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Abstract. A multiparty session forms a unit of structured interactions among
many participants which follow a prescribed scenario specified as a global type
signature. This paper develops, besides a more traditional communication type
system, a novel static interaction type system for global progress in dynamically
interleaved multiparty sessions.

1 Introduction

Widespread use of message-based communication for developing network applications
to combine numerous distributed services has provoked urgent interest in structuring
series of interactions to specify and implement program communication-safe software.
The actual development of such applications still leaves to the programmer much of
the responsibility in guaranteeing that communication will evolve as agreed by all the
involved distributed peers. Multiparty session type discipline proposed in [12] offers a
type-theoretic framework to validate a message-exchange among concurrently running
multiple peers in the distributed environment, generalising the existing binary session
types [10,11]; interaction sequences are abstracted as a global type signature, which
precisely declares how multiple peers communicate and synchronise with each other.

The multiparty sessions aim to retain the powerful dynamic features from the origi-
nal binary sessions, incorporating features such as recursion and choice of interactions.
Among features, session delegation is a key operation which permits to rely on other
parties for completing specific tasks transparently in a type safe manner. When this
mechanism is extended to multiparty interactions engaged in two or more specifica-
tions simultaneously, further complex interactions can be modelled. Each multiparty
session following a distinct global type can be dynamically interleaved by other ses-
sions at runtime either implicitly via communications belonging to different sessions or
explicitly via session delegation.

Previous work on multiparty session types [12] has provided a limited progress prop-
erty ensured only within a single session, ignoring this dynamic nature. More precisely,
although the previous system assures that the multiple participants respect the protocol,
by checking the types of exchanged messages and the order of communications in a
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single session, it cannot guarantee a global progress, i.e, that a protocol which merges
several global scenarios will not get stuck in the middle of a session. This limitation
prohibits to ensure a successful termination of a transaction, making the framework
practically inapplicable to a large size of dynamically reconfigured conversations.

This paper develops, besides a more traditional communication type system (§ 3),
a novel static interaction type system (§ 4) for global progress in dynamically inter-
leaved multiparty, asynchronous sessions. High-level session processes equipped with
global signatures are translated into low-level processes which have explicit senders
and receivers. Type-soundness of low-level processes is guaranteed against the local,
compositional communication type system.

The new calculus for multiparty sessions offers three technical merits without sac-
rificing the original simplicity and expressivity in [12]. First it avoids the overhead of
global linearity-check in [12]; secondly it provides a more liberal policy in the use of
variables, both in delegation and in recursive definitions; finally it implicitly provides
each participant of a service with a runtime channel indexed by its role with which he
can communicate with all the other participants, permitting also broadcast in a natural
way. The use of indexed channels, moreover, permits to define a light-weight interac-
tion type system for global progress.

The interaction type system automatically infers causalities of channels for the low
level processes, ensuring the entire protocol, starting from the high-level processes
which consist of multiple sessions, does not get stuck at intermediate sessions also
in the presence of implicit and explicit session interleaving.

Full definitions and the proofs are at http://www.di.unito.it/ dezani/papers/bcdddy.pdf

2 Syntax and Operational Semantics

Merging Two Conversations: Three-Buyer Protocol. We introduce our calculus
through an example, the three-buyer protocol, extending the two-buyer protocol from
[12], which includes the new features, session-multicasting and dynamically merging
of two conversations. The overall scenario, involving a Seller (S), Alice (A), Bob (B)
and Carol (C), proceeds as follows.

1. Alice sends a book title to Seller, then Seller sends back a quote to Alice and Bob.
Then Alice tells Bob how much she can contribute.

2. If the price is within Bob’s budget, Bob notifies both Seller and Alice he accepts,
then sends his address, and Seller sends back the delivery date.

3. If the price exceeds the budget, Bob asks Carol to collaborate together by establish-
ing a new session. Then Bob sends how much Carol must pay, then delegates the
remaining interactions with Alice and Seller to Carol.

4. If the rest of the price is within Carol’s budget, Carol accepts the quote and notifies
Alice, Bob and Seller, and continues the rest of the protocol with Seller and Alice
transparently, as if she were Bob. Otherwise she notifies Alice, Bob and Seller to
quit the protocol.

Then multiparty session programming consists of two steps: specifying the intended
communication protocols using global types, and implementing these protocols using
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processes. The specifications of the three-buyer protocol are given as two separated
global types: one is Ga among Alice, Bob and Seller and the other is Gb between Bob
and Carol. We write principals with legible symbols though they will actually be coded
by numbers: in Ga we have S = 3, A = 1 and B = 2, while in Gb we have B = 2, C = 1.

Ga = Gb =
1. A −→ S : 〈string〉.
2. S −→ {A,B} : 〈int〉.
3. A −→ B : 〈int〉.
4. B −→ {S,A} : {ok :B −→ S : 〈string〉.
5. S −→ B : 〈date〉;end
6. quit : end}

1. B −→ C : 〈int〉.
2. B −→ C : 〈T 〉.
3. C −→ B : {ok : end, quit : end}.

T =
⊕({S,A},

{ok :!〈S,string〉; ?〈S,date〉;end,
quit : end})

The types give a global view of the two conversations, directly abstracting the scenario
given by the diagram. In Ga, line 1 denotes A sends a string value to S. Line 2 says S
multicasts the same integer value to A and B and line 3 says that A sends an integer to
B. In lines 4-6 B sends either ok or quit to S and A. In the first case B sends a string to S
and receives a date from S, in the second case there are no further communications.

Line 2 in Gb represents the delegation of the capability specified by the action type
T of channels (formally defined later) from B to C (note that S and A in T concern the
session on a).

We now give the code, associated to Ga and Gb, for S, A, B and C in a “user” syntax
formally defined in the following section:

S = ā[3](y3).y3?(title);y3!〈quote〉;y3&{ok : y3?(address);y3!〈date〉;0, quit : 0}
A = a[1](y1).y1!〈"Title"〉;y1?(quote);y1!〈quote div 2〉;y1&{ok : 0, quit : 0}
B = a[2](y2).y2?(quote);y2?(contrib);

if (quote - contrib < 100) then y2 ⊕ok;y2!〈"Address"〉;y2?(date);0
else b̄[2](z2).z2!〈quote - contrib - 99〉;z2!〈〈y2〉〉;z2&{ok : 0, quit : 0}

C = b[1](z1).z1?(x);z1?((t));
if (x < 100) then z1 ⊕ok;t ⊕ok;t!〈"Address"〉; t?(date);0
else z1 ⊕quit;t ⊕quit;0

Session name a establishes the session corresponding to Ga. S initiates a session involv-
ing three bodies as third participant by ā[3](y3): A and B participate as first and second
participants by a[1](y1) and a[2](y2), respectively. Then S, A and B communicate using
the channels y3, y1 and y2, respectively. Each channel yp can be seen as a port connect-
ing participant p with all other ones; the receivers of the data sent on yp are specified by
the global type (this information will be included in the runtime code). The first line of
Ga is implemented by the input and output actions y3?(title) and y1!〈"Title"〉. The last
line of Gb is implemented by the branching and selection actions z2&{ok : 0, quit : 0}
and z1 ⊕ok, z1 ⊕quit.

In B, if the quote minus A’s contribution exceeds 100e (i.e. quote - contrib ≥ 100),
another session between B and C is established dynamically through shared name b.
The delegation is performed by passing the channel y2 from B to C (actions z2!〈〈y2〉〉
and z1?((t))), and so the rest of the session is carried out by C with S and A. We can
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Table 1. Syntax for user-defined processes

P ::= ū[n](y).P Multicast Request
| u[p](y).P Accept
| y!〈e〉;P Value sending
| y?(x);P Value reception
| y!〈〈z〉〉;P Session delegation
| y?((z));P Session reception
| y⊕ l;P Selection
| y&{li : Pi}i∈I Branching

u ::= x | a Identifier
v ::= a | true | false Value

| if e then P else Q Conditional
| P | Q Parallel
| 0 Inaction
| (νa)P Hiding
| def D in P Recursion
| X〈e,y〉 Process call

e ::= v | x
| e and e′ | not e . . . Expression

D ::= X(x,y) = P Declaration

further enrich this protocol with recursive-branching behaviours in interleaved sessions
(for example, C can repeatedly negotiate the quote with S as if she were B). What we
want to guarantee by static type-checking is that the whole conversation between the
four parties preserves progress as if it were a single conversation.

Syntax for Multiparty Sessions. The syntax for processes initially written by the user,
called user-defined processes, is based on [12]. We start from the following sets: service
names, ranged over by a,b, . . . (representing public names of endpoints), value vari-
ables, ranged over by x,x′, . . . , identifiers , i.e., service names and variables, ranged over
by u,w, . . . , channel variables, ranged over by y,z,t . . . , labels, ranged over by l, l′, . . .
(functioning like method names or labels in labelled records); process variables, ranged
over by X ,Y, . . . (used for representing recursive behaviour). Then processes, ranged
over by P,Q . . . , and expressions, ranged over by e,e′, . . . , are given by the grammar in
Table 1.

For the primitives for session initiation, ū[n](y).P initiates a new session through an
identifier u (which represents a shared interaction point) with the other multiple par-
ticipants, each of shape u[p](y).Qp where 1 ≤ p ≤ n − 1. The (bound) variable y is the
channel used to do the communications. We call p, q,... (ranging over natural numbers)
the participants of a session. Session communications (communications that take place
inside an established session) are performed using the next three pairs of primitives: the
sending and receiving of a value; the session delegation and reception (where the for-
mer delegates to the latter the capability to participate in a session by passing a channel
associated with the session); and the selection and branching (where the former chooses
one of the branches offered by the latter). The rest of the syntax is standard from [11].

Global Types. A global type, ranged over by G,G′, .. describes the whole conversation
scenario of a multiparty session as a type signature. Its grammar is given below:

Global G ::= p → {pk}k∈K : 〈U〉.G′ Exchange U ::= S | T
| p → {pk}k∈K : {li : Gi}i∈I Sorts S ::= bool | . . . | G
| μt.G | t | end

We simplify the syntax in [12] by eliminating channels and parallel compositions, while
preserving the original expressivity (see § 5).



422 L. Bettini et al.

Table 2. Runtime syntax: the other syntactic forms are as in Table 1

P ::= c!〈{pk}k∈K ,e〉;P Value sending
| c?(p,x);P Value reception
| c!〈〈p,c′〉〉;P Session delegation
| c?((q,y));P Session reception

| c⊕〈{pk}k∈K , l〉;P Selection
| c&(p,{li : Pi}i∈I) Branching
| (νs)P Hiding session
| s : h Named queue
| ...

c ::= y | s[p] Channel
m ::= (q,{pk}k∈K ,v) | (q,p,s[p′]) | (q,{pk}k∈K , l) Message in transit
h ::= m· h | � Queue

The global type p → {pk}k∈K : 〈U〉.G′ says that participant p multicasts a mes-
sage of type U to participants pk (k ∈ K) and then interactions described in G′ take
place. Exchange types U,U ′, ... consist of sorts types S,S′, . . . for values (either base
types or global types), and action types T,T ′, . . . for channels (discussed in §3). Type
p→ {pk}k∈K : {li : Gi}i∈I says participant p multicasts one of the labels li to participants
pk (k ∈ K). If l j is sent, interactions described in G j take place. Type μt.G is a recur-
sive type, assuming type variables (t, t′, . . . ) are guarded in the standard way, i.e. type
variables only appear under some prefix. We take an equi-recursive view of recursive
types, not distinguishing between μt.G and its unfolding G{μt.G/t} [18] (§21.8). We
assume that G in the grammar of sorts is closed, i.e., without free type variables. Type
end represents the termination of the session. We often write p → p′ for p → {p′}.

Runtime Syntax. User defined processes equipped with global types are executed
through a translation into runtime processes. The runtime syntax (Table 2) differs from
the syntax of Table 1 since the input/output operations (including the delegation ones)
specify the sender and the receiver, respectively. Thus, c!〈{pk}k∈K ,e〉 sends a value to
all the participants in {pk}k∈K ; accordingly, c?(p,x) denotes the intention of receiving a
value from the participant p. The same holds for delegation/reception (but the receiver
is only one) and selection/branching.

We call s[p] a channel with role: it represents the channel of the participant p in
the session s. We use c to range over variables and channels with roles. As in [12], in
order to model TCP-like asynchronous communications (message order preservation
and sender-non-blocking), we use the queues of messages in a session, denoted by h;
a message in a queue can be a value message, (q,{pk}k∈K ,v), indicating that the value
v was sent by the participant q and the recipients are all the participants in {pk}k∈K ;
a channel message (delegation), (q,p′,s[p]), indicating that q delegates to p′ the role
of p on the session s (represented by the channel with role s[p]); and a label message,
(q,{pk}k∈K , l) (similar to a value message). The empty queue is denoted by �. With
some abuse of notation we will write h ·m to denote that m is the last element included
in h and m · h to denote that m is the head of h. By s : h we denote the queue h of the
session s. In (νs)P all occurrences of s[p] and the queue s are bound. Queues and the
channel with role are generated by the operational semantics (described later).

We present the translation of Bob (B) in the three-buyer protocol with the runtime
syntax: the only difference is that all input/output operations specify also the sender and
the receiver, respectively.
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B = a[2](y2).y2?(3,quote);y2?(1,contrib);
if (quote - contrib < 100) then y2 ⊕〈{1,3},ok〉;y2!〈{3},"Address"〉;y2?(3,date);0
else b̄[2](z2).z2!〈{1},quote - contrib - 99〉;z2!〈〈1,y2〉〉;z2&(1,{ok : 0, quit : 0}).

It should be clear from this example that starting from a global type and user-defined
processes respecting the global type it is possible to add sender and receivers to each
communication obtaining in this way processes written in the runtime syntax.

We call pure a process which does not contain message queues.

Operational Semantics. Table 3 shows the basic rules of the process reduction relation
P −→ P′. Rule [Link] describes the initiation of a new session among n participants that
synchronises over the service name a. The last participant ā[n](yn).Pn, distinguished by
the overbar on the service name, specifies the number n of participants. For this rea-
son we call it the initiator of the session. Obviously each session must have a unique
initiator. After the connection, the participants will share the private session name s,
and the queue associated to s, which is initialized as empty. The variables yp in each
participant p will then be replaced with the corresponding channel with role, s[p]. The
output rules [Send], [Deleg] and [Label] push values, channels and labels, respectively,
into the queue of the session s (in rule [Send], e ↓ v denotes the evaluation of the expres-
sion e to the value v). The rules [Recv], [Srec] and [Branch] perform the corresponding
complementary operations. Note that these operations check that the sender matches,
and also that the message is actually meant for the receiver (in particular, for [Recv], we
need to remove the receiving participant from the set of the receivers in order to avoid
reading the same message more than once).

Processes are considered modulo structural equivalence, denoted by ≡, and defined
by adding the following rules for queues to the standard ones [17]:

s : h1 · (q,{pk}k∈K ,z) · (q′,{pk}k∈K ′ ,z′) ·h2 ≡ s : h1 · (q′,{pk}k∈K ′ ,z′) · (q,{pk}k∈K ,z) ·h2

if K ∩K′ = /0 or q = q′

s : (q, /0,v) ·h ≡ s : h s : (q, /0, l) ·h ≡ s : h

where z ranges over v, s[p] and l. The first rule permits rearranging messages when the
senders or the receivers are not the same, and also splitting a message for multiple re-
cipients. The last two rules garbage-collect messages that have already been read by all
the intended recipients. We use −→∗ and −→ with the expected meanings.

Table 3. Selected reduction rules

a[1](y1).P1 | ... | ā[n](yn).Pn −→ (νs)(P1{s[1]/y1} | ... | Pn{s[n]/yn} | s : �) [Link]

s[p]!〈{pk}k∈K ,e〉;P | s : h −→ P | s : h · (p,{pk}k∈K ,v) (e↓v) [Send]

s[p]!〈〈q,s′[p′]〉〉;P | s : h −→ P | s : h · (p,q,s′[p′]) [Deleg]

s[p]⊕〈{pk}k∈K , l〉;P | s : h −→ P | s : h · (p,{pk}k∈K , l) [Label]

s[p j]?(q,x);P | s : (q,{pk}k∈K ,v) ·h −→ P{v/x} | s : (q,{pk}k∈K\ j,v) ·h ( j ∈ K) [Recv]

s[p]?((q,y));P | s : (q,p,s′[p′]) ·h −→ P{s′[p′]/y} | s : h [Srec]

s[p j]&(q,{li : Pi}i∈I) | s : (q,{pk}k∈K , li0) ·h −→ Pi0 | s : (q,{pk}k∈K\ j, li0) ·h
( j ∈ K) (i0 ∈ I) [Branch]
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3 Communication Type System

The previous section defines the syntax and the global types. This section introduces
the communication type system, by which we can check type soundness of the commu-
nications which take place inside single sessions.

Types and Typing Rules for Pure Runtime Processes. We first define the local types
of pure processes, called action types. While global types represent the whole protocol,
action types correspond to the communication actions, representing sessions from the
view-points of single participants.

Action T ::= !〈{pk}k∈K ,U〉;T send
| ?(p,U);T receive
| ⊕〈{pk}k∈K ,{li : Ti}i∈I〉 selection
| &(p,{li : Ti}i∈I) branching

| μt.T recursive
| t variable
| end end

The send type !〈{pk}k∈K ,U〉;T expresses the sending to all pk for k ∈ K of a value
or of a channel of type U , followed by the communications of T . The selection type
⊕〈{pk}k∈K ,{li : Ti}i∈I〉 represents the transmission to all pk for k ∈ K of a label li cho-
sen in the set {li | i ∈ I} followed by the communications described by Ti. The receive
and branching are dual and only need one sender. Other types are standard.

The relation between action and global types is formalised by the notion of projec-
tion as in [12]. The projection of G onto q (G � q) is defined by induction on G:

(p → {pk}k∈K : 〈U〉.G′) � q =

⎧
⎪⎨

⎪⎩

!〈{pk}k∈K ,U〉;(G′ � q) if q = p,

?(p,U);(G′ � q) if q = pk for some k ∈ K,

G′ � q otherwise.
(p → {pk}k∈K : {li : Gi}i∈I) � q =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⊕({pk}k∈K ,{li : Gi � q}i∈I) if q = p

&(p,{li : Gi � q}i∈I) if q = pk for some k ∈ K

G1 � q if q = p,q = pk∀k ∈ K and

Gi � q = G j � q for all i, j ∈ I.
(μt.G) � q = μt.(G � q) t � q = t end � q = end.

As an example, we list two of the projections of the global types Ga and Gb of the
three-buyer protocol:

Ga � 3 = ?〈1, string〉; !〈{1,2}, int〉;&(2,{ok :?〈2, string〉; !〈{2},date〉;end,quit : end})
Gb � 1 = ?〈2, int〉;?〈2,T 〉;⊕〈{2},{ok : end,quit : end}〉
where T = ⊕〈{1,3},{ok :!〈{3}, string〉;?〈3,date〉;end, quit : end}〉.

The typing judgements for expressions and pure processes are of the shape:

Γ � e : S and Γ � P � Δ

where Γ is the standard environment which associates variables to sort types, service
names to global types and process variables to pairs of sort types and action types; Δ is
the session environment which associates channels to action types. Formally we define:

Γ ::= /0 | Γ ,u : S | Γ ,X : S T and Δ ::= /0 | Δ ,c : T
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Table 4. Selected typing rules for pure processes

Γ � u : 〈G〉 Γ � P �Δ ,y : G � n n = pn(G)
�MCAST�

Γ � ū[n](y).P�Δ

Γ � u : 〈G〉 Γ � P�Δ ,y : G � p
�MACC�

Γ � u[p](y).P�Δ

Γ � e : S Γ � P �Δ ,c : T
�SEND�

Γ � c!〈{pk}k∈K ,e〉;P �Δ ,c : !〈{pk}k∈K ,S〉;T

Γ ,x : S � P�Δ ,c : T
�RCV�

Γ � c?(q,x);P�Δ ,c :?(q,S);T

Γ � P �Δ ,c : T
�DELEG�

Γ � c!〈〈p,c′〉〉;P�Δ ,c : !〈p,T ′〉;T,c′ : T ′

Γ � P �Δ ,c : T,y : T ′

�SREC�
Γ � c?((q,y));P�Δ ,c :?(q,T ′);T

Γ � P �Δ Γ � Q�Δ ′ dom(Δ)∩dom(Δ ′) = /0
�CONC�

Γ � P | Q�Δ ∪Δ ′

assuming that we can write Γ ,u : S only if u does not occur in Γ , briefly u ∈ dom(Γ )
(dom(Γ ) denotes the domain of Γ , i.e. the set of identifiers which occur in Γ ). We use
the same convention for X : S T and Δ .

Table 4 presents the interesting typing rules for pure processes. Rule �MCAST� per-
mits to type a service initiator identified by u, if the type of y is the n-th projection of the
global type G of u and the number of participants in G (denoted by pn(G)) is n. Rule
�MACC� permits to type the p-th participant identified by u, which uses the channel
y, if the type of y is the p-th projection of the global type G of u. The successive six
rules associate the input/output processes to the input/output types in the expected way.
Note that, according to our notational convention on environments, in rule �DELEG�
the channel which is sent cannot appear in the session environment of the premise,
i.e. c′ ∈ dom(Δ)∪{c}. Rule �CONC� permits to put in parallel two processes only if
their sessions environments have disjoint domains. For example we can derive:

� t ⊕〈{1,3},ok〉;t!〈{3},"Address"〉;t?(3,date);0 � {t : T}
where T = ⊕〈{1,3},{ok :!({3}, string);?〈3,date〉;end, quit : end}〉.
In the typing of the example of the three-buyer protocol the types of the channels y3 and
z1 are the third projection of Ga and the first projection of Gb, respectively. By applying
rule �MCAST� we can then derive a : Ga � S � /0. Similarly by applying rule �MACC�
we can derive b : Gb � C� /0.

Types and Typing Rules for Runtime Processes. We now extend the communication
type system to processes containing queues.

Message T ::= !〈{pk}k∈K ,U〉 message send
| ⊕〈{pk}k∈K , l〉 message selection
| T;T′ message sequence

Generalised T ::= T action
| T message
| T;T continuation

Message types are the types for queues: they represent the messages contained in the
queues. The message send type !〈{pk}k∈K ,U〉 expresses the communication to all pk for
k ∈ K of a value or of a channel of type U . The message selection type ⊕〈{pk}k∈K , l〉
represents the communication to all pk for k ∈ K of the label l and T;T′ represents
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sequencing of message types. For example ⊕〈{1,3},ok〉 is the message type for the
message (2,{1,3},ok).

A generalised type is either an action type, or a message type, or a message type fol-
lowed by an action type. Type T;T represents the continuation of the type T associated
to a queue with the type T associated to a pure process. An example of generalised type
is ⊕〈{1,3},ok〉; !〈{3}, string〉;?〈3,date〉;end.

We start by defining the typing rules for single queues, in which the turnstile � is
decorated with {s} (where s is the session name of the current queue) and the ses-
sion environments are mappings from channels to message types. The empty queue has
empty session environment. Each message adds an output type to the current type of
the channel which has the role of the message sender.

In order to type pure processes in parallel with queues, we need to use generalised
types in session environments and further typing rules. The more interesting rules are:

Γ � P � Δ
�GINIT�

Γ � /0 P� Δ

Γ �Σ P� Δ Γ �Σ ′ Q� Δ ′ Σ ∩Σ ′ = /0
�GPAR�

Γ �Σ∪Σ ′ P | Q� Δ ∗ Δ ′

where the judgement Γ �Σ P�Δ means that P contains the queues whose session names
are in Σ . Rule �GINIT� promotes the typing of a pure process to the typing of an arbitrary
process, since a pure process does not contain queues. When two arbitrary processes are
put in parallel (rule �GPAR�) we need to require that each session name is associated to
at most one queue (condition Σ ∩Σ ′ = /0). In composing the two session environments
we want to put in sequence a message type and an action type for the same channel with
role. For this reason we define the composition ∗ between local types as:

T ∗T′ =

⎧
⎨

⎩

T;T′ if T is a message type,
T′;T if T′ is a message type,
⊥ otherwise

where ⊥ represents failure of typing. We extend ∗ to session environments as expected:
Δ ∗ Δ ′ = Δ\dom(Δ ′)∪Δ ′\dom(Δ)∪{c : T ∗T′ | c : T ∈ Δ & c : T′ ∈ Δ ′}.

Note that ∗ is commutative, i.e. Δ ∗ Δ ′ = Δ ′ ∗ Δ . Also if we can derive message types
only for channels with roles, we consider the channel variables in the definition of ∗ for
session environments since we want to get for example {y : end} ∗ {y : end} = ⊥. An
example of derivable judgement is:

�{s} P | s : (3,{1,2},ok)� {s[3] : ⊕〈{1,2},ok〉; !〈{1}, string〉;?〈1,date〉;end}
where P = s[3]!〈{1},"Address"〉;s[3]?(1,date);0.

Subject Reduction. Since session environments represent the forthcoming communi-
cations, by reducing processes session environments can change. This can be formalised
as in [12] by introducing the notion of reduction of session environments, whose rules
are:

– {s[p] : !〈{pk}k∈K ,U〉; T,s[p j] :?(p,U);T ′} ⇒ {s[p] : !〈{pk}k∈K\ j,U〉; T,s[p j] : T ′} if j ∈ K
– {s[p] : T ;⊕〈{pk}k∈K ,{li : Ti}i∈I〉} ⇒ {s[p] : T ;⊕〈{pk}k∈K , li〉;Ti}
– {s[p] : ⊕〈{pk}k∈K , l〉;T,s[p j] : &(p,{li : Ti}i∈I)} ⇒ {s[p] : ⊕〈{pk}k∈K\ j, l〉;T,s[p j] : Ti}

if j ∈ K and l = li
– {s[p] : !〈 /0,U〉; T} ⇒ {s[p] : T} {s[p] : ⊕〈 /0, l〉;T} ⇒ {s[p] : T}
– Δ ∪Δ ′′ ⇒ Δ ′ ∪Δ ′′ if Δ ⇒ Δ ′.
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The first rule corresponds to the reception of a value or channel by the participant p j,
the second rule corresponds to the choice of the label li and the third rule corresponds to
the reception of the label l by the participant p j. The fourth and the fifth rules garbage
collect read messages.

Using the above notion we can state type preservation under reduction as follows:

Theorem 1 (Type Preservation). If Γ �Σ P � Δ and P −→∗ P′, then Γ �Σ P′ � Δ ′ for
some Δ ′ such that Δ ⇒∗ Δ ′.

Note that the communication safety [12, Theorem 5.5] is a corollary of this theorem.
Thus the user-defined processes with the global types can safely communicate since
their runtime translation is typable by the communication type system.

4 Progress

This section studies progress: informally, we say that a process has the progress property
if it can never reach a deadlock state, i.e., if it never reduces to a process which contains
open sessions (this amounts to containing channels with roles) and which is irreducible
in any inactive context (represented by another inactive process running in parallel).

Definition 1 (Progress). A process P has the progress property if P −→∗ P′ implies
that either P′ does not contain channels with roles or P′ | Q −→ for some Q such that
P′ | Q is well typed and Q −→.

We will give an interaction type system which ensures that the typable processes always
have the progress property.

Let us say that a channel qualifier is either a session name or a channel variable. Let
c be a channel, its channel qualifier �(c) is defined by: (1) if c = y, then �(c) = y; (2)
else if c = s[p], then �(c) = s. Let Λ , ranged over by λ , denote the set of all service
names and all channel qualifiers.

The progress property will be analysed via three finite sets: two sets N and B
of service names and a set R ⊆ Λ ∪ (Λ × Λ). The set N collects the service names
which are interleaved following the nesting policy. The set B collects the service names
which can be bound. The Cartesian product Λ ×Λ , whose elements are denoted λ ≺ λ ′,
represents a transitive relation. The meaning of λ ≺ λ ′ is that an input action involving
a channel (qualified by) λ or belonging to service λ could block a communication
action involving a channel (qualified by) λ ′ or belonging to service λ ′. Moreover R
includes all channel qualifiers and all service names which do not belong to N or B
and which occur free in the current process. This will be useful to easily extend R in
the assignment rules, as it will be pointed out below. We call N nested service set, B
bound service set and R channel relation (even if only a subset of it is, strictly speaking,
a relation). Let us give now some related definitions.

Definition 2. Let R ::= /0 | R,λ | R,λ ≺ λ ′.

1. B∪̄{e} =

{
B ∪{a} if e = a is a session name

B otherwise.
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2. R \λ = {λ1 ≺ λ2 | λ1 ≺ λ2 ∈ R & λ1 = λ & λ2 = λ}∪{λ ′ | λ ′ ∈ R & λ ′ = λ}

3. R \\λ =

{
R \λ if λ is minimal in R

⊥ otherwise.

4. R �R ′ = (R ∪R ′)+

5. pre(�(c),R) = R �{�(c)}�{�(c) ≺ λ | λ ∈ R & �(c) = λ}

where R+ is the transitive closure of (the relation part of) R and λ is minimal in R if
 ∃λ ′ ≺ λ ∈ R.

Note, as it easy to prove, that � is associative. A channel relation is well formed if it is
irreflexive, and does not contain cycles. A channel relation R is channel free (cf(R)) if
it contains only service names.

In Table 5 we introduce selected rules for the interaction type system. The judge-
ments are of the shape: Θ � P � R ; N ; B where Θ is a set of assumptions of the
shape X[y] �R ; N ; B (for recursive definitions) with the variable y representing
the channel parameter of X .

We say that a judgement Θ � P � R ; N ; B is coherent if: (1) R is well formed;
(2) R ∩ (N ∪B) = /0. We assume that the typing rules are applicable if and only if the
judgements in the conclusion are coherent.

We will give now an informal account of the interaction typing rules, through a set
of examples. It is understood that all processes introduced in the examples can be typed
with the communication typing rules given in the previous section.

Table 5. Selected interaction typing rules

Θ � P � R ; N ; B
{MCAST}

Θ � ā[n](y).P � R{a/y} ; N ; B

Θ � P � R ; N ; B
{MACC}

Θ � a[p](y).P � R{a/y} ; N ; B

Θ � P � R ; N ; B
{MCASTN}

Θ � ā[n](y).P � R \\y ; N ∪{a} ; B

Θ � P � R ; N ; B
{MACCN}

Θ � a[p](y).P � R \\y ; N ∪{a} ; B

Θ � P � R ; N ; B cf(R \\y)
{MCASTB}

Θ � ū[n](y).P � R \\y ; N ; B∪̄{u}

Θ � P � R ; N ; B cf(R \\y)
{MACCB}

Θ � u[p](y).P � R \\y ; N ; B∪̄{u}

Θ � P � R ; N ; B
{SEND}

Θ � c!〈{pk}k∈K ,e〉;P � {�(c)}∪R ; N ; B∪̄{e}

Θ � P � R ; N ; B
{RCV}

Θ � c?(q,x);P � pre(�(c),R) ; N ; B

Θ � P � R ; N ; B
{DELEG}

Θ � c!〈〈p′,c′〉〉;P � {�(c), �(c′), �(c) ≺ �(c′)}�R ; N ; B

Θ � P � R ; N ; B R ⊆ {�(c), y, �(c) ≺ y}
{SREC}

Θ � c?((q,y));P � {�(c)} ; N ; B

Θ � P � R ; N ; B Θ � Q � R ′ ; N ′ ; B′

{CONC}
Θ � P | Q � R �R ′ ; N ∪N ′ ; B ∪B′

Θ � P � R ; N ; B a ∈ R ∪N
{NRES}

Θ � (νa)P � R ; N ; B \a

{VAR}
Θ ,X [y] � R ; N ; B � X〈e,c〉 � R{�(c)/y} ; N ; B∪̄{e}

Θ ,X [y] � R ; N ; B � P � R ; N ; B Θ ,X [y] � R ; N ; B � Q � R ′ ; N ′ ; B′

{DEF}
Θ � def X(x,y) = P in Q � R ′ ; N ′ ; B′
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The crucial point to prove the progress property is to assure that a process, seen as
a parallel composition of single threaded processes and queues, cannot be blocked in a
configuration in which:

1. there are no thread ready for a session initialization (i.e. of the form ā[n](y).P or
a[p](y).P). Otherwise the process could be reactivated by providing it with the right
partners.
2. all subprocesses are either non-empty queues or processes waiting to perform an in-
put action on a channel whose associated queue does not offer an appropriate message.

Progress inside a single service is assured by the communication typing rules in § 3.
This will follow as an immediate corollary of Theorem 2. The channel relation is essen-
tially defined to analyse the interactions between services: this is why in the definition
of pre(�(c),R) we put the condition �(c) = λ . A basic point is that a loop in R repre-
sents the possibility of a deadlock state. For instance take the processes:

P1 = b[1](y1).ā[2](z2).y1?(2,x);z2!〈1, false〉;0
P2 = b̄[2](y2).a[1](z1).z1?(2,x′);y2!〈1, true〉;0.

In process P1 we have that an input action on service b can block an output action on
service a and this determines b ≺ a. In process P2 the situation is inverted, determining
a ≺ b. In P1 | P2 we will then have a loop a ≺ b ≺ a. In fact P1 | P2 reduces to

Q = (νs)(νr) (s[1]?(2,x);r[1]!〈2, false〉;0 | r[2]?(1,x′);s[2]!〈1, true〉;0)

which is stuck. It is easy to see that services a and b have the same types, thus we could
change b in a in P1 and P2 obtaining P′

1 and P′
2 with two instances of service a and a

relation a ≺ a. But also P′
1 | P′

2 would reduce to Q. Hence we must forbid also loops on
single service names (i.e. the channel relation cannot be reflexive).

Rule {RCV} asserts that the input action can block all other actions in P, while rule
{SEND} simply adds �(c) in R to register the presence of a communication action in
P. In fact output is asynchronous, thus it can be always performed. Rule {DELEG} is
similar to {SEND} but asserts that a use of �(c) must precede a use of �(c′): the relation
�(c) ≺ �(c′) needs to be registered since an action blocking �(c) also blocks �(c′).

Three different sets of rules handle service initialisations. In rules {MCAST}-
{MACC}, which are liberal on the occurrences of the channel y in P, the service name a
replaces y in R. Rules {MCASTN}-{MACCN} can be applied only if the channel y as-
sociated to a is minimal in R .This implies that once a is initialised in P all communica-
tion actions on the channel with role instantiating y must be performed before any input
communication action on a different channel in P. The name a is added to the nested
service set. Remarkably, via rules {MCASTN}-{MACCN} we can prove progress when
services are nested, generalising the typing strategy of [6]. The rules {MCASTB} and
{MACCB} add u to the bound service set whenever u is a service name. These rules are
much more restrictive: they require that y is the only free channel in P and that it is min-
imal. Thus no interaction with other channels or services is possible. This safely allows
u to be a variable (since nothing is known about it before execution except its type) or
a restricted name (since no channel with role can be made inaccessible at runtime by a
restriction on u). Note that rule {NRES} requires that a occurs neither in R nor in N .
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The sets N and B include all service names of a process P whose initialisations is
typed with {MCASTN}-{MACCN}, {MCASTB}-{MACCB}, respectively. Note that for
a service name which will replace a variable this is assured by the (conditional) addition
of e to B in the conclusion of rule {SEND}. The sets N and B are used to assure, via the
coherence condition R∩(N ∪B) = /0, that all participants to the same service are typed
either by the first two rules or by the remaining four. This is crucial to assure progress.
Take for instance the processes P1 and P2 above. If we type the session initialisation on
b using rule {MACCN} or {MACCB} in P1 and rule {MCAST} in P2 no inconsistency
would be detected. But rule {CONC} does not type P1 | P2 owing to the coherence condi-
tion. Instead if we use {MACC} in P1, we detect the loop a ≺ b ≺ a. Note that we could
not use {MCASTN} or {MCASTB} for b in P2 since y2 is not minimal.

Rules {MCASTN}-{MACCN} are useful for typing delegation. An example is process
B of the three-buyer protocol, in which the typing of the subprocess

z2!〈{1},quote - contrib - 99〉;z2!〈〈1,y2〉〉;z2&(1,{ok : 0, quit : 0})

gives z2 ≺ y2. So by using rule {MCAST} we would get first b ≺ y2 and then the cycle
y2 ≺ b ≺ y2. Instead using rule {MCASTN} for b we get in the final typing of B either
{a};{b}; /0 or /0;{a,b}; /0 according to we use either {MCAST} or {MCASTN} for a.

Rule {SREC} avoids to create a process where two different roles in the same ses-
sion are put in sequence. Following [23] we call this phenomenon self-delegation. As
an example consider the processes

P1 = b[1](z1).a[1](y1).y1!〈〈2,z1〉〉;0
P2 = b̄[2](z2).ā[2](y2).y2?((1,x));x?(2,w);z2!〈1, false〉;0

and note that P1 | P2 reduces to (νs)(νr)(s[1]?(2,w);s[2]!〈1, false〉;0) which is stuck.
Note that P1 | P2 is typable by the communication type system but P2 is not typable by
the interaction type system, since by typing y2?((1,x));x?(2,w);z2!〈1, false〉;0 we get
y2 ≺ z2 which is forbidden by rule {SREC}.

A closed runtime process P is initial if it is typable both in the communication and
in the interaction type systems. The progress property is assured for all computations
that are generated from an initial process.

Theorem 2 (Progress). All initial processes have the progress property.

It is easy to verify that the (runtime) version of the three-buyer protocol can be typed in
the interaction type system with {a};{b}; /0 and /0;{a,b}; /0 according to which typing
rules we use for the initialisation actions on the service name a. Therefore we get

Corollary 1. The three-buyer protocol has the progress property.

5 Conclusions and Related Work

The programming framework presented in this paper relies on the concept of global
types that can be seen as the language to describe the model of the distributed commu-
nications, i.e., an abstract high-level view of the protocol that all the participants will
have to respect in order to communicate in a multiparty communication. The program-
mer will then write the program to implement this communication protocol; the system
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will use the global types (abstract model) and the program (implementation) to generate
a runtime representation of the program which consists of the input/output operations
decorated with explicit senders and receivers, according to the information provided in
the global types. An alternative way could be that the programmer directly specifies the
senders and the receivers in the communication operations as our low-level processes;
the system could then infer the global types from the program. Our communication and
interaction type systems will work as before in order to check the correctness and the
progress of the program. Thus the programmer can choose between a top-down and
a bottom-up style of programming, while relying on the same properties checked and
guaranteed by the system.

We are currently designing and implementing a modelling and specification language
with multiparty session types [19] for the standards of business and financial protocols
with our industry collaborators [20,21]. This consists of three layers: the first layer is a
global type which corresponds to a signature of class models in UML; the second one
is for conversation models where signatures and variables for multiple conversations
are integrated; and the third layer includes extensions of the existing languages (such
as Java [13]) which implement conversation models. We are currently considering to
extend this modelling framework with our type discipline so that we can specify and
ensure progress for executable conversations.

Multiparty sessions. The first papers on multiparty session types are [2] and [12]. The
work [2] uses a distributed calculus where each channel connects a master end-point
and one or more slave endpoints; instead of global types, they solely use (recursion-
free) local types. In type checking, local types are projected to binary sessions, so that
type safety is ensured using duality, but it loses sequencing information: hence progress
in a session interleaved with other sessions is not guaranteed.

The present calculus is an essential improvement from [12]; both processes and types
in [12] share a vector of channels and each communication uses one of these channels,
while our user processes and global types are simpler and user-friendly without these
channels. The global types in [12] have a parallel composition operator, but its pro-
jectability from global to local types limits to disjoint senders and receivers; hence it
does not increase expressivity.

The present calculus is more liberal than the calculus of [12] in the use of declara-
tions, since the definition and the call of recursive processes are obliged to use the same
channel variable in [12]. Similarly the delegation in [12] requires that the same channel
is sent and received for ensuring subject reduction, as analysed in [23]. Our calculus
solves this issue by having channels with roles, as in [9] (see the example at page 430).
As a consequence some recursive processes, which are stuck in [12], are type-sound
and reducible in our calculus, satisfying the interaction type system.

Different approaches to the description of service-oriented multiparty communica-
tions are taken in [3,4]. In [3], the global and local views of protocols are described
in two different calculi and the agreement between these views becomes a bisimula-
tion between processes; [4] proposes a distributed calculus which provides communi-
cations either inside sessions or inside locations, modelling merging running sessions.
The type-safety and progress in interleaved sessions are left as an open problem in [4].
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Progress. The majority of papers