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a b s t r a c t

The decomposition in normal modes of a scalar field conformally
coupled to an AdS black hole leads to a Heun equation with
simple coefficients thanks to conformal invariance. By applying the
Damour–Ruffini method we can relate the critical exponent of the
radial part at the horizon surface to the Hawking radiation of scalar
particles.
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1. Introduction

An important application of quantum gravity has been the discover of the relation between black
holes and thermodynamics. At large distance from the curvature singularity of the black hole, the
gravitational effects are so weak that calculations can be based on the technique of quantum field
theory on curved space.

In this way Hawking in 1974 proved that black holes can emit any kind of particle (transforming a
pure state into a mixed state), similarly to the black-body radiation [1]. The Hawking radiation loses
all the information about the black hole interior, apart from essential parameters like mass, angular
momentum and charge (the so called no-hair theorem).

Afterwards many alternative methods have been proposed for a better understanding of this
phenomenon:
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(i) the tunnellingmethod; the Hawking radiation can be viewed as a tunnelling process, where the
barrier is created by the tunnelling particle itself. To calculate this process, related to the imaginary
part of the action, two methods have been developed, one known as null-geodesic method (Parikh
and Wilczek [2]) and the other as Hamilton–Jacobi method (Angheben and others [3]).

(ii) the classical Damour–Ruffini method [4], that will be reviewed in the present article. To apply
this method it is necessary studying the solutions of the Klein–Gordon equation in presence of a black
hole, considered as a background.

Our contribution is deriving the exact solution of the Klein–Gordon equation for a scalar field
conformally coupled to an AdS black hole in terms of known functions. In particular we have been
to simplify the radial part in terms of a Heun function with elementary coefficients. An essential role
for simplifying the solution is played by the conformally invariant coupling with the gravitational
field.

In the AdS case we must avoid introducing an explicit mass term for the scalar field, which would
break conformal invariance, because there is a spontaneous generation of a mass term from the
coupling between the AdS curvature and the scalar field. Thanks to the Damour–Ruffini method one
can verify that the Hawking radiation also arises in this case.

Moreover the exact solution of the wave function in presence of an AdS black hole may be useful
for a better understanding of the gauge/gravity duality (the AdS/CFT correspondence) that in recent
years has received a lot of attention in literature.

2. Properties of the AdS black hole

The AdS black hole metric can be expressed in the following form:

ds2 =
Q (r)
r2

dt2 − r2


dr2

Q (r)
+ dθ2 + sin2 θ dφ2


(2.1)

where

Q (r) =
|Λ|

3
r

r3 +

3
|Λ|

r −
6m
|Λ|


. (2.2)

This metric satisfies the Einstein equations with negative cosmological constant outside the
singularity r = 0 and in particular

R = −4|Λ|. (2.3)

The non trivial roots of Q (r), that are contained in the third degree polynomial equation, can be
explicitly computed with the Cardano formula:
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1
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|Λ|

(α − α−1) =
6m

1 + α2 + α−2
< 2m
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1
2
r1 + i


3
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1
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(2.4)

where

α = (3m


|Λ| +


1 + 9m2|Λ|)

1
3 > 1. (2.5)

In the limitΛ → 0 the complex roots r2 and r3 go to infinity and they decouple from the solution,
while r1, the only positive real root, defines the event horizon.
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The gravitational acceleration on the black hole horizon surface r1 and the Hawking temperature
can be computed in terms of the α parameter

k1 =
Q ′(r1)
2r21

=
|Λ|

6
(r1 − r2)(r1 − r3)

r1
=

1 + |Λ|r21
2r1

=
1 + α4

+ α−4

12m
>

1
4m

T1 =
k1
2π
. (2.6)

3. Conformal invariance

There are many ways to couple a scalar field to gravitation; they can be parameterized by ϵ in the
following action:

S =


dDx


|g|

1
2


gµν∂µφ∂νφ − ϵ Rφ2 . (3.1)

The corresponding equation of motion is

(� + ϵR)φ = 0 � = |g|−
1
2 ∂µ(|g|

1
2 gµν∂ν). (3.2)

Two cases are particularly relevant:
(i) ϵ = 0 minimal coupling;
(ii) ϵ =

D−2
4(D−1) conformal invariant coupling. In particular we will discuss in the following the case

ϵ =
1
6 (D = 4), where the action (3.1) is invariant under the following conformal transformations

g̃µν = Ω2(x)gµν

R̃ = Ω−2(x)[R + 2(D − 1)� lnΩ + (D − 1)(D − 2) gαβ∂α(lnΩ)∂β(lnΩ)]

φ̃ = Ω
2−D
2 φ. (3.3)

Note that in (3.1) we have omitted an explicit mass term to protect the conformal invariance of the
action, which is physically important.

