla stabilità ossidativa del muscolo di pesce. Le procedure d’uccisione, come 

la percussione, l'asfissia in aria e l'asfissia da monossido di carbonio (CO) sono state 

testate su specie di grande importanza economica, come il salmone atlantico e la trota 

iridea. Inoltre è stato studiato l'effetto dell'impiego della tecnica di separazione 

meccanica delle carni (CSM) impiegata su specie di pesci di interesse per l’acquacoltura 

europea. 

 

La prima ricerca ha esaminato gli effetti delle procedure di macellazione sia 

sullo stress ossidativo sia sulla stabilità ossidativa del muscolo di trota iridea 

(Oncorhynchuss mykiss). In particolare, l'asfissia in aria è stata utilizzata come metodo 

di uccisione fortemente stressante, mentre la percussione come un metodo no-stress. 

Lo stress al momento della macellazione è stato valutato attraverso la quantificazione 

dei nucleotidi nel muscolo e attraverso la determinazione di mediatori lipidici nel 

plasma. Inoltre, gli obiettivi generali erano sia verificare se lo stress durante la 

macellazione si sarebbe potuto discriminare attraverso la presenza di alcuni biomarker 

ossidativi nel plasma, sia valutare come lo stress può compromettere la stabilità 

ossidativa del muscolo di pesce durante un lungo periodo di congelamento (-10 °C, 165 

giorni). I risultati hanno rivelato che lo stress durante la macellazione può influenzare 

notevolmente lo stress ossidativo e la stabilità ossidativa di filetti di trota iridea. In 

realtà l'asfissia, che si è confermato il metodo più stressante, ha indotto una maggiore 

produzione di alcuni mediatori lipidici, come idroperossidi e prostaglandine EPA-

derivate, come ad esempio 12-HpHEPE/15-HpHEPE e PGD3/PGE3. Di conseguenza, i 

filetti ottenuti da pesci asfissiati hanno mostrato sia una minor stabilità ossidativa sia 

una minore shelf-life. 
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Nella seconda ricerca, il salmone atlantico (Salmo salar) è stato utilizzato come 

specie bersaglio per valutare l'effetto di differenti procedure di stordimento/uccisione 

sull’ossidazione lipidica e del colesterolo durante 14 giorni di conservazione 

refrigerata. Il monossido di carbonio (CO) è stato recentemente impiegato come una 

nuova procedura di stordimento/uccisione del salmone atlantico, tuttavia non sono 

stati condotti studi sui suoi possibili effetti sulla qualità dei filetti. Per questo motivo 

l’ossidazione lipidica e del colesterolo nei filetti è stata valutata in due tempi di 

stoccaggio refrigerato (2.5 °C): T0 (64 h dopo la morte) e T14 (14 giorni da T0). L'uso di 

CO è stato confrontato con la percussione, metodo utilizzato per l’uccisione di questa 

specie. I risultati hanno rivelato che il profilo degli acidi grassi, i prodotti di ossidazione 

primari (dieni coniugati) e secondari (TBARS), i prodotti di ossidazione del colesterolo 

(COPs) e i carotenoidi sono stati influenzati dal metodo di uccisione. Nonostante il 

basso stato ossidativo dei lipidi (0,66 e 0,60 mg di malondialdeide kg
-1

 muscolo nei 

gruppi sottoposti a percussione e monossido di carbonio, rispettivamente), il 

colesterolo è risultato essere altamente ossidato (0,17 e 0,13 mg COP kg
-1

). Inoltre la 

conservazione ha influenzato in modo significativo la stabilità ossidativa del muscolo di 

pesce, determinando un aumento dei prodotti di ossidazione. È interessante notare 

che durante la conservazione il contenuto di TBARS è raddoppiato, mentre 

l'incremento dei COPs non è risultato omogeneo: α- e β –epoxycolesterolo infatti sono 

aumentati del 25%, mentre triolo e 7-ketocolesterolo sono aumentati rispettivamente 

del 48 e del 62%. In conclusione, la qualità dei filetti di salmone subito dopo la 

macellazione e dopo 14 giorni di conservazione in frigorifero a 2,5 °C non è risultata 

alterata, indipendentemente dal metodo di uccisione adottato, suggerendo così che 

l’impiego di CO può essere applicato senza alcun effetto negativo sulla qualità del 

pesce. Ciononostante è stato confermato che la conservazione rappresenta una fase 

critica al fine di mantenere inalterata la qualità dei filetti. 
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Nel terzo studio invece, è stato valutato l'effetto di un fattore post mortem 

come l’applicazione del processo di separazione meccanica per l'ottenimento di "carni 

separate meccanicamente" (CSM) da pesci decapitati ed eviscerati. Le carni separate 

meccanicamente sono ormai utilizzate da anni per l’ottenimento di prodotti a base 

soprattutto di carne di maiale, manzo o pollo. Questo processo tuttavia a livello 

europeo non è altrettanto sfruttato nelle industrie di prodotti ittici. Per questo, 

l'obiettivo generale di questa terza ricerca è stato quello di valutare l'effetto del 

processo di separazione meccanica sulle proprietà fisiche e chimiche di tre specie 

d’interesse per l’acqucoltura europea, come spigola (Dicentrarchus labrax), orata 

(Sparus aurata) e trota iridea (Oncorhynkus mykiss). In particolare, sono stati 

confrontati burger ottenuti da CSM con burger ottenuti da carne macinata e con filetti 

interi in termini di colore, dieni, TBARS e profilo in acidi grassi, valutandone 

l’evoluzione durante la conservazione. 
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1. INTRODUCTION 

1.1 LIPID FOREWORD 

Nomenclature Committee (ILCNC) developed a dynamic “Comprehensive 

Classification System for Lipids” that was published in 2005 (Fahy et al., 2009). For the 

purpose of classification, lipids are defined as hydrophobic or amphipathic small 

molecules that may originate entirely or in part by carbanion-based condensations of 

thioesters (fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, 

saccharolipids, and polyketides) and/or by carbocation-based condensations of 

isoprene units (prenol lipids and sterol lipids). The comprehensive classification system 

organises lipids into these eight well-defined categories (Table 1) that cover eukaryotic 

and prokaryotic sources. It has been internationally adopted and widely accepted by 

the lipidomics community. The system is also available online on the LIPID MAPS 

(website http://www.lipidmaps.org). The comprehensive classification system has 

been under the guidance of the ILCNC which meets periodically to propose changes 

and updates the classification, nomenclature, and structural representation due to the 

global interest for nonmammalin sources, such as plants, bacteria, fungi, algae and 

marine organism (Fahy et al., 2009). 

Lipids are formed from structural units with a pronounced hydrophobicity. This 

solubility characteristic, rather than other common structural feature, is unique for this 

class of compounds. Lipids are soluble in organic solvents but not in water. Water 

insolubility is the analytical property used at the basis for their easy separation from 

proteins and carbohydrates (Folch et al., 1957; Bligh & Dyer, 1959). 

Two general approaches have been generally accepted for lipid classification: 

one according to “acyl residue” characteristic, and the other according to the 

characteristic “neutral-polar”. The first divides lipid into simple lipid (not saponifiable), 

those are free fatty acids, isoprenoid and tocopherols, acyl lipids (saponifiable), which 

are mono-, di-, triacylglycerols, phospholipids, glycolipids, diols, waxes and sterol 

esters. The second category divides lipids in neutral lipids (fatty acids (C>12), mono-, 

di-, tri-acylglycerols, waxes, sterols and sterol esters, carotenoids), and polar lipids 

(glycerophospholipids, glyceroglycolipids, sphingophospholipids, sphingoglycolipids). 
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Table 1. Lipid categories of the comprehensive classification system and the number of structures in the 

lipid maps database. 

Category Abbreviation Structure in database 

Fatty acyls  FA  2678 

Glycerolipids GL  3009 

Glycerophospholipids GP  1970 

Prenol Lipids  PR  610 

Polyketides  PK  132 

Saccharolipids  SL  11 

Sphingolipids  SP  620 

Sterol Lipids  ST  1744 

 

As reported by many authors, lipids have more than an important role. They 

work as membrane constituents (phospholipids), as fuel molecules (37 kJ/g or 9 kcal/g 

triacylglycerol) and as a source of essential fatty acids (linoleic C18:2n6, LA; α-linolenic 

C18:3n3, ALA), vitamins (sterols), and their oxidation product seemed to be involved in 

inflammatory response (Funk, 2001). Apart from these roles, lipids strongly influence, 

positively or negatively, food organoleptic quality. Indeed, some lipid compounds are 

indispensable as food emulsifier, colorants, food aroma substances or as their 

precursors. 

Meat lipids are mainly composed of phospholipids and triglycerides. According 

to Stryer (1995), phospholipids are structural lipids in which, for most, glycerol is 

esterified to two fatty acids and a phosphate group. They form cell and organelle 

membrane, and although the content is relatively constant in the muscle (1% of the 

tissue weight regardless of fat content; Decker et al., 2005), their fatty acids can be 

altered in order to maintain the function and fluidity of the cell (McMurchie, 1988). As 

noted by Mapiye et al. (2012) and Luciano et al. (2013), typically glycerol-based 

phospholipids contain a saturated fatty acid (SFA) in the sn1 position and a 

polyunsaturated fatty acid (PUFA) in the sn2 position. As reported by Catalá (2010), 

linoleic acid, C20:4 n6 (eicosapentaenoic acid, EPA) and C22:6 n3 (docosahexanoic 

acid, DHA), are well known in cellular phospholipids. 
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Regarding triglycerides fraction, Mapiye et al. (2012) underline that they are 

storage lipids and are composed by three fatty acids esterified to glycerol. They 

represent the major lipid class in adipose tissue (Wood et al., 2008). They are 

accumulated when energy intake is in excess of expenditure, and are mobilised for 

oxidation when dietary energy is limiting. Despite their abundance in muscle tissues, 

they have 100 time less surface area than phospholipids on a weight basis and they are 

more saturated than the other (Decker et al., 2005). 

Some authors, as Gandemer (1997) pointed out the attention on the 

susceptibility to oxidation of phospholipids comparing with triacylglycerols. That is a 

matter of fact, that the polyunsaturated lipid fraction is predominantly susceptible to 

lipid oxidation, due to the presence of double bonds (Catalá, 2010). The mechanisms 

of lipid oxidation and their effects on food quality will be discussed later. However, it is 

important to note that when lipid peroxidation affects phospholipids more than 

triacylglycerols can perturb the assembly of the membrane. That can lead membrane 

chemical and physical changes, for example in permeability and fluidity, altering ion 

transport and inhibiting metabolic process (Nigam & Schewe, 2000). 

On the other hand, meat lipids are one of the few components of meat that can 

be modified in content and composition (Mapiye et al., 2012). In all vertebrates, the in 

vivo n3 LC-PUFA biosynthetic pathway is conceptually identical (Sprecher, 2000), and it 

involves a series of enzymatic steps catalysed by many enzymes (Emery et al., 2013). 

The pathway that converts the two essential polyunsaturated fatty acids (PUFA) 

C18:2n6 and C18:3n3 into n6 LC-PUFA (such as arachidonic acid, ARA, C20:4n6), and n3 

LC-PUFA (such as EPA and DHA), respectively, is commonly named ‘‘Sprecher 

pathway’’ (Emery et al., 2013). Because of evolution and adaptation to the 

environment, each species has a different capacity for PUFA bioconversion into LC-

PUFA, depending on the presence, abundance and activity of the specific enzymes in 

the metabolic pathway. 

It can be argued that the ability of biosynthesising n3 LC-PUFA is greater in fish 

compared to other animals and mammals, that makes them extremely interesting for 

human health. As reported by Catalá (2010), linoleic and linolenic acids cannot be 

synthesized de novo by mammals, hence they are essential in the diet. The n3 fatty 

acids, especially EPA and DHA can be obtained from high-fat fish and marine 

mammals, while the n6 fatty acids are concentrated in meats and vegetable oils. High 

amount of n3 fatty acids was reported for different fish species when comparing with 

terrestrial animals. For example, in fish it is possible to find value of EPA reach from 

4.74% of red scorpion fish (Scorpaena scrofa) to 11.7% of sardine (Sardinella aurita) 

(Özogul & Özogul, 2007) while in pigs, sheep and cattle, Wood et al. (2008) reported 

values around 0.31, 0.45 and 0.28%, respectively. Moreover, the content of DHA varied 

from a lower value of 13.3% in sardine (Özogul & Özogul, 2007) to 36% in scad muscle 
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(Trachurus mediterraneous), values higher than 0.43% found in female pig (Enser et al., 

2000). 

During the last decades, a large number of studies around fish were conducted 

in order to better understand if the nature and quantity of lipids and fatty acids might 

be affected by species (Haliloğlu et al., 2004; Özogul & Özogul, 2007; Prato & 

Biandolino, 2012), habitat (Haliloğlu et al., 2004), diet (Chen et al., 2007; Baron et al., 

2009; Masiha et al., 2013) and handling operations, such as slaughter methods (Sigholt 

et al., 1997; Lefèvre et al., 2008). 

Regarding the influence of the species on fatty acids composition of fillets, 

many studies were conducted with the aim to evaluate different commercial fish 

species. Özogul & Özogul (2007) quantified the lipid content and the fatty acid 

composition of a range of species from Turkish Seas, such as bogue (Boops boops), 

mullet (Mugil cephalus), sardine (Sardinella aurita); Özogul et al. (2009) examined 34 

different Mediterranean fish species; Prato & Biandolino (2012) reported the data for 

Mediterranean species like bogue (Boops boops), seabream (Dicentrarchus labrax), 

two-banded seabream (Diplodus vulgaris), and Huynh & Kitts (2009) focused on Pacific 

species. The data obtained for some of those species are summarised in Table 2 and 

Table 3, that illustrate the total lipid content, percentage of the main fatty acids and 

the sum of the three categories of fatty acids, saturated, monounsaturated and 

polyunsaturated. 

All the authors reported value obtained from species caught or purchased from 

the Mediterranean, Aegean, Black Sea (Özogul & Özogul, 2007; Özogul et al., 2009; 

Prato & Biandolino, 2012), and Pacific Ocean (Huynh & Kitts, 2009). Within the 11 fish 

species reported, 5 came from the Mediterranean Sea, 4 from the Ionian Sea, and 2 

from the Pacific Ocean. The choice of the species reported was mainly due to the high 

commercial value in Mediterranean countries and Pacific North-West countries. 

The lipid content (Table 3), expressed on a wet weight basis, ranged from as low 

as 0.73 g/100 g for Merluccius productus (Huynh & Kitts, 2009) to the highest amount 

of 8.12 g/100 g for Mullus barbatus (Prato & Biandolino, 2012). According to the lipid 

content (Ackman, 1989), it is possible to classify fish in four categoriesy: lean fish (less 

than 2% of lipids), low-fat fish (2-4%), medium-fat fish (4-8%) and high-fat fish (more 

than 8%). Of the species summarised, only the Mullus barbatus belongs to the high-fat 

category, three to the lean fish (Merluccius spp. and Diplodus vulgaris) with less than 

1% of fat, and the other belongs to the low and medium categories. Globally, the 

authors underlined that the lipid contents presented in their work were in agreement 

with the average lipid contents reported for the same species in literature (Prato & 

Biandolino, 2012). 

However, it could be interesting to note that different authors found 

differences in the lipid content of the same species, for example Boops boops, Liza 
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aurata and Diplodus vulgaris. Prato & Biandolino (2012) reported for Boops boops a 

lipid content of 5.2 g/100 g while Özogul et al. (2009) found a content of 3.64 g/100g. 

Moreover, the same authors found different values for lipid content of both Liza 

aurata (3 vs 1%) and Diplodus vulgaris (6 vs 2.3%). As observed by Prato & Biandolino 

(2012), there are several factors which might explained that marked differences, such 

as season, geographical origin, age and reproductive status. Unfortunately it is quite 

difficult to find details about the life of caught fish, especially if they are not directly 

caught but purchased in a local market. In their research, Prato & Biandolino (2012) 

reported that the species studied were caught during the spring season, while Özogul 

et al. (2009) did not specify the time or season of the catch. Finally, it would be useful 

to report the season even if it is not any attempt to make seasonal comparison both 

between and within the different fish species. 

As mentioned before, diet is one of the main infra-vitam factors affecting lipid 

composition, and its stability as a results. 
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Table 2. Fatty acid composition (weight % of total fatty acids) in the total lipid of different fish species. 

 
Reference 

Lipid 

% 
Cat. C16:0 C18:1 C18:2n6 C18:3n3 C20:4n6 C20:5n6 C22:6n3 

Boops boops 

Prato &d 

Biandolino 

(2012) 

5.2 
Medium-

fat 
29.9 12.98 1.23 0.74 0.83 6.43 15.87 

Boops boops 
Özogul et 

al. (2009) 
3.64 Low-fat 20.05 20.8 0.93 0.39 0.10 5.09 18.7 

Dicentrarchus 

labrax 

Prato & 

Biandolino 

(2012) 

2.33 Low-fat 29.92 10.86 3.77 1.44 2.80 6.91 13.83 

Diplodus 

vulgaris 

Prato & 

Biandolino 

(2012) 

3.6 Low-fat 27.48 11.88 2.28 1.17 2.73 7.45 17.18 

Diplodus 

vulgaris 

Özogul et 

al. (2009) 
1.04 Lean 19.45 9.72 0.89 0.18 6.80 5.30 21.93 

Liza aurata 

Prato & 

Biandolino 

(2012) 

5.96 
Medium-

fat 
28.12 13.23 2.04 2.83 2.33 6.12 10.81 

Liza aurata 
Özogul et 

al. (2009) 
2.29 Low-fat 25.87 4.21 1.69 0.07 5.96 10.00 21.71 

Merluccius 

productus 

Huynh & 

Kitts 

(2009) 

0.73 Lean 21.7 9.65 0.92 0.30 1.95 1.25 22.08 

Merluccius 

merluccius 

Özogul et 

al. (2009) 
0.76 Lean 21.93 12.42 1.05 3.68 3.68 5.81 26.83 

Mullus 

barbatus 

Prato & 

Biandolino 

(2012) 

8.12 High-fat 29.17 13.87 1.42 1.24 3.01 7.16 12.05 

Mugil 

cephalus 

Özogul et 

al. (2007) 
2.09 Low-fat 21.5 9-73 1.40 0.34 0.12 5.39 36.2 

Sardinella 

aurita 

Özogul et 

al. (2007) 
3.47 Low-fat 20.5 5.57 2.05 0.35 0.61 11.7 13.3 

Sardinops 

sagax 

Huynh & 

Kitts 

(2009) 

6.43 
Medium-

fat 
3.95 4.16 1.49 0.93 1.02 2.01 32.65 
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Table 3. Total sum of saturated fatty acid (SFA), monounsaturated fatty acid (MUFA), polyunsaturated 

fatty acids (PUFA), and ratio n3/n6 of different fish species. 

 Reference ΣSFA ΣMUFA ΣPUFA n3/n6 

Boops boops 
Prato & 

Biandolino (2012) 
41.8 28.2 29.9 4.7 

Boops boops 
Özogul et al. 

(2007) 
32.3 27.0 27.5 20.9 

Dicentrarchus 

labrax 

Prato & 

Biandolino (2012) 
42.9 24.6 32.4 2.5 

Diplodus vulgaris 
Prato & 

Biandolino (2012) 
38.1 27.9 34.0 3.9 

Diplodus vulgaris 
Özogul et al. 

(2009) 
34.3 16.3 36.1 3.5 

Liza aurata 
Prato & 

Biandolino (2012) 
39.7 31.4 28.9 3.1 

Liza aurata 
Özogul et al. 

(2009) 
42.2 22.5 21.7 1.8 

Merluccius 

productus 

Huynh & Kitts 

(2009) 
32.4 21.88 43.5 8.4 

Merluccius 

merluccius 

Özogul et al. 

(2009) 
33 18.5 41.7 7.6 

Mullus barbatus 
Prato & 

Biandolino (2012) 
39.9 32.4 27.7 3.3 

Mugil cephalus 
Özogul et al. 

(2007) 
32.8 25.8 24.8 8.2 

Sardinella aurita 
Özogul et al. 

(2007) 
38.7 17.6 31.0 8.9 

Sardinops sagax 
Huynh & Kitts 

(2009) 
25.2 14.2 56.8 11.3 
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Fish lipid differs from mammalian lipid. The main difference is that fish lipids include 

up to 40% of long-chain fatty acids (14-22 carbon atoms) which are highly unsaturated. 

Mammalian fat will rarely contain more than two double bonds per fatty acid molecule 

while the depot fats of fish contain several fatty acids with five or six double bonds. In 

human nutrition, fatty acids such as linoleic and linolenic acids are regarded as 

essential since they can not be synthesized by the organism. In marine fish, these fatty 

acids constitute only around 2% of the total lipids, which is a small percentage 

compared with many vegetable oils. However, fish oils contain other polyunsaturated 

fatty acids which are "essential" to prevent skin diseases in the same way as linoleic 

and arachidonic acids. As members of the linolenic acid family (first double bond in the 

third position, n3 counted from the terminal methyl group), they will also have 

neurological benefits in growing children. One of these fatty acids, EPA, has attracted 

considerable attention. Danish scientists have found this acid high in the diet of a 

group of Greenland Eskimos virtually free from arteriosclerosis, indeed. Investigations 

in the United Kingdom and elsewhere have documented that EPA in the blood is an 

extremely potent antithrombotic factor (Simopoulos, 1991). 

As well, DHA has grown of importance. Intervention studies have demonstrated 

beneficial effects of preformed n-3 long-chain polyunsaturated fatty acids on 

recognised cardiovascular risk factors, such as a reduction of plasma triacylglycerol 

concentrations, platelet aggregation, and blood pressure. These effects were observed 

at intakes of 1 g per day, well above levels that were associated with lower 

cardiovascular disease (CVD) risk. Respect to the latter, EFSA (2010) reported that 

studies indicate that oily fish consumption or dietary n-3 long-chain polyunsaturated 

fatty acid supplements (equivalent to a range of 250 to 500 mg of eicosapentaenoic 

acid plus docosahexaenoic acid daily) decrease the risk of mortality from coronary 

heart disease (CHD) and sudden cardiac death. However, EFSA (2010) suggested 250 

mg per day of EPA+DHA as the adequate intake (for adults) in order primary prevent 

CHD diseases, but other international organizations proposed very different doses 

(Aranceta & Pérez-Rodrigo, 2012). 

Unfortunately, long-chain FAs are as important as their high susceptibility to 

degradation, such as oxidation. It has been proved (German & Kinsella, 1985; Richards 

et al., 2002; Azhara & Nisa, 2006; Maqsood & Benjakul, 2011; Maqsood et al., 2012) 

that the lipid oxidation of food, especially of PUFA contained in fish, is strictly linked to 

the formation of off-flavour components, less of quality during different storage 

conditions, loss of nutritional value and even formation of anti-nutritional molecules. 

For this reason, in order to prevent possible waste of nutrient value it is important to 

briefly summarised the main factors affecting lipid oxidation in fish. 
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1.2 LIPID OXIDATION IN FISH 

Lipid oxidation has been deeply studyiedduring several decades, and its 

complex mechanisms, kinetics and products are now sufficiently established. As 

reported by Niki et al. (2005) in 1955, the oxygenise enzyme was discovered and since 

then lipid peroxidation by enzymatic ways has been studied hardly. Niki et al. (2005) 

underline that lipid are oxidized by three distinct mechanisms: 

1) enzymatic oxidation; 

2) non enzymatic, free radical-mediated oxidation; 

3) non-enzymatic, non radical oxidation. 

 

The complexity of this phenomenon is confirmed by the large number of studies 

conducted in order to better understand lipid oxidation and to find out the best way to 

contrast it (Ramanathan & Das, 1992; Niki et al., 2005; Azhar & Nisa, 2006). 

Lipid oxidation indeed is a very important event leading to the loss of quality of 

foods especially of those containing highly unsaturated fats. Quality loss, production of 

unpalatable flavour and odour, shortening of shelf life, losses of nutritional values (e.g. 

loss of PUFA) and possible production of unhealthy molecules are some of the 

extensive consequences of lipid oxidation in foods. 

Unfortunately, lipid oxidation processes in foods or biological tissues may be 

more complicated than the simpler via indicated during these years. As confirmed by 

Schaich (2005), frequently lipid oxidation mechanisms have been proposed based on 

kinetics, usually of oxygen consumption or appearance of specific products (e.g., 

LOOH) or carbonyls (e.g., malondialdehyde), assuming standard radical chain reaction 

sequences. However, when side reactions are ignored or reactions proceed by a 

pathway different from that being measured, erroneous conclusions can easily be 

drawn. The same argument holds for catalytic mechanisms. Thus, multiple pathways 

and reaction tracks need to be evaluated simultaneously to develop an accurate 

picture of lipid oxidation in model systems, foods, and biological tissues. 
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Figure 1. Lipid peroxidation mechanism. Figure retrived from Schaich (2005). 
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Lipid oxidation has long been recognized as a free radical chain reaction 

(Ramanathan & Das, 1992), and the classic chain reaction scheme with three phases 

has been repeated in many forms. Figure 1 is the version reported by Schaich (2005). 

Azhara & Nisa (2006) noted that the two major components involved in lipid oxidation 

are unsaturated fatty acids and oxygen. In this process, oxygen from the atmosphere is 

added to certain fatty acids creating unstable intermediates that eventually break 

down to form unpleasant odour and aroma compound. This type of oxidation is even 

called autoxidation, which involves primary autoxidative reactions which are further 

accompanied by both oxidative or non-oxidative secondary reactions. It is commonly 

accepted that the most important process by which PUFA and oxygen interact is the 

free radical chain reaction mentioned before. 

This way is composed by 3 steps: 

1) Initiation: formation of ab initio lipid free radical; 

2) Propagation: free radical chain reaction established; 

3) Termination: formation of non-radical products. 

Initiation of lipid oxidation produces the ab initio lipid free radicals, L
•
. The 

initiation process is not well understood. Lipid oxidation is a very easy reaction that is 

nearly ubiquitous in foods and biological systems, so it is often treated as an 

instantaneous reaction. It is not true so that some initiators or catalysts are required to 

start the lipid oxidation process. In fact, only trace amounts of catalysts are needed, 

many situations that appear to be spontaneous or uncatalyzed are actually driven by 

contaminants or conditions that have gone undetected or unconsidered. 

Indeed, in most foods and biological systems it is fair to say that multiple 

catalysts and initiators are always operative. To achieve full protection against lipid 

oxidation and attain long-term stability of any material, control strategies must include 

elimination, or at least inhibition, of initial alkyl radical production in lipids (Schaich, 

2005). Light, oxygen, metal, and high temperature are common free radical initiators. 

As reported by Schaich (2005), sometimes secondary abstraction reactions of 

lipid alkoxyl radicals (LO
•
) and peroxyl radicals (LOO

•
) are presented as initiation 

reactions because they form L
• 

radicals. That is true when lipid oxyl radicals are from 

outside sources, e.g., lipoxygenase reactions followed by Fe
2+

 and Fe
3+ 

reactions with 

LOOH. However LO
•
 and LOO

• 
deriving from the initial L

•
 or its subsequent reactions 

are considered to mediate propagation or chain branching (initiation of secondary 

chains) rather than ab initio initiation. 

The driving force in the chain reaction is the repeated abstraction of hydrogens 

by LOO
•
 to form hydroperoxides, generally called peroxides or primary products of 

oxidation (Azhar & Nisa, 2006), plus free radicals on a new fatty acid. At this point, it is 
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possible to determine conjugated dienes and trienes (CD) and peroxide value (PV). 

Concerning to this, Azhar & Nisa (2006) reported that the primary products in linoleate 

autoxidation are cis-trans and trans-trans conjugated diene-hydroperoxides. 

As said before, lipid peroxides are very unstable and break down easily or 

tend to rearrangement or to cyclise. The reaction cyclisation as mentioned by Niki et 

al. (2005) is important only for PUFA having more than three double bonds, and it does 

not take place during oxidation of linoleates. Interestingly, Medina et al. (1999) 

reported that the mechanism necessary to the formation of 2-ethilfuran starts with the 

decomposition of 12-hydroperoxide of linolenate(C18:3 n3), the 14-hydroperoxide of 

eicosapentaenoate (C20:5n3), and the 16-hydroperoxide of docosahexaenoate 

(C22:6n3). They can undergo β–cleavage to produce a conjugated diene radical, which 

can react with oxygen to produce a vynil hydroperoxide. The cleavage of the vynil 

hydroperoxide by loss of a hydroxyl radical forms an alkoxyl radical, that undergoes 

cyclasation, thus producing 2-methylfuran. Confirming that previous study, Maqsood & 

Benjakul (2011) found traces of 2-methylfuran in some samples of Asian seabass (Lates 

calcarifer). 

 Hydroperoxide decomposition proceeds by a free radical mechanism, and a 

large amount of molecules could be formed as a consequence. They can be detected 

as secondary oxidation products or “malondialdheyde-similar” thanks to chemical 

analyses as the well known TBARS method, presented later. However, no all the 

molecules can be detected, as in case of volatile, with TBARS method, so a more 

sophisticated method, as gas-cromatography (GC) is commonly utilised. Products like 

carbonyl compounds like alchohols, acids, hydrocarbons, lactones and esters are 

formed, which are strictly linked to sensory profile of fish (Maqsood & Benjakul, 2011). 

Add some information, Catalá (2010) asserts that some of the aldheydes formed 

during lipid peroxidation are highly reactive and may be considered as second toxic 

messengers. It is the case of 4-hydroxy-2-nonenal (HNE) that is formed during lipid 

peroxidation of n6 PUFA, such as linoleic acid (C18:2n6) and arachidonic acid 

(C20:4n6). Furthermore, Maqsood & Benjakul (2011) found heptanal, octanal and 

hexanal as the major aldehydes in Asian seabass slices. 

Maqsood & Benjakul (2011) underlined that many authors have been using 

aldehydes as indicators of lipid oxidation in a number of foods, including fish, because 

these compounds possess a low threshold values and are the major contributors to the 

development of off-flavour and odour (Boyd et al., 1992; Ross & Smith, 2006). 

Specifically, some authors seem to have tested that propanal and heptanal can serve 

as a reliable indicator of flavour deterioration for fish products, while hexanal 

contributes to the rancidity in meat (Ross & Smith, 2006). 
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The process continues indefinitely until no hydrogen source is available or the 

chain is intercepted. In summary, the radical chain reaction imparts several unique 

characteristics to lipid oxidation: 

1. lipid oxidation is autocatalytic-once started, the reaction is self-propagating and self-

accelerating (Azhar & Nisa, 2006) 

2. many more than one LOOH is formed and more than one lipid molecule is oxidized 

per initiating event. This points out one reason why it has been so difficult to study 

initiation processes—initiators become the proverbial needle in a haystack once 

oxidation chains become established. 

3. Very small amounts of pro- or antioxidants causes large rate changes. 

4. The reaction produces multiple intermediates and products that change with 

reaction conditions and time. 

These features present distinct challenges in measuring and controlling lipid oxidation, 

and are part of the reason why lipid oxidation is a major problem in storage stability of 

foods. Firstly, more than one parameter (CD, PV, TBARS, volatile) are necessary in 

order to define the oxidative profile of a sample. In some cases, it would be useful to 

introduce a sensory evaluation of the sample. Moreover, lipid oxidation can be 

promoted by many factors thus a specific knowledge is needed in order to maintain 

fillets quality as longer as possible. 
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1.3 FACTORS AFFECTING LIPID OXIDATION IN FISH 

 Many studies have been conducted during these years in order to better 

understand the role of different factors on lipid oxidation of fish. Both infra vitam and 

post mortem factors were deeply investigated. Feeding, stress during pre-slaughter 

activities, handling and storage are only few of that factors. For this reason, it has been 

considered useful to insert in the present thesis a comprehensive review of the main 

causes which affect lipid oxidation. Finally, we would like to specify that part of the 

contents of this introduction behaves to the Review titled “From farm to fork: lipid 

oxidation in fish products. A review”, reported in Part II of the present PhD thesis as 

accepted paper. 

1.3.1 FEEDING ANTIOXIDANT 

Fish lipids are rich in n-3 fatty acids that are essential to human health. Lipid 

oxidation is a major concern during processing and storage of fish because it 

contributes to quality deterioration and decreases marketability of fish products. Fillet 

accumulation of antioxidants, e.g. vitamin E (vit. E) or astaxanthin, during feeding may 

prevent quality deterioration associated with lipid oxidation following processing and 

storage. 

Table 4 reports the results of some studies concerning the effect of dietary 

antioxidants on lipid oxidation. The role of vit. E is clearly discerned from Stéphan et al. 

(1995) who in turbot (Scophthahus maximus) demonstrated that TBARS level of low 

tocopherol diet is almost 100 times more than that of the highest tocopherol level 

diet. In addition, looking at the results immediately after death (data not shown) is 

possible to find slightly higher TBARS level (0.029 mg MDA/kg) in fish fed low dietary α-

tocopherol (20 mg/kg feed), than in fish fed high antioxidant (320 mg/kg feed) for 

which 0.016 mg MDA/kg was measured. Hence, the antioxidant properties of 

tocopherol seem accentuated by long term frozen storage (6 months storage at -20 

°C). Interestingly, the same authors performed in parallel a in vitro study on 

antioxidant ability of α-tocopherol. Uncertain patterns might be discerned. On one 

hand, α-tocopherol antioxidant activity is increased by increasing concentrations. On 

the other hand, the extent of antioxidant effect seemed to be strictly dependent on 

lipid content and composition of the matrix, especially PUFA n3 content. So the higher 

lipid and PUFAn3 content, the higher Vit. E antioxidant activity. That fact seemed to be 

confirmed by Chaiyapechara et al. (2003) who found that antioxidant activity of Vit. E 

was higher in fat rainbow trout (9.60% fat) than in fish containing 8.4% lipid. 

Furthermore, the action was expressed preferentially in long term frozen storage (24 

weeks at -30 °C) than in a short refrigerated one (7 days at 4 °C). Unfortunately, 
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authors did not analyse the α-tocopherol content during the storage, so it is not 

possible to unevenly establish the antioxidant role of α-tocopherol. 
 

 

Table 4. Effect of antioxidant supplementation in diet on secondary lipid oxidation products of different 

species.  

Antioxidant 
Quantity 

(mg/kg) 

Feeding 

length 
Species 

Storage 

length 

Temperature 

(°C) 

TBARS 

(mg 

MDA/kg 

fillet) 

References 

α-

tocopherol 
20  

34 

weeks 
Turbot 

6 

months 
-20 0.259  

Stéphan 

et al. 

(1995) 

α-

tocopherol 
70  

34 

weeks 
Turbot 

6 

months 

-20 
0.063  

Stéphan 

et al. 

(1995) 

α-

tocopherol 
320  

34 

weeks 
Turbot 

6 

months 

-20 
0.029  

Stéphan 

et al. 

(1995) 

α-

tocopherol/ 

astaxanthin 
100/40  

6 

months 

R. 

trout 

12 

months 
-28 0.39  

Jensen et 

al. (1998) 

α-

tocopherol/ 

astaxanthin 
100/40  

6 

months 

R. 

trout 

18 

months 
-28 0.47  

Jensen et 

al. (1998) 

α-

tocopherol/ 

astaxanthin 
600/40  

6 

months 

R. 

trout 

12 

months 
-28 0.39  

Jensen et 

al. (1998) 

α-

tocopherol/ 

astaxanthin 
600/40  

6 

months 

R. 

trout 

18 

months 
-28 0.51  

Jensen et 

al. (1998) 

α-

tocopherol 65  
8 

months 

Hybrid 

tilapia 
7 days 4 2.88  

Huang et 

al. (2003) 

α-

tocopherol 200-300  
8 

months 

Hybrid 

tilapia 
7 days 4 1.08  

Huang et 

al. (2003) 

α-

tocopherol 65  
8 

months 

Hybrid 

tilapia 

8 

weeks 
-40 5.76  

Huang et 

al. (2003) 

α-

tocopherol 200-300  
8 

months 

Hybrid 

tilapia 

8 

weeks 
-40 4.32  

Huang et 

al. (2003) 
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Confirming the antioxidant action of α-tocopherol, Huang et al. (2003) found 

that different diet vit. E supplementation levels influenced lipid oxidation by increasing 

the lag phase (initiation phase) of lipid peroxidation during either refrigerated (7 days 

at 4 °C) and frozen storage (8 weeks at -40 °C) of hybrid tilapia (Oreochromis niloticus  

O. aureus). Results show that TBARS are affected by the dietary vit. E supplementation, 

and fish fed with high vit. E levels show to be less prone to be oxidised than the low 

level fed ones. Similar results were found by Zhang et al. (2007) in Sparus 

macrocephalus fillets. Even in this case, fillets of fish fed with high tocopherol levels 

(553 or 1069 mg/kg) for 8 weeks exhibited significantly low (1.44 g/kg fillet) levels of 

oxidation products during 9 days of ice storage thanks to their high tocopherol muscle 

content. 

In summary, it is possible to assert that α-tocopherol antioxidant activity is 

increased by increasing concentration levels in feed; α-tocopherol performs better in 

high fat substrates; α-tocopherol acts preferentially in long term frozen storage. 

Jensen et al. (1998) fed rainbow trout (Oncorhynchus mykiss) with different 

astaxanthin and α-tocopherol levels for 6 months in order to understand the role of 

feeding antioxidant on lipid stability of the raw fish during frozen storage (-28 °C, 12 or 

18 months). Globally, storage reduced both astaxanthin and tocopherol content in fish 

fillet, although the highest decrease was observed for astaxanthin content. Thus, 

results suggest that astaxanthin might protect against lipid oxidation during the early 

stages of oxidative deterioration, where α-tocopherol has little effects, thanks to 

carotenoids’ role as scavengers of free radicals during the initiation of lipid oxidation. 

Such an ability is confirmed by the funding of Choubert et al. (2011), that found that 

carotenoid supplemented diets (100 mg astaxanthin/kg feed or 80 mg 

canthaxanthin/kg feed) did not significantly reduce TBARS content in rainbow trout 

during long term (18 months) frozen storage (- 20 °C). 

Recently, new natural antioxidants (as thymol, carvacrol, and lycopene) have 

been utilising in feed supplementation. Based on Giannenas et al. (2012) funding, not a 

unique pattern for carvacrol and thymol might be discerned. Indeed, the authors 

found that feeding rainbow trout with thymol (6 mg/kg) for 8 week improved oxidative 

stability during a short refrigerated storage (5 days at 4 °C) more than carvacrol 

supplementation (12 mg/kg). TBARS content of fish treated with thymol remains 

unaltered for the entire trial, at 2.25 µg /g protein, while the carvacrol group raised up 

2.78 µg/g protein. Interestingly, Girao et al. (2012) tested the antioxidant ability of 

feed supplementation with lycopene (600 mg/kg) on Nile tilapia (Oreochromis 

niloticus) undergone stress confinement. Two main effects of lycopene may be 

discerned. Firstly, no alteration of TBARS content accompanied by unaltered enzymatic 

antioxidant activity (catalase, glutathione reductase, lactate dehydrogenase) in not 
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stressed fish fed lycopene suggests that lycopene should have an antioxidant role by 

removing reactive oxygen species (ROS) generated by cellular metabolism. Latter, 

lycopene abolished the effect of stress during confinement, remaining unchanged both 

enzymatic activities and TBARS (stick at 0.32 µg/kg), thus confirming it played an 

important role during initiation phase of lipid oxidation. More recently, Sahin et al. 

(2014) studied the effect of lycopene supplementation at different concentration (0, 

200, or 400 mg/kg) on stressed rainbow trout quality performance. They found that 

dietary supplementation of lycopene reduces the detrimental effects of stress (high 

stocking density) on growth performance of fish and modulates the oxidative status via 

activating host defence system at cellular level. It appears that lycopene can be added 

up to 400 mg/kg to rainbow trout diets to improve flesh quality. 

Rosemary extract has been utilising in fish feeding during the last years, 

however contrasting results were found. Data from Hernández et al. (2014) show that 

animals fed diets containing high dose of rosemary extract (1200, 1800, and 2400 

mg/kg) have a significantly lower TBARS index than the control group (no addicted 

group) or the group fed with low dose (600 mg/kg) over the first 7 days of storage 

(average 0.11, 0.13, and 0.22 mg MDA/kg, respectively). However, on day 21
st

, a 

certain tendency emerged towards an increase in the TBARS index as the dose 

increased, possibly due to a pro-oxidant effect of the rosemary extract at high doses. 

The lowest rosemary dose raised up to 0.49 mg/kg, while the other groups achieved at 

maximum 0.71 mg/kg, even if any statistical differences emerged. While comparing 

rosemary, thymol, carvacrol, or synthetic antioxidant as BHT feed supplementation for 

their capability of prevent lipid oxidation, Álvarez et al. (2012) found the following 

increasing stability order: carvacrol > rosemary=BHT>thymol. Thus, during 14 days of 

refrigerated storage, fillets from fish fed diet with carvacrol (500 mg/kg, 18 weeks) 

showed the lowest TBARS content (0.2 mg MDA/kg fillet), while the maximum was 

reached by thymol group with 0.4 mg MDA/kg. 
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1.3.2 LIPOXYGENASE AND CYCLOXIGENASE ACTIVITY: LIPID 

MEDIATORS IN FISH 

Lipoxygenases are a family of iron-containing enzymes that catalyze the aerobic 

oxidation of fatty acids with cis-nonconjugated pentadiene structures to generate 

optically active conjugated LOOH without releasing a lipid free radical (Schaich, 2005). 

German & Kinsella (1985) proposed that a potential source of initiating species in fish, 

as hydroperoxides (Hp) for example, could be generated by endogenous enzymes 

liberated from the tissue itself. Kanner & Kinsella, as noted by German & Kinsella 

(1985), had before demonstrated that tissue peroxidase could initiate lipid 

peroxidation: they reported the activity of lipoxygenases as catalyst for the insertion of 

oxygen into an unsaturated fatty acid forming a highly reactive hydroperoxide as 

product. 

Schaich (2005) summarised the enzymatic reaction saying that hydroperoxides 

are synthesized in a cage reaction involving electron transfer to the lipid from the 

ferrous iron atom in the enzyme’s active site and removal of the basallylic hydrogen as 

the rate determining step. Oxygen bound to a separate site on the enzyme is activated 

to react with the free radical, then Hp donation from the enzyme completes the LOOH 

before it is released. As the oxygen always adds against to the hydrogen removal, the 

resulting conjugated dienes are always trans-, cis-relative to the hydroperoxide. 

Perhaps just as important, LOOH produced by lipoxygenase can accumulate to 

relatively high levels under appropriate conditions (e.g., cold and dark, as in frozen 

materials), then lead to a cascade of rapid oxidation when LOOH decomposes. It 

should be noted that lipoxygenase acivity and heme autoxidation are strictly 

connected as demonstrated by the mechanism for initiation of tissue lipid peroxidation 

reported below (Figure 22). 

 

http://en.wikipedia.org/wiki/Iron
http://en.wikipedia.org/wiki/Enzymes
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Figure 2. Mechanism for initiation of tissue lipid peroxidation via lipoxygenase activity as proposed by 

German & Kinsella (1985). 

Cyclooxygenase (COX) is another enzyme which plays a central role in the 

biosynthetic pathway to prostaglandins from arachidonic acid (ARA). Indeed, COX is 

also known as prostaglandin-endoperoxide synthase (PTGS). It converts free ARA, 

released from membrane phospholipids at the sn-2 ester binding site by the enzymatic 

activity of phospholipase A2, to prostaglandin (PG) H2. The reaction involves both 

cyclooxygenase (dioxygenase) and hydroperoxidase (peroxidase) activity. The 

cyclooxygenase activity incorporates two oxygen molecules into ARA or alternateve 

polyunsaturated fatty acid substrates, such as linoleic acid and eicosapentaenoic acid 

(EPA). Metabolism of ARA forms a labile intermediate peroxide, PGG2, which is 

reduced to the corresponding alcohol (PGH2) by the  hydroperoxidase enzyme’s 

activity. There are two isozymes of COX encoded by distinct gene products: a 

constitutive COX-1 (this enzyme) and an inducible COX-2, which differ in their 

regulation of expression and tissue distribution. This gene encodes COX-1, which 

regulates angiogenesis in endothelial cells. COX-1 is also involved in cell signalling and 

maintaining tissue homeostasis. 

It has been well documented that an important role in immune and 

inflammatory responses in fish is played by a series of derived oxidation metabolites 

from PUFAs (Rowley et al., 1995; Arts & Kohler, 2008; Rowley et al., 2012). C20 long 

chain fatty acids such as ARA, EPA, and dihomo-gamma-linolenic (DGLA, C20:3n6) are 

precursors of many eicosanoids by both enzymatic and/or non-enzymatic pathways. 

Particularly, 4-series leukotrienes (LT), lipoxine (LX), 12-hydroxy-eicosatetraenoic acid 

(12-HETE), and 12-hydroxy-eicosapentaenoic acid (12-HEPE) generated through the 

http://en.wikipedia.org/wiki/Arachidonic_acid
http://en.wikipedia.org/wiki/Prostaglandin
http://en.wikipedia.org/wiki/Synthase
http://en.wikipedia.org/wiki/Dioxygenase
http://en.wikipedia.org/wiki/Peroxidase
http://en.wikipedia.org/wiki/Linoleic_acid
http://en.wikipedia.org/wiki/Eicosapentaenoic_acid
http://en.wikipedia.org/wiki/Isozymes
http://en.wikipedia.org/wiki/Angiogenesis
http://en.wikipedia.org/wiki/Endothelial
http://en.wikipedia.org/wiki/Cell_signaling
http://en.wikipedia.org/wiki/Homeostasis#Biological
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action of lipoxygenases (LOX) were found to be produced in vitro by head kidney 

leukocytes extracted from rainbow trout under biological stimuli (Pettitts et al., 1991; 

Knight et al., 1993; Rowley et al., 2012). Moreover, COX products, such as 2-series 

prostaglandins (PG) and tromboxanes (TX), were found in leucocytes (Knight et al., 

1993) and thrombocytes (Lloyd-Evans et al., 1994) of rainbow trout, underlining the 

role of these lipids in immunomodulation and other pro-inflammatory responses. 

As noted by Wendelaar Bonga (1997), stress responses in fish concern complex 

mechanisms involving stimulation of oxygen uptake and transfer, mobilization of 

energy substrates, reallocation of energy away from growth and reproduction, and 

mainly suppressive effects on immune functions. These stress responses may in many 

ways resembles inflammatory processes. 

As a consequence, eicosanoids have been recently employed as lipid stress 

conditions markers thought their role as oxidative stress biomarkers in fish is still 

unclear, especially concerning EPA, and DHA-derivatives. Considering their complex 

metabolism, it is likely that multiple compounds are involved into inflammation at the 

same time, but how inflammatory stimulus, such as slaughter, modify the plasma lipid 

profile has not been described in detail. Previous studies reported COX products, such 

as prostaglandins, to be the major stress biomarkers, although no clear trends for PG 

synthesis in response to stress could be uniquely discerned (Oxley et al., 2010; Olsen et 

al., 2012) due to different behaviours related to tissues, diet, and time after stress. 

According to Balvers et al. (2012), under stress stimuli prostaglandins levels in plasma 

were down-regulated, especially PGE2. Confirming previous results, Secci et al. (2016) 

found that stress condition at slaughter decreased PGE2 levels, although PGE3/PGD3 

was only found in stressed group (killed by asphyxia). Interestingly, authors found the 

opposite trend between PGE2 (from ARA) and PGE3/PGD3 (from EPA) reflected an ARA 

and EPA competition as substrates of COX. Oxley et al. (2010), focusing on PGE2, PGF2α, 

8-keto-PGF2α production in gut tissues as markers of acute stress (chase in a net for 15 

minutes), found an up-regulation of COX1 and COX2 1h post stress even though a 

different extent was reported both for site and diet. Similarly, Olsen et al. (2012), 

subjecting the fish to the same acute stress previously proposed by Oxley et al. (2010), 

found a striking effect on the eicosanoids content in midgut, but only marginal in 

hindgut. For the major eicosanoids PGE2, PGE3, PGD2, PGF2α and PGF3α, stress was 

reported to cause a significant reduction only in the midgut until 24 hours post stress. 

Even if many authors agree with PGE2 as the main product of COX activity, no 

clear trends for PG synthesis in response to stress could be uniquely discerned. In fact, 

both Oxley et al. (2010) and Olsen et al. (2012) found out that site, diet, and time 

affected the eicosanoids production because of a different up-regulation of COX 

isophorms. According to this, Rowley et al. (2012) found no conclusive evidence that 

increase in PGE generation was caused by changes in the expression of 
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cyclooxygenases. Hence, the tendency to decrease of PGE2 revealed for asphyxiated 

rainbow trout (Secci et al., 2016) is in agreement both to Olsen et al. (2012) and 

Balvers et al. (2011), who found a fast general decrease of PGE2 in midgut section of 

rainbow trout 1 hour post stress and in mice plasma after stress stimulus, respectively. 

Despite the tendency to use prostaglandins as biomarker, the study of Secci et 

al. (2016) revealed that 12-HpEPE/15-HpEPE (detected together) could be good 

markers of stress because they were highly produced under stress condition while they 

were not detected in no-stressed fish (rainbow trout killed by percussion). 

Interestingly, even if the biosynthesis of some eicosanoids was previously found to 

involve the formation of hydroperoxide intermediates (Rowley et al., 1994), it was the 

first time that HpEPEs were found in stressed trout plasma. Hydroperoxy derivatives 

are the primary products of LOX that are easily reduced into hydroxides by glutathione 

peroxidase (GPX) (Guichardant et al., 2011). This enzyme has been deeply 

characterized in fish during last years in order to associate its expression with stress 

during life. Particularly, increasing stress time was related with a down-regulation of 

GPX. Briefly, Pacitti et al. (2013) found four GPX isoforms called GPX1b1, GPX1b2, 

GPX4a1, and GPX4a2 differently distributed in fish tissues. According to the authors, 

the main isoforms contained in blood were GPX1b2 and GPX4a1 where they are 

present in order to limit the high oxidative stress that occurred in erythrocyte and 

lysosomal membranes. The same isoforms were detected by Malandrakis et al. (2014) 

following the GPX expression in different tissue of gilthead sea bream exposed to 

physical stress (confinement) for increasing time. That study pointed out a time-

dependent regulation of glutathione peroxidase. Particularly, inducing stress for one 

minute caused an up-regulation of the enzyme while increasing time changed in a 

down-regulation of GPX even if a high variability was reported. Inhibition of GPX 

together with an increase of the activity of LOX caused by stress during slaughter might 

explain the presence of HpEPE in asphyxiated fish whilst the absence in the percussion-

killed ones (Secci et al., 2016). Moreover, the same trend in enzymes modulation 

seemed to be confirmed by the significant decrease of other eicosanoids such as 5-

HEPE, and 17HDoHE from EPA and DHA, respectively, obtained by Secci et al. (2016). 

The 5-lipoxigenase pathway is complex, yielding a range of monohydroxy fatty 

acids (e.g. 5-HEPE), leukotriene, and lipoxins extensively characterized in the previous 

century due to the role of that subclasses of eicosanoids in antinflammatory system. 

Rowley et al. (1994) suggested that macrophage from O. mykiss was able to generate 

both leukotriene and lipoxins under calcium ionophore stimulation, even if that ability 

was greatly affected by the presence of a FLAP (5-Lipoxygenase Activating Protein). 

More recently, Rowely et al. (2012), deepened the interaction between eicosanoids 

and the immune system in salmonid fish, demonstrating that the incubation of 

zymosan with trout macrophages resulted in a greater amount of LTB and LXA derived 
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from EPA than from ARA. Secci et al. (2016) partially confirmed this pattern, by 

detecting only LTB4 (from ARA). Nevertheless, it seemed that 5-lipoxygenase rather 

directed on EPA than on ARA, probably as a consequence of the higher concentration 

of the first as free fatty acid. In fact, as shown by Ashton et al. (1994), a direct relation 

between substrates availability and products of lipoxygenase exists. Particularly, the 

authors found that leukocytes from fish maintained for more that 8 weeks on a 

vegetable oil (rich in ARA precursor) containing diet produced lower percentage of 

lipoxygenase products derived from eicosapentaenoic acid compared with those cells 

from fish fed with fish oil (rich in EPA). 

Concerning 15-lipoxygenase activity, it was discovered in the gill tissue of 

teleost fish during purification of the previously recognized and more preponderant 

12-lipoxygenase enzyme by German & Creveling (1990). The Authors reported the 

enzyme was active toward polyunsaturated fatty acids present in the tissue producing 

hydroxylated metabolites from fatty acids with 18-, 20-, and 22-carbon chain lengths at 

carbons 13, 15, and 17, respectively. This means that, in theory, the main product of 

15-LOX with EPA as substrate should be 15-HEPE. Contrarily, Secci et al. (2016) 

revealed a smaller amount of that compound comparing with LOX-12 products, 

showing that 15-lipoxygenase was less active than 12-LOX. However, that result could 

be explained thanks to German & Creveling (1990) who found that the total activity of 

this enzyme following purification using hydroxylapatite was significantly greater than 

in the crude tissue preparation, suggesting that an inhibition was present in intact 

cells. Supporting this founding, Rowley et al. (1994) showed that the range of products 

from ARA and EPA synthesized by rainbow trout macrophages incubated with calcium 

ionophore or zymosan was dominantly due to the presence of 5 and 12-LOX activity in 

intact cells, whereas lysate cells revealed a further 15-lipoxygenase activity. Data 

obtained by Secci et al. (2016) showed 6 and 3 times greater activity for 12- and 5-LOX, 

respectively in percussion-killed rainbow trout (no stress). 

More recently, DHA was found to be a fairly good substrate of LOX in human to 

produce various hydroxylated end-products after reduction of the hydroperoxide 

intermediates by GPX. They are 4-HDoHE, 7-HDoHE, and 11-HDoHE (Lagarde et al., 

2013) and all of them were found by Secci et al. (2016)  in plasma of rainbow trout. In 

addition to this, those derivatives of DHA have been described as precursor of a 

bioactive family, called resolvins and protectins, a class of compounds with active anti-

inflammatory and inflammation resolving properties in mammal (Masoodi et al., 

2008). In Secci’s et al. (2016) research, RvD1 and PD1 were searched though they were 

not detected, according to Olsen et al. (2012). Hong et al. (2005) identified 

neuroprotectin D1, resolvin D5, resolvin D1 and resolvin D2 from trout brain cells 

challenged in vitro. Moreover, Chung et al. (2013) reported the presence of RvD1 (low 

concentration 0.29 ± 0.09 ng/g muscle) after exposition to increasing levels of H2O2 

http://www.ncbi.nlm.nih.gov/pubmed?term=Masoodi%20M%5BAuthor%5D&cauthor=true&cauthor_uid=18059001
http://www.ncbi.nlm.nih.gov/pubmed?term=Masoodi%20M%5BAuthor%5D&cauthor=true&cauthor_uid=18059001
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during life of medaka fish (Oryzias latipes). Particularly, they found that RvD1 increased 

until 2 hours of exposition, regardless oxidant concentration levels. However, the cited 

authors did not explain the exact mechanisms and the functional role as lipid mediator 

of this class of molecules still need to be identified. Although resolvins nor protectins 

were detected in other researches (Secci et al., 2016), the presence of their precursor 

4-HDoHE, 7-HDoHE, and 11-HDoHE provided a first evidence of LOX activity on DHA in 

fish plasma (Secci et al., 2016). Moreover, the trend on their decreasing level caused 

by stressed slaughtering method could be a first evidence of 4-HDoHE, 7-HDoHE, and 

11-HDoHE degradation to RvD1 and/or PD1 in order to reduce/resolve stress 

conditions. 

 

1.3.3 PRESLAUGHTER PROCEDURE: STARVATION AND 

CROWDING 

Food quality is perceived as a global concept. Food should be primarily safe, 

tasty and healthy. However, food safety and ethics are increasingly of global interest. 

In this context, commonly pre-slaughter practices that may be responsible for animal 

stress are starvation and crowding. Starving the fish for some days prior to slaughter is 

a common practice in the case of farmed fish, with the scope to delay spoilage by 

reducing the amount of faeces in the intestine. During the last decades, many authors 

have investigated the influence of starvation on flesh quality in different fish species 

such as Sparus aurata (Ginés et al., 2002; Álvarez et al., 2008), Dentex dentex (Suárez & 

Cervera, 2010), Onchorynchus mykiss and Salmo trutta (Bayir et al., 2014) but only a 

few of them focused on the induced oxidative stress. 

Álvarez et al. (2008) exposed S. aurata to 24, 48, or 72 hours of starvation and among 

others parameters they evaluated TBARS on fillets. Although no significant differences 

between starvation periods emerged, a trend may be discerned. Particularly, it seemed 

that longer the starvation time higher the TBARS values. Indeed, 2.50±0.90, 3.63±1.62, 

and 4.57±1.75 mg MDA/kg were found in S. aurata starved for 24, 48, and 72 hours, 

respectively. 

Interestingly, Bayir et al. (2014) measured oxidative stress indicators, such as reactive 

oxygen species (ROS) in liver and muscle samples from Onchorynchus mykiss and 

Salmo trutta exposed to a 45-day starvation period at low water temperature. They 

found that in both species lipid peroxidation increased with starvation length, even if 

the metabolic response to food deprivation in the muscle of each species was 

different. 

Crowding is a temporary status immediately before killing when fish can be 

collected in very high density. As reported by Pérez-Sánchez et al. (2013), crowding 

http://www.sciencedirect.com/science/article/pii/S1744117X13000166
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causes a complex stress by affecting hepatic gene expression, antioxidant defence 

system, cell–tissue repair mechanism, xenobiotic metabolism and stress transcriptional 

regulation. This response, similar to the one described by Bayir et al. (2014) for 

starvation, may explain the fundings of Bagni et al. (2007), that monitored the effect of 

crowding (density >70 kg/m
3
) on the oxidative stress of two common Mediterranean 

species (gilthead sea bream, Sparus aurata, and European sea bass, Dicentrarchus 

labrax). Oxidative stress was determined in terms of increment of the reactive oxygen 

metabolites (ROMs) and of anti-oxidant power (AOP). From the data emerged that in 

the case of stress conditions, the ROMs production can be counteracted by an 

adaptive response, such as the activation of the AOP mechanism. However, the stress 

extent may greatly affect this response, by shifting from a positive response (high AOP, 

low ROMs) to a negative one (low AOP, high ROMs). The former is the case of 

uncrowded fish, the latter of crowed fish. Furthermore, stress response seemed to 

strictly depend on species. Indeed, gilthead sea bream showed to be less affected by 

the application of stress than European sea bass (no significant differences between 

two stress groups were found for AOP and ROMs). Gilthead sea bream as well showed 

a lower survival time than European sea bass. Nathanailides et al. (2011) supported 

the hypothesis that increased levels of stress can lead to increased lipid oxidation in 

European sea bass fillets. In details, fish were processed with a high stress method (the 

water was lowered and the fish were captured using a net, then killed by immersion in 

an ice cold bath) or with a lower stressful one (the level of water was lowered and fish 

were anaesthetized moderately by immersion in a 30 mg/L clove oil bath for 5 

minutes, then slaughtered by immersion in ice cold sea water). Results showed that 

the handling stress prior to slaughtering affects significantly TBARS contents, which 

were 1.04 and 1.16 mg MDA/kg in no stressed and stressed fish, respectively. 

In conclusion, from the cited studies emerged that pre-slaughter stress may 

induce complex metabolic responses: rapid ATP depletion may generate various pro-

oxidant substances, which in turn may induce an activation of AOP mechanism for ROS 

and ROMs depletion. Unfortunately, high stressful conditions or stress length may 

cause the adaptive response to be useless resulting in an increase of lipid oxidation. 
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1.3.4 KILLING 

Stunning/killing procedures applied in aquaculture are different and fish species 

vary in their response to the different methods utilised. Mediterranean aquaculture 

species are usually killed by asphyxiation in air, immersion in ice/water slurry or by 

percussive stunning. Ice killing is usually used in selective fisheries. Recent alternative 

stunning/killing processes have been experimentally investigated for Mediterranean 

fish species in an effort to develop and optimize commercial methods by assuring both 

high standards of fish welfare and product quality (EFSA, 2008; Poli, 2009). It has been 

widely reviewed that pre-slaughter (as anaesthesia) and slaughter stressful practices 

could have an important effect on the flesh quality in fish (Poli et al., 2005). A clear 

effect emerged mostly on the physical properties of flesh, because severe stress at 

slaughter time exhausts muscular energies, produces more lactic acid, reduces 

muscular pH, and increases the rate of rigor mortis onset. In this way this practices 

could have significant negative effects on fish technological traits and in their flesh 

quality. 

According to Hultin (1992), anaerobiosis influences the conversion of xanthine 

dehydrogenase to xanthine oxidase. The latter enzyme transfers electrons directly to 

molecular oxygen producing superoxide and hydrogen peroxide, which can produce 

hydroxyl radicals in the presence of redox iron. These compounds have been proposed 

as among the principal initiators of lipid oxidation in biological tissues. Thus, the rapid 

conversion of ATP to hypoxanthine and of xanthine dehydrogenase to xanthine 

oxidase could influence lipid oxidation time of fresh and semi-preserved fish, especially 

when molecular oxygen is reintroduced during post mortem processing. 

Tejada & Huidobro (2002) found out that slaughter method (percussion, ice 

salt-water slurry bath, and asphyxia) has no clear influence on the oxidative stability of 

gilthead sea bream (Sparus aurata), probably due to the interaction of many factors 

such as stress, handling speed after death, and lipid content of flesh. 

Morzel & van de Vis (2003) studied the effect of killing methods on eel (Anguilla 

anguilla L.) lipid oxidation. Particularly, electricity and oxygen removal (new killing 

method) lead to the higher quality of eels in comparison with the dry-salt technique, 

by reducing stress and improving freshness. Furthermore, less stressful practices 

seemed to reduce the extent of lipid oxidation. In details, authors pointed out that 

enhanced lipid oxidation in salt-bath eels can be partially explained by the physical 

damage to the muscle, thereby increasing the cell ruptures and the consequent 

accessibility to the catalytic enzymes. In addition, the presence of salt may be 

considered in some extent a slight pro-oxidant. 

Results from Giuffrida et al. (2007) were in agreement with this explanation. 

Particularly, ice slurry slaughtered gilthead sea bream (Sparus aurata) showed better 
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ATP/IMP levels (an indicator of less stressed fish) and to be less prone to lipid 

oxidation, as revealed by the MDA values, 0.158 mg MDA/kg flesh against 0.227 mg 

MDA/kg flesh in CO2-slaughtered fish. The same pattern was found in electrical 

stunned rainbow trout (O. mykiss) whilst compared electricity with anoxia and 

bleeding as killing methods. TBARS values for these groups were 0.68, 1.09, and 1.03 

mg MDA/kg flesh, respectively. 

Sakai & Tereyama (2008) studied the effect of bleeding as killing method on 

chub mackerel (Scomber japonicus) lipid oxidation. Struggling death in iced sea water 

was utilised as control. The MDA content in the muscles of the bleeding samples were 

significantly higher than those of the control after 119 hours of storage at 0 °C, with 

0.367 and 0.184 mg/kg, respectively. On the contrary, no differences were found in 4-

hydroxyhexanal content of the samples. These results confirmed that fish subjected to 

stressful conditions were more prone to be oxidised and suggested that bleeding can 

be considered as a stressing killing method. 

On the contrary, Duran et al. (2008) found that slaughter method (asphyxia or 

percussion) had no effect on the MDA values of carp (Cyprinus carpio). However, when 

considering rainbow trout (O. mykiss) the MDA content of flesh from fish slaughtered 

by asphyxiation was significantly higher than that of specimens slaughtered by 

percussion (4 and 3 mg MDA/kg flesh, respectively). It is important to note that the fat 

level of trout was higher than that of carp (5% against 1%), which led to an observed 

difference in the MDA contents of trout slaughtered by different methods. 

The effects of different stunning/killing procedures (anaesthesia with clove oil, 

anaesthesia with 2-phenoxyethanol, percussive stunning, immersion in ice/water 

slurry, chilling on ice, and anaesthesia with clove oil followed by immersion in 

ice/water slurry) on flesh quality of European sea bass (Dicentrarchus labrax) were 

investigated by Simitzis et al. (2014). Globally, MDA ranged between 29.9 and 95 

mg/kg flesh in chilling on ice and percussion slaughtered sea bass. Despite such large 

range of values, authors did not find any significant difference among the tested killing 

methods, suggesting no killing effects on lipid oxidation. 

Interestingly, in contrast to the results previously seen, in a recent study Secci 

et al. (2016) found out the link between stress during slaughter and lipid oxidation. 

Their results revealed the presence of very high level of reactive molecules, such as 

hydroperoxides, in stressed rainbow trout whilst they were not detected in not-

stressed group. Thus, probably as a consequence of the greater enzymatic activity 

under stress condition, the presence of lipid oxygenated products affected the 

development of lipid oxidation during post mortem storage. 
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1.3.5 METALS 

Redox-active metals are the initiators of perhaps greatest importance for lipid 

oxidation in oils, foods, and biological systems (Schaich, 2005) because they are 

ubiquitous and active in many forms, and trace quantities (<<micromolar) are 

sufficient for effective catalysis (Schaich, 1992). Only metals undergoing one-electron 

transfers appear to be active catalysts; these include cobalt, iron, copper, vanadium, 

manganese and magnesium. 

Azhar & Nisa (2006) assert that generally Cu
2+

 and Fe
2+

 are the most active catalysts of 

both lean and fat fish, as well as crustaceans and shellfish. Cadmium, cobalt and zinc 

instead seem to induce rancidity in fat fish and not in lean fish. 

As reported by Schaich (2005), the mechanisms and rates of metal-catalyzed 

initiation operative in individual reaction systems are determined by a complex 

mixture of factors: the metal and type of complexes it forms (inner sphere or outer 

sphere), the chelator or complexing agent, redox potential of the metal and its 

complexes, solvents, phase localization of the metal, and availability of oxygen or 

preformed hydroperoxides. 

Metal autoxidation and hydroperoxide decomposition are both very active 

processes in foods, oils, and biological tissues where metals are always present. A 

particular case is that concerning the autoxidation of hemoglobins (Hb) where the 

conversion of ferrous heme protein to met (
+3

) heme protein (metHP) appears to be a 

critical step, enhancing lipid oxidation (Everse & Hsia, 1997 as referred by Maqsood & 

Benjakul, 2011). Heme catalysis of lipid oxidation was first reported in 1924 as noted 

by Schaich (2005) and its role has been investigating for a long time. In a review 

dedicated to hemoglobin-mediated lipid oxidation in the fish muscle, Maqsood et al. 

(2012) revealed that heme pigments such Hb and myoglobin (Mb) are believed to be 

the most important endogenous promoters of lipid oxidation in fish muscle and for the 

development of fishy odours, along with microbial growth. 

Hemoglobin is a protein consisting in a globin portion plus a porphyrin heme, 

the latter containing an iron atom (Fe, charged atom) coordinated inside the heme 

ring. Hemoglobin is made up of four polypeptide chains and each chain contains one 

heme group (FIGURE 3). The porphyrin ring consists of four pyrrole molecules cyclically 

linked together (by methene bridges) with the iron ion bound in the centre. The iron 

ion may be either in the Fe
2+

 (ferrous) or in the Fe
3+ 

(ferric) state (Maqsood et al., 

2012). 

Just after death, nearly all the heme iron exists in the ferrous valence state. 

Oxygen can be bound to the ferrous iron (oxyhemoglobin) or the iron binding site can 

be vacant (deoxyhemoglobin) (Richards et al., 2002). 
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The process by which ferrous Hb is converted to ferric metHb is called 

autoxidation and it occurs when oxygen is released from oxyhemoglobin to form ferric 

methemoglobin and the superoxide anion radical (O2
•-

) (Richards et al., 2002); as 

reported by Maqsood et al. (2012) autoxidation could generate even other different 

radical as OOH
• 

depending on whether deoxy or oxy heme protein undergoes 

autoxidation. Figure 4 reported the process of Hb autoxidation as proposed by 

Maqsood et al. (2012). 

 

 

 

Figure 3. Hemoglobin structure. 
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Figure 4. Hb autoxidation mechanism and lipid oxidation initiation. LH: lipid; L● : lipid radical; LO● : lipid 

alkoxy radical; LOO● : lipid peroxy radical; LOOH: lipid hydroperoxide (Maqsood et al., 2012). 

 

Both of the radical forms can readily be converted to hydrogen peroxide (H2O2), which 

enhances the ability of heme proteins to promote lipid oxidation (Maqsood et al., 

2012) thanks to the subsequent formation of a ferryl protein radical, an initiator of 

lipid oxidation, as shown by Kanner & Harel (1985). 

That heme compounds catalyze lipid oxidation in food and biological systems 

has been extensively documented (Richards et al., 2002; Maqsood & Benjakul, 2011; 

Maqsood et al., 2012), but how this occurs is still not clear. Several investigations have 

reported varying efficiencies in promoting lipid oxidation among hemoglobins from 

different species, e.g. pollock Hb is more oxidant in washed fish muscle than Hb from 

mackerel, following in decreasing order by menhaden Hb and flounder Hb (Undeland 

et al., 2004). Pollock Hb has also been found to have higher activity in promoting lipid 

oxidation compared to that of horse mackerel Hb, which was also found to be more 

effective than seabass Hb (Maestre et al., 2009). Furthermore, trout Hb exhibits 

likewise greater pro-oxidant ability that Hb from tilapia, whilst haemoglobin from 

mackerel and haemoglobin from herring are more active than that from trout 

(Richards & Hultin, 2003; Richards et al., 2007). According to this, Pazos et al. (2009) 

verified that trout Hb shows lower ability to promote free radicals in the presence of 

preformed hydroperoxides (cumene hydroperoxide, 1140 and 11400 µM) than cod 

and herring Hbs. That reduced capacity of generating free radicals seemed to display a 

direct correlation with the haemoglobin vulnerability to undergo oxidative alterations 
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either in spontaneous or hydroperoxide-forced conditions. Particularly, cod and 

herring Hbs exhibited greater formation of metHb (derived from autoxidative 

processes) during 5 days of incubation at 4 °C, and the observed increase of metHb 

was equal to 4.0-9.0 µM. Conversely, trout Hb showed an accumulation pattern which 

raised metHb from 0.5 up to 5 µM. In summary, trout accumulated lower metHb 

values than cod and herring. 

Moreover, cod and herring Hbs showed to be less stable even in presence of 

preformed hydroperoxides. Taking into consideration that metHb has been 

demonstrated to have stronger capacity than Hb to activate lipid oxidation (Grunwald 

& Richards, 2006; Maestre et al., 2009; Pazos et al., 2009) and considering that cod and 

herring Hbs showed to be more prone to be oxidised than trout Hb, it is possible to 

correlate the ability to promote free radicals with Hb vulnerability to oxidative 

alteration. 

The promotion of lipid oxidation by Hb and Mb has been proposed to involve a 

ferrylHb radical, as said before, that initiates the oxidation (Everse & Hsia, 1997 as 

cited by Maqsood et al., 2012). Another pathway of lipid oxidation mediated by Hb 

includes the action of iron released from the heme protein (Gray et al., 1996; 

Morrissey et al., 1998 as cited by Maqsood et al., 2012), as it catalyses the breakdown 

of preformed lipid hydroperoxides, thereby initiating the production of alkoxyl radicals. 

These molecules are capable of abstracting a hydrogen atom from polyunsaturated 

fatty acids with the subsequent propagation of lipid oxidation processes (Maqsood et 

al., 2012). 

 

1.3.6 HANDLING 

It is widely reviewed that any process causing disruption of the muscle 

membrane system (such as grinding, freezing, and cooking) results in exposure the 

lipid fraction to oxygen, and thus accelerates the development of the oxidative 

damage. However, one of the first processes after stunning and killing procedures in 

fish industry is the blood removal. Although it is not a kind of handling altering the lipid 

structure, blood removal is strictly linked to the quality deterioration of fish muscle, 

especially to the lipid oxidation. Richards & Hultin (2002) studied the contribution of 

blood and blood components to lipid oxidation in rainbow trout (O. mykiss) and 

Atlantic mackerel (Scomber scombrus). They performed a complex project, finding out 

three main points: bleeding significantly reduced the probability of rancidity 

(expressed both as sensory score and TBARS value) development during storage; this 

probability strictly depended on species and type of muscle considered (trout vs 
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mackerel, light vs dark muscle); the extent of lipid oxidation was more pronounced in 

minced muscle as compared to the intact one. 

The first point was confirmed by many authors. Tejada & Huidobro (2002) 

recognised the greater extent of lipid oxidation of ungutted gilthead sea bream (Sparus 

aurata) when comparing with gutted samples at day 11 of refrigerated storage (+2 °C), 

reaching as high as 8 mg MDA/kg flesh, a value commonly utilised as rancidity 

threshold. However, according to the same authors, such an increase seemed not to 

be significant. 

Sakai et al. (2006) attempted to measure hemoglobin (Hb) content in bled 

skipjack tuna (Katsuwonus pelamis) flesh, and they analysed malondialdehyde 

contents and 4-hydroxyhexenal (HHE) in the muscle as indicators of the lipid oxidation 

level. Firstly, Hb content was lower in bleeding samples than in the control ones, 

containing 0.07 and 1.01 mg/g, respectively. Concerning lipid oxidation, Sakai et al. 

(2006) did not find significant differences in MDA content in samples while bleeding 

fish showed lower level of HHE than the control samples, both immediately after death 

(not detected vs 0.20 nmol/kg) and after 2 days of storage at 0 °C (0.07 and 0.43 

nmol/kg, respectively). 

More recently, Maqsood & Benjakul (2011) confirmed that bleeding decreases 

Hb content and consequently lipid oxidation in Asian sea bass muscle (Lates calcarifer). 

Their results indicate that lipid oxidation (measured as PV, TBARS, and volatiles) was 

more pronounced in the un-bled samples during 15 days of refrigerated storage (2 °C). 

Particularly, blood contains a high amount of haemoglobin which action as pro-oxidant 

is still discussed. However, the extent of lipid oxidation is affected not only by Hb 

concentration but also by the presence of different type of Hbs in fish muscle (Richards 

& Hultin, 2002) and their breakdown during storage, resulting in the release of non-

heme iron (Maqsood & Benjakul, 2011). 

At this point it is easy to understand that different species as well as different 

kind of muscle may greatly differ in term of Hb content and composition, so causing a 

different susceptibility of the muscle to be oxidised. This is the case of muscle that 

contains large amount of blood, such as dark muscle, which is found to be more prone 

to be oxidised (Richards & Hultin, 2002). In addition, Hb concentration might explain 

the higher values of lipid oxidation in minced muscle than in whole/intact one 

(Richards & Hultin, 2002). Indeed, the mechanical action of mincing can provoke 

rupture blood vessels, erythrocytes, and some other cells and so cause Hb release. As 

stated, that release can promote lipid oxidation. 

At the same time, grounding increases the exposition area of muscle to 

atmosphere oxygen, moving to a real pro-oxidant factor. According to them, 

Thiansilakul et al. (2011) confirmed that myoglobin (Mb) was able to catalyse lipid 

oxidation in washed Asian sea bass (Lates calcarifer) minced intensively. Primary and 
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secondary oxidation products as well as off-odour development were significantly 

higher in Mb addicted samples than in the control ones (no Mb addicted). At day 8 of 

storage (4 °C), volatiles were mainly composed by 11.54, 11, and 7.08% of 1-octen-3-

ol, hexanal, and 2-pentyl furan, respectively, whilst hexanal and 2-pentyl furan applied 

globally for 3.7% in the control samples. These changes were more likely associated 

with metmyoglobin formation occurring in washed mince, as a consequence of the 

increase in storage time. Moreover, lipid oxidation in washed mince with added 

myoglobin was mainly governed by pH. Specifically, lowest the pH (6) highest the lipid 

oxidation extent was. 

Recently, it was also found that the higher the heme affinity of Mb, the lower 

the myoglobin-mediated lipid oxidation was obtained (Richards et al., 2009). 

Therefore, low pH was not only associated with Mb oxidation, but also weakened the 

heme-globin complex, leading to a release of heme group, which was able to induce 

the lipid oxidation. 

 

1.3.7 STORAGE 

The problem of the quality deterioration during storage is well known and it is 

related to both temperature and storage time. As well, the quality lowering rate 

depends on species of fish. Nishimoto et al. (1985) found out that the highest 

temperature of storage the fastest deterioration of fish freshness. To date, many 

authors have focused on quality changes during storage by studying separately ice or 

chilling storage and the frozen one. 

The concentration of TBARS in good quality frozen and chilled fish or in fish 

stored on ice is typically between 5 and 8 mg MDA/kg whereas levels of 8 mg MDA/kg 

are generally regarded as the limit of acceptability for most species (Schormüller, 

1968). More strictly, Ke et al. (1984) proposed that TBARS values for fish products 

below 0.58 mg/kg were perceived as not rancid; 0.58–1.51 mg/kg as slightly rancid, but 

acceptable; and above 1.51 mg/kg were perceived as rancid. 

Özyrut et al. (2009) studied red mullet (Mullus barbatus) and goldband goatfish 

(Upeneus moluccensis), both belonging to the Mullidae family, funding different shelf-

life and lipid oxidation levels when stored 11 days at 2 °C. The authors analysed both 

primary (PV) and secondary (TBARS) lipid oxidation products. PV significantly raised 

from 0.64 and 0.83 meq peroxide oxygen/kg fat to 2.26 and 4.82 meq/kg at the end of 

the trial, in red mullet and goldband goatfish, respectively. TBARS values were found 

stable around 0.51 and 0.57 mg MDA/kg flesh for both species during the whole 

storage. Similar PV values were obtained by Timm-Heinrich et al. (2013) studying the 

oxidative changes of rainbow trout (Oncorynchuss mykiss) during ice storage (12 days 
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at 2 °C) by following PV and volatile contents. PV were below 0.5 meq O2/kg flesh 

during the first 5 days of storage. After, PV had a slightly increase up to 0.56 meq O2/kg 

on day 7, whilst they started raising significantly up to 6 meq O2/kg on day 12. 

Similarly, the volatile fraction started to increase significantly from day 5 onwards, 

especially 1-penten-3-ol, 1-penten-3-one, and 2-pentenal. Globally, volatiles were 

found in low concentration (ng/kg), confirming a little oxidation during 12 days of 

storage on ice. Concerning TBARS level, Etemadian & Shabanpour (2014) found their 

increase from an initial value of 0.56 mg MDA/kg of muscle to 2.92 mg MDA/kg of 

Rutilus frisii kutum slices during 15 days of iced storage. 

Probably related to bacterial growth at positive temperature, the 7
th

 day 

appeared to be critical even in other papers. For example, Hernández et al. (2009) 

studied lipid oxidation of aquacultured meagre (Argyrosomus regius) fillets during 18 

days of storage at 4 °C, finding significant differences from day 7 onwards. Particularly, 

TBARS gradually increased from 0.10 mg MDA/kg flesh to 2.55 mg MDA/kg. In 

agreement, Simitzis et al. (2014) found that, in general, positive temperature (4 °C) 

increased MDA levels around 3.6 times in 7 days of storage. In the same paper, Simitzis 

et al. (2014) looked for TBARS level even in frozen (-20 °C) samples, finding that 

freezing raised up TBARS level around 2.7 times after 90 days. An interesting 

connection between refrigerated and frozen storage was found some years before by 

Huang et al. (2003) who measured the same MDA value (7.2 µg) in hybrid tilapia fillets 

(Oreochromis niloticus  O. aureus) stored for 7 days at 4 °C or for 8 weeks at -40 °C. 

When meat and meat products are stored under frozen conditions, microbial 

spoilage may be delayed, but fat deterioration occurs and the meat constituents may 

be oxidized (Ojagh et al., 2014). Interestingly, the main cause of lipid oxidation during 

frozen storage seemed to be due to the enzymatic lipolysis activity. Indeed, Karlsdottir 

et al. (2014a) indicated that enzymatic lipolysis was the driving factor influencing the 

fillets quality over storage and it mostly affects long chain polyunsaturated lipids in the 

light muscles. 

However, previous studies had confirmed that low storage temperatures were 

optimal for preserving fish from oxidative deterioration. Refsgaard et al. (1998) 

compared lipid oxidation of Atlantic salmon (Salmo salar) fillets stored at -10 or -20 °C 

for 34 weeks. The content of lipid hydroperoxides and free fatty acids increased during 

storage as affected by a significant time-temperature interaction, and the changes 

were fastest in salmon stored at -10 °C. Specifically, hydroperoxides raised from 0 to 

10 meq O2/kg, while FFA increased from 1 to 8.7% in 34 weeks of storage. Such as 

oxidative products increase was associated with a decrease in highly unsaturated fatty 

acid content (C20:5n3, C22:5n3, and C22:6n3) in Atlantic salmon stored at -10 or -20 

°C. Also for the polyunsaturated fatty acids, significant time-temperature interaction 

effects were found, confirming the fastest decrease at -10 °C. Concerning to volatile 
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products, aldehydes and ketones were identified. For hexanal, heptanal, (E)-2-hexenal, 

(E,E)-2,4-heptadienal, and nonanal significant time effects were found with increasing 

concentrations during storage, independently of storage temperature, while 

temperature influenced significantly hexanal and 2-hexanal. A small increase in the 

amount of secondary lipid oxidation products was also observed by Jensen et al. 

(1998). The significant and preservative action of negative storage temperature was 

confirmed by Choubert et al. (2011), that determined lipid oxidation (TBARS) in packed 

rainbow trout (Oncorhynchus mykiss) stored for 18 months at -20 °C. Results showed 

that TBARS significantly increased after the first month of storage, but not other 

changes occurred during the 5 later months. 

Recently, the study of Baron et al. (2007) aimed at investigating protein and 

lipid oxidation during frozen storage of rainbow trout fillets, stored for 13 months at -

20, -30, or -80 °C. Lipid oxidation was followed by measuring lipid hydroperoxides (PV), 

as well as secondary oxidation products (volatiles). There was a significant increase in 

the level of lipid hydroperoxides after 8 months of frozen storage for fish stored at -20 

°C, which was even more pronounced after 13 months, reaching 6.6 meq/kg of fat 

indicating on-going oxidation. In contrast, samples stored at -80 and -30 °C did not 

show any significant increase in peroxides during the entire storage period (with p = 

0.26 and p= 0.07, respectively). Measurement of secondary oxidation products was 

followed for 13 months together with the development of hexanal (an oxidation 

product of linoleic acid), and 1-penten-3-one and t,t-2,4-heptadienal, both oxidation 

products of n-3 fatty acids. Other volatiles were also measured during storage (1-

penten-3-ol, heptanal, 1-octen-3-ol, t-2-octenal, nonanal, t,c-2,6-nonadienal, decanal), 

and their development was generally in agreement with what is reported for hexanal, 

1-penten-3-one, and t,t-2,4-heptadienal. Volatile patterns indicating that fish stored at 

-20 °C was the most oxidised and that little difference was observed between -80 and -

30 °C. On the basis of their observations the ranking order -20 °C > -30 °C > -80 °C was 

obtained for the development of oxidation products in fish stored at freezing 

temperatures. Likewise, both Indergård et al. (2014) and Karlsdottir et al. (2014a) 

recently confirmed that pattern. The first authors examined lipid oxidation, by PV and 

TBARS, in Atlantic salmon during a long-term frozen storage at –25, –45 and –60 °C. 

After 1 year of storage at –25 °C, the concentration of PV in fish red and white muscles 

increased from 1.26 to 1.82, and from 1.08 to 1.76 meq O2/kg fat, respectively. 

Formation of TBARS was higher in the red muscles than in the white, and reached a 

value of 14.04 mg MDA/kg fish after 1 year of storage at –25 °C. Decreasing the 

temperature to –45 °C inhibited PV and TBARS formation. In the latter paper, the 

authors studied the lipid deterioration of two lean fish species, i.e. saithe (Pollachius 

virens) and hoki (Macruronus novaezelandiae), during frozen storage at -20 and -30 °C 

(up to 18 months). As even in the previous case, Karlsdottir et al. (2014a) analysed 
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both light and dark muscles. Results showed significant lipid deterioration with 

extended storage time, but lower storage temperature showed significantly more 

preservative effects. The formation of hydroperoxides as well appeared to be strongly 

influenced by species. Saithe was very stable during the first 12 months of storage 

regardless to storage temperature. After 18 months of frozen storage, however, a 

slight, yet significant, increase of peroxide (up to 50 mmol/kg muscle) was observed in 

light and dark muscle types. On the other hand, hydroperoxide formation in hoki 

showed a much more pronounced and more progressive peroxide formation over time 

at both storage temperatures (Karlsdottir et al., 2014b). However, as previously shown 

for handling, the extent of oxidation rate was showed to be strictly connected with the 

type of muscle considered. Indeed, dark muscle showed to be the most prone to be 

oxidised regardless to storage temperature, by ranging up to 325 and 250 mmol/kg at -

20 °C and -30 °C, respectively. The light muscle presented a pattern similar to saithe, 

by remaining almost unaltered for the first 12 months. As for saithe, at the end of 

storage a significant increase of peroxide was observed (50, and 100 mmol/kg muscle 

at -30 and -20 °C, respectively). It has to be noted that the marked difference in 

peroxide content between hoki dark and light muscle is likely due to the considerably 

higher lipid content in dark muscle than in the light one (7.6% vs 0.6%). The difference 

in fat content might explain either the difference between oxidation susceptibility of 

saithe when compare with hoki, since saithe fat content ranged from 0.6 to 1.1%, 

whilst hoki has from 0.6 to 7.6% in light and dark muscle, respectively. TBARS results 

for both the saithe dark and light muscle showed low/no formation of secondary 

oxidation products up to month 6, followed by a sharp increase up to month 12, after 

which only the dark muscle values continued to increase. As well as peroxide values, 

low temperature protected against oxidation as revealed by the significantly higher 

increase of TBARS in -20 °C stored samples than in the -30 °C stored ones. 
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2. THE CONSIDERED SPECIES 

 

The present PhD thesis considered four species of interest for European 

aquaculture. Specifically, rainbow trout (Oncorhynchus mykiss), atlantic salmon (Salmo 

salar), sea bass (Dicentrarchus labrax), and sea bream (Sparus aurata) have been 

studied. In the following chapters, a brief description of the cited species is presented. 

Specifically, rainbow trout and atlantic salmon characteristics are discussed together 

(2.1) because both own to salmonid group, and sea bass and sea bream are presented 

in 2.2. These two species indeed are both carnivorous marine finfish that have quite 

similar biology and life histories. 

 

2.1 RAINBOW TROUT (ONCORHYNCHUS MYKISS) AND ATLANTIC 

SALMON (SALMO SALAR) 

Rainbow trout (Oncorhynchus mykiss), whose name refers to the  rainbow-

coloured line on its skin, is a species of salmonid. Native in the Pacific coastal area of 

the United States of America, it was introduced into Europe at the end of the 19
th

 

century (O'Neill, 2006). Rainbow trout have been cultured for hundred years, and are 

the most widely farmed trout in the world. Rainbow trout are farmed today in nearly 

all European countries, especially in the coastal countries with a temperate climate. 

Italy leads freshwater cultured species in Europe, by providing more than 30000 ton. 

Rainbow trout can tolerate a wide range of water temperatures and other 

environmental variables, but they required high oxygenated water (Hardy, 2002). 

Farming of Atlantic salmon (Salmo salar) began in Norway in the late 1960s. 
During the following decades the production has spread to other countries, for 
example Chile, Scotland, and Canada due to biological constraints and seawater 
temperature requirements (8-14 °C). In 2013 the world production was 1.84 million 
tonnes representing the main species of salmonids produced. It is a versatile ra 
material  which can be utilised for a variety of products  such as smoked, fresh, sushi, 
as well as ready-made meals justifying the high economic value of this specie, which 
reach more than 9 billion of EUR in 2013 (www.marineharvest.com). 

Both of these two species have the ability to store pigments, generally red, by 

which their flesh results coloured. The main pigment occurring naturally in salmonids is 

astaxanthin (3,3'-diidrossi-β-carotene-4,4'-dione), while canthaxanthin (β,β-carotene-

4,4'-dione) is the main artificial one. They belong to carotenoid group and they are 

considered as red-coloured pigments. The main repository of fish carotenoids is the 

http://en.wikipedia.org/wiki/Salmonid
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skin; considerable amounts are also encountered in the ovaries, in the liver, and in the 

flesh (Hardy, 2002; Storebbaken, 2002). Whilst the firsts are probably associate with 

the carotenoid role on reproduction, the latter site is the most important for the 

appeal on consumers. Indeed, colour is recognized as an important characteristic and 

selection criterion for food choice by consumers (Koteng, 1992). 

However, fish do not possess the power to synthesize carotenoid de novo so 

their presence in fish tissues is strictly associated with alimentary carotenoids or diet 

supplementation. In the European Union, canthaxanthin is currently authorised for use 

as a colouring agent up to a level of 80 mg per kg in complete feed stuffs for 

salmonids. When combined with astaxanthin, there is a maximum permitted level of 

100 mg total canthaxanthin plus astaxanthin per kg even if the limit of 80 mg per kg for 

canthaxanthin has to be respected (EC, 2002). Nevertheless, EC (2002) scientific 

opinion suggested to reduce the level at 25 mg canthaxanthin/kg of feed in order to 

guarantee safety assessment. Canthaxantin indeed is the sole pigment for which an 

acceptable daily intake (ADI) has been established. It means that 0.03 mg pigment per 

kg body weight have been considered safety for avoid diseases, such as functional 

damage to the retina (SCF, 1997). 

The deposition of carotenoids in fish flesh is related both to the type of 

carotenoids and to their concentration in the animal diet (Torrisen, 1986; Foss et al. 

1987). Astaxanthin has been proved to be faster deposited than canthaxanthin in 

muscle, as shown in Figure Errore. L'origine riferimento non è stata trovata.5. 

Moreover, the retention rate of pigments in flesh decreases with increase in diet dose 

because of the decrease in the bioavailability of the pigments. However, many factors 

may be involved in the process of carotenoids deposition that explain the marked 

differences in their amount. 
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Figure 5. Carotenoid concentration in Atlantic salmon fillets derived from fish fed with 4 different 

carotenoids concentration (0, blue line; 30, red line; 60, green line; 90, purple line) as reported by Foss et 

al. (1987). a, b indicate significant differences (p < 0.05) between concentrations for each time. 
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2.2 SEA BASS (DICENTRARCHUS LABRAX) AND SEA BREAM 

(SPARUS AURATA) 

European sea bass (Dicentrarchus labrax) and gilthead seabream (Sparus 

aurata) are both carnivorous marine finfish that have quite similar biology and life 

histories. Sea bass and gilthead sea bream have been historically cultured in coastal 

lagoons and saltwater ponds because they are euthermic (5-28 °C) and euryhaline (3‰ 

to full strength sea water). 

These species were two of the first to be cultured on a commercial scale in 

Europe and to date they are cultured in similar production systems, often coexisting on 

the farm sites. The European sea bass (Dicentrarchus labrax) was the first marine non-

salmonid species to be commercially cultured in Europe and at present is the most 

important commercial fish widely cultured in Mediterranean areas. The mass-

production of juveniles sea bass started in the late 1960s. During the late 1960s, 

France and Italy competed to develop reliable mass-production techniques for juvenile 

sea bass and, by the late 1970s, these techniques were developed in most 

Mediterranean countries to provide hundreds of thousands of larvae. Greece, Turkey, 

Italy, Spain, Croatia and Egypt are the biggest producers. According to the Federation 

of European Aquaculture Producers (FEAP), 134,978 tons of European sea bass were 

produced in the Mediterranean Sea in 2012 (FEAP, 2015). 

Traditionally, the intensive rearing systems for gilthead sea bream were 

developed during the 1980s and definitively achieved in 1988-1989 in Spain, Italy and 

Greece. Thanks to its high adaptability to intensive rearing conditions, both in ponds 

and cages, its annual production increased regularly raised 138,694 tons in the 

Mediterranean countries in 2012. Greece is the leading producer in the world with 

approximately 45% of the total production (FAO, 2014). 

In Europe, the sea bass and sea bream industries have grown strongly in the last 

decade. Production is mostly exported, mainly to Italy and Spain. However, the 

farming of European sea bass and gilthead sea bream in the Mediterranean region is 

undergoing a transformation from being an industry of high margins and low volumes 

to one of low margins and high volumes. The rapid development of production in sea 

cages has led to declining prices and the rapid saturation of the market. These facts, 

together with the parallel increase of the input of fish, such as fish meal and oils (or 

their replacers), and a small traditional market for these species (mainly in southern 

Europe) compared with the Atlantic salmon market, make very difficult for farmers to 

increase their profits. 

Another problem is the lack of diversified products, and limited market 

development and promotion. Indeed, compared to many other species of farmed fish, 

such as salmon or trout, European sea bass and gilthead sea bream have so far been 
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mainly marketed as whole and fresh, with only limited volumes undergoing any form 

of processing or value-addition (Stirling University, 2004). In any case, product 

development in aquaculture sector has been very limited. One major reason is the 

conservatism of Mediterranean consumers, who are used to seeing the fish whole 

when sold retail. 

Thus, at the moment, market conditions seem very far from those that 

pertained in the first half of the 1990s, but there are a few marketing strategies for 

improve and/or increase the sea bass and sea bream profitably. One of these is the 

production of low quantities of higher quality fish (e.g. organic fish) or by producing 

unconventional fish sizes. Product development is now under way, for example the use 

of modified atmosphere packaging (MAP) for giving the product a longer shelf-life. 

However, more product development is certainly necessary if additional quantities of 

bass and bream want to be absorbed in the current markets and expand existing ones 

by opening new markets and attracting new consumers. 
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3.AIM OF THE STUDY 

As emerged from the previous chapters, lipid oxidation is a very important 

event leading to the quality of foods, especially of those containing highly unsaturated 

fats. Quality losses, production of unpalatable flavour and odour, shortening of shelf 

life, losses of nutritional values (eg. loss of PUFAs) and possible production of 

unhealthy molecules are some of the extensive consequences of lipid oxidation in 

foods. 

Fish lipids are highly unsaturated and contain other polyunsaturated fatty acids 

which are considered as "essential" for human health such as eicosapentaenoic (EPA, 

C20:5n3) and docosahexaenoic (DHA, C22:6n3) acids. Nonetheless, long-chain fatty 

acids are as important as their high susceptibility to degradation, such as oxidation. It 

has been proved (Azhar & Nisa, 2006; Maqsood & Benjakul, 2011; Maqsood et al., 

2012) that lipids of fish are highly prone to be oxidised and many factors during fish 

supply chian can affect the pattern of this reaction. 

For this reason, the overall aim of this study was to assess the effects of 

different extrinsic factors (killing method, storage, mechanical separation process) on 

lipid oxidative stability of fillets from different farmed species. 

The specific goals were to study: 

 The effect of killing method both on plasma and muscle oxidative stability of 
rainbow trout during long term frozen storage (Research I). Specifically, the 
effects of asphyxia in air and percussion were considered both in terms of 
animal welfare and fish quality in order to understand the role of stress on 
quality loss during storage. 
 

 The effect of killing method on lipid and cholesterol oxidation of farmed atlantic 
salmon during refrigerated storage (Research II). Particularly, new 
stunning/killing method, such as utilisation of carbon monoxide, has been 
evaluating as no stress alternative. However, if it can be utilised without any 
detrimental effect on fillets quality is still unclear. 
 

 The effect of mechanical separation treatment (MSM) of fillets from European 
sea bass, Gilthead sea bream, and rainbow trout on oxidative stability of their 
derived-products (Research III). This technique is commonly utilised for other 
terrestrial species, such as poultry or pig, in order to reduce production wastes 
and create ready-to-eat products, whereas it is not so expoited by fish industry. 
Thus, it could be interest to evaluate MS as new technology in fish industry for 
reducing wastes and opening new market. 
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4. MATERIAL AND METHODS 

Fish were obtained from different fish farms. Specifically, as summerised in 

Table 5, rainbow trout for Research I were farmed in San Michele all’Adige (Trento, 

Trentino Alto Adige, Italy) whilst trout for Research III were raised in Tuscany (Italy); 

atlantic salmon came from Matre (Norway); sea bass and sea bream finally were 

farmed in the south of Tuscany (Italy). Globally, 56 rainbow trout and 30 Atlantic 

salmon were sacrificed for testing the roles of killing method, and storage methods on 

oxidative stability of fish fillets. Moreover, Research III took into consideration the 

effects of Mechanical Separation Process on three different species farmed in Tuscany: 

European sea bass (Dicentrarchus labrax), gilthead sea bream (Sparus aurata), and 

rainbow trout (Oncorhynchuss mykiss) (Table 5). 

Globally, the following analysis were conduced: determination of lipid content, 

fatty acid (FA) profiles (of both muscle and plasma), nucleotides, eicosanoids and 

docosanoids (lipid mediators) in fish plasma. Considering lipid oxidation 

measurements, conjugated dienes, thiobarbituric acid reactive substances (TBARS), 

cholesterol oxidation products (COPs), and carotenoid content have been taken into 

consideration. The different research activities were composed by some of the 

previously listed analysis. An overview of these assessments is given in the Table 6 and 

described in depth in the following chapters. 

Finally, experimental set-up for each research is described in the Part II, which 

collects the papers that have been originated from the three researches performed 

during the PhD period, summerised in Table 7. 
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Table 5. List of fish sample origins. 

 

 
Sample 

Type of 

Farm 
Location 

n° 

fish 

Weight 

Range 
Scope 

Research 

I 
R. trout 

Not 

experimental 

Farm 

San 

Michele 

all’Adige  
(Trento, 

Italy) 

28 
1127 ± 

258 g 

Evaluate the 

effect of 

killing 

method on 

oxidative 

stability of 

fillets 

(frozen 

storage) 

Research 

II 

A. 

salmon 

Experimental 

Farm 

Matre 

(Norway) 
30 

1104  ± 

125 g 

Evaluate the 

effect of 

killing 

method on 

oxidative 

stability of 

fillets 

(refrigerated 

storage) 

Research 

III 

European 

sea bass 

Not 

experimental 

Farm 

Grosseto 

(Italy) 
18 427 ± 22 

Evaluate the 

effect of 

mechanical 

treatment 

(MSM) of 

fish on 

oxidative 

stability of 

derived-

products 

(refrigerated 

and frozen 

storage) 

Gilthead 

sea 

bream 

Not 

experimental 

Farm 

Grosseto 

(Italy) 
18 432 ± 42 

Rainbow 

trout 

Not 

experimental 

Farm 

Garfagnana 

(Italy) 
18 357 ± 52 
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Table 6. List of the analyses conducted in each research. 

 
 

Research 
I 

Research 
II 

Research 
III 

Method 

CHEMICAL 
ANALYSES 

Proximate 
composition 

● ● ● 
Official AOAC 

(2012) 
Fatty acids 
analysis of 
muscle and 

plasma 
● ● ● GC-FID 

Nucleotides ●   
HPLC, photodiode-

fluorescence 
Lipid 

mediators 
●   LC-MS/MS 

Carotenoids  ●  HPLC, UV-DAD 

CHEMICAL 
OXIDATION 
ANALYSES 

Cholesterol 
and 

cholesterol 
oxidation 
products 
(COPs) 

 ●  GC-FID 

Dienes  ● ● Spectrophotometer 
TBARS ● ● ● Spectrophotometer 

PHYSICAL 
ANALYSIS 

Colour   ● Colorimeter 
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Table 7. List of papers derived from PhD research activities. 

 

Kind of study Derived 
Kind of 

publication 
Status Journal/Congress 

Bibliography 
analysis 

Paper I Review In press 
Italian Journal of 
Animal Science. 

Research I Paper II Article Published Food Chemistry. 

 Annex I 
Oral 

communication 
 

Eurofed Lipid 
Congress 2015. 

Research II Paper III Article Published 
Journal of the 

Science of Food 
and Agriculture. 

Research III Paper IV Article Submitted Food Control. 
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4.1 LIPID CONTENT AND EXTRACTION 

Quantification of lipid content can be performed with different methods, 

changing in solvent quantity and separation time. The two most utilised methods are 

Bligh & Dyer (1959) and Folch et al. (1957). Both methods are based on the lipid 

hydrophobicity, and the separation phase derived from the addiction to samples of 

methanol, chloroform and water. Homogenised samples were separated by overnight 

rest or centrifugation followed by filtration. The chloroform phase contained the lipid 

extract which can be gravimetrically measured. The extract can be also utilised for 

fatty acids, cholesterol and cholesterol oxidation products, astaxanthin, and 

tocopherol analyses. The following scheme summarised the methods utilised for total 

lipid content analysis in the present researches. 

 Sample 

(g) 

Methanol 

(mL) 

Chloroform 

(mL) 

Water 

(mL) 

Separation 

phase 

Research I 2 6 6 * 3 Centrifugation 

Research II 10 121 60.5 37.9 (KCl) Overnight 

Research III 2 30.2 15.1 11.5 (KCl) Overnight 

* Toluene was here substituted for chloroform. 
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4.2 FATTY ACID PROFILES OF MUSCLE AND PLASMA 

Fatty acid profiles were determined by gas-chromatography. Many methods 

have been developed or improved during the years, and different laboratory have 

chosen their ordinary method based on the equipment owned. In order to make the 

process clear, first the common steps utilised were summarised, then the details were 

reported. Fatty acid analysis starts from the methylation of lipid extracts. 

Nonadecanoic acid (C19:0) or tricosanoic acid (C23:0) were utilised as internal 

standard, while fatty acids were identified by comparing the FAME retention time with 

the standard Supelco 37 component FAMEs mix (Supelco, Bellefonte, PA, USA). For 

research I, lipid extracts were methylated according to the method of Lepage & Roy 

(1986). The fatty acid methyl esters (FAMEs) were analysed by gas chromatography 

and flame ionization detection (GC/FID, Clarus 500, Perkin Elmer, Shelton Alto, CT, 

USA). FAMEs separation was achieved on a Supelco SP-2330 fused silica capillary 

column (30 m × 0.25 mm i.d., 0.2 μm film; Supelco, Bellefonte, PA, USA). The oven 

temperature was started at 140 °C and it was increased to 205 °C at the rate of 1 

°C/min. The injector and detector temperatures were set at 275 °C and 260 °C, 

respectively. Samples in toluene (1 µL) were injected (split ratio 1:10) into the column 

with the carrier gas (nitrogen) kept at a constant pressure of 10 psi. Chromatograms 

were recorded with the TotalChrom™ Chromatography Data System (Perkin Elmer) 

computing integrator software. 

The second and third researches instead utilised the trans-esterification method 

proposed by Morrison & Smith (1964). The FA composition was determined by using a 

Varian GC 430 gas chromatograph (Agilent, Palo Alto, CA, USA) equipped with a flame 

ionization detector (FID) and a Supelco Omegawax™ 320 capillary column (30 m × 0.32 

mm i.d., 0.25 μm film and polyethylene glycol bonded phase; Supelco). The oven 

temperature was held at 100 °C for 2 min, increased to 160 °C over 4 min at the rate of 

12 °C/min, and then increased to 220 °C over 14 min at the rate of 3 °C/min and kept 

at 220 °C for 25 min. The injector and the detector temperatures were set at 220 °C 

and 300 °C, respectively. One µL of sample in hexane was injected into the column 

with the carrier gas (helium) kept at a constant flow of 1.5 mL/min. The split ratio was 

1:20. Chromatograms were recorded with the Galaxie Chromatography Data System 

1.9.302.952 (Agilent) computing integrator software.  

 

4.3 NUCLEOTIDES 

ATP and derived nucleotides were determined as proposed by Özogul et al. 

(2000). Briefly, 1.5 g of muscle were homogenised with 10 mL of perchloric acid 6% 
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(PCA, Sigma-Aldrich, St. Luis, MO, USA). After a centrifugation at 3200 × g at 4 °C for 10 

minutes (Allegra®X-12R, Beckman Coulter Inc, Brea, CA, USA) and holding at -20 °C for 

20 min, the samples were filtered using Filter-Lab® 100 mm filter paper (Filtros Anoia, 

S.A., Barcelona, Spain). The extract was adjusted to pH 6.8-7 using 0.6 and 0.1 M 

potassium hydroxide (Sigma-Aldrich, Poole, Dorset, UK), filtered and finally it was 

brought to 25 mL volume with 50 mM phosphate buffer (pH 7). Before HPLC injection, 

100 µL of sample were filtered using a 13 mm GHP 0.2 µm filter (Waters, Milford, MA, 

USA). 

HPLC analyses were made using an Alliance® HPLC Model 2695 (Waters) 

apparatus equipped with a photodiode array detector model 2996 (Waters) and a 

multi λ fluorescence detector (Waters). The column was a ZORBAX Eclipse XDB-C8, 

4.60  75 mm, particle diameter 3.5 µm (Agilent), used at a temperature of 35 °C. 

Nucleotide standards [adenosine 5′-triphosphate (ATP), adenosine 5′-

diphosphate (ADP), adenosine 5′-monophosphate (AMP), inosine 5′-monophosphate 

(IMP), inosine (Ino), hypoxanthine (Hx)], and tetrabutylammonium bromide were 

purchased from Sigma-Aldrich Chemical Company (Poole, Dorset, UK). Acetonitrile was 

purchased from Merck KGaA (Darmstadt, Germany) and water HPLC grade was 

obtained from Scharlab S.L. (Sentmenat, Spain). Separation was performed in 

continuous gradient elution using two mobil phases. Phase A was 50 mM phosphate 

buffer/10 mM tetrabutylammonium bromide dissolved in HPLC grade water and 

adjusted to pH 7 with 0.1 m potassium hydroxide. The solution was prepared daily and 

filtered through a 0.2 µm 47 mm GHP membrane (Waters). Phase B was acetonitrile. 

The injection volume was 10 µL and detection was monitored at 254 nm. The total 

separation time was 12 min with a rate flux of 1 mL/min. The results were expressed as 

mM nucleotides/g muscle. 
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4.4 EICOSANOIDS AND DOCOSANOIDS FROM PLASMA 

PUFA derivatives together with free arachidonic (ARA), eicosapentaenoic (EPA), 

and docosahexaenoic (DHA) acids were quantified according to the methodology 

previously developed by Dasilva et al. (2014) using SPE extraction prior to LC-MS/MS 

analysis. Briefly, plasma samples (300 µL) were diluted with 30% cold methanol (v/v), 

to a final volume of 1.2 mL. The internal standard 11HETE-d8 was added to each 

sample. The spiked samples were incubated on ice during 10 min and then centrifuged 

at 3200 × g for 10 min, at 4 °C, to remove any precipitated proteins which might cause 

interferences. The clear supernatant and washes of the resultant pellet with 30% 

methanol were collected in amber glass vials and subjected to SPE on Oasis-HLB 

cartridges (60 mg, 3 mL, Waters, MA, USA). After that, extracts were evaporated to 

dryness under a fine stream of nitrogen; the residue was dissolved in 100 µL ethanol 

and analysed by LC-MS/MS in a Waters C18-Symmetry column, 150×2.1 mm, 3.5 μm 

(Milford, MA, USA) using a binary eluent system of water (A) and methanol (B), both 

with 0.02% (v/v) of formic acid, as mobile phases. The flow rate was set at 0.2 mL/min; 

the column effluent was directly introduced in the ESI without splitting, and injection 

volume was set to 10 μL. Operating conditions of the ESI source were negative ion 

mode with a gas flow rate of 40 units, spray voltage of 5.5 kV, capillary temperature of 

300 °C and S-lens radio-frequency level of 60%. The quantification of target 

compounds was made using the most intense, or selective, transition for each analyte 

and identification was helped comparing the MS/MS spectra, recorded in the range 

from 90 to 400 m/z units. 

 

4.5 CONJUGATED DIENES 

As peroxide values, conjugated dienes are considered primary lipid oxidation 

products. Conjugated dienes (CD) were measured according to Srinivasan et al. (1996). 

Briefly, 2 g of sample were homogenate in 6 mL water, then 0.5 mL of that extract 

were added to 5 mL hexane:isopropanol (3:2, v/v). Before reading the absorbance at 

233 nm, samples were centrifuged 5 min at 2000 × g. The concentration of conjugated 

dienes was obtained by using the molar extinction coefficient of 25200 mL /(mmol
-1

 

cm
-1

). The results were expressed as mol hydroperoxides/kg muscle. 
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4.6 TBARS 

The 2-thiobarbituric acid reactive substances (TBARS) were measured according 

to Vyncke (1970). Two g of sample were homogenised with 10 mL of 5% trichloroacetic 

acid (TCA) solution for 60 sec. Samples were stored at -30 °C for 10 min in order to 

precipitate the protein fraction. Then the samples were centrifuged and filtered. Five 

mL of the extracts were added with 2 mL of 0.02 M thiobarbituric acid (TBA) and 

incubated at 93 °C for 40 min. The absorbance was read at 560 nm and the results 

were expressed as mg of malonaldehyde/kg sample using a calibration curve 

determined with eight standard solutions of TEP (1,1,3,3,-tetra-ethoxypropane) at 

concentration ranging from 0.2 to 3.1 μM. 

 

4.7 CHOLESTEROL AND CHOLESTEROL OXIDISED PRODUCTS 

(COPS) 

 The content of cholesterol and COPs in fish fillets was determined in the total 

lipids extracted according to Folch et al. (1957). One hundred and fifty μL 

dihydrocholesterol in chloroform (2 mg/mL) and 25 μL of 19-hydroxycholesterol (1 

mg/mL) in n-hexane/isopropanol (1 mg/mL, in 4/1) were added to 300 mg of lipid 

extract as internal standards for cholesterol and COPs, respectively. Three hundred mg 

of total lipids were dissolved in n-hexane:isopropanol (4:1, v/v) and directly cold 

saponified. One tenth of the unsaponifiable matter was utilised for the determination 

of the total cholesterol, whereas the remaining part (9/10) was purified by NH2-SPE 

cartridge for COPs purification. Cholesterol and COPs were then silylated with a 

silylation solution composed by a pyridine solution of hexamethyldisilazane and 

trimethylchlorosilane (Sweely et al., 1963). After a nitrogen stream drying, the extracts 

were dissolved in n-hexane. Both cholesterol and COPs were identified by GC-FID (GC 

2000 plus, Shimadzu, Columbia, MD, USA) equipped with a VF 1-ms apolar capillary 

column (30 m × 0.25 mm i.d., 0.25 µm film thickness; Varian, Palo Alto, CA, USA). For 

cholesterol and COPs determination, 2 µL of sample in hexane were injected into the 

column with the carrier gas (hydrogen) flux at 1 mL/min and the split ratio was 1:10. 

The run was carried out in constant pressure mode. The oven temperature has held at 

250 °C for 1 min, increased to 260 °C over 20 min at the rate of 0.5 °C/min, and then 

increased to 325 °C over 13 min at the rate of 5 °C/min and kept at 325 °C for 15 min. 

The injector and the detector temperatures were set at 325 °C (Serra et al., 2014). 

Retention times were 7.5 min for 7 β-hydrocholesterol, 8.9 min for α-epoxycholesterol, 

9 min for cholesterol, 11.0 min for β-epoxycholesterol, 14.8 min for triol-cholesterol, 
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and 19.6 min for 7-ketocholesterol. The chromatograms were recorded with the 

LabSolution software (Shimadzu, Columbia, MD, USA). Cholesterol and COPs were 

calculated by comparing the area of the samples and the internal standards and 

expressed as g/kg of fillets. 

 

4.8 CAROTENOIDS 

The content of carotenoids (mainly astaxanthin) and Vit. A in fish fillets was 

determined in the lipid extracts after addiction of 0.7 µL apocarotenal as internal 

standard and cold saponification (Sander et al., 1989). Unsaponifiable matter was 

resuspended in 200 µL of hexane/isopropanol (4:1) solution. Finally, 20 µL of each 

sample were quantified using a Prostar HPLC (Varian) equipment with UV-DAD and C18 

reverse phase column (ChromeSep HPLC Columns SS 250 mm  4.6 mm with 

ChroSEMp guard column Omnispher 5 C18) as suggested by Maschrazak et al. (2002) 

and Mestre-Prates et al. (2006). The mobile phases were (A) 

methanol:acetonitrile:water (10:70:20) and (B) methanol:ethylacetate (70:30). The 

flow was 90:10 of A and B, respectively, kept at 1 mL/min for 15 min followed by 50:50 

(1 mL/min) for 5 min and 0:100 (1.5 mL/min) for the last 10 minutes. Carotenoids were 

detected at 450 nm while Vit. A was detected at 325 nm. Analytes were quantified by 

using an external calibration curve, obtained from retinol at concentration range of 

0.045-7 µg/mL. Carotenoids and Vit. A were finally expressed as µg/kg of fillets. 

 

4.9 PHYSICAL ANALYSIS: COLOUR 

A Dr Lange Spectro-color® colorimeter (Keison International Ltd, UK) equipped 

with a Spectral qc 3.6 software was utilised for colorimetric measurement. Colour was 

measured in triplicate on the epaxial-cranial fillet position. Colour measurements were 

carried out according to the CIELab system (CIE, 1976). CIELab is the second of two 

systems adopted by CIE (Commission Internationale de l'Éclairage) in 1976 as models 

that better showed uniform colour spacing in their values. CIELab is an opponent 

colour system based on the earlier (1942) system of Richard Hunter called L, a, b. 

Colour opposition correlates with discoveries in the mid-1960s that somewhere 

between the optical nerve and the brain, retinal colour stimuli are translated into 

distinctions between light and dark, red and green, and blue and yellow. CIELAB 

indicates these values with three axes: L*, a*, and b*. Figure 6 shows the special 

distribution of the colour. Specifically, the central vertical axis represents lightness 

http://it.wikipedia.org/w/index.php?title=Commission_Internationale_de_l%27%C3%89clairage&redirect=no
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(signified as L*) whose values run from 0 (black) to 100 (white). The other two axis 

values run from positive to negative. On the a axis, positive values indicate amounts of 

red while negative values indicate amounts of green (redness index, a*). On the b axis, 

yellow is positive and blue is negative (yellowness, b*). For both axes, values range 

from -60 and +60, while zero represents neutral grey. 

  

 

Figure 6. Colour distribution on CIELab scale. 

  



73 
 

5.0 STATISTIC 

Data obtained from the different researches were statistically analysed. Briefly, 

results of Reserach I were obtained by using the General Linear Model procedures of 

the Statistical Analysis Software SAS 9.1 (2004) for Windows. A one-way ANOVA tested 

the stunning method as fixed effect. 

Data related to proximate composition of atlantic salmon fillets (Research II) 

was submitted to ANOVA by the PROC GLM of the SAS 9.1 (2004), where Killing 

method (K: Percussion, CO), Storage time (S: T0, T14) and the Killing method × Storage 

time (K × S) interaction were included in the model as fixed effects. The other data, 

such as oxidation values, were analyzed as completely randomized design with 

repeated measures, using the MIXED procedure of SAS. The model included the fixed 

effects of the Killing method (K: Percussion, CO), of the Storage time (S: T0, T14) and 

the Killing method × Storage time (K × S) interaction, while the individual fish was 

included in the model as random effect nested within the killing method. The 

covariance structure was compound symmetry, which was selected on the basis of 

Akaike’s information criterion of the mixed model of SAS. Statistical significance of the 

killing effect was tested against variance of fish nested within killing method according 

to repeated measures design theory. Finally, multiple comparisons among means were 

performed using the Tukey's test and were considered significant for p values <0.05. 

The coefficients of the residual (after the above model) correlations between the 

analysed parameters were also calculated. 

The statistical analysis of data collected during Research III was performed using 

SPSS version 17.0 software (SPSS Inc. Illinois). Normality of data distributions was 

tested by the Kolmogorov-Smirnov test. Fatty acid incidences were subjected to one-

way analysis of variance (ANOVA) with ‘treatment’ as a fixed effect, using the 

Bonferroni post-hoc test to check the significance of the differences among levels (WB, 

FB and MSM samples). The primary and secondary oxidation products and antioxidant 

capacity were subjected to two-way ANOVA with ‘treatment’ and ‘storage’ and their 

interaction as fixed effect, using Bonferroni post hoc test to check again the 

significance of the differences among levels (WB, FB and MSM samples), and storage 

(T0 and T90). 
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Abstract  

Lipid oxidation is a very complex and important event threatening the quality of foods 

especially of those containing highly unsaturated fats. Fish are the main source of 

polyunsaturated fatty acids that, unfortunately, are highly susceptible to degradation 

process, such as oxidation. Fish supply chain generally involves many steps and each of 

them together with their interaction might play a central role in muscle quality 

maintenance. From this review emerged that antioxidants supplementation diet can 

play a central role to limit the detrimental effects of stress (pre-slaughter or at killing) 

and storage. In this sense, lycopene shows the best antioxidant activity during stressful 

conditions while α-tocopherol acts preferentially in long term frozen storage. Stress 

just before or at slaughter can greatly threaten flesh quality both immediately and 

after storage by inducing numerous metabolic pathways, that often involve the 

production of very reactive molecular species, such as hydroperoxides. Common 

operation such as bleeding can significantly reduce both reactive molecules and 

hemoglobin, which is recognized as a great pro-oxidant. Temperature and duration are 

two critical points of storage phase which has to be considered even by consumers. 

Frozen storage at very low temperatures (-30, -40 °C) confirms to be the best storage 

practice. Finally, cooking can compromise aromatic profile of cooking fillets. Thus, 

feeding antioxidant, reducing stress both during pre-slaughter practice and at killing, 

good storage practices, if associate with an appropriate cooking method (low 
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temperature, short time) seem to be the clues for preserving the fragile lipid fraction 

from farm to fork. 

 

Key words Fish, lipid oxidation, PUFA, TBARS 

 

Introduction 

Lipid oxidation has been deeply studied in the course of the past recent decades, and 

its complex mechanisms, kinetics and products are now to a large degree well 

established. As reported by Schaich (1992), mechanisms frequently proposed are 

based on kinetics, usually prerequisite of either oxygen consumption or appearance of 

peroxides (indicated as peroxide value, PV), malondialdehyde (MDA, expressed as 

thiobarbituric acid reactive substances, TBARS), free fatty acids (FFAs), and/or volatile 

compounds, therein assuming standard radical chain reaction sequences. However, 

when the above mentioned side reactions are either ignored or reactions proceed by a 

pathway different from that being measured, erroneous conclusions can be easily 

drawn. Thus, these various pathways and or reaction tracks need to be evaluated 

simultaneously to reflect a near-to-realistic picture of the most likely pathway of lipid 

oxidation in either of the model systems, foods, or biological tissues. The complexity of 

this phenomenon can be seen by the large number of studies reporting lipid oxidation 

and how best it either resembled or contrasted by comparisons within this subject 

(Ramanathan and Das, 1992; Niki et al., 2005; Azhar and Nisa, 2006; Okpala et al., 

2014). 

Lipid oxidation indeed is a very important event leading to the quality of foods, 

especially of those containing highly unsaturated fats. Quality losses, production of 

unpalatable flavour and odour, shortening of shelf life, losses of nutritional values (eg. 

loss of polyunsaturated fatty acids, PUFAs) and possible production of unhealthy 

molecules are some of the extensive consequences of lipid oxidation in foods. 

Fish lipid differs from mammalian lipid. The main difference is that fish lipids include 

up to 40% of long-chain fatty acids (14-22 carbon atoms) which are highly unsaturated. 

Mammalian fat will rarely contain more than two double bonds per fatty acid molecule 

while the depot fats of fish contain several fatty acids with five or six double bonds. 

Moreover, fish oils contain other polyunsaturated fatty acids which are considered as 

"essential" such as eicosapentaenoic (EPA, C20:5n3) and docosahexaenoic (DHA, 

C22:6n3) acids. Indeed, EFSA (2010) reported that a daily intake of 250-500 mg of 

EPA+DHA decreases the risk of mortality from coronary heart disease and sudden 

cardiac death. This supports the previous funding that EPA in blood is an extremely 

potent antithrombotic factor (Simopoulos, 1991). 

Nonetheless, long-chain fatty acids are as important as their high susceptibility to 

degradation, such as oxidation. It has been proved (German and Kinsella, 1985; 
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Richards et al., 2002; Azhar and Nisa, 2006; Maqsood and Benjakul, 2011; Maqsood et 

al., 2012) that the lipid oxidation of food, especially of PUFA contained in fish, is rather 

linked to the formation of off-flavour components, less of quality during different 

storage conditions, loss of nutritional value and even formation of anti-nutritional 

molecules. 

Fish supply chain generally involves many steps and each of them might play a central 

role in the maintenance of muscle quality. Indeed, farming, killing, handling, and 

storage are only some of the steps between farm and consumers’ kitchens and plate. 

For this reason, in order to prevent possible waste of nutrient value it is important to 

briefly review the main factors affecting lipid oxidation of fish from farm to fork. The 

structure of this contribution is schematically organized such that at subsequent 

sections, the antioxidant in feed is presented, thereafter, preslaughter procedures of 

starvation and crowding, then followed by the killing activity, then, handling up to 

cooking. 

 

Antioxidant in feed 

Fish lipids are rich in n-3 fatty acids that are essential to human health. Lipid oxidation 

is a major concern during processing and storage of fish because it contributes to 

quality deterioration and decreases marketability of fish products. Fillet accumulation 

of antioxidant, eg. vitamin E (vit. E) or astaxanthin, during feeding may prevent quality 

deterioration associated with lipid oxidation following processing and storage. 

Table 1 reports the results of some studies concerning the effect of dietary antioxidant 

on lipid oxidation. The role of vit. E is clearly discerned from Stéphan et al. (1995) who 

demonstrated that TBARS level of low tocopherol diet is almost 100 times more than 

that of the highest tocopherol level diet in turbot (Scophthahus maximus). In addition, 

looking at the results immediately after death (data not shown) is possible to find 

slightly higher TBARS level (0.029 mg MDA/kg) in fish fed low dietary α-tocopherol (20 

mg/kg feed), than in fish fed high antioxidant (320 mg/kg feed) for which 0.016 mg 

MDA/kg was measured. Hence, the antioxidant properties of tocopherol seem 

accentuated by long term frozen storage (6 months storage at -20 °C). Interestingly, 

the same authors performed in parallel an in vitro study on antioxidant ability of α-

tocopherol. Uncertain patterns might be discerned. On one hand, α-tocopherol 

antioxidant activity is increased by increasing concentrations. On the other hand, the 

extent of antioxidant effect seemed to be strictly dependent on lipid content and 

composition of the matrix, especially PUFAn3 content. So the higher lipid and PUFAn3 

content, the higher Vit. E antioxidant activity. That fact seemed to be confirmed by 

Chaiayapechara et al. (2003) who found antioxidant activity of Vit. E higher in fat 

rainbow trout (9.60% fat) than in fish containing 8.4% lipid. Furthermore, the action 
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was expressed preferentially in long term frozen storage (24 weeks at -30 °C) than in a 

short refrigerated one (4 °C). Unfortunately, authors did not analyse the α-tocopherol 

content during the storage, so it is not possible to unevenly establish the antioxidant 

role of α-tocopherol. 

Confirming the antioxidant action of α-tocopherol, Huang et al. (2003) investigating 

hybrid tilapia (Oreochromis niloticus  O. aureus) found that different diet vit. E 

supplementation levels could influence lag phase (initiation phase) of lipid 

peroxidation with apparent increase during either refrigerated (7 days at 4 °C) and 

frozen storage (8 weeks at -40 °C). As shown in Table 1, TBARS are affected by the 

dietary vit. E supplementation, and fish fed with high vit. E levels show to be less prone 

to be oxidised than the low fed ones. Similar results were found by Zhang et al. (2007) 

in Sparus macrocephalus fillets. Even in this case, fillets of fish fed with high tocopherol 

(553 or 1069 mg/kg) diet for 8 weeks exhibited significantly low (1.44 g/kg fillet) levels 

of oxidation products during 9 days of ice storage thanks to their high tocopherol 

muscle content. 

In summary, it is possible to assert that α-tocopherol antioxidant activity is increased 

by increasing concentration levels in feed; α-tocopherol performs better in high fat 

substrates; α-tocopherol acts preferentially in long term frozen storage. 

Jensen et al. (1998) fed rainbow trout (Oncorhynchus mykiss) with different 

astaxanthin and α-tocopherol levels for 6 months in order to understand the role of 

feeding antioxidant on lipid stability of the raw fish during frozen storage (-28 °C, 12 or 

18 months). Globally, storage reduced both astaxanthin and tocopherol content in fish 

fillet, although the highest decrease was observed for astaxanthin content. Thus, 

results suggest that astaxanthin might protect against lipid oxidation during the early 

stages of oxidative deterioration, where α-tocopherol has little effects, thanks to 

carotenoids’ role as scavengers of free radicals during the initiation of lipid oxidation. 

Such an ability is confirmed by the funding of Choubert et al. (2011), that found that 

carotenoid supplemented diets (100 mg astaxanthin/kg feed or 80 mg 

canthaxanthin/kg feed) did not significantly reduce TBARS content in rainbow trout 

during long term (18 months) frozen storage (- 20 °C). 

Recently, new natural antioxidants (as thymol, carvacrol, and lycopene) have been 

utilising in feed supplementation. As reported by Giannenas et al. (2012) it appears 

that a less unique pattern for carvacrol and thymol might be discerned. Indeed, the 

authors found that feeding rainbow trout with thymol (6 mg/ kg) for 8 weeks improved 

oxidative stability during a short refrigerated storage (5 days at 4 °C) more than 

carvacrol supplementation (12 mg/kg). TBARS content of fish treated with thymol 

remains unaltered for the entire trial, at 2.25 µg /g protein, while the carvacrol group 

raised up 2.78 µg/g protein. Interestingly, Girao et al. (2012) tested the antioxidant 

ability of feed supplementation with lycopene (600 mg/kg) on Nile tilapia (Oreochromis 
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niloticus) undergone stress confinement. Two main effects of lycopene may be 

discerned. Firstly, no alteration of TBARS content accompanied by unaltered enzymatic 

antioxidant activity (catalase, glutathione reductase, lactate dehydrogenase) in not 

stressed fish fed lycopene suggests that lycopene should have an antioxidant role by 

removing reactive oxygen species (ROS) generated by cellular metabolism. Latter, 

lycopene abolished the effect of stress during confinement, remaining unchanged both 

enzymatic activities and TBARS (stick at 0.32 µg/kg), thus confirming it played an 

important role during initiation phase of lipid oxidation. More recently, Sahin et al. 

(2014) studied the effect of lycopene supplementation at different concentration (0, 

200, or 400 mg/kg) on stressed rainbow trout quality performance. They found that 

dietary supplementation of lycopene to fish reduces the detrimental effects of stress 

(high stocking density) on growth performance and modulates oxidative status via 

activating host defence system at cellular level. It appears that lycopene can be added 

up to 400 mg/kg to rainbow trout diets to improve flesh quality. 

During the last years, rosemary extract has been utilising in fish feeding, however 

contrasting results were found. Data from Hernández et al. (2014) show that animals 

fed diets containing high dose rosemary extract (1200, 1800, and 2400 mg/kg) have a 

significantly lower TBARS index than the control group (no added group) or the group 

fed with low dose (600 mg/kg) over the first 7 days of storage (average 0.11, 0.13, and 

0.22 mg MDA/kg, respectively). However, on day 21
st

, a certain tendency emerged 

towards an increase in the TBARS index as the dose increased, possibly due to a pro-

oxidant effect of the rosemary extract at high doses. The lowest rosemary dose raised 

up to 0.49 mg/kg, while the other groups achieved at maximum 0.71 mg/kg, even if 

any statistical differences emerged. While comparing rosemary, thymol, carvacrol, or 

synthetic antioxidant as BHT feed supplementation for their capability of prevent lipid 

oxidation, Álvarez et al. (2012) found the following increasing stability order: 

carvacrol>rosemary=BHT>thymol. Thus, during 14 days of refrigerated storage, fillets 

from fish fed diet with carvacrol (500 mg/kg, 18 weeks) showed the lowest TBARS 

content (0.2 mg MDA/kg fillet), while the maximum was reached by thymol group with 

0.4 mg MDA/kg. 

 

Preslaughter procedure: starvation and crowding 

Food quality is perceived as a global concept. Food should be primarily safe, tasty and 

healthy. However, food safety and ethics is increasingly of global interest. In this 

context, commonly pre-slaughter practices that may be responsible for animal stress 

are starvation and crowding. Starving the fish for some days prior to slaughter is a 

common practice in the case of farmed fish, with the scope to delay spoilage by 

reducing the amount of faeces in the intestine. During the last decades, many authors 
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have investigated the influence of starvation on flesh quality in different fish species 

such as Sparus aurata (Ginés et al., 2002; Álvarez et al., 2008), Dentex dentex (Suárez 

and Cervera, 2010), Onchorynchus mykiss and Salmo trutta (Bayir et al., 2014) but only 

a few of them focused on the induced oxidative stress. 

Álvarez et al. (2008) exposed S. aurata to 24, 48, or 72 hours of starvation and among 

others parameters they evaluated TBARS on fillets. Although no significant differences 

between starvation periods emerged, a trend may be discerned. Particularly, it 

seemed that the TBARS values increased with starvation time. Indeed, 2.50±0.90, 

3.63±1.62, and 4.57±1.75 mg MDA/kg were found in S. aurata starved for 24, 48, and 

72 h, respectively. 

Interestingly, Bayir et al. (2014) measured oxidative stress indicators, such as reactive 

oxygen species (ROS) in liver and muscle samples from Onchorynchus mykiss and 

Salmo trutta exposed to a 45-day starvation period at low water temperature. They 

found that in both species lipid peroxidation increased with starvation length, even if 

the metabolic response to food deprivation in the muscle of each species was 

different. 

Crowding is a temporary status immediately before killing when fish can be collected 

in very high density. As reported by Pérez-Sánchez et al. (2013), crowding causes a 

complex stress by affecting hepatic gene expression, antioxidant defence system, cell–

tissue repair mechanism, xenobiotic metabolism and stress transcriptional regulation. 

This response, similar to the one described by Bayir et al. (2014) for starvation, may 

explain the funding of Bagni et al. (2007), that monitored the effect of crowding 

(density >70 kg/m
3
) on the oxidative stress of two common Mediterranean species 

(gilthead sea bream, Sparus aurata, and European sea bass, Dicentrarchus labrax). 

Oxidative stress was determined in terms of increment of the reactive oxygen 

metabolites (ROMs) and of anti-oxidant power (AOP). From the data emerged that in 

case of stress conditions, the ROMs production can be counteracted by an adaptive 

response, such as the activation of the AOP mechanism. However, the stress extent 

may greatly affect this response, by shifting from a positive response (high AOP, low 

ROMs) to a negative one (low AOP, high ROMs). The former is the case of uncrowded 

fish, the latter of crowded fish. Furthermore, stress response seemed to strictly 

depend on species. Indeed, gilthead sea bream showed to be less affected by the 

application of stress than European sea bass (no significant differences between two 

stress groups were found for AOP and ROMs). Gilthead sea bream as well showed a 

lower survival time than European sea bass. Nathanailides et al. (2011) supported the 

hypothesis that increased levels of stress can lead to increased lipid oxidation in 

European sea bass fillets. In details, fish were processed with a high stress method (the 

water was lowered and the fish were captured using a net, then killed by immersion in 

an ice cold bath) or with a lower stressful one (the level of water was lowered and fish 

http://www.sciencedirect.com/science/article/pii/S1744117X13000166
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were anaesthetized moderately by immersion in a 30 mg/L clove oil bath for 5 

minutes, then slaughtered by immersion in ice cold sea water). Results showed that 

the handling stress prior to slaughtering affects significantly TBARS contents, which 

were 1.04 and 1.16 mg MDA/kg in no stressed and stressed fish, respectively. 

The above cited studies of this subsection let emerge that pre-slaughter stress may 

induce complex metabolic responses: rapid ATP depletion may generate various pro-

oxidant substances, which in turn may induce an activation of AOP mechanism for ROS 

and ROMs depletion. Unfortunately, high stressful conditions or stress length may 

cause the adaptive response to be useless resulting in an increase of lipid oxidation. 

 

Killing 

Stunning/killing procedures applied in aquaculture are different and fish species vary in 

their response to the different methods utilised. Mediterranean aquaculture species 

are usually killed by asphyxiation in air, immersion in ice/water slurry or by percussive 

stunning. Ice killing is usually used in selective fisheries. Recent alternative 

stunning/killing processes have been experimentally investigated for Mediterranean 

fish species in an effort to develop and optimize commercial methods by assuring both 

high standards of fish welfare and product quality (EFSA, 2008; Poli, 2009). It has been 

widely reviewed that pre-slaughter (as anaesthesia) and slaughter stressful practices 

could have an important effect on the flesh quality in fish (Poli et al., 2005). A clear 

effect emerged mostly on the physical properties of flesh, because severe stress at 

slaughter time exhausts muscular energies, produces more lactic acid, reduces 

muscular pH, and increases the rate of rigor mortis onset Poli et al. (2005). In this way 

these practices could have significant negative effects on fish technological traits and 

in their flesh quality. 

According to Hultin (1992), anaerobiosis influences the conversion of xanthine 

dehydrogenase to xanthine oxidase. The latter enzyme transfers electrons directly to 

molecular oxygen producing superoxide and hydrogen peroxide, which can produce 

hydroxyl radicals in the presence of redox iron. These compounds have been proposed 

as among the principal initiators of lipid oxidation in biological tissues. Thus, the rapid 

conversion of ATP to hypoxanthine and of xanthine dehydrogenase to xanthine 

oxidase could influence lipid oxidation time of fresh and semi-preserved fish, especially 

when molecular oxygen is reintroduced during post mortem processing. 

Tejada and Huidobro (2002) found out that slaughter method (percussion, ice salt-

water slurry bath, and asphyxia) has no clear influence on the oxidative stability of 

gilthead sea bream (Sparus aurata), probably due to the interaction of many factors 

such as stress, handling speed after death, and lipid content of flesh. 
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Morzel and van de Vis (2003) studied the effect of killing methods on lipid oxidation of 

eel (Anguilla anguilla L.). Particularly, electricity and oxygen removal (new killing 

method) resulted in higher quality of eels in comparison with the dry-salt technique, 

by reducing stress and improving freshness. Furthermore, less stressful practice 

seemed to reduce the extent of lipid oxidation. In details, authors pointed out that 

enhanced lipid oxidation in salt-bath eels can be partially explained by the physical 

damage to the muscle, thereby increasing the cell ruptures and the consequent 

accessibility to the catalytic enzymes. In addition, the presence of salt may be 

considered in some extent a slight pro-oxidant. 

Results from Giuffrida et al. (2007) were in agreement with this explanation. 

Particularly, ice slurry slaughtered gilthead sea bream (Sparus aurata) showed higher 

(and then better) ATP/IMP levels (an indicator of less stressed fish) and to be less 

prone to lipid oxidation, as revealed by the MDA values, 0.158 mg MDA/kg flesh 

against 0.227 mg MDA/kg flesh in CO2-slaughtered fish. The same pattern was found in 

electrical stunned rainbow trout (O. mykiss) whilst compared electricity with anoxia 

and bleeding as killing methods. TBARS values for these groups were 0.68, 1.09, and 

1.03 mg MDA/kg flesh, respectively. Sakai and Tereyama (2008) studied the effect of 

bleeding as killing method on chub mackerel (Scomber japonicus) lipid oxidation. 

Struggling death in iced sea water was utilised as control. The MDA content in the 

muscles of the bleeding fish samples were significantly higher than those of the control 

after 119 hours of storage at 0 °C, with 0.367 and 0.184 mg/kg, respectively. On the 

contrary, no differences were found in 4-hydroxyhexanal content of the samples. 

These results confirmed that fish subjected to stressful conditions were more prone to 

be oxidised and suggested that bleeding can be considered as a stressing killing 

method. 

On the contrary, Duran et al. (2008) found that slaughter method (asphyxia or 

percussion) had no effect on the MDA values of carp (Cyprinus carpio). However, when 

considering rainbow trout (O. mykiss) the MDA content of flesh from fish slaughtered 

by asphyxiation was significantly higher than that of specimens slaughtered by 

percussion (4 and 3 mg MDA/kg flesh, respectively). It is important to note that the fat 

level of trout was higher than that of carp (5% against 1%), which led to an observed 

difference in the MDA contents of trout slaughtered by different methods. 

The effects of different stunning/killing procedures (anaesthesia with clove oil, 

anaesthesia with 2-phenoxyethanol, percussive stunning, immersion in ice/water 

slurry, chilling on ice, and anaesthesia with clove oil followed by immersion in 

ice/water slurry) on flesh quality of European sea bass (Dicentrarchus labrax) were 

investigated by Simitzis et al. (2014). Globally, MDA ranged between 29.9 and 95 

mg/kg flesh in chilling on ice and percussion slaughtered sea bass. Despite such large 



103 
 

range of values, authors did not find any significant difference among the tested killing 

methods, suggesting no killing effects on lipid oxidation. 

Interestingly, in contrast to the results seen previously, in a recent study Secci et al. 

(2016) found out the link between stress during slaughter and lipid oxidation. Their 

results revealed the presence of very high level of reactive molecules, such as 

hydroperoxides, in stressed rainbow trout whilst they were not detected in not-

stressed group. Thus, probably as a consequence of the greater enzymatic activity 

under stress condition, the presence of lipid oxygenated products affected the 

development of lipid oxidation during post mortem storage. 

 

Handling 

It is widely reviewed that any process causing disruption of the muscle membrane 

system (such as grinding, freezing, and cooking) results in exposure the lipid fraction to 

oxygen, and thus accelerates the development of the oxidative damage. However, one 

of the first processes after stunning and killing procedures in fish industry is the blood 

removal. Although it is not a kind of handling altering the lipid structure, blood 

removal is strictly linked to the quality deterioration of fish muscle, especially to the 

lipid oxidation. Richards and Hultin (2002) studied the contribution of blood and blood 

components to lipid oxidation in rainbow trout (O. mykiss) and Atlantic mackerel 

(Scomber scombrus). They performed a complex project, finding out three main points: 

bleeding significantly reduced the probability of rancidity (expressed both as sensory 

score and TBARS value) development during storage; this probability strictly depended 

on species and type of muscle considered (rainbow trout vs mackerel, light vs dark 

muscle); the extent of lipid oxidation was more pronounced in minced muscle as 

compared to the intact one. 

The first point was confirmed by many authors. Tejada and Huidobro (2002) 

recognised the greater extent of lipid oxidation of ungutted gilthead sea bream (Sparus 

aurata) when comparing with gutted samples at day 11 of refrigerated storage (+2 °C), 

reaching as high as 8 mg MDA/ kg flesh, a value commonly utilised as rancidity 

threshold. However, according to the same authors, such an increase seemed not to 

be significant. 

Sakai et al. (2006) attempted to measure haemoglobin (Hb) content in bled skipjack 

tuna (Katsuwonus pelamis) flesh, and they analysed malondialdehyde contents and 4-

hydroxyhexenal (HHE) in the muscle as indicators of the lipid oxidation level. Firstly, Hb 

content was lower in bleeding samples than in the control ones, containing 0.07 and 

1.01 mg/g, respectively. Concerning lipid oxidation, Sakai et al. (2006) did not find 

significant differences in MDA content in samples while bleeding fish showed lower 

level of HHE than the control samples both immediately after death (not detected vs 
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0.20 nmol/kg) and after two days of storage at 0 °C (0.07 and 0.43 nmol/kg, 

respectively). 

More recently, Maqsood and Benjakul (2011) confirmed that bleeding decreases Hb 

content and consequently lipid oxidation in Asian sea bass muscle (Lates calcifer). Their 

results indicate that lipid oxidation (measured as PV, TBARS, and volatiles) was more 

pronounced in the un-bled samples during 15 days of refrigerated storage (2 °C). 

Particularly, blood contains a high amount of haemoglobin which action as pro-oxidant 

is still discussed. However, the extent of lipid oxidation is affected not only by Hb 

concentration but also by the presence of different type of Hbs in fish muscle (Richards 

and Hultin, 2002) and their breakdown during storage, resulting in the release of non-

heme iron (Maqsood and Benjakul, 2011). 

At this point it is easy to understand that different species as well as different kind of 

muscle may greatly differ in term of Hb content and composition, so causing a 

different susceptibility of the muscle to be oxidised. This is the case of muscle that 

contains large amount of blood, such as dark muscle, which is found to be more prone 

to be oxidised (Richards and Hultin, 2002). In addition, Hb concentration might explain 

the higher values of lipid oxidation in minced muscle than in whole/intact one 

(Richards and Hultin, 2002). Indeed, the mechanical action of mincing can provoke 

rupture blood vessels, erythrocytes, and some other cells and so cause Hb release. As 

stated, that release can promote lipid oxidation. 

At the same time, grounding increases the exposition area of muscle to atmosphere 

oxygen, moving to a real pro-oxidant factor. According to them, Thiansilakul et al. 

(2011) confirmed that myoglobin (Mb) was able to catalyse lipid oxidation in washed 

Asian sea bass (Lates calcarifer) minced intensively. Primary and secondary oxidation 

products as well as off-odour development were significantly higher in Mb addicted 

samples than in the control ones (no Mb addicted). At day 8 of storage (4 °C), volatiles 

were mainly composed by 11.54%, 11%, and 7.08% of 1-octen-3-ol, hexanal, and 2-

pentyl furan, respectively, whilst hexanal and 2-pentyl furan applied globally for 3.7% 

in the control samples. These changes were more likely associated with metmyoglobin 

formation occurring in washed mince, as a consequence of the increase in storage 

time. Moreover, lipid oxidation in washed mince with added myoglobin was mainly 

governed by pH. Specifically, lowest the pH (6) highest the lipid oxidation extent was. 

Recently, it was also found that the higher the heme affinity of Mb, the lower the 

myoglobin-mediated lipid oxidation was obtained (Richards et al., 2009). Therefore, 

low pH was not only associated with Mb oxidation, but also weakened the heme-

globin complex, leading to a release of heme group, which was able to induce the lipid 

oxidation. 
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Storage 

The problem of the quality deterioration during storage is well known and it is related 

to both temperature and storage time. As well, the quality lowering rate depends on 

species of fish. Nishimoto et al. (1985) found out that the highest temperature of 

storage the fastest deterioration of fish freshness. To date, many authors have focused 

on quality changes during storage by studying separately ice or chilling storage and the 

frozen one. 

The concentration of TBARS in good quality frozen and chilled fish or in fish stored on 

ice is typically between 5 and 8 mg MDA/kg whereas levels of 8 mg MDA/kg are 

generally regarded as the limit of acceptability for most species (Schormüller, 1968). 

More strictly, Ke et al. (1984) proposed that TBARS values for fish products below 0.58 

mg/kg were perceived as not rancid; 0.58–1.51 mg/kg as slightly rancid, but 

acceptable; and values above 1.51 mg/kg were perceived as rancid. 

Özyrut et al. (2009) studied red mullet (Mullus barbatus), and goldband goatfish 

(Upeneus moluccensis), both belong to the Mullidae family, funding different shelf-life 

and lipid oxidation levels when stored 11 days at 2 °C. The authors analysed both 

primary (PV) and secondary (TBARS) lipid oxidation products. PV significantly raised 

from 0.64 and 0.83 meq (peroxide oxygen/kg fat) to 2.26 and 4.82 meq/kg at the end 

of the trial, in red mullet and goldband goatfish, respectively. TBARS values were found 

stable around 0.51 and 0.57 mg MDA/kg flesh for both species during the whole 

storage. Similar PV values were obtained by Timm-Heinrich et al. (2013) studying the 

oxidative changes of rainbow trout during ice storage (12 days at 2 °C) by following PV 

and volatile content. PV were below 0.5 meq O2 /kg flesh during the first 5 days of 

storage. After, PV had a slightly increase up to 0.56 meq O2/kg on day 7, whilst they 

started raising significantly up to 6 meq O2/kg on day 12. Similarly, the volatile fraction 

started to increase significantly from day 5 onwards, especially 1-penten-3-ol, 1-

penten-3-one, and 2-pentenal. Globally, volatiles were found in low concentration 

(ng/kg), confirming a little oxidation during 12 days of storage on ice. Concerning 

TBARS levels, Etemadian and Shabanpour (2014) found their increase from an initial 

value of 0.56 mg MDA/kg of muscle to 2.92, 2.67 and 2.31 mg MDA/kg of Rutilus frisii 

kutum slices during 15 days of iced storage. 

Probably related to bacterial growth at positive temperature, the seventh day 

appeared to be critical even in other papers. For example, Hernández et al. (2009) 

studied lipid oxidation of aquacultured meagre (Argyrosomus regius) fillets during 18 

days of storage at 4 °C, finding significant differences from day 7 onwards. Particularly, 

TBARS gradually increased from 0.10 to 2.55 mg MDA/kg flesh. In agreement, Simitzis 

et al. (2014) found that, in general, positive temperature (4 °C) increased MDA levels 

around 3.6 times in 7 days of storage. In the same paper, Simitzis et al. (2014) looked 

for TBARS level even in frozen (-20 °C) samples, finding that freezing raised up TBARS 
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level around 2.7 times after 90 days. An interesting connection between refrigerated 

and frozen storage was found some years before by Huang et al. (2003) who measured 

the same MDA value (7.2 µg) in hybrid tilapia fillets (Oreochromis niloticus  O. aureus) 

stored for 7 days at 4 °C or for 8 weeks at -40 °C. 

When meat and meat products are stored under frozen conditions, microbial spoilage 

may be delayed, but fat deterioration occurs and the meat constituents may be 

oxidized (Ojagh et al., 2014). Interestingly, the main cause of lipid oxidation during 

frozen storage seemed to be due to the enzymatic lipolysis activity. Indeed, Karlsdottir 

et al. (2014a) indicated that enzymatic lipolysis was the driving factor influencing the 

fillet quality over storage and it mostly affects long chain polyunsaturated lipids in the 

light muscles. 

However, previous studies had confirmed that low storage temperatures were optimal 

for preserving fish from oxidative deterioration. Refsgaard et al. (1998) compared lipid 

oxidation of Atlantic salmon fillets (Salmo salar) stored at -10 or -20 °C for 34 weeks. 

The content of lipid hydroperoxides and free fatty acids increased during storage as 

affected by a significant time-temperature interaction, and the changes were fastest in 

salmon stored at -10 °C. Specifically, hydroperoxides raised from 0 to 10 meq O2/kg, 

while FFA increased from 1 to 8.7% in 34 weeks of storage. Such as oxidative product 

increase was associated with a decrease in highly unsaturated fatty acid content 

(C20:5n3, C22:5n3, and C22:6n3) in Atlantic salmon stored at -10 or -20 °C. Also for the 

polyunsaturated fatty acids, significant time-temperature interaction effects were 

found, confirming the fastest decrease at -10 °C. Concerning to volatile products, 

aldehydes and ketones were identified. For hexanal, heptanal, (E)-2-hexenal, (E,E)-2,4-

heptadienal, and nonanal significant time effects were found due to increasing 

concentrations during storage, independently of storage temperature, while 

temperature influenced significantly hexanal and 2-hexanal levels. A small increase in 

the amount of secondary lipid oxidation products was also observed by Jensen et al. 

(1998). The significant and preservative action of negative storage temperature was 

confirmed by Choubert et al. (2011), that determined lipid oxidation (TBARS) in packed 

rainbow trout stored for 18 months at -20 °C. Results showed that TBARS significantly 

increased after the first month of storage, but not other changes occurred during the 5 

later months. 

Baron et al. (2007) studied the lipid oxidation during frozen storage of rainbow trout 

fillets, stored for 13 months at -20, -30, or -80 °C. Lipid oxidation was followed by 

measuring lipid hydroperoxides (PV), as well as secondary oxidation products 

(volatiles). There was a significant increase in the level of lipid hydroperoxides after 8 

months of frozen storage for fish stored at -20 °C, which was even more pronounced 

after 13 months, reaching 6.6 meq/kg of oil, indicating on-going oxidation. In contrast, 

samples stored at -80 and -30 °C did not show any significant increase in peroxides 
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during the entire storage period (with p = 0.26 and p= 0.07, respectively). 

Measurement of secondary oxidation products was followed for 13 months, and the 

development of hexanal (an oxidation product of linoleic acid), and 1-penten-3-one 

and t,t-2,4-heptadienal, both oxidation products of n-3 fatty acids. Other volatiles were 

also measured during storage (1-penten-3-ol, heptanal, 1-octen-3-ol, t-2-octenal, 

nonanal, t,c-2,6-nonadienal, decanal), and their development was generally in 

agreement with what is reported here for hexanal, 1-penten-3-one, and t,t-2,4- 

heptadienal. Volatile patterns indicated that fish stored at -20 °C was the most 

oxidised and that little difference was observed between -80 and -30 °C. On the basis 

of their observations the ranking order -20 °C > -30 °C > -80 °C was obtained for the 

development of oxidation products in fish stored at freezing temperatures. Likewise, 

both Indergård et al. (2014) and Karlsdottir et al. (2014a) recently confirmed that 

pattern. The first authors examined lipid oxidation, by PV and TBARS, in Atlantic 

salmon during a long-term frozen storage at –25, –45 and –60 °C. After 1 year of 

storage at –25 °C, the concentration of PV in red and white fish muscles increased from 

1.26 to 1.82, and from 1.08 to 1.76 meq O2 /kg fat, respectively. Formation of TBARS 

was higher in the red muscles than in the white ones, and reached a value of 14.04 mg 

MDA/ kg fish after 1 year of storage at –25 °C. Decreasing the temperature to –45 °C 

inhibited PV and TBARS formation. In the latter paper, the authors studied the lipid 

deterioration of two lean fish species, i.e. saithe (Pollachius virens) and hoki 

(Macruronus novaezelandiae), during frozen storage at -20 and -30 °C (up to 18 

months). As even in the previous case, Karlsdottir et al. (2014a) analysed both light and 

dark muscles. Results showed significant lipid deterioration with the extended storage 

time, but lower storage temperature showed significantly more preservative effects. 

The formation of hydroperoxides as well appeared to be strongly influenced by 

species. Saithe was very stable during the first 12 months of storage regardless to 

storage temperature. After 18 months of frozen storage, however, a slight, yet 

significant, increase of peroxides (up to 50 mmol/kg muscle) was observed in light and 

dark muscle types. On the other hand, hydroperoxide formation in hoki showed a 

much more pronounced and more progressive peroxide formation over time at both 

storage temperatures. However, as previously shown for handling, the extent of 

oxidation rate was showed to be strictly connected with the type of muscle 

considered. Indeed, dark muscle showed to be the most prone to be oxidised 

regardless to storage temperature, by ranging up to 325 and 250 mmol/kg at -20 °C 

and -30 °C, respectively. The light muscle presented a pattern similar to saithe, by 

remaining almost unaltered for the first 12 months. As for saithe, at the end of storage 

a significant increase of peroxide was observed (50, and 100 mmol/kg muscle at -30 

and -20 °C, respectively) in hoki samples. It has to be noted that the marked difference 

in peroxide content between hoki dark and light muscle is likely due to the 
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considerably higher lipid content in dark muscle than in the light one (7.6% vs 0.6%). 

The difference in fat content might explain either the difference between oxidation 

susceptibility of saithe when compared with hoki, since saithe fat content ranged from 

0.6% to 1.1%, whilst hoki has from 0.6% to 7.6% in light and dark muscle, respectively. 

TBARS results for both the saithe dark and light muscle showed low/no formation of 

secondary oxidation products up to month 6, followed by a sharp increase up to month 

12, after which only the dark muscle values continued to increase. As well as peroxide 

values, low temperature protected against oxidation as revealed by the significantly 

higher increase of TBARS in -20 °C stored samples than the -30 °C stored ones. 

 

Cooking 

Prior to consumption, fresh and frozen fish usually undergo different preserving 

treatments or different cooking processes, while the consumption of raw fish is not 

considered a traditional custom in the Western society. Boiling, frying, pan-frying, 

grilling, roasting, baking and microwaving are the most popular cooking methods. 

However, despite making food safer and tastier, the temperatures reached during 

cooking process may affect radically the characteristics and composition of food by 

enhancing lipid oxidation on behalf the other processes. 

In general, the cooked saithe fillets exhibited an increase in hydroperoxide levels after 

steaming (Karlsdottir et al., 2014b) which is a characteristic sign that thermally 

catalyzed oxidation has taken place. TBARS were in line with peroxide content, by 

showing an increase after cooking. That pattern was more evident in samples 

previously frozen stored (6 months) in which TBARS raised from less than 0.72 to 5 mg 

MDA/kg muscle. Even concerning the volatile fraction, storage time seems to 

negatively affect aroma of cooked fillets. Particularly, Aro et al. (2002) noted that short 

chain acids, deriving from aldehydes oxidation and microbial fermentation and 

partially causing unpleasant odour, increased in herring when baked after storage (48 

hours). 

High temperature and medium of cooking may be the main responsible for the 

different effect on cooked meat. This fact is mostly evident for frying which seems to 

lead a wide variety of changes. Figure 1, as example, reports data from Al-Saghir et al. 

(2004) and Tokur (2007) for Atlantic salmon and rainbow trout, respectively. Salmon 

fried with olive or corn oil at 180 °C increase its PV 3 or 2 times, respectively, whilst 

sunflower frying doubled PV in rainbow trout. The significant differences in peroxide 

content in both cases seem to depend on the first oxidation state and degree of 

unsaturation of the frying oils. Indeed, as reported by Al-Saghir et al. (2004) olive oil 

has a high initial peroxide value (11.8±0.03 meq O2/kg), which provides the 

explanation for the increased peroxide value of salmon after frying with olive oil. 
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Concerning the oxidative effects of frying, it has to be underlined that is very hard to 

follow clearly lipid oxidation, especially its primary products. In effect, high 

temperatures accelerate oxidation but oil dissolves oxidation products, reducing their 

concentration in fillet and making the oxidative damage difficult to assess (Weber et 

al., 2008). The low levels of conjugated dienes (CD), peroxides and MDA, if apparently 

could lead to think of a smaller oxidation, actually seem to depend on the more rapid 

evolution of the oxidative mechanism taking place in this kind of cooking method. 

Figure 1 shows that higher amount of peroxides accumulates in baking (31.45±1.17 

mEq O2/kg lipid) and barbecuing rainbow trout fillets when compared with the frying 

ones. Furthermore, when compared with grilled, boiled, oven and microwave baked 

ones, the CD and peroxides values decreased for all fried (215-220 °C) samples of silver 

catfish (Rhamdia quelen), probably because of their decomposition into secondary 

oxidation products which might have been lost in the frying oil or transformed in 

protein adducts (Weber et al., 2008). 

The interaction between lipid oxidation products and proteins is hypothesized even by 

Talab (2014) for explaining the decreasing effect of cooking method on carp lipid 

oxidation. Evaluating the effects of different cooking methods on PV and TBARS of raw, 

fried, microwave and halogen cooked carp fish cutlets, the author found that cooking 

decreased both primary and secondary oxidation products. Particularly, PV recorded 

values were 3.69, 2.98, 2.80 and 2.60 meq O2/kg for raw, fried, microwave and halogen 

cooked samples while TBARS of raw, fried, microwave and halogen cooked carp cutlets 

were 1.20, 1.18, 1.09, and 1.01 mg MDA/kg, respectively. 

Similarly, Wu and Mao (2008) supposed that the high temperatures accompanying 

drying processes during microwaving could speed up the breakdown of peroxides into 

their carbonyl components, and thus the peroxide value, and more generally the 

primary oxidation products, may remain low. For this reason, conjugated dienes and 

peroxides did not differ from both raw silver catfish (Weber et al., 2008) and raw grass 

carp fillets (Ctenopharyngodon idellus) (Wu and Mao, 2008), while a significant 

increase in secondary oxidation products was observed both in catfish and in carp 

baked in microwave and conventional ovens. These data were supported by previous 

research (Tokur, 2007) in which baking and barbecuing significantly increase TBARS 

levels (5.78±0.94 and 8.40±0.51 mg MDA/kg muscle) in rainbow trout fillets in 

comparison with the smoking process (1.82±0.16 mg MDA/kg muscle). 

The oxidative impact of cooking and its fast develop can be noted by the abundance of 

aldehydes and chetons (volatiles), mainly arising from unsaturated fatty acid 

degradation. Several volatile molecules belonging to the main odorant categories 

(furanones, pyrazines, aldehydes, chetons and other intermediate products from 

Maillard reactions, such as 5-methylfurfural), can be detected in cooked fish or be 

loose in the cooking medium, as in case of boiled fish (Morita et al., 2003). 
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Interestingly, in spite of having a poor organoleptic profile, steam-cooked bighead carp 

(Hypophthalmichthys nobilis) was not rejected by consumers. Strangely, hedonic score 

resulted higher for steamed carp than for the oven-baked one, so that 64% of the 

panellists liked very much or moderately the appearance and flavour of the steamed 

carp (Freeman, 1999). 

It is nevertheless true that some volatile compounds from lipid oxidation, like (Z)-4-

heptenal and hexanal (Prost et al., 1998), above odour threshold, could be responsible 

for off-flavours and consequently can deteriorate the organoleptic profile of cooked 

fillets. 

By the way, it is important to remember that many other molecules, such as proteins, 

are responsible for aromatic profile. The weak odour of steamed horse mackerel for 

example, when compared with grilled and fried samples could be explained by the 

concentration at lower levels of alanine, aspartic acid, glutamic acid, glycine, and 

proline which are responsible for flavour and taste in seafood and seafood products 

(Ruiz-Capillas and Moral, 2004). For this reason, it is not possible to strictly link the 

organoleptic profile exclusively to lipid oxidation. 

Anyway the lipid stability of baked fish can be affected by the presence of antioxidative 

agents in dietary treatment. Jittinandana et al. (2006) compared the results between 

rainbow trout fed with low and high dietary vitamin E supplementation showing a 

significant difference in TBA after baking (0.67 vs 1.20 mg MDA/kg). 

 

 

Conclusion 

The complexity of lipid oxidation is reflected on the large variety of molecules that can 

be generated and on the various factors which affect it. Hence, every step in fish 

supply chain seems to be important for preserving lipid integrity and native quality. 

Feeding antioxidant is a recent practice to arise antioxidant power in muscle. However, 

some issues emerge from this review. Firstly, it is quite clear that the main antioxidants 

such as α-tocopherol and astaxanthin act during the initiation phase of lipid oxidation 

by acting as scavengers of ROS and ROMs species. Thanks to this ability, the 

antioxidants can play a central role to limit the detrimental effects of stress (pre-

slaughter or at killing) and storage. In this sense, lycopene modulates oxidative status 

via activating host defence system during stressful conditions while α-tocopherol acts 

preferentially in long term frozen storage. The growing efficiency 

carvacrol>rosemary>thymol has to be taken into consideration while using new 

antioxidants such as essential oils (thymol, carvacrol, rosemary extract). Finally, it has 

to consider that, in some cases increasing concentration of the antioxidants in the diet 

is not always associated with increasing lipid stability. Further investigations on feeding 

field are recommended. It could be of interest to evaluate the role of new alternative 
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protein and/or lipid sources (such as insect meals) on lipid composition and stability of 

the fillets. Even the utilization of agriculture by-products rich in polyphenols (for 

example those derived from olive oil production chain) may be considered both for 

their role as potential antioxidants and an environmental point of view. 

Stress just before or at slaughter can greatly threaten flesh quality both immediately 

and after storage. Stress induces the activation of numerous metabolic pathways, that 

often involve the production of very reactive molecular species, such as 

hydroperoxides. Their presence can be the main cause of increasing level of lipid 

oxidation products both immediately after death or during storage. A common 

operation such as bleeding can significantly reduce both reactive molecules and 

hemoglobin, which is recognized as a great pro-oxidant. However, stress response 

seems to be strictly species-specific, so different species of fish can react differently to 

the same killing method and show different pattern in lipid degradation. Future 

outlooks on the connection between stress at slaughter and oxidative stability, as well 

as the evaluation of the effects of new killing procedures on both animal welfare and 

fish quality should be conducted.  

Temperature and length are two critical points of storage phase which has to be 

considered even by consumers. Frozen storage at very low temperatures (-30, -40 °C) 

confirms to be the best storage practice, while the refrigerated one shows some limit. 

Particularly, considering lipid oxidation, it has to be underlined that 7 days of 

refrigerated storage is accepted as the maximum storage length for many species of 

fish. 

Finally, if it is true that cooking can make safer a product regardless its storing age, it is 

also true that age can compromise aromatic profile of cooking fillets. However, on one 

hand it could be interesting to evaluate the effect of new cooking methods, such as 

under-vacuum cook or air-frying, on lipid oxidation. On the other, it should be 

deepened the connections between oxidation, volatiles composition and consumers 

perception and acceptance. Perhaps the creation of acceptance predictive models 

based on lipid stability could even be useful. 

In conclusion, many steps long the production-supply chain of fish can lead lipid 

deterioration and many interactions between them may contribute to alter flesh 

quality. Thus, feeding antioxidant, reducing stress, good storage practices, if associate 

with an appropriate cooking method (low temperature, short time), seem to preserve 

such a fragile and extremely important lipid fraction from farm to fork. 
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Table 1. Effect of antioxidant supplementation diet on secondary lipid oxidation 

products (TBARS, mg MDA/kg fillet) of different species. Data retrieved from Stéphan 

et al. (1995), Jensen et al. (1998), and Huang et al. (2003). 

Antioxidant Quantity 
Feeding 

length 
Species 

Storage 

length 

Temperature 

(°C) 

TBARS 

(mg 

MDA/kg 

fillet) 

References 

α-

tocopherol 

20 

mg/kg 

34 

weeks 
Turbot 

6 

months 
-20 0.259  

Stéphan 

et al. 

(1995) 

α-

tocopherol 

70 

mg/kg 

34 

weeks 
Turbot 

6 

months 

-20 
0.063  

Stéphan 

et al. 

(1995) 

α-

tocopherol 

320 

mg/kg 

34 

weeks 
Turbot 

6 

months 

-20 
0.029  

Stéphan 

et al. 

(1995) 

α-

tocopherol/ 

astaxanthin 

100/40 

mg/kg 

6 

months 

R. 

trout 

12 

months 
-28 0.39  

Jensen et 

al. (1998) 

α-

tocopherol/ 

astaxanthin 

100/40 

mg/kg 

6 

months 

R. 

trout 

18 

months 
-28 0.47  

Jensen et 

al. (1998) 

α-

tocopherol/ 

astaxanthin 

600/40 

mg/kg 

6 

months 

R. 

trout 

12 

months 
-28 0.39  

Jensen et 

al. (1998) 

α-

tocopherol/ 

astaxanthin 

600/40 

mg/kg 

6 

months 

R. 

trout 

18 

months 
-28 0.51  

Jensen et 

al. (1998) 

α-

tocopherol 
65 

mg/kg 

8 

months 

Hybrid 

tilapia 
7 days 4 2.88  

Huang et 

al. (2003) 

α-

tocopherol 
200-300 

mg/kg 

8 

months 

Hybrid 

tilapia 
7 days 4 1.08  

Huang et 

al. (2003) 

α-

tocopherol 
65 

mg/kg 

8 

months 

Hybrid 

tilapia 

8 

weeks 
-40 5.76  

Huang et 

al. (2003) 

α-

tocopherol 
200-300 

mg/kg 

8 

months 

Hybrid 

tilapia 

8 

weeks 
-40 4.32  

Huang et 

al. (2003) 
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Figure1. Peroxides accumulation on rainbow trout (Al-Saghir et al., 2004) and Atlantic 

salmon (Tokur, 2007) cooked by different methods. 
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Abstract 

The consequences of slaughter on the formation of lipid metabolites and oxidative 

stability of fish muscle during long term frozen storage (- 10 °C) were evaluated using 

farmed rainbow trout killed by asphyxia in air or percussion. The level of major 

adenine nucleotides and their related compounds was determined in order to check 

the stress level during slaughter. Plasma lipid metabolites were studied through the 

determination of eicosanoids and docosanoids such as prostaglandins, leukotrienes, 

tromboxanes, isoprostanes, resolvins, hydroxides, hydroperoxides, coming from 

eicosapentaenoic (EPA), arachidonic (ARA), and docosahexaenoic (DHA) acids. In 

addition, lipid oxidative stability of fillets was monitored. Results revealed that stress 

during slaughter can greatly influence oxidative stress and oxidative stability of 

rainbow trout fillets. In fact, asphyxia, which was the most stressful, induced a higher 

production of some lipid mediators such as hydroperoxides and EPA-derived 

prostaglandins, such as 12-HpHEPE/15-HpHEPE and PGD3/PGE3. As a consequence, 

fillets derived from asphyxiated fish were less stable in terms of oxidative stability and 

showed lower shelf-life. 

https://webmail.unifi.it/horde/imp/message.php?index=556
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1. Introduction 

The consequences of stress and/or muscle activity related to slaughter have been 

widely investigated during the last decades (Poli, Parisi, Scappini, & Zampacavallo, 

2005; van de Vis et al., 2003). In many species, slaughter stress has been shown to 

greatly influence the post-mortem biochemical processes, mostly by causing anaerobic 

glycolysis in muscle and increasing ATP degradation rate (Tejada, 2009). Moreover, 

stress has been proved to affect flesh quality during storage, by measuring freshness 

index K-value (Sigholt, Erikson, Rustad, Johansen, Nordtvedt, & Seland, 1997), quality 

index (van de Vis et al., 2003), pH, color and water holding capacity (Simitzis, 

Tsopelakos, Charismiadou, Batzina, Deligeorgis, & Miliou, 2014). Finally, Wendelaar 

Bonga (1997) reported that stress responses in fish concern complex mechanisms 

involving stimulation of oxygen uptake and transfer, mobilization of energy substrates, 

reallocation of energy away from growth and reproduction, and mainly suppressive 

effects on immune functions. These stress responses may in many ways resemble 

inflammatory processes. 

Eicosanoids and other lipid metabolites derived from enzymatic and non enzymatic 

oxidation of polyunsaturated fatty acids (PUFAs) have been employed as markers of 

lipid stress conditions. It has been well documented that some of these compounds 

can play an important role in immune and inflammatory responses in fish (Rowley, 

Knight, Lloyd-Evans, Holland, & Vickers, 1995; Rowley et al., 2012). Particularly, 4-

series leukotrienes (LT), lipoxine (LX), 12-hydroxy-eicosatetraenoic acid (12-HETE), and 

12-hydroxy-eicosapentaenoic acid (12-HEPE) generated through the action of 

lipoxygenases (LOX) were found to be produced in vitro by head kidney leukocytes 

extracted from rainbow trout under biological stimuli (Knight, Lloyd-Evans, Rowley, & 

Barrow, 1993; Rowley et al., 2012). Moreover, cyclooxygenase (COX) products, such as 

2-series prostaglandins (PG) and tromboxanes (TX), were found in leucocytes (Knight 

et al., 1993) and thrombocytes (Lloyd-Evans et al., 1994) of rainbow trout underlining 

the role of these lipids in immunomodulation and other pro-inflammatory responses. 

Recently, some authors have suggested a connection between stress conditions and 

the production of eicosanoids in different tissues of fish. Oxley, Jolly, Eide, Jordal, 

Svardal, and Olsen (2010) studied the effect of including different levels of plant 

sources in diet and acute stress pre-mortem on eicosanoids production and COX 

activity. In the same way, Olsen, Svardal, Eide, and Wargelius (2012) monitored 

cyclooxygenase activity in different tissues (midgut and hindgut segments, gills, liver, 

head kidney and white muscle) of Atlantic salmon subjected to acute stress. Results 

highlighted that stress had a profound effect on the intestinal eicosanoid content, 
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inducing a temporal increase in the expression of cox2a in tissues. Moreover, Chung, 

Lee, and Lee (2013) assessed changes of the production of oxidized lipid products in 

marine fish (Oryzias latipes) after acute exposure to H2O2. The consequences of the 

increase of the enzymatic activity and the production of these lipid metabolites on 

final fish quality are still uncertain. 

Despite many authors having studied COX and LOX activities toward the production of 

arachidonic (ARA, 20:4ω6) and eicosapentaenoic (EPA, 22:5ω3) acids-derived 

eicosanoids (Furne, Holen, Araujo, Lie, & Moren, 2013; Rowley et al., 1995), in the last 

decade lipid products derived from oxidation of docosahexaenoic acid (DHA, 22:6ω3) 

have been also identified. Hong, Tjonahen, Morgan, Lu, Serhan, and Rowley (2005) 

have reported the presence of strong anti-inflammatory compounds derived from 

DHA, the di- and tri-hydroxy-containing bioactive products like neuroprotectin 

D1(PD1), resolvin D5 (RvD5), resolvin D1 (RvD1) and resolvin D2 (RvD2) in rainbow 

trout brain cells cultures. The 14S-hydroxy-docosanoids acid and 17S-hydroxy-

docosanoids acid from DHA, signatures of DHA conversion by lipoxygenases, were also 

identified. 

This work is aimed to compare the effects of two different slaughter methods 

(asphyxia and percussion) on the production of lipid oxygenated mediators in plasma 

of farmed rainbow trout and therefore, on the shelf life of the resulting trout fillets 

during postmortem storage. For such scope, lipid metabolites were identified and 

quantified using a SPE-LC MS/MS methodology and correlated with the stress during 

slaughtering. As a final goal, the effect of the killing method on the oxidative stability 

was determined in a frozen storage experiment (-10 °C) by monitoring the rate of 

oxidation in trout fillets at different storage times. The study was completed with 

measurements of lipid composition in plasma and muscle of rainbow trout and the 

occurring degradation of nucleotides for the assessment of stress conditions during 

slaughter. 

 

2. Materials and methods 

2.1 Preparation of fish samples and storage conditions 

Rainbow trout (Oncorhynchus mykiss) were obtain from a fish farm located in San 

Michele all’Adige (Trento, Trentino Alto Adige, Italy) where they have been fed with a 

commercial feed (42% crude protein, 22% crude fat; Veronesi S.p.A., Verona, Italy) 

until 1127 ± 258 g. Fourteen fish were killed by percussion as control group, and other 

14 were exposed to asphyxia in air until death. These two killing methods were chosen 



126 
 

among the commonly utilized methods reviewed by EFSA (2009) because they resulted 

in the highest (percussion) and poorest (asphyxia) animal welfare. Immediately after 

death, all the fish were submitted to extraction of blood from the caudal vein and the 

samples were collected in heparinized syringes containing 1 mM TRIS buffer, and 30 

Units of sodium heparine, as anticoagulant, for each mL of final solution. Then fish 

were gutted and filleted, and the fillets were frozen at -80 °C. Plasma and fillets were 

sent to the CSIC (Consejo Superior de Investigaciones Científica) of Vigo (Spain) where 

samples were analyzed both for oxidative stress and oxidative stability. Firstly, plasma 

and muscle were characterized for fatty acid profiles (FAs). Then, ATP content of 

muscle and eicosanoids of plasma were evaluated as stress markers. Finally, shelf life 

of trout fillets was assessed by sensory analysis and the measures of secondary 

oxidation products of muscle, expressed as malondialdheyde (TBA-test), were 

monitored for 165 days maintaining samples frozen (-10°C) in order to observe the 

oxidative stability of fillets. 

The experiment was approved according to “The regulations in Animal 

Experimentation” in the Department of Agri-Food Production and Environmental 

Sciences, University of Florence and conducted by certified personnel. 

 

2.2 Chemical analyses 

2.2.1 Lipid content and extraction 

Lipids were extracted from fish muscle and plasma according to the method of Bligh 

and Dyer (1959) and quantified gravimetrically. The extracted lipids were used for the 

analysis of fatty acid profiles. 

 

2.2.2 Fatty acid profiles of muscle and plasma 

Fatty acids were methylated according to the method of Lepage and Roy (1986) and 

nonadecanoic acid (C19:0) was used as an internal standard. The fatty acid methyl 

esters (FAMEs) were analyzed by GC according to Christie (1982). 

 

2.2.3 Nucleotides 

ATP and derived nucleotides were determined as proposed by Özogul, Taylor, Quantick, 

and Özogul (2000). Briefly, 1.5 g of muscle were homogenised with 10 mL of perchloric 
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acid 6% (PCA, Sigma-Aldrich, St. Luis, MO, USA). After a centrifugation at 3200×g at 4 

°C for 10 minutes (Allegra
®
X-12R, Beckman Coulter Inc., Brea,  CA, USA) and holding at -

20°C for 20 min the samples were filtered using Filter-Lab
®
 100 mm filter paper (Filtros 

Anoia, S.A., Barcelona, Spain). The extract was adjusted to pH 6.8-7 using 0.6 and 0.1 

M potassium hydroxide (Sigma-Aldrich), filtered and finally it was brought to 25 mL 

volume with 50 mM phosphate buffer (pH 7). Before HPLC injection, 100 L of sample 

were filtered using a 13 mm GHP 0.2 µm filter (Waters, Milford, MA, USA). 

HPLC analyses were made using an Alliance
®
 HPLC Model 2695 (Waters, Milford, MA, 

USA) apparatus, equipped with a photodiode array detector model 2996 (Waters) and 

a multi λ fluorescence detector (Waters). The column was a ZORBAX Eclipse XDB-C8, 

4.60 x 75 mm, particle diameter 3.5 µm (Agilent, Santa Clara, CA, USA), used at a 

temperature of 35 °C. 

Nucleotide standards [adenosine 5′-triphosphate (ATP), adenosine 5′-diphosphate 

(ADP), adenosine 5′-monophosphate (AMP), inosine 5′-monophosphate (IMP), inosine 

(Ino), hypoxanthine (Hx)], and tetrabutylammonium bromide were purchased from 

Sigma-Aldrich Chemical Company (Poole, Dorset, UK). Acetonitrile was purchased from 

Merck KGaA (Darmstadt, Germany) and HPLC grade water was obtained from Scharlab 

S.L. (Sentmenat, Spain). Separation was performed in continuous gradient elution 

using two mobile phases. Phase A was 50 mM phosphate buffer / 10 mM 

tetrabutylammonium bromide dissolved in HPLC grade water and adjusted to pH 7 

with 0.1 M potassium hydroxide. The solution was prepared daily and filtered through 

a 0.2 µm 47 mm GHP membrane (Waters). Phase B was acetonitrile. The injection 

volume was 10 µL and detection was monitored at 254 nm. The total separation time 

was 12 min with a rate flux of 1 mL/min. The results were expressed as mM 

nucleotides / g muscle, and they were used to calculate K-value = [(Hx + Ino)/(Hx + Ino 

+ IMP + AMP + ADP + ATP)] * 100 (Karube, Matsuoka, Suzuki, Watanabe, & Toyama, 

1984). 

 

2.2.4 Eicosanoids and docosanoids from plasma 

PUFA derivatives together with free ARA, EPA, and DHA were quantified according to 

the methodology previously developed by Dasilva, Pazos, Gallardo, Rodríguez, Cela, 

and Medina (2014) using SPE extraction prior to LC-MS/MS analysis. Briefly, plasma 

samples (300 µL) were diluted with 30% cold methanol (v/v), to a final volume of 1.2 

mL. The internal standard 11-HETE-d8 was added to each sample. The spiked samples 

were incubated on ice during 10 min and then centrifuged at 3200 x g for 10 min, at 4 

ºC, to remove any precipitated proteins which might cause interferences. The clear 

supernatant and washes of the resultant pellet with 30% methanol were collected in 
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amber glass vials and subjected to SPE on Oasis-HLB cartridges (60 mg, 3mL; Waters, 

Milford, MA, USA). After that, extracts were evaporated to dryness under a fine stream 

of nitrogen; the residue was dissolved in 100 µL ethanol and analyzed by LC/MS/MS in 

a Waters C18-Symmetry column, 150×2.1 mm, 3.5 μm (Milford, MA, USA) using a 

binary eluent system of water (A) and methanol (B), both with 0.02% (v/v) of formic 

acid, as mobile phases. The flow rate was set at 0.2 mL/min; the column effluent was 

directly introduced in the ESI without splitting, and injection volume was set to 10 μL. 

Operating conditions of the ESI source were negative ion mode with a gas flow rate of 

40 units, spray voltage of 5.5 kV, capillary temperature of 300 ºC and S-lens radio-

frequency level of 60%. The quantification of target compounds was made using the 

most intense, or selective, transition for each analyte and identification was helped 

comparing the MS/MS spectra, recorded in the range from 90 to 400 m/z units. 

 

2.2.5 Sensory Analysis 

Sensory detection of rancid odors was evaluated by an expert panel formed by four 

trained specialists in descriptive analysis of marine off-flavors. The determination was 

performed in a room designed for such purpose, after the samples had been held 

during 10 min at room temperature. Approximately 10 g were placed in separate 

sterile polystyrene Petri dishes and put on a tray of ice. The panelist detected the 

rancidity/painty odors using a structured scale, from 8 (absolutely fresh) to 1 (putrid). 

 
2.2.6 TBARS 

The 2-thiobarbituric acid reactive substances (TBARS) were measured according to 

Vyncke (1970). The results were expressed as mg of malondialdehyde (MDA) 

equivalents/kg sample using a calibration curve determined with eight standard 

solutions of TEP (1,1,3,3,-Tetraethoxypropane) at concentration ranging from 0.2 to 

3.1 μM. 

 

2.3 Statistical analysis 

Data were analysed using the General Linear Model procedures of the statistical 

analysis software SAS 9.1 (2004) for Windows. A one-way ANOVA tested the stunning 

method as fixed effect. 
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3. Results and discussion 

3.1. ATP degradation 

In order to test the occurrence of stress during slaughter, degradation of ATP and the 

formation of its corresponding catabolites were investigated in muscle. The 

concentration (µmol nucleotides / g muscle) of ADP, AMP, IMP, Ino, and Hx in fillets of 

farmed trout killed with asphyxia or percussion is shown in Table 1. 

Samples taken soon after slaughter contained only low concentrations, if any, of ADP, 

and traces of AMP while ATP level was below the detection limit (ND) for both sample 

groups. These findings are in agreement with the fact that stress associated with 

slaughter of the fish leads to a rapid loss of ATP and initiation of the degradation 

sequence (Tejada, 2009). 

The rapid conversion of ATP to its further catabolites was confirmed by the high 

amounts of IMP, and Ino. IMP was the most abundant nucleotide in both killing groups 

followed by Ino. Despite no significant differences being found, IMP content was lower 

in trout killed by asphyxia (5.4 µmol/g muscle) when compared with those killed by 

percussion (6.1 µmol/g muscle), while the opposite trend was reported for the final 

degradation products (Ino and Hx). These data revealed the possible influence of the 

killing procedures on stress, suggesting a major effect on asphyxiated fish. 

Wills, Zampacavallo, Poli, Proctor, and Henehan (2006), evaluating the effect of 

different slaughter methods on nucleotide contents, found an IMP concentration of 10 

and 4 µmol/g muscle for air asphyxiated and percussion stunned rainbow trout, 

respectively. The IMP level obtained in this work is higher than 5.4 µmol/g muscle. 

However, that difference might be explained with the global nucleotides profile. In the 

present study Ino and Hx were also reported in abundance compared with the data of 

Wills et al. (2006) who had low levels for almost all nucleotides, with a very small 

amount of Ino and Hx. Although the degradation of ATP up to IMP is very fast, the 

degradation of IMP is relatively slow (Tejada, 2009) so that differences between Ino 

and Hx concentration might be attributed to a higher muscular activity due to stress 

during slaughter. 

In order to confirm that percussive stunning method was less stressful than asphyxia, 

K-value (Karube et al., 1984) was calculated as index of tissue stress. Results in Table 1 

show a significant higher K-value (p < 0.05) for the asphyxia group (29 %) than for the 

percussion one (18 %), demonstrating that asphyxia induced more stress in fish. 

3.2 Muscle and plasma fatty acids 

All fish used in this study showed a muscle lipid content around to 5 %; the total fatty 

acid (TFA) composition is reported in Table 2. As expected, no statistical differences 
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were found in the lipid content between fish subjected to two killing methods, and 

only few statistical differences were found in the fatty acid profile of muscle. 

Regarding the TFA composition of plasma, no significant differences were found in its 

main constituents between the asphyxia and percussion groups (Table 2). 

PUFA represented the majority of total fatty acids in muscle, composed primarily by 

6 and by a smaller amount of 3. Although a certain caution is required in the 

comparison of the results with previous studies, since the FA composition depends 

considerably on diets (Baron, Svendsen, Lund, JokuSEMn, Nielsen, & Jacobsen, 2013), 

the presence of vegetable sources in the feed for the farmed rainbow trout of the 

present trial is reflected mainly by the percentage of linoleic acid (18:26) that 

reached up 27 % of TFA. Linoleic acid is the precursor for the synthesis of arachidonic 

acid (ARA, 20:46) which was the third major component of the 6 fraction, providing 

1% of TFAs in muscle. 

Despite the abundance of the 6 fraction, the PUFA composition (reported in Table 2) 

affected the 6/3 ratio that was 1.3, about 3 times lower than the maximum value 

(4.0) recommended by UK Department of Health (Committee on Medical Aspect of 

Food Policy, 1994). 

As regards to long chain 3 PUFAs, precursors of eicosanoids and other lipid 

mediators, the major contributors were docosahexaenoic (DHA, 22:63), 

eicosapentaenoic (EPA, 20:53), and -linolenic (ALA, 18:33) acids. Their content 

agreed with the values proposed for farmed rainbow trout fed commercial feeds 

(Baron et al., 2013; Blanchet, Lucas, Julien, Morin, Gingras, & Dewailly, 2005; Haliloǧlu, 

Bayır, Necdet Sirkecioǧlu, Mevlüt Aras, & Atamanalp, 2004) containing both fish meal 

and fish oil. No differences were found between asphyxia and percussion groups.  

Regarding the lipid composition of plasma, the total SFAs were found to be around 25 

%, being mainly composed by palmitic, stearic, and myristic acids. Among MUFAs, the 

most abundant were oleic and palmitoleic acids. Total PUFAaccounted for 58.5 % of 

TFA of which 41 % were 3 PUFAs and 17.7 % belonged to 6 series. The most 

representative long chain fatty acid was DHA, followed by linoleic acid, and EPA. 

 

3.3 Lipid mediators 

Table 3 summarizes the plasma levels of the free fatty acids (ARA, EPA, and DHA) 

which are the main precursors of eicosanoids and docosanoids. The relative levels of 

these plasma circulating free fatty acids (FFA) showed that DHA was the preponderant 
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free fatty acid in plasma, followed by EPA and ARA in both groups of fish. The 

concentration order (DHA>EPA>ARA) was in agreement with the TFA composition 

found in plasma. Despite no significant differences being found between methods of 

slaughtering in the concentration of these fatty acids, the results showed a tendency 

to lower free ARA, EPA, and DHA concentrations in asphyxiated trout than in  

percussion-slaughtered one. The percentage of decrease was the same for the three 

fatty acids (around 13 %). 

The lipid mediator profile of plasma in percussion-slaughtered and asphyxiated 

rainbow trout presented different molecules derived from ARA, EPA, and DHA (Table 

3). The oxidized products detected were: isoprostane F28-isoPGF2, prostaglandin E2 

(PGE2), ±11-hydroxy-5Z,8Z,12E,14Z-eicosatetraenoic acid (11-HETE), and leukotriene B4 

(LTB4) (from ARA); prostaglandin D3/prostaglandin E3 (PGD3/PGE3), 12(S)-hydroperoxy-

5Z-,8Z,10E,14Z,17Z-eicosapentaenoic acid and 15(S)-hydroperoxy-5Z,8Z,11Z,13E,17Z-

eicosapentaenoic acid (12-HpEPE/15-HpEPE), ±5-hydroxy-6E,8Z,11Z,14Z,17Z-

eicosapentaenoic acid (5-HEPE), ±12- hydroxy-5Z,8Z,10E,14Z,17Z-eicosapentaenoic 

acid (12-HEPE), and ±15-hydroxy-5Z,8Z,11Z,13E,17Z-eicosapentaenoic acid (15-HEPE) 

(from EPA); and ±4-hydroxy-5E,7Z,10- Z,13Z,16Z,19Z-docosahexaenoic acid (4-HDoHE), 

±11-hydroxy-4Z,7Z,9E,13Z,16Z,19Z-docosahexaenoic acid (11-HDoHE), ±17-hydroxy-

4Z,7Z,10Z,13Z,15E,19Z-docosahexaenoic acid (17-HDoHE) (from DHA). Finally, 

isoprostane F3 (8-isoPGF3, thromboxan B3 (TXB3) (from ARA), 17(S)-hydroperoxy-

4Z,7Z,10Z,13Z,15E,19Z-docosahexaenoic acid (17-HpDoHE), resolvin D1 (RvD1), and 

neuroprotectin D1 (PD1) (from DHA) were searched but not detected. 

Considering the percussion-slaughtered as the group with less stress induced during 

slaughter, the results indicated that 17-HDoHE, resulting from LOX activity on DHA, 

appeared to be the main lipid metabolite in plasma followed by the EPA resulting 

product, 12-HEPE. Other products also derived from the action of LOX towards DHA, as 

4-HDoHE and 11-HDoHE, were present in significant concentrations. 5-HEPE derived 

from EPA was also detected reaching higher concentrations than 15-HEPE. Finally, low 

amounts of LTB4 were also found. Hydroperoxides from EPA and DHA were below the 

detection limit and RvD1 and PD1 were not detected. 

Concerning the COX derived products, levels of PGE2, 8-isoPGF2, 11-HETE, PGD3/PGE3, 

8-isoPGF3, and TXB3 were investigated. PGE2was the main eicosanoid followed by 11-

HETE; however, the latter was two times lower than PGE2. The content of 8-isoPGF2 

was found only on the order of 10
-6

 ng/ mL, while no traces of PGD3/PGE3, 8-isoPGF3, 

nor TXB3 were detected in the percussion group. Under these conditions, the overall 

lipid mediator profile of percussion-slaughtered trout was the following 17-HDoHE > 
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12-HEPE > 4-HDoHE > 5-HEPE > 11-HDoHE > PGE2 > 15-HEPE > 11-HETE > LTB4 > 8-

isoPGF2. 

Regarding the profile of asphyxiated rainbow trout, Table 3 reveals that the main 

difference between both methods of slaughtering was the high amount of 

hydroperoxides, 12-HpEPE/15-HpEPE, derived from 12 and 15 LOX activity on EPA. 

They were found at a concentration level three orders of magnitude higher than the 

other lipid metabolites. These compounds were not detected in the percussion trout. 

Other differences between the two methods were the lower levels of 5-HEPE, 4-

HDoHE and 17-HDoHE detected in the asphyxiated trout compared with the 

percussion-slaughtered ones. The LOX oxidation product 12-HEPE was the second main 

compound found in plasma of asphyxiated trout at similar concentrations to  those 

previously mentioned in the percussion group and 11-HDoHE, 15-HEPE, and LTB4 were 

found as well. Neither RvD1 nor PD1 were detected in the asphyxiated group. 

According to the profile of the percussion group, PGE2was the main COX product 

followed by 11-HETE in the asphyxiated group; 8-isoPGF2 was also detected whereas 

no traces of 8-isoPGF3 nor TXB3 appeared. Interestingly, PGD3/PGE3 were only 

detected in this group and they were not found in the percussion trout. It must be also 

noticed that the levels of PGE2 found in the asphyxiated group were lower than those 

found in the percussion trout. Under this condition, the overall profile of the 

asphyxiated trout was 12-HEPE >> 17-HDoHE > 11-HDoHE > 4-HDoHE > 5-HEPE > PGE2 

> 15-HEPE > 11-HETE > LTB4 > PGD3/PGE3 > 8-isoPGF2. 

Therefore, the comparison between asphyxia and percussion groups revealed different 

trends for oxidized products. 12-HpEPE/15-HpEPE and PGD3/PGE3 were detected only 

in the asphyxiated trout whilst they were not found in the percussion group. Lower 

levels of 17-HDoHE, 5-HEPE, 4-HDoHE, 15-HEPE, PGE2, and 11-HETE were reported for 

asphyxia group than percussion, even though statistical differences (p< 0.05) were 

found only for 5-HEPE, 17-HDoHE, and PGE2. 

Previous studies on fish subjected to stressing conditions occurring during confinement 

have investigated COX derivates products, such as prostaglandins, as biomarkers, 

although no clear trends for PG synthesis in response to stress could be uniquely 

discerned (Olsen et al., 2012; Oxley et al., 2010). According to Balvers et al. (2012) 

prostaglandins levels in plasma under stress stimuli were down-regulated. The results 

for PG found in the present study confirmed that stress condition at slaughter 

decreased PGE2 levels. In contrast, Olsen et al. (2012) reported that only the isoform 2a 

of COX clearly responds to stress with an upregulation in the main tissues of Atlantic 

salmon (Salmo salar), whilst the other two (COX1 and COX2b) remain unaltered. That 
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finding supports the results obtained for PGD3/PGE3, derived from EPA, which 

appeared only in the asphyxia group, revealing a possible increase of COX activity on 

EPA in response to stress. This opposite trend between PGE2 (from ARA) and 

PGD3/PGE3 (from EPA) may reflect that stressing killing methods might shift the COX 

activity towards EPA-derived species which are considered less inflammatory (Tocher, 

2003), in order to minimize the impact of oxidative stress. 

The present study also revealed that 12-HpEPE/15-HpEPE could be considered as good 

markers of stress because they were highly produced under stress conditions while 

they were not detected in the percussion group. Hydroperoxide intermediates have 

been suggested to be involved in the biosynthesis of some eicosanoids in fish (Rowley, 

Lloyd-Evans, Barrow, & Serhan 1994), and the identification of HpEPE found in this 

work demonstrated such hypothesis. Hydroperoxy derivatives are the primary 

products of LOX that are easily reduced to hydroxydes by glutathione peroxidase (GPX) 

(Guichardant et al., 2011). This enzyme has been well characterized in fish during the 

past few years in order to associate its expression with stress during life. In particular,  

increasing stress time was associated with a down-regulation of GPX (Malandrakis, 

Exadactylos, Dadali, Golomazou, Klaoudatos, & Panagiotaki, 2014). An increase of the 

activity of LOX, together with an inhibition of GPX activity caused by stress during 

slaughter, might explain the notable presence of HpEPE in the asphyxiated fish and the 

absence in the percussion-slaughtered ones. Moreover, the same trend in enzyme 

modulation seems to be confirmed by the significant decrease in other lipid mediators 

such as 5-HEPE and 17-HDoHE, from EPA and DHA, respectively, in the asphyxiated 

rainbow trout. 

More recently, DHA was found to be a fairly good substrate of LOX in humans to 

produce various hydroxylated end-products after reduction of the hydroperoxide 

intermediates by GPX. They are 4-HDoHE, 7-HDoHE, and 11-HDoHE (Lagarde, Bernoud-

Hubac, Calzada, Véricel, & Guichardant, 2013) and all of them were found in the 

present trial in plasma of rainbow trout. In addition to this, those derivatives of DHA 

have been described as precursors of a bioactive family, called resolvins and 

protectins, a class of compounds with active anti-inflammatory and inflammation 

resolving properties in mammals (Masoodi, Mir, Petasis, Serhan, & Nicolaou, 2008). In 

the present study, RvD1 and PD1 were sought in plasma but they were not detected. 

Although in the present study neither resolvins nor protectins were detected, the 

presence of their precursors, 4-HDoHE, 7-HDoHE, and 11-HDoHE provided evidence of 

LOX activity on DHA in fish plasma. Moreover, the decreasing trend of their levels 

caused by the most stressful slaughter method may suggest the degradation of 4-

HDoHE, 7-HDoHE, and 11-HDoHE in order to reduce stress conditions. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Masoodi%20M%5BAuthor%5D&cauthor=true&cauthor_uid=18059001
http://www.ncbi.nlm.nih.gov/pubmed?term=Masoodi%20M%5BAuthor%5D&cauthor=true&cauthor_uid=18059001
http://www.ncbi.nlm.nih.gov/pubmed?term=Petasis%20NA%5BAuthor%5D&cauthor=true&cauthor_uid=18059001
http://www.ncbi.nlm.nih.gov/pubmed?term=Petasis%20NA%5BAuthor%5D&cauthor=true&cauthor_uid=18059001
http://www.ncbi.nlm.nih.gov/pubmed?term=Nicolaou%20A%5BAuthor%5D&cauthor=true&cauthor_uid=18059001
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Therefore, results for both LOX and COX products revealed that the method of 

slaughtering seems to affect the oxidative response in plasma of rainbow trout in a 

complex way. The present findings revealed that 12-HpEPE/15-HpEPE acids and 

PGE3/PGD3 could be considered as good stress biomarkers due to their presence in the 

asphyxia group but not in the percussion one. Moreover, that trend together with the 

reduction of PGE2 level supported the hypothesis that slaughter stress condition 

shifted lipid mediator synthesis towards less inflammatory species derived from EPA. 

At the same time, the general decrease of secondary products derived from both EPA 

and DHA might be due to an inhibition of GPX activity or to a later degradation in more 

oxidized forms (Rowley et al., 1995). It is also important to take into consideration that 

increasing hydroperoxide concentrations could promote oxidative processes inducing 

loss of fish quality. 

 

3.4 Oxidative stability of fillets 

The formation of oxidation by-products measured by TBARS level in fillets from 

asphyxiated and percussion-slaughtered trout is summarized in Fig. 1. Fillets belonging 

to both groups kept low values during the first 75 days of storage at -10 ºC. After that, 

fillets of the asphyxiated trout showed an increment of their TBARs values, raising 

from 0.27 up to 1.67 mg MDA equivalents/ kg muscle, with the maximum level of 1.98 

mg MDA equivalents/ kg muscle at 135 days. In contrast, fillets of the percussion-

slaughtered trout show a smaller increase after 105 days of storage, increasing from 

0.29 to 0.52 mg MDA equivalents/ kg muscle. As for the asphyxiated rainbow trout, the 

highest level of oxidation was reached after 135 days (0.69 mg MDA equivalents/ kg 

muscle). 

Interestingly, difference between the two killing methods emerged after 75 days of 

storage, when TBARS for the asphyxiated fish started to increase. As shown in Fig. 1, 

asphyxiated rainbow trout started to be oxidized one month before the other group, 

showing a noticeably tendency to a faster increase in rancidity than the percussion-

slaughtered group. In addition to this, significant differences (p <0.05) between killing 

methods were found at 135 and 165 days. In both cases, the asphyxiated trout was 

found to be more oxidized than the other. These results were in agreement with 

sensory analysis. Asphyxiated fillets showed a slight rancid off-flavor by the 105
th

 day 

of frozen storage and significant rancidity by the 135
th

 day. Instead, a slight rancid odor 

was not detected for the whole storage period in the fillets from the percussion group 

. 
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That trend seems to reveal that stressful killing method influenced oxidative stress 

during frozen storage, both reducing the length of induction phase and increasing the 

rate of lipid oxidation. Finally, since the interaction between peroxides and lipid 

oxidation is well known, it could be supposed that the higher level of hydroperoxide 

levels found in the asphyxiated rainbow trout might have negatively affected the flesh 

oxidative stability, as demonstrated by the highest level of lipid oxidation reached. 

 

4 Conclusion 

The present trial revealed that the killing method affected both the formation of lipid 

oxygenated metabolites and the oxidative stability of farmed rainbow trout. As a 

consequence of the greater enzymatic activity under stress conditions, the resulting 

higher concentration of hydroperoxides seemed to affect the oxidative stability of the 

asphyxiated rainbow trout flesh during the frozen storage, leading as result to a 

decrease of the shelf life of frozen trout fillets in terms of rancidity. Noticeably, 12-

HpEPE/15-HpEPE and PGE3/PGD3, EPA-derived metabolites, could be considered as 

good markers of stress because they were highly produced under stress conditions 

(asphyxia) while they were not detected in the percussion group. Therefore, the 

present investigation indicated that slaughter method can largely affect the 

concentration of lipid oxygenated products and then the development of oxidation 

during post-mortem storage. This in turn could reduce their commercial shelf-life, due 

to a higher susceptibility to develop rancidity. 
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Table 1. ATP and related catabolites mean concentration (µmol nucleotides/ g muscle) 

in fillets of trout slaughtered by asphyxia or percussion. 

 Asphyxia Percussion Significance rsd
1
 

ATP N.D.
2
 N.D.

2
 - - 

ADP 0.259 0.219 0.397 0.06 

AMP 0.091 0.098 0.805 0.03 

IMP 5.411 6.109 0.694 2.38 

Ino 2.021
b
 1.153

a
 0.036 0.45 

Hx 0.327 0.200 0.174 0.12 

K-value 29.21
b
 18.72

a
 0.049 6.04 

Lowercase superscript letters indicate statistically significant differences (p < 0.05). 

1
rsd: residual standard deviation. 

2
N.D.: not detected.  
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Table 2. Total lipids of muscle and fatty acid composition (in % of total fatty acids) of 

muscle and plasma of trout slaughtered by asphyxia or percussion. 

 
Muscle Plasma 

 
Asphyxia Percussion Significance rsd1 Asphyxia Percussion Significance rsd1 

Total lipids, % 4.81 4.88 0.847 0.416     

14:0 2.15 2.08 - 0.097 1.00 1.05 0.577 0.111 

16:0 14.01 13.81 0.740 0.70 18.21 18.06 0.880 1.343 

16:1ω7 2.78 2.72 0.687 0.185 1.24 1.20 0.782 0.193 

18:0 3.86 3.84 0.931 0.227 5.85 5.30 0.705 1.971 

18:1ω9 18.34 18.21 0.854 0.824 10.18 10.25 0.891 0.692 

18:1ω7 2.43
a
 2.52

 b
 0.040 0.037 1.64 1.64 0.995 0.446 

18:2ω6 27.78 27.24 0.723 1.755 11.59 11.56 0.977 1.241 

18:3ω3 2.82 2.72 0.477 0.145 0.90 0.74 0.259 0.183 

20:2ω6 1.20 1.32 0.091 0.064 1.79 1.82 0.951 0.659 

20:3ω6 0.78 0.80 0.750 0.082 1.60 1.76 0.515 0.344 

20:4ω6 (ARA) 0.97 1.12 0.169 0.108 2.07a 2.46b 0.014 0.159 

20:4ω3  0.72
b
 0.55

a
 0.045 0.069 0.43 0.28 0.448 0.257 

20:5ω3 (EPA) 2.96 3.08 0.520 0.202 7.62 7.78 0.508 0.320 

22:5ω3 1.54 1.45 0.137 0.057 2.09 2.01 0.783 0.390 

22:6ω (DHA)  14.23 15.07 0.621 1.907 29.60 29.90 0.917 3.959 

ΣSFA 20.98 20.66 0.682 0.896 26.19 25.53 0.416 1.068 

ΣMUFA 25.51 25.37 0.889 1.153 15.72 15.85 0.887 1.209 

ΣPUFA 53.50 53.96 0.652 1.165 58.01 58.63 0.679 1.995 

ω3 22.62 23.29 0.721 2.116 40.86 41.01 0.958 3.649 

ω6 30.88 30.67 0.887 1.624 17.15 17.62 0.729 1.835 

DHA/EPA 4.91 4.75 0.600 0.336 3.89 3.83 0.868 0.484 

ω6/ω3 1.31 1.38 0.619 0.162 0.42 0.44 0.834 0.081 

DHA/ALA 0.55 0.53 0.779 0.081 2.58 2.64 0.889 0.606 

Lowercase superscript letters indicate statistically significant differences (p < 0.05). 

1rsd: residual standard deviation. 
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Table 3. Concentration levels of FFAs (DHA, EPA, and ARA), and lipid mediators in plasma of 

trout slaughtered by asphyxia or percussion. Results are expressed as µg/ mL of plasma for FFAs 

and 12-HpEPE/15-HpEPE, as ng/ mL plasma for other lipid mediators. 

 Asphyxia Percussion Significance rsd
1
 

DHA 1.73 1.96 0.605 0.594 

EPA 0.70 0.82 0.421 0.192 

ARA 0.25 0.29 0.713 0.136 

8-isoPGF2α 1.36E-
 
6 1.16E-6 0.235 2.14E-7 

PGE2 2.52
a
 2.84

b
 0.002 0.091 

11-HETE 0.76 0.86 0.303 0.123 

LTB4 0.24 0.23 0.956 0.247 

PGD3/PGE3 0.13 ND 0.136 0.112 

12-HpEPE/15-HpEPE  0.10 ND 0.134 0.086 

5-HEPE 3.92
a
 6.27

b
 0.049 1.350 

12-HEPE 12.60 12.23 0.344 0.500 

15-HEPE 1.25 1.60 0.092 0.243 

4-HDoHE 4.98 6.58 0.242 1.740 

11-HDoHE 5.48 5.98 0.115 0.378 

17-HDoHE 8.19
a
 17.58

b
 0.040 5.094 

8-isoPGF3α  ND ND - - 

TBX3 ND ND - - 

17-HpDoHE ND ND - - 

RvD1 ND ND - - 

PD1 ND ND - - 

Lowercase superscript letters indicate statistically significant differences (p < 0.05). 
1
rsd: residual standard deviation. 
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Fig. 1 Secondary lipid oxidation products during 165 days of frozen storage (- 10 °C), 
expressed as mg MDA-equivalents/ kg muscle, in fillet of trout slaughtered by asphyxia 
(black line) or percussion (gray line). 

 

*: significant difference (p<0.05) between the two groups at the specific time. 
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ABSTRACT 

BACKGROUND: Carbon monoxide (CO) has been recently utilized as a new 
stunning/killing procedure for Atlantic salmon (Salmo salar). Its effect on lipid and 
cholesterol oxidation of farmed A. salmon fillets were evaluated at two times of 
refrigerated (2.5°C) storage, T0 (64h after death) and T14 (14 days from T0). The use of 
CO was compared with the commonly utilized percussive method (P). 

RESULTS: Fatty acid profile, primary (conjugated dienes) and secondary 
oxidation products (TBARS), cholesterol oxidation products (COPs) and carotenoids 
were unaffected by killing method. Despite the low oxidative status of lipid (0.66 and 
0.60 mg malondialdehyde kg

-1
 muscle in P and CO, respectively), cholesterol was found 

highly oxidized (0.17 and 0.13 mg COPs kg
-1

). Storage significantly affected oxidative 
stability of fish muscle by increasing oxidation products. Interestingly, TBARS content 
doubled while the increase for COPs was not homogeneous: α- and β-epoxycholesterol 
increased by 25%, whereas triol and 7-ketocholesterol increased by 48 and 62%, 
respectively. 

CONCLUSION: The quality of salmon fillets just after slaughtering and after 14 
days of refrigerated storage at 2.5°C did not change, irrespective to the killing method 
adopted, suggesting that CO method may be applied without any detrimental effect on 
the quality of fish fillets. 

 

 

Keywords 

Carbon monoxide, killing, Atlantic salmon, TBARS, COPs. 
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INTRODUCTION 

The interest in the consequences of stress at slaughter on animal welfare and 
post-mortem biochemical processes have been largely investigated during the last 
years.

1-3
 In many fish species, slaughter stress was shown to greatly influence both 

welfare
4
 and fillets quality during storage, altering the freshness index K-value,

5
 pH, 

color and water holding capacity.
6,7

 However, the influence of slaughter conditions on 
oxidative stability of fillets during storage is still unclear. 

Recently, there has been some focus on the use of carbon monoxide (CO) as a 
new stunning/killing procedure for Atlantic salmon (Salmo salar, Linnaeus 1758)

8
 and 

as color stabilizer during storage in tilapia fillets (Oreochromis spp.).
9
 CO binds 

irreversibly to the oxygen binding sites of hemoglobin, myoglobin and neuroglobin 
creating hypoxia.

8
 The fish do not respond directly to CO gas,

10
 and it has the potential 

to be a sedative with a low stress response. The binding of CO also creates a cherry-red 
carboxy hemo-/myoglobin complex that increases redness of both the fillets and gills 
during storage.

11,12
 CO binding may also affect oxidative stability of the meats as the 

heme iron may be prevented from catalyzing lipid oxidation.
9,13

 Nevertheless, more 
studies are required to investigate the effects of CO treatment in vivo  on other quality 
parameters of fillets, like lipid oxidative stability. 

Lipid peroxidation in foods constitutes a complex chain of free radical reactions 
giving rise to a wide range of molecules with numerous sensorial and biological effects. 
Oxidation of polyunsaturated fatty acids (PUFA) for instance leads to the production of 
aldehydes like heptenal which are responsible of an overall off-flavor.

14
 Lipid 

peroxidation will also produce many cholesterol oxidation products (COPs) having 
cyto-toxic, mutagenic and carcinogenic effects

15,16
 in addition to being involved in 

several chronic diseases like atherosclerosis, diabetes and kidney failure.
17 

The aim of the present study was to assess whether stunning/killing of A. 
salmon with CO affects fillet nutritional quality or lipid peroxidation during storage 
compared to fish stunned/killed by percussion. Analyses were carried out after 64 
hours and 14 days post slaughter in fillets stored at 2.5°C. 

 

MATERIALS AND METHODS 

Preparation of fish samples and storage conditions 

The experiments was carried out at the Institute of Marine Research (Matre, 
Norway). A. salmon (weight: 1.104 ± 0.125 kg) were kept in two tanks containing 
aerated full strength seawater at 10°C. Fish in tank 1 were utilized as control and killed 
by percussion (P). Fish in tank 2 were flushed with 100% food grade carbon monoxide 
(CO) (Yara Praxair, Oslo, Norway), using a ceramic diffuser (wedge lock base unit, Point 
Four Systems Inc., Richmond, Canada) for 20 minutes at 2-3 bar until swimming ceased. 
They were then killed by percussion. Fifteen fish from each tank were examined for 
the present study. Immediately after death, the fish were transferred into polystyrene 
boxes and covered with ice. After rigor resolution at 64h (T0) fish belonging to both 
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groups were filleted and the right fillets analyzed for proximate composition, oxidation 
profile and carotenoid content. The same parameters were analyzed on the left fillets 
of CO and P groups after 14 days (T14) of refrigerated storage at 2.5°C. In both cases, 
the cranial region (10 cm) were utilized. 
The experiment was approved according to “The regulations in Animal 
Experimentation” in Norway and conducted by certified personnel. 

 

Proximate composition 

Moisture, crude protein (Nx6.25), and ash contents were determined using 
950.46, 976.05, and 920.153 AOAC

18
 methods, respectively. For lipid analysis, a sample 

of fish muscle (approximately 10 g) was ground and extracted using chloroform and 
methanol according to Folch et al.

19
 Total lipids were measured gravimetrically. The 

lipid extract was then utilized for the analysis of fatty acid profiles, cholesterol, COPs, 
vitamin A (Vit. A) and carotenoids. 

 
Fatty acids 

Fatty acids (FA) in lipid extract were trans-esterified to methyl esters (FAME) 
using a base-catalyzed trans-esterification.

20
 The FA composition was determined by 

gas-chromatography (GC), using a Varian GC 430 gas chromatograph equipped with a 
flame ionization detector (FID) and a Supelco Omegawax™ 320 capillary column (30 m 
× 0.32 mm i.d., 0.25 μm film and polyethylene glycol bonded phase; Supelco, 
Bellefonte, PA, USA), purchased from Agilent (Palo Alto, CA, USA). The oven 
temperature was held at 100°C for 2 min, increased to 160°C over 4 min at the rate of 
12°C min

-1
, and then increased to 220°C over 14 min at the rate of 3°C min

-1
 and kept 

at 220°C for 25 min. The injector and the detector temperatures were set at 220°C and 
300°C, respectively. One µL of sample in hexane was injected into the column with the 
carrier gas (helium) kept at a constant flow of 1.5 mL min

-1
. The split ratio was 1:20. 

Chromatograms were recorded with the Galaxie Chromatography Data System 
1.9.302.952 (Agilent, Palo Alto, CA, USA) computing integrator software. Fatty acids 
were identified with reference to standards (Supelco 37 Comp. FAME Mix, Supelco, 
Bellefonte, PA, USA). The individual fatty acids were quantified using tricosanoic acid 
(C23:0) (Supelco, Bellefonte, PA, USA) as internal standard. Fatty acids were expressed 
as a percentage of total FAME. From the fatty acid profile, the following indexes were 
calculating: 
- Atherogenic index (AI) according to the formula

21 

[C12:0 + (4 × C14:0) + C16:0] / (ΣPUFA n3 + ΣPUFA n6 + ΣMUFA); 
-Thrombogenic index (TI), according to the formula 
[C14:0 + C16:0 + C18:0] / [0.5 × ΣMUFA) + (0.5 × ΣPUFA n6) + (3 × ΣPUFA n3) + (ΣPUFA 
n3/ΣPUFA n6)];  
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- Hypocholesterolaemic/hypercholesterolaemic FA ratio (HH): according to the 
formula

22
 (C18:1 n9 + C18:2 n6 + C20:4 n6 + C18:3 n3 + C20:5 n3 + C22:5 n3 + C22:6 n3) 

/ (C14:0 + C16:0) ; 
- Polyene index (PI) as (C20:5 n3 + C22:6 n3) / C16:0; 
- n3/n6 ratio which is ΣPUFA n3/ΣPUFA n6. 
 
Lipid oxidation products 

Conjugated dienes (CD) content in the lipid extract was measured by a 
colorimetric method

23
 using hexane as solvent. Conjugated dienes were quantified at 

233 nm (50 Scan spectrophotometer, Varian equipped with a Cary Win UV Software; 
Palo Alto, CA, USA) and using a molar extinction coefficient of 25200 (mol L

-1
)

-1
 cm

-1
. 

The results are expressed as mol CD kg
-1

 sample. 
The 2-thiobarbituric acid reactive substances (TBARS) were measured using the 

colorimetric method
24 

 at 532 nm. Briefly, TBARS were extracted in TCA (5%), then 
added with TBA 0.04 mol L

-1
. The products were quantified, after 20 min of incubation 

at 93°C, with reference to calibrations curves of TEP (1,1,3,3,-tetra-ethoxypropane) in 5% 
(w/v) TCA (0.8 to 8 μmol L

-1
). 

 
Cholesterol and Cholesterol Oxidized Products (COPs) 

 The content of cholesterol and COPs in fish fillets was determined in the total 
lipids.

25
 One hundred and fifty μL of dihydrocholesterol in chloroform (2 mg mL

-1
, by 

Steraloids, Newport, RI, USA) and 25 μL of a solution of 19-hydroxycholesterol in n-
hexane/isopropanol (1 mg mL

-1
, in 4:1, by Steraloids, Newport, RI, USA) were added to 

300 mg of intramuscular lipids as internal standards for cholesterol and COPs, 
respectively. Firstly, 300 mg of total lipids were dissolved in n-hexane:isopropanol (4:1, 
v/v) and directly cold saponified. One-tenth of the unsaponifiable matter was utilized 
for the determination of total cholesterol, whereas the remaining part (9/10) was 
purified by NH2-SPE cartridge for COPs purification. Cholesterol and COPs were then 
silylated,

25
 dried under a nitrogen stream and dissolved in n-hexane. Both cholesterol 

and COPs were identified by GC-FID (GC 2000 plus, Shimadzu, Columbia, MD, USA) 
equipped with a VF 1-ms apolar capillary column (30 m × 0.25 mm i.d., 0.25 μm film 
thickness; Varian, Palo Alto, CA, USA). For cholesterol and COPs determination, 2 µL of 
sample in hexane were injected into the column with the carrier gas (hydrogen) flux at 
1 mL min

-1
 and the split ratio was 1:10. The run was carried out in constant pressure 

mode. The oven temperature was held at 250°C for 1 min, increased to 260°C over 20 
min at the rate of 0.5°C min

-1
, and then increased to 325°C over 13 min at the rate of 

5°C min
-1

 and kept at 325°C for 15 min. The injector and the detector temperatures 
were set at 325°C.

25
 The chromatograms were recorded with the LabSolution software 

(Shimadzu, Columbia, MD, USA). Cholesterol and COPs were calculated by comparing 
the area of samples and internal standards and expressed as g kg

-1
 of muscle. 

 
Carotenoids and vitamin A content in fillets 
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 The content of carotenoids and vitamin A in fish fillets was determined in the 
lipid extracts. Lipid extracts were added 0.7 µL apocarotenal as internal standard and 
then cold saponified.

26
 Unsaponifiable matter was resuspended in 200 μL of 

hexane/isopropanol (4:1) solution. Finally, 20 μL of each sample were quantified using 
a Prostar HPLC (Varian) equipment with UV-DAD and a C18 reverse phase column 
(ChroSEMp HPLC Columns SS 250mm×4.6mm with ChroSEMp guard column 
Omnispher 5 C18).

27,28
 The mobile phases were (A) methanol:acetonitrile:water 

(10:70:20), and (B) methanol:ethylacetate (70:30). The flow was 90:10 of mobile phase 
A and B respectively at 1 mL min

-1
 for 15 min followed by 50:50 (1 mL min

-1
) for 5 

minutes followed by 0:100 at 1.5 mL min
-1

 for 10 min. Carotenoids were detected at 
450 nm while vitamin A (Vit. A) was detected at 325 nm and quantified by an external 
calibration curve, obtained from retinol at concentrations ranging from 0.045 µg mL

-1
 

to 7 mg mL
-1

. Both carotenoids and Vit. A were expressed as µg kg
-1

 muscle. 
 

Statistical analysis 

Data related to proximate composition of fillets was submitted to ANOVA by 
the PROC GLM of the Statistical Analysis System (SAS),

29
 where Killing method (K: 

Percussion, CO), Storage time (S: T0, T14) and the Killing method × Storage time (K × S) 
interaction were included in the model as fixed effects. The remaining data were 
analyzed as completely randomized design with repeated measures, using the MIXED 
procedure of SAS.

29
 The model included the fixed effects of the Killing method (K: 

Percussion, CO), of the Storage time (S: T0, T14) and the Killing method × Storage time 
(K × S) interaction, while the individual fish was included in the model as random effect 
nested within the killing method. The covariance structure was compound symmetry, 
which was selected on the basis of Akaike’s information criterion of the mixed model 
of SAS. Statistical significance of the killing effect was tested against variance of fish 
nested within killing method according to repeated measures design theory.

30
 

Multiple comparisons among means were performed using the Tukey's test and were 
considered significant for p values <0.05. The coefficients of the residual (after the 
above model) correlations between the analyzed parameters were also calculated. 

 
RESULTS 
Proximate composition and fatty acid profile 

Table 1 summarizes the proximate composition of fillets. Killing method seemed 
to marginally affect only protein (p<0.01) and ash content (p<0.05), whereas storage 
time did not have significant effect for any of the parameters considered. 
The average lipid content was around 80 g kg

-1
 muscle, irrespective of treatment. 

The FA composition of total lipid is given in Table 2. There were no effects of 
fish slaughtering method. Total saturated FA (SFA) was around 14.6% of total FA in 
each group, being mainly composed of palmitic acid (C16:0), which accounted for 9%. 
Monounsaturated FA (MUFA), were dominated by oleic (C18:1 n9), and eicosenoic 
(C20:1 n9) acids, which combined accounted for 90% of MUFA. The PUFA, amounting 
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45% of the FA, was primarily composed of n3 FA. Particularly, -linolenic (C18:3 n3), 
eicosapentaenoic (C20:5 n3, EPA), and docosahexaenoic (C22:6 n3, DHA) acids 
accounted for 20% of total FA and for 80% of total PUFA n3. The n6 fraction was 
dominated by linoleic acid (C18:2 n6) (85% of n6 FA), while arachidonic acid (ARA, 
C20:4 n6) was found only in small amounts (0.40%, data not shown). Total PUFA and 
n3 FA contents significantly decreased during storage, in fillets from both P and CO 
groups. 
Finally, no significant differences between slaughtering methods or storage times were 
found in the case of nutritional indices as n3/n6 ratio, AI, TI, and HH (Table 3). 

 

Lipid oxidation products 

The primary and secondary oxidation products CD, TBARS and COPs are 
reported in Table 4. Slaughter method did not affect theses parameters 64h post 
slaughter (T=0). However, storage time increased both CD and TBARS (p<0.05) in the 
fish fillets after 14 days of storage. The interaction of storage with killing method was 
not significant, revealing that CO and P fish had the same oxidation pattern. 

Cholesterol content in fillets from P or CO salmons was around 0.4 g kg
-1

 muscle 
(Table 4). Neither killing method nor storage time affected cholesterol content in the 

fillets. Four different types of COPs were analyzed in lipid extracts: -epoxycholesterol, 

-epoxycholesterol, 7-ketocholesterol, cholestantriol (triol). There were no significant 
differences in COPs content between the slaughter methods. However, fillets from CO 
group tended to have lower amounts of COPs, especially α- and β-epoxycholesterol 
(Table 4). 

The total COPs content increased (p<0.05) after 14 days of storage time (Table 
4). The increase pattern was not homogeneous: α- and β-epoxycholesterol increased 
by 25%, whereas triol and 7-ketocholesterol increased by 48 and 62%, respectively. 

 
Carotenoid content 

Vit. A, total carotenoids, and astaxanthin contained in fish fillets are reported in 
Table 4. No significant differences between the two slaughter methods were found for 
Vit. A, total carotenoid, and astaxanthin even though CO-slaughtered fish showed a 
higher contents than the percussion ones. However, their values remain unchanged 
during refrigerated storage. Finally, the total carotenoid value was in agreement with 
the pattern of its main constituents, showing to not be affected by killing method and 
storage time. 
 
Correlation 

A correlation pattern (Pearson test, = 0.05) was evaluated for lipid 
composition and oxidative parameters. Results are summarized in Table 5. For a better 
data comprehension, only significant correlations are here examined. MUFA and n6 FA 
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fraction were strongly correlated with TL (r= 0.64; p<0.001; r= 0.45; p<0.01, 
respectively), whereas a weak positive correlation between cholesterol content and TL 
(r= 0.28; p<0.05) was observed. Interestingly, a negative correlation was found 
between TL and PUFA (r= -0.73; p<0.001), n3 (r= -0.71; p<0.001), EPA (r= -0.27; p<0.05), 
DHA (r= -0.70; p<0.001), and PI (r= -0.54; p<0.001). 
Moreover, n3 and n6 FAs were negatively correlated (r= -0.81; p<0.001), whereas 
positive correlations were observed between MUFA and n6 FA (r= 0.87; p<0.001), EPA 
and n3 FA (r= 0.49; p<0.001), and DHA and n3 FA (r= 0.90; p<0.001). 

As regard the primary oxidation products, CD content was positively correlated 
with TL (r= 0.43; p<0.01), cholesterol (r= 0.26; p<0.05), and n6 FA (r= 0.25; p<0.05) 
content and negatively with DHA content (r= - 0.25; p<0.05), and with PI (r= -0.27; 
p<0.05). Finally, total cholesterol content was positively correlated with MUFA (r= 0.28; 
p<0.05) and n6 FA (r= 0.45; p<0.01) content and negatively with SFA (r= -0.26; p<0.05), 
n3 (r= -0.29; p<0.05), DHA (r= -0.38; p<0.01) content and with PI (r= -0.31; p<0.01). 

 
DISCUSSION  

The interest in the consequences of stress at slaughter on animal welfare and 
post-mortem biochemical processes have been largely investigated.

1-3
 In many fish 

species, slaughter stress was shown to greatly influence both welfare
4
 and fillets 

quality during storage,
5-7

 even if some aspects of quality, as oxidative stability, are still 
unclear. Recently, CO has been proved to be a stunning/killing method causing a low 
stress response,

10
 however its impact on fillets quality and stability during storage has 

not been investigated yet. The results of the present study show that the quality of 
salmon fillets just after slaughtering and after 14 days from rigor resolution of 
refrigerated storage at 2.5°C is not significantly affected by the killing method. This 
suggest that CO may be utilized without any detrimental effect on the quality of fish 
fillets. 

Specifically, results showed only a tendency of CO derived flesh to contain 
lower values of FA and cholesterol oxidation products and higher carotenoid values 
than the percussion ones, even if no significant differences emerged. That lack of 
significance might be attributed to the presence of natural antioxidant defenses, as 
carotenoids, that may reduce the effect of the killing method on the oxidation 
susceptibility of A. salmon flesh. Further investigations may be useful in order to 
confirm the effect of CO-slaughter method on flesh quality perhaps in other species, 
which do not contain antioxidants. In contrast, the present study confirmed that 
storage length is the main factor affecting lipid oxidation, as previously found in other 
species as European sea-bass (Dicentrarchus labrax, Linnaeus 1758),

7
 Coho salmon 

(Oncorhynchus kisutch, Walbaum 1972),
31

 and sardine (Sardinella pilchardus, Walbaum 
1972).

32
 

Concerning nutritional values, A. salmon is a fatty species and present results 
agree with this classification. Despite the high percentage of fat contained in fish 
muscle, fat characteristics are very interesting for human nutrition as a consequence of 

the n3 FA fraction predominance, particularly EPA and DHA, on both nand SFA 
ones.

33
 Moreover, also the values of other health indexes as AI, TI, and HH (0.21, 0.13, 
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and 5.8, respectively) confirmed the optimal nutritional fat characteristics from salmon 
fillets. Finally, analysis of correlation revealed that fat content and composition are 
strictly linked. Fat content match MUFA and n6, confirming that muscle contained 

mainly triacylglycerols that stored preferentially palmitic, oleic, linoleic, and -linolenic 
acids, as reported in literature.

34
 

 Cholesterol content is another nutritional aspect that should be considered. In 
the present trial, its content in fillet samples was lower (around 0.4 g kg

-1
) than 

previously reported for wild (0.52 g kg
-1

) and farmed (0.62 g kg
-1

) A. salmon.
35

 Despite 
cholesterol is reported to play a central role in many metabolic processes,

36
 adults are 

recommended to not exceed 300 mg of cholesterol per day,
37

 which means that an 
abundant portion (almost 300 g) of A. salmon would not exceed that quantity. 
Interestingly, in contrast with previous findings,

32 
data obtained from correlation 

analyses showed that cholesterol content and TL are not independent, even if the 
correlation coefficient is quite low (r= 0.28; Table 5). Moreover, cholesterol and DHA 
are negatively correlated. This fact, together with the opposite relation obtained for 
cholesterol and MUFA and for cholesterol and n6, may be explained with the widely 
reported prevalence of fat deposits on structural lipids, where DHA is preferentially 
stored.

34
 

 However, CO stunning/killing method seemed not to preserve FA and 
cholesterol from oxidation, even if no detrimental effects were found in this study. 
Particularly, the FA composition of TL extract was quite stable through the storage. 
According to previous studies on salmonids, such as Rainbow trout (Oncorhynchus 
mykiss, Walbaum 1972)

38 
and A. salmon,

39 
FA showed a low oxidation rate. Particularly, 

CD and TBARS values confirmed that fillets from A. salmon were not prone to 
oxidation,

39
 despite their high content of TL. In effect, data obtained in the present 

study showed that TBARS values after 14 days of storage were much lower than 8 mg 
malondialdehyde kg

-1
,
40

 which is the limit of acceptability proposed for most fish 
species. Nevertheless, a marginal but significant decrease in total PUFA content was 
observed as a significant effect of the storage, due to the oxidation of the n3 FA, 
especially DHA. Indeed, the PUFA decrease was mainly due to DHA lost, which 
accounted for the 85%. This confirmed that n3 FA are the main substrates of oxidative 
processes. This result is also supported by the presence of a significant correlation 
between primary oxidation products and DHA (Table 5). 
 Moreover, cholesterol is susceptible to be oxidized in COPs that have shown 
adverse effects on human health.

17
 Indeed, COPs seem to be involved in the initiation 

and progression of several chronic diseases, such as atherosclerosis, 
neurodegenerative disorders, diabetes and kidney failure. Generally, COPs are inserted 
in the threshold of unclassified compounds, which corresponds to 0.15 µg per person 
per day;

41
 however a specific threshold of toxicological concern has not been set yet. In 

the present study, four of the most common COPs, as  and–epoxycholesterol, 
triol, and 7-ketocholesterol were detected already above the threshold at the killing 
(Table 4) in both percussion and CO-slaughtered fish. This fact can be explained in 
agreement with a recent study,

42
 which reports that the degree of unsaturation of 

food fats may greatly influence and induce oxysterol production. 
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All COPs detected at the beginning and at the end of the storage period were 

secondary oxidation products of cholesterol; in fact and epoxy epimers 

originated from the reaction between cholesterol and 7 and hydroxycholesterol 
which, in turn, are produced from the dismutation of the 7-hydroperoxides. In the 

presence of water and in acid medium, the epoxy ring of -epoxycholesterol and -
epoxycholesterol can undergo to open, producing cholestantriol. Finally 7-

ketocholesterol, in the same manner as - and epoxycholesterol, derives from the 
dismutation 7-hydroperoxides.

43
 

The presence of epoxy derivatives, as α- and β-epoxycholesterol, might be 
partly due to the interaction of sterols with hydrogen peroxide, which is released by 
microbial enzymes naturally present in muscle tissues.

44
 Hence, their small increase 

found in P and CO derived fillets might indicate a small microbial growth during 
refrigerated storage. Furthermore, these epoxy compounds can be easily converted 
into triols in the presence of water,

44
 explaining the high values ranged by triol at the 

end of the experiment together with 7-ketocholesterol that generally apply for 50% of 
total COPs.

45
 These results, coupled with the lack of primary oxidation products of 

cholesterol such as 7-hydroperoxides, suggested that the cholesterol oxidation process 
was at a late stage after 14 days of storage. 

In salmon, fish pigmentation is recognized as an important quality attribute and 
it is associated with the accumulation of dietary carotenoids, mainly astaxanthin, in 
intramuscular fat.

46
 In the present study, carotenoids tended to decrease (-7%; Table 4) 

during storage both in P and CO-slaughtered fish even if no significant differences 
between T0 and T14 were found. At the same time, the results also revealed that 
carotenoids, within both P and CO groups, affected lipid and cholesterol oxidation in 
the same way (absence of significant r values). Two possible explanations may be 
hypothesized: the astaxanthin did not act as antioxidant, as previously reported,

38
 or 

the carotenoid fraction could minimize the effect of killing method on oxidative 
damage. This latter is sustained by the findings about the stability of redness color of A. 
salmon fillets of fish killed by percussion or CO.

10
 Authors, in fact, indicated that the 

unchanged color was due to the presence of red pigments more than the ability of CO 
at retaining color.

9,13
 

In conclusion, the present study showed that the use of CO as stunning/killing 
method did not affect oxidative stability of A. salmon during short-term refrigerated 
storage. Thus, considering that CO improves animal welfare by reducing stress at 
killing,

8,12
 it would be interesting to study the effect of this treatment on other fish 

species. 
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Table 1. Proximate composition (g kg
-1 

of muscle) of Atlantic salmon (Salmo salar) killed 

by percussion (P) or carbon monoxide (CO). Both groups were stored at 2.5°C  till 

T14. 

1
rsd: residual standard deviation. 

Within criterion, a, b: p<0.05 

n.s.: not significant; 

* p<0.05; ** p<0.01. 

 Killing (K) Storage (S) Significance rsd1
 

 P CO T0 T14 K S KS  

Total lipids 82.0 78.3 77.9 82.5 n.s n.s. n.s. 11.5 

Crude 

protein 
208.3

a
 212.3

b
 209.6 211.0 ** n.s. n.s. 5.5 

Ash  13.2
b
 12.6

a
 12.8 12.9 * n.s. n.s. 1.0 

Water 677.6 682.5 680.2 679.8 n.s. n.s. n.s. 10.5 



161 
 

Table 2. Fatty acids profile of muscle total lipids (g kg
-1

) of Atlantic salmon (Salmo 

salar) stunned/killed by percussion (P) or carbon monoxide (CO). Both groups were 

stored at 2.5°C until T14. 

 

The fatty acids C12:0, C13:0, C14:0, C14:1 n5, C15:0, C15:1, C16:1 n9; C16:1 n7, C16:2 n4, C16:3 

n4, C16:4 n1, C17:0, C17:1, C18:0, C18:1 n7, C18:3 n6, C18:3 n4, C18:4 n3, C18:4 n1, C20:0, C20:1 

n11, C20:1 n7, C20:2 n6, C20:3 n6, C20:3 n3, C20:4 n6, C20:4 n3, C21:0, C21:5 n3, C22:0, C22:1 

n11, C22:1 n9, C22:1 n7, C22:2 n6, C22:4 n6, C22:5 n6, C22:5 n3, C24:0, and C24:1 n9, in 

percentage <3%, were also detected but not reported in the table for brevity. They were utilized 

to calculate the fatty acid groups. 

1
rsd: residual standard deviation. 

Within criterion, a, b: p<0.05 
n.s.: not significant; 
* p<0.05; ** p<0.01.  

 
Killing (K) Storage (S) Significance rsd1 

 

P CO T0 T14 
K S KS  

C16:0 9.01 9.01 8.97 9.04 n.s. n.s. n.s. 0.23 

C18:1 n9 32.47 32.33 32.29 32.51 n.s. n.s. n.s. 0.76 

C18:2 n6 11.40 11.43 11.39 11.45 n.s. n.s. n.s. 0.30 

C18:3 n3 4.78 4.77 4.78 4.77 n.s. n.s. n.s. 0.17 

C20:1 n9 3.85 3.86 3.83 3.87 n.s. n.s. n.s. 0.18 

C20:5 n3 (EPA) 5.01 4.97 5.04 4.93 n.s. n.s. n.s. 0.37 

C22:6 n3 (DHA) 10.67 10.94 10.97 10.63 n.s. n.s. n.s. 0.96 

ΣSFA 14.70 14.66 14.62 14.74 n.s. n.s. n.s. 
0.31 

ΣMUFA 45.74 45.58 45.51 45.80 n.s. n.s. n.s. 
0.70 

ΣPUFA 39.56 39.76 39.86b 39.46a n.s. ** n.s. 
0.63 

Σn3 24.74 24.93 25.06b 24.09a n.s. * n.s. 
0.80 

Σn6 14.06 14.08 14.05 14.09 n.s. n.s. n.s. 
0.23 

n3/n6 1.76 1.77 1.78 1.74 n.s. n.s. n.s. 
0.08 
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Table 3. Nutritional indices of Atlantic salmon (Salmo salar) killed by percussion (P) or 

carbon monoxide (CO). Both groups were stored at 2.5°C until T14. 

1
rsd: residual standard deviation 

2
PI, Polyene Index; 

3
AI, Atherogenic index; 

4
TI, Thrombogenic index; 

5
HH, hypocholesterolaemic/hypercholesterolaemic FA ratio. 

 n.s.: not significant. 

 

 
Killing Storage Significance rsd

1
 

 

P CO T0 T14 K S KS 
 

 

PI
2
 

 

1.71 

 

1.76 

 

1.75 

 

1.72 

 

n.s. 

 

n.s. 

 

n.s. 

 

0.17 

AI
3
 0.22 0.22 0.22 0.21 n.s. n.s. n.s. 0.01 

TI
4
 0.13 0.13 0.13 0.13 n.s. n.s. n.s. 0.01 

HH
5
 5.82 5.84 5.85 5.81 n.s. n.s. n.s. 0.22 
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Table 4. Conjugated dienes (CD), cholesterol, TBARS, COPs, Vitamin A and carotenoids 

content in Atlantic salmon (Salmo salar) killed by percussion (P) or carbon monoxide 

(CO). Both groups were stored at 2.5°C until T14. 

 Killing Storage Significance rsd1 

 P CO T0 T14 
K S KS 

 

CD (mol kg-1 

muscle) 
0.27 0.25 0.24a 0.28b n.s. ** n.s. 0.04 

TBARS (mg kg-1 

muscle) 
0.66 0.60 0.45a 0.81b n.s. ** n.s. 0.34 

Cholesterol (g kg-

1 muscle) 
0.42 0.38 0.38 0.42 n.s. n.s. n.s. 0.14 

Tot. COPs (g kg-1 

muscle) 
0.017 0.014 0.011a 0.020b n.s. * n.s. 0.09 

α-

epoxycholesterol 
0.004 0.003 0.003 0.004 n.s. n.s. n.s. 0.02 

β-

epoxycholesterol 
0.004 0.003 0.003 0.004 n.s. n.s. n.s. 0.02 

Triol 0.005 0.004 0.003a 0.006b n.s. * n.s. 0.03 

7-ketocholesterol 0.004 0.004 0.002a 0.006b n.s. * n.s. 0.04 

Vit. A (µg kg-1 

muscle) 
115.5 121.6 122.3 114.8 n.s. n.s. n.s. 83.2 

Total carotenoids 

(µg kg-1 muscle) 

7116.7 9508.9 8616.0 8009.6 n.s. n.s. n.s. 44.3 

Astaxanthin (µg 

kg-1 muscle) 
4801.4 5610.4 5270.5 5141.2 n.s. n.s. n.s. 2597.5 

1
 rsd, residual standard deviation. 

Within criterion, a, b: p<0.05 

n.s.: not significant; * p<0.05; ** p<0.01. 
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Abstract 

 

Mechanical separation systems are a good option to create new fish products 

and open new market, however studies on the effect on quality of mechanical 

treatment on species of interest for European aquaculture, such as European sea bass, 

gilthead sea bream, and rainbow trout are currently scarce. Thus, the effect on colour, 

nutritional quality, and lipid stability was considered immediately after separation 

process and after 90 days of frozen storage. Results revealed that mechanical 

separation technique significantly affected colour and lipid stability of the three 

studied species. Increases in lightness (L*) and secondary oxidation products were 

observed, together with a decreased of antioxidant capacity. Nutritional value instead 

was unaffected by treatment. Thus, mechanical separation process could represent a 

new way to better exploit species of interest for European aquaculture, but oxidative 

processes during the treatment have to be limited and controlled. 

 

Keywords: MSM, TBARS, fishburger, antioxidant capacity. 
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1. Introduction 

Products development in aquaculture sector has been very limited during these 

last years (EC, 2013). In this sense, mechanical separation systems are a good option 

for create new fish products and open new market. In accordance with Regulation (EC) 

No 883/2004, mechanically separated meat (MSM) is a product obtained by removing 

remaining meat from bones using mechanical means, where the normal structure of 

the muscle fibre is mostly lost or modified in such a way that it is not comparable with 

regular meat. During the last decades, MSM has grown in importance, especially in 

poultry and pigs sectors, raising a production of 700 000 t in 2007 (EC, 2010). 

Concerning seafood industry, no specific restrictions about MSM utilized are presented 

in EU Regulation and mechanical separation treatment may represent a new 

technology in fish supply chain. 

Recently, MSM obtained from Nile tilapia (Oreochromis niloticus) (Freitas et al., 

2012; Kirschnik et al., 2013; Marengoni et al., 2009; Fogaça et al., 2015), and Brazilian 

catfish (Brachyplatystoma vaillantii) (Oliveira et al., 2015) by-products have been 

chemically and sensory characterized. However, many areas have to be explored. For 

example, the utilization of mechanical separation (MS) on the whole fish has to be 

investigated, as well as its effects on European seawater and freshwater species. 

Indeed, MS has been utilized for the recovery of fish by-products whereas it may be 

interested to use it to exploit no marketable European farmed fish, such as the 

undersized or damaged ones. That will entail the utilization of whole fish, rich in fat 

and protein, and not only the frame derived from filleting process. 

Lipid oxidation is a very important event leading the loss of nutritional values 

and food quality, especially for fish, due to the high presence of polyunsaturated fatty 

acids (PUFAs). However, the extent of such as mechanism in new products, like MSM 

of fish is not yet well investigated. Thus, it seems reasonable to check the effect on 

lipid stability of MS technology applied to sea and freshwater European farmed species 

in order to understand its possible role for the creation of new products. 

 

2. Materials and methods 

2.1 Preparation of fish samples and storage conditions 

Different species of sea and freshwater were used for the present trial. 

Eighteen European sea bass (Dicentrarchus labrax) and 18 gilthead sea bream (Sparus 

aurata) were purchased from a fish farm located in Orbetello (Grosseto, Italy). Finally 

18 rainbow trout (Oncorhynchus mykiss) were purchased from a farm located in the 

north west of Tuscany (Lucca, Italy). Fish were killed by percussion and immediately 

after death, fish were transferred into polystyrene boxes, covered by ice, and moved 

to the industry where six fish for each species were minced by the MSM machine 

Baader 60-1 (Lubecca, Germany). Then, the remained fish and the MSM were brought 
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to DISPAA (Florence, Italy) where all the whole fish were filleted. Whereas six fillets 

(right) for each species were stored as fillet (WF samples), six fillets (left) for each 

species were grounded by using a New Style Chopper (Westmark Gmbh, Elspe, 

Germany) in order to obtain 6 fish-burger (FB samples), while six MSM-fish burger 

were obtained from MSM (MSM samples). Three samples for each treatment and each 

species were analysed at time 0 (T0), while the other samples were analysed after 

storage at – 20 °C for 90 days (T90). Three replicates of WF, FB, and MSM for the three 

species were analysed for: colour, total lipids, fatty acid composition, primary 

(conjugated dienes) and secondary (tiobarbituric acid substances, TBARS) oxidation 

products, and antioxidant capacity. 

 

2.2 Colour 

A Dr Lange Spectro-colour® colorimeter (Keison International Ltd, UK) equipped 

with a Spectral qc 3.6 software was utilized for colorimetric measurement. Colour was 

measured in triplicate on the epaxial-cranial sites of fillet (WF) and in three points of 

the burgers (FB and MSM). Colour measurements were carried out according to the 

CIELab system (CIE, 1976). Lightness (L*), redness index (a*), yellowness index (b*), 

Hue, and Chroma were recorded. 

 

2.3 Fatty acids 

The total lipid content of the samples was determined according to Folch et al. 

(1957) method and fatty acids (FA) in lipid extract were trans-esterified to methyl 

esters (FAME) using a base-catalyzed trans-esterification followed by a boron 

trifluoride catalyzed esterification (Morrison & Smith, 1964). The FA composition was 

determined by gas chromatography (GC) using a Varian GC 430 gas chromatograph 

equipped with a flame ionization detector (FID) and a Supelco Omegawax™ 320 

capillary column (30 m × 0.32 mm i.d., 0.25 μm film and polyethylene glycol bonded 

phase; Supelco, Bellefonte, PA, USA), purchased from Agilent (Palo Alto, California, 

USA). The oven temperature was held at 100 °C for 2 min, increased to 160 °C over 4 

min, then increased to 220 °C over 14 min and finally kept at 220 °C for 25 min. The 

injector and the detector temperatures were set at 220 °C and 300 °C, respectively. 

One µL of sample in hexane was injected into the column with helium as carrier gas 

kept at a constant flow of 1.5 mL/min. The split ratio was 1:20. Chromatograms were 

recorded with the Galaxie Chromatography Data System 1.9.302.952 (Agilent) 

computing integrator software. Fatty acids were identified by comparing the FAME 

retention time with the standard Supelco 37 component FAME mix (Supelco). Fatty 

acids were quantified through calibration curves using tricosanoic acid (C23:0) 

(Supelco) as internal standard. This analysis was not carried out in FB samples, because 

the similarity of composition of these samples and WF samples. 
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2.4 Lipid oxidation products 

Conjugated dienes (CD) content in the lipid extract were measured by the 

colorimetric method (Srinivasan et al., 1996) using hexane (Sigma Aldrich, St. Luis, MO, 

USA) as solvent. Conjugated dienes were quantified at 232 nm (50 Scan 

spectrophotometer, Varian equipped with a Cary Win UV Software; Palo Alto, CA, USA) 

and using a molar extinction coefficient of 29000 mL /mmol cm. The results are 

expressed as mmol hidroperoxides/kg lipid. 

The 2-thiobarbituric acid reactive substances (TBARS) were measured using the 

colorimetric method
 
decrypted by Vynke (1970) at 532 nm. Briefly, TBARS were 

extracted in TCA (5%), then added with TBA 0.02mol/L. After 40 min of incubation at 

97 °C oxidation products were quantified with reference to calibrations curves of TEP 

(1,1,3,3,-tetra-ethoxypropane) in 5% (w/v) TCA (0.2 to 3.1 μmol/L). 

 

2.5 Antioxidant capacity 

Samples of fresh burgers (3 g) were extracted with 10 ml of ethanol. The 

antioxidant capacity was performed on ethanol extracted samples according the minor 

modifications reported in Mancini et al. (2015) to the methods of Re et al. (1999) for 

ABTS reducing activity assay (ABTS, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic 

acid)), of Blois (1958) and Jung et al. (2010) for DPPH scavenging activity (DPPH, 2,2-

diphenyl-1-picrylhydrazyl) and Descalzo et al. (2007) for FRAP assay method (ferric 

reducing ability). 

2.6 Statistical analysis 

The statistical analysis was performed using SPSS version 17.0 software (SPSS 

Inc. Illinois, USA). Normality of data distributions was tested by the Kolmogorov-

Smirnov test. Fatty acids were subjected to one-way analysis of variance (ANOVA) with 

‘treatment’ as a fixed effect, using the Bonferroni post-hoc test to check the 

significance of the differences among levels (WB, FB and MSM samples). The primary 

and secondary oxidation products and antioxidant capacity were subjected to two-way 

ANOVA with ‘treatment’ and ‘storage’ and their interaction as fixed effect, using 

Bonferroni post hoc test to check again the significance of the differences among levels 

(WB, FB and MSM samples), and storage (T0 and T90). 

3. Results and Discussion 

Table 1 presents the results of ANOVA for colour values. Treatment significantly 

affected colour for European sea bass, gilthead sea bream, and rainbow trout. The 

differences in colour parameters are similar for the seawater species, indeed the L*, a* 

and b* of WF are significantly lower than the minced fillet (FB) and MSM burger. On 
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the other hand, trout fillet showed a significantly lower lightness (L*) and higher 

redness (a*) compared to MSM and minced fillet. No significant differences were 

observed for b* values in trout. The fish fillet colour is linked with heme-based 

pigment, physical structure of muscle, and the amount of unbound water influences 

light scattering. Since sea bass and sea breams are white fish, it is reasonable to 

suppose that changes of pigments under high-pressure treatment are of minor 

importance, so that these colour changes may be attributed to modifications of 

protein matrix as reported by Chéret, Chapleau, Delbarre‐Ladrat, Verrez‐Bagnis, & 

Lamballerie (2005). The redness in trout is due to astaxanthin, and the significantly 

higher a* could be related to the significant interaction TxS. Indeed, storage time 

increased lightness and redness in trout, as previously reported (Choubert, & 

Baccaunaud, 2006). Evolution of colour during storage can be associated with 

enzymatic and non-enzymatic reactions resulting in degradation of myofibrillar 

proteins and disorganization of myofibrils (Cherét et al., 2005). These modifications 

were observed also in the white flesh fish. According to that, the storage of all treated 

fish led to a significant decrease in L* value after 90 days. However, L* value did not 

reach the state in which colour starts darkening which was set to be about 58 (L* 

value) (Ochiai, Chow, Watabe & Hashimoto, 1988). These results emphasised the 

importance of using white flesh fish (sea bass and sea bream, for example) to develop 

fish products, as supported by Bito (1965) who assessed that the colour of the white 

fish burgers was more stable than that of tuna stored at the same temperature, which 

lost its colour after 2 months. 

The fatty acid (TFA) composition of European sea bass, gilthead sea bream, and 

trout fillets and MSM immediately after treatment is reported in Table 2. No 

statistically differences were found in the fatty acid profile between fillets and MSM 

for none of the considered species. Although a certain caution is required when the 

results are compared with previous studies, it seems that the raw material for MS 

process deeply influences fatty acid composition. Indeed, when MSM is obtained by 

filleting residues (Oliveira et al., 2015), lipid fraction is mainly constituted by SFA 

(around 54 %), and MUFA (34 %) whilst the most important PUFA applied for 10 % of 

total fatty acid. On the contrary, when whole fish, degutted and without head, is 

utilised as in the present research, MSM fatty acid profile reflected that of the fillet. In 

conclusion, using no marketable fish instead of fish by-products may result in a high 

quality MSM chemical composition despite the species utilised. 

The fatty acid composition of European sea bass, gilthed sea bream, and 

rainbow trout samples instead fell within previous data about farmed fish (Badiani et 

al., 2013; Grigorakis, 2007; Tibaldi et al., 2015; Secci, Parisi, Dasilva, & Medina, 2016). 

The total amount of saturated fatty acids (SFA) in muscle was found to be 

around 20 % in seawater species, whilst trout stopped at around 15 %. Regardless the 
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quantitative difference, this fraction was found to be mainly composed of palmitic 

(16:0), stearic (18:0), and myristic (14:0) acids in all the species. In general, the 

dominance of these three fatty acids has been reported previously in farmed fish fed 

with different ratio of marine and plant feed ingredients (Baron et al., 2013; Timm-

Heinrich, Eymard, Baron, Nielsen, & Jacobsen, 2013). Among monounsaturated fatty 

acids (MUFA), the most abundant lipids in were oleic (C18:1ω9), and palmitoleic 

(C16:1ω7) with some species-specific differences. Particularly, gilthead sea bream 

resulted in the lowest oleic content, applying for 15 % of total fatty acids, whereas 

rainbow trout contained almost the 10 % more than the other. The opposite trend was 

found for palmitoleic acid which resulted to be the highest in gilthead sea bream and 

the lowest in rainbow trout. In both cases, oleic and palmitoleic values for European 

sea bass were more similar to sea bream than to trout, confirmed the affinity of these 

two marine species (Grigorakis, 2007). Oleic acid is often reported to be the most 

abundant MUFA in the lipids and it is one of those more affected by replacement of 

fish oil by plant oil in feeds (Baron et al., 2013). 

As regards to muscle PUFA, their amount ranged from 45 % (sea bass) to 52.5 % 

of trout but the main differences lean on its composition. Indeed, PUFA fraction of sea 

water species are mainly composed by ω3 (around 72 %) and the ω6 represented 

about 23 % of total polyunsaturated fatty acids. Freshwater instead had 52 % of ω6 

and 41 % of ω3. Even in that case, results confirmed the differences between marine 

and freshwater fish highlighted by Tocher (2003). However, the dominance of C18:2ω 

6 on ω6 fraction of PUFA has been reported both in marine (Badiani et al., 2013; 

Tibaldi et al., 2015) and in freshwater farmed species (Secci, Parisi, Dasilva, & Medina, 

2016) though its percentage seemed to be strictly connected with the sources of feed 

ingredients (Baron et al., 2013). Specifically, present results revealed that C18:2 ω6 

applied for 82 % and 86 % in sea bass and trout, respectively, in agree with the 87 % 

and 90 % previously obtained for the same species (Badiani et al., 2013; Secci, Parisi, 

Dasilva, & Medina, 2016).  

The major contributors to ω3 fraction were docosahexanoic acid (DHA) for all 

the three considered species, followed by eicosapentaenoic acid (EPA) in Eurpean sea 

bass (around 9 % of PUFA ω3) and gilthead sea bream (19 % of PUFA ω3), and gamma-

linolenic acid (C18:3ω3) in rainbow trout samples. 

Concerning lipid stability during treatment and storage, such as high values of 

PUFAs ω3 fraction could be the main cause of lipid degradation of MSM during the 

mechanical treatment. Indeed, results revealed that MS treatment significantly 

affected lipid oxidation of seawater fish whereas no effect emerged on trout (Table 3). 

Specifically, primary oxidation products, obtained by measuring conjugated dienes 

content, were affected nor by treatment or storage in sea bass and trout samples, 

whilst CD content of sea bream was found to be significantly affected by treatment 
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and storage. Nonetheless, the extent of lipid oxidation was underlined by TBARS 

values. Globally, treatment significantly affected lipid oxidation of the three species. 

Mechanical separation process seemed to promote lipid oxidation in seawater species 

immediately after treatment, being TBARS more than two times higher in MSM than in 

WF. Burgers obtained from minced meat resulted in an intermediate level of oxidative 

status (Table 3). Moreover, gilthead sea bream appeared the most susceptible species 

to be oxidised by treatment, by raising 7.26 mg MDA/ kg sample, that is a value near 

the threshold of 8 mg MDA/ kg sample for the rancid perception, as proposed by 

Shormüller (1968). Lipid fraction of trout instead seemed not to be affected by 

mechanical separation process. 

However, present results are not in complete agreement with previous findings. 

Results by Fogaça et al. (2015) on the effect of MSM on tilapia (Oreochromis niloticus) 

showed a low oxidative value (1.03 mg MDA/ kg tissue) despite the high lipid content 

(around 7 %). Lowest value was obtained for no-washed MSM from tilapia by Kirschnik 

et al. (2013) who found a TBARS content around 0.5 mg MDA/ kg tissue which 

however, raised up to 0.7 mg MDA/kg tissue after 90 days at -18 °C. However, it has to 

be note that these studies were conducted on fish filleting waste which had a lowest 

PUFA percentage (Oliveira et al., 2015) than data in the present research. 

Concerning storage, it significantly affected TBARS values of all the studied 

species, in agreement with previous studies (Indergård, Tolstorebrov, Larsen, & 

Eikevik, 2014; Secci, Parisi, Dasilva, & Medina, 2016). At T0, trout was found in a lower 

oxidative status in comparison with the other two species, by being three times lower 

than the values obtained for sea bream and almost half the sea bass one. Such as 

difference was in agreement with a previous study that showed the scarce 

susceptibility of rainbow trout to be oxidised, both for its low content of ω3 fraction 

and for carotenoid content (Secci, Parisi, Dasilva, & Medina, 2016). PUFA ω3 may be 

responsible instead for the three times higher TBARS contained in sea bream than in 

sea bass. Indeed, the 5 % of difference in ω3 amount of two species may increase sea 

bream lipid susceptibility to oxidation. 

After 90 days of frozen storage, secondary lipid oxidation products doubled in 

sea bass and sea bream samples, whereas increased 4 times in rainbow trout. The rate 

obtained for sea bass was in agreement with that obtained by Simitzis et al. (2014) 

who found that TBARS in percussion killed fish doubled during 90 days at -20 °C. On 

the other hand, oxidation in trout highly increased confirming that astaxanthin seems 

to protect against the very early stages of lipid oxidation but not during the long term 

frozen storage (Jensen, Birk, JokuSEMn, Skibsted, & Bertelsen, 1998). 

Antioxidant properties, especially radical scavenging activities, are very 

important due to the deleterious role of free radicals in foods. The ABTS, DPPH, and 

FRAP have been widely used to test the ability of compounds to act as free radical 
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scavengers and thus to evaluate the antioxidant activity (Mancini et al., 2015). All the 

treated fish, irrespective of the species, showed some reducing ability which probably 

could be attributed to the intrinsic antioxidant system of the muscle (Table 4). 

Particularly, the presence of astaxhanthin in trout muscle may be responsible for the 

highest global antioxidant capacity, especially ABTS value, because it can improve 

scavenging and antioxidant activity. However, treatment significantly reduced 

antioxidant capacity in all the studies species. As reported by Pazos, González, 

Gallardo, Torres, & Medina (2005), under post mortem conditions, the endogenous 

antioxidants are consumed sequentially and the loss coincides with fish muscle lipid 

oxidation development. Present results are in agreement with this pattern, because 

storage was found to significantly affect both antioxidant capacity and lipid oxidation. 

Specifically, storage significantly reduced the antioxidant assay whereas significantly 

increased TBARS content. Moreover, as suggested by Gómez-Estaca et al. (2011) 

higher oxidative stability should be expected from samples with higher reducing ability 

during refrigeration or under other oxidizing conditions. 

  

3. Conclusions 

In conclusion, mechanically separation process significantly affected quality of 

the derived-products in terms of colour, antioxidant capacity and oxidative stability. 

Globally, MSM of seawater species resulted more damaged by mechanical treatment 

than that of trout, maybe because of the high content of ω3. However, using no 

marketable fish instead of fish waste may result in a high nutritional quality MSM 

despite the species utilised. Thus, mechanical separation process could represent a 

new way to better exploit species of interest for European aquaculture, but oxidative 

processes during the treatment have to be limited. Washing MSM, as proposed by 

other authors (Kirschnik et al., 2013) could be an option to wash out pro-oxidant 

molecules, such as heme, however further researches on the utilisation of antioxidant 

during the process or added to the MSM are suggested. 
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Table 1. Colour parameter values of European sea bass, gilthead sea bream, and 

rainbow trout fillets (WF), minced (FB) and MSM burger at T0 and after 90 days of 

frozen storage (T90). 

    Treatment (T)     Storage (S) 
TxS 

Species Parameter WF FB MSM SEM
1
   T0 T90 SEM 

European 
sea bass 

L* 42.65
b
 47.41

a
 49.04

a
 1.07 

 
47.55

a
 45.18

b
 0.46 N.S. 

a* -1.40
b
 0.59

a
 0.15

ab
 0.48 

 
-0.29 -0,15 0.13 N.S. 

b* 1.35
b
 5.19

a
 5.57

a
 0.43   2.26

b
 5.81

a
 0.23 N.S. 

Gilthead 
sea 
bream 

L* 39.05
b
 46.50

a
 44.37

a
 1.19 

 
46.66

a
 39.95

b
 0.77 N.S. 

a* -2.50
b
 -0.64

a
 -0.24

a
 0.75 

 
-0.12

b
 -2.13

a
 0.19 N.S. 

b* 0.77
b
 5.36

a
 6.57

a
 1.57   2.16

b
 6.31

a
 0.73 N.S. 

Rainbow 
trout 

L* 28.81
b
 39.68

a
 38.79

a
 1.98 

 
42.70

a
 28.82

b
 1.21 N.S. 

a* 3.05
a
 0.44

b
 0.56

b
 0.73 

 
2.11

a
 0.59

b
 0.53 0.02 

b* 10.24 12.11 11.06 0.10   11.38 10.89 0.64 0.01 
1
 SEM: Standard Error of the Mean 

Within criterion, a, b, c: p<0.05; 

NS, Not Significant (p>0.05). 

Data were obtained from three replicates. 
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Table 2. Fatty acids profile (g/100g of total fatty acids) of European sea bass, gilthead 

sea bream, and rainbow trout fillets (WF) and MSM burger immediately after 

treatment (T0). 

 

European sea bass Gilthead sea bream Rainbow trout 

 

WF MSM Sign. SEM1 WF MSM Sign. SEM WF MSM Sign. SEM 

Total  

lipid % 
9.59 10.49 NS 1.83 9.87 7.76 NS 0.643 8.06 6.65 NS 0.840 

C14:0 3.56 3.43 NS 0.039 4.24 4.10 NS 0.145 1.45 1.44 NS 0.011 

C16:0 13.42 13.72 NS 0.296 12.58 12.59 NS 0.444 10.75 10.40 NS 0.263 

C16:1ω7 4.80 4.43 NS 0.039 6.39 6.36 NS 0.158 2.47 2.37 NS 0.106 

C18:0 2.31 2.46 NS 0.025 2.83 2.61 NS 0.057 3.24 2.98 NS 0.094 

C18:1ω9 17.98 18.94 NS 0.720 14.94 14.83 NS 0.408 24.39 23.77 NS 0.313 

C18:2ω6 9.05 8.67 NS 0.131 8.17 8.02 NS 0.323 25.82 26.24 NS 0.332 

C18:3ω3 1.86 1.91 NS 0.020 1.29 1.31 NS 0.087 4.12 4.23 NS 0.088 

C20:1ω9 3.49 3.73 NS 0.086 1.42 1.53 NS 0.056 1.38 1.36 NS 0.123 

C20:5ω3 10.12 9.52 NS 0.165 10.41 10.32 NS 0.313 3.08 3.13 NS 0.137 

C22:1ω11 3.03 3.38 NS 0.101 1.25 1.41 NS 0.093 0.71 0.70 NS 0.074 

C22:5ω3 3.05 2.85 NS 0.126 7.66 7.37 NS 0.223 1.81 1.64 NS 0.054 

C22:6ω3 15.91 15.75 NS 0.807 15.83 16.90 NS 0.517 11.00 11.95 NS 0.362 

ΣSFA 20.17 20.47 NS 0.299 20.72 20.32 NS 0.629 16.00 15.35 NS 0.342 

ΣMUFA 33.43 34.68 NS 0.883 27.99 28.07 NS 0.410 31.70 30.94 NS 0.556 

ΣPUFAω6 11.40 10.89 NS 0.175 10.59 10.44 NS 0.315 29.68 30.17 NS 0.236 

ΣPUFAω3 33.53 32.67 NS 1.019 38.06 38.71 NS 0.150 21.83 22.76 NS 0.347 

ΣPUFA 46.39 44.85 NS 1.178 51.29 51.60 NS 0.247 52.30 53.71 NS 0.330 

C12:0, C13:0, C14:1ω5, C15:0, C15:1, C16:1ω9; C16:2ω4, C16:3ω4, C16:4ω1, C17:0, 

C17:1, C18:1ω7, C18:3ω6, C18:3ω4, C18:4ω1, C20:0, C20:1ω11, C20:1ω7, C20:2ω6, 

C20:3ω6, C20:3ω3, C20:4ω6, C20:4ω3, C21:0, C21:5ω3, C22:0, C22:1ω9, C22:1ω7, 

C22:2ω6, C22:4ω6, C22:5ω6, C24:0, and C24:1ω9 were also detected but not reported 

because in percentage <3%. They were utilized to calculate Σ. 
1
 SEM: Standard Error of the Mean 

NS, Not Significant (p>0.05). 

Data were obtained from three replicates. 

  



181 
 

Table 3. Primary (CD, mmol Hp/kg sample) and secondary (TBARS, mg MDA/kg sample) 

oxidation products in European sea bass, gilthead sea bream, and rainbow trout fillets 

(WF), and minced (FB) and MSM burger at T0 and after 90 days of frozen storage (T90). 

  
Treatment (T)     Storage (S) 

TxS 
Species Parameter WF FB MSM SEM

1
   T0 T90 SEM 

European 
sea bass 

CD 0.42 0.39 0.46 0.04   0.43 0.41 0.05 N.S. 

TBARS 1.10
b
 1.37

b
 2.34

a
 0.28 

 
1.11

b
 2.09

a
 0.23 N.S. 

Gilthead 
sea 

bream 

CD 0.44
a
 0.37

ab
 0.34

b
 0.03   0.35

b
 0.42

a
 0.025 N.S. 

TBARS 2.72
c
 5.40

b
 7.26

a
 0.575   3.72

b
 6.53

a
 0.469 N.S. 

Rainbow 
trout 

CD 0.22 0.25 0.21 0.017   0.21 0.24 0.014 N.S. 

TBARS 3.15 3.09 2.11 0.732 
 

0.72
b
 4.85

a
 0.589 N.S. 

1 
SEM: Standard Error of the Mean 

Within criterion, a, b, c: p<0.05; 

NS, Not Significant (p>0.05). 

Data were obtained from three replicates. 
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Table 4. Antioxidant capacity, expressed as ABTS (mmol/kg sample), DPPH (mmol/kg 

sample), and FRAP (mmol/kg sample), in European sea bass, gilthead sea bream, and 

rainbow trout fillets (WF), minced (FB) and MSM burger at T0 and after 90 (T90) days 

of frozen storage. 

  
Treatment (T)     Storage (S) 

TxS 
Species Parameter WF FB MSM SEM

1
   T0 T90 SEM 

European 
sea bass 

ABTS 0.28
a
 0.21

b
 0.27

a
 0.02 

 
0.28

a
 0.23

b
 0.017 0.00 

DPPH 0.12
a
 0.13

a
 0.07

b
 0.00 

 
0.11

a
 0.10

b
 0.003 0.00 

FRAP 0.22 0.21 0.21 0.02   0.23
a
 0.20

b
 0.013 0.00 

Gilthead 
sea 

bream 

ABTS 0.15
b
 0.13

b
 0.21

a
 0.01 

 
0.11

b
 0.22

a
 0.009 0.00 

DPPH 0.07
a
 0.06

b
 0.02

c
 0.00 

 
0.03

b
 0.08

a
 0.002 0.00 

FRAP 0.13 0.15 0.11 0.01   0.15
a
 0.11

b
 0.010 0.18 

Rainbow 
trout 

ABTS 0.48
a
 0.39

b
 0.29

c
 0.02 

 
0.34

b
 0.43

a
 0.016 0.00 

DPPH 0.09
a
 0.08

a
 0.05

b
 0.01 

 
0.08

a
 0.06

b
 0.004 0.00 

FRAP 0.21
a
 0.20

a
 0.13

b
 0.02   0.22

a
 0.12

b
 0.013 0.09 

1 
SEM: Standard Error of the Mean 

Within criterion, a, b, c: p<0.05; 

NS, Not Significant (p>0.05). 

Data were obtained from three replicates.  
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6. CONCLUSIONS 

 

The overall aim of this study was to assess the effects of different extrinsic 

factors (killing method, storage, mechanical separation technique) on lipid oxidative 

stability of fillets from different farmed species. 

In conclusion, the present PhD thesis showed that: 

 killing method (asphyxia) affect both the formation of lipid oxygenated 
metabolites and the oxidative stability of farmed rainbow trout. Asphyxia is 
more stressful than percussion slaughtered method, as revealed by K-value. 
During such as stress, a greater enzymatic activity may be discerned thank to 
the higher concentration of hydroperoxides and other lipid oxygenated 
metabolites, especially EPA-derived. Noticeably, 12-HpEPE/15-HpEPE and 
PGE3/PGD3, EPA-derived metabolites, could be considered as good markers of 
stress because they were highly produced under stress conditions (asphyxia) 
while they were not detected in the percussion group. In addiction stress at 
slaugher seemed to shift the enzymatic activity (LOX and COX) torwards EPA 
instead of ARA, producing less inflammatory species. Therefore, the high 
presence of pro-oxidant molecules, as Hp, affects the oxidative stability of the 
asphyxiated rainbow trout flesh during the frozen storage, leading as result to a 
decrease of the shelf life of frozen trout fillets in terms of rancidity. 
 

 New stunning/killing procedure, such as carbon monoxide utilisation, can be 
apply without any detrimental effect on oxidative stability of farmed Atlantic 
salmon. Cholesterol shows to be highly prone to be oxidatise. 

 

 The mechanical separation treatment of fillets from European sea bass, gilthead 
sea bream, and rainbow trout can be utilised in order to exploit no marketable 
fish, such as the undersized or damaged ones. Derived meat (MSM) has a high 
quality, especially in term of nutritional value. Its fatty acids composition indeed 
resembles that of whole fish. However, mechanical process can induce oxidative 
damages. Use of washing or add antioxidant could limit them, but further 
investigations are needed. 

 

 Storage confirms to be a critical step during the whole supply fish chain. 
Particularly, highest the storage temperature highest lipid oxidation values. 
Frozen storage should be suggested in order to preserve the quality of fish fillets 
and avoid lipid losses. 
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Formation of lipid mediators in farmed rainbow trout under stress 
conditions 

Secci, G., Firenze/IT, Dasilva, G., Vigo/ES, Parisi, G., Firenze/IT, Medina, I., Vigo/ES 

Department of Agri-Food Production and Environmental Sciences, Section of Animal 
Sciences, University of Florence, Firenze, Italy  

Oral Communication at EUROFED LIPID CONGRESS – Florence, 27
th

-30
th

 Sept. 2015 

 
 Fish response to stress might resemble inflammatory process in which a series 
of derived oxidation metabolites from PUFAs seemed to play an important role. 
Recently, many authors focused on the connection between stress and eicosanoids 
production in different tissues of fish. C20 long chain fatty acids such as arachidonic 
(ARA, C20:4n6), eicosapentaenoic (EPA, C20:5n3), and dihomo-gamma-linolenic (DGLA, 
C20:3n6) are precursors of many lipid mediators: 4-series leukotrienes (LT), lipoxine 
(LX), 12-hydroxy-eicosatetraenoic acid (12-HETE), 12-hydroxy-eicosapentaenoic acid 
(12-HEPE), 2-series prostaglandins (PG), and tromboxanes (TX). As well, DHA is the 
precursor of 14S-hydroxy-docosanoids (14-HDoHE), 17S-hydroxy-docosanoids (17-
HdOHE), neuroprotectin D1, resolvin D5, resolvin D1, and resolvin D2. 
 The present work focused on the formation of lipid metabolites in plasma of 
farmed rainbow trout (Oncorhynchuss mykiss) subjected to stress conditions by means 
of a slaughtering under asphyxia. Control trout were a set of non stressed fish using 
percussion slaughter method. The lipid metabolites were studied through the 
determination of several eicosanoids and docosanoids, such as prostaglandins, 
leukotrienes, tromboxanes, isoprostanes, resolvins, hydroxides, hydroperoxides, 
coming from EPA, ARA, and DHA, using SPE extraction prior to LC-MS/MS analysis. 
The present trial revealed that stress during slaughter widely affected the formation of 
lipid oxygenated metabolites. Lipid mediators were found highly concentrated in 
stressed fish rather than in control. Metabolic biomarkers of stress were identified as 
well. The results suggest that suffering during slaughter affected the enzymatic 
oxidative response of fish shifted eicosanoid synthesis towards less inflammatory 
species derived from EPA. Additionally, the larger endogenous concentration of lipid 
oxygenated products formed can affect the stability of the final fish flesh leading a 
major susceptibility to oxidation. 