4. Equations of motion for the scalar field

The equation of motion for a scalar field in the background of an AdS black hole is given by (for the
Kerr–Newman case see [5])

1
√

|g|
∂µ(gµν


|g|∂ν)ψ +

1
6
Rψ = 0

R = −4|Λ|. (4.1)

By substituting the various components of the gravitational field (Eq. (2.1)) we obtain
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This equation can be resolved by separating the variables:

ψ = R(r)S(θ)eimφe−iωt

∂2r R(r)+ (∂r lnQ (r))∂rR(r)+
ω2r4

Q 2(r)
R(r)+

1
Q (r)


λ+

2
3
|Λ|r2


R(r) = 0

1
sin θ
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m2

sin2 θ
S = λS. (4.3)

The angular equation is equivalent to the angular momentum equation of quantum mechanics.
In this article we will discuss in detail the solution of the radial equation. We can map the two real

solutions of the equation Q (r) = 0 into the points 0, 1 through the following transformation

z =
r(r1 − r3)
(r − r3)r1

. (4.4)

The other two finite singularities of Q (r) are mapped by the transformation (4.4) into the points

r2 → z = ξ =
r2(r1 − r3)
(r2 − r3)r1

r3 → z = ∞ (4.5)

while the singularity at the infinity r = ∞ is mapped into the finite point
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. (4.6)

Thanks to the multiple identity
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we can recast the radial equation in the z variable:
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where

ω1 =
3ω

|Λ|η(r1 − r2)
ω2 = −ξω1. (4.9)

Apparently this equation depends on the singularity z = η (which controls the behaviour at
infinity in the r coordinate), but if we put this differential equation into the normal form, the whole
dependence from z − η is automatically removed, thanks to the conformal invariance of the coupling
with the gravitational field (the original reference is [6] and afterwards [7–9]):

R(z) = e−
1
2


P(z)dzZ(z)
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dz2
Z(z)+ Q̃ (z)Z(z) = 0. (4.10)
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where
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This equation can be connected with the well known Heun equation
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After rewriting this equation in the normal form, we must identify
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By adding the Heun condition

α + β = γ + δ + ϵ − 1 (4.15)

we have the following table of identifications

α = γ = 1
β = 1 + 2i(ω1 + ω2)

δ = 1 + 2iω1

ϵ = 1 + 2iω2

q =
ξ

η
−

3λ
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5. Hawking temperature

Let us recall that

R(z) = e−
1
2


P(z)dzZ(z) =

z − η
√
z(z − 1)(z − ξ)

Z(z). (5.1)

Let us note that the two solutions for R(r) in our case behave as 1/r for large r and are both not
normalizable (in and out states). The structure of the solution changes drastically in the unphysical
region without conformal invariance, with some bizarre behaviour at infinity in the r coordinate.

Near the singularity z = 1 the behaviour of the wave function is (introducing the time factor)

Z(z) = c1(z − 1)
1
2 +iω1 + c2(z − 1)

1
2 −iω1

ψ(z) = c1e−iωt(z − 1)iω1 + c2e−iωt(z − 1)−iω1 . (5.2)
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We can relate the critical exponent ω1 (Eq. (4.9))

ω1 =
ω

2k1
(5.3)

to k1, the gravitational acceleration at the black hole horizon surface, and therefore to the Hawking
temperature. At the horizon surface the ingoing and outgoing solutions are parameterized by

ψin = e−iωt(r − r1)
−i ω2k1

ψout(r > r1) = e−iωt(r − r1)
i ω2k1 . (5.4)

To simplify this discussion we can introduce the tortoise coordinate defined in general as

dr∗ =
r2

Q (r)
dr. (5.5)

We can integrate this equation around r ∼ r1

r∗ =
1
2k1

ln(r − r1) (5.6)

where the wave equation reduces to
−
∂2

∂t2
+
∂2

∂r2
∗


ψ(r∗, t) = 0. (5.7)

The ingoing and outgoing wave functions are therefore given by

ψ in
= e−iω(t+r∗) ψout

= e−iω(t−r∗). (5.8)
By changing from the problematic time coordinate to the well behaved Eddington coordinate

ν = t + r∗ the solutions discussed in (5.4) are re-obtained
ψ in

= e−iων

ψout
= e−iωνe2iωr∗ = e−iων(r − r1)

i ωk1 . (5.9)
While the ingoingwave function is analytic the outgoingwave function has a logarithmic singular-

ity at the horizon.Wewill use these solutions to investigate the Hawking radiation for scalar particles.

6. Damour–Ruffini method

To understand the decay rate it is necessary to build a damped part in the outgoing wave function
(Damour–Ruffini method). The outgoing wave function is known only for r > r1 therefore in the
region outside the event horizon. A simple analytic continuation in the internal region gives:

(r − r1) → e−iπ (r1 − r)

ψout(r < r1) = e−iων (r1 − r)i
ω
k1 e

π
k1
ω
. (6.1)

Since the wave function is not analytic, the continuation produces a damping factor and the
scattering probability of the scalar wave at the event horizon is given by

Γ1 =

ψout(r > r1)
ψout(r < r1)

2 = e−
2π
k1
ω
. (6.2)

By introducing a normalization constantNω , the normalization condition of thewave function fixes
the behaviour of Nω:

|Nω|2 =
1

e
2π
k1
ω

− 1
=

1

e
h̄ω

kBT1 − 1
. (6.3)

This formula implies that the Hawking radiation spectrum for the scalar particles has a thermal
character analogous to the black-body spectrum with Hawking temperature T1.
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7. Conclusions

In this paper we have presented the decomposition in normal modes of a scalar field conformally
coupled to anAdS black hole. In particular the radial part leads to a differential equationwith four finite
singularity and the singularity at infinity. This scheme resembles the isomonodromy problem [9],
however there is an important difference in our case. In fact one of the four finite singularities can be
removed by simply choosing a conformal invariant coupling between the scalar field and the black
hole. The resulting Heun equation (with only three finite singularities) has very simple coefficients
and the critical exponent at the horizon singularity can be directly related to the Hawking radiation.

We expect that this study can be generalized to the case of integrable 2 + 1 gravity, in which case
black holes exist only for negative cosmological constant. Our study may have possible connections
with the AdS/CFT correspondence and may be useful to study non-perturbative effects of quantum
gravity.
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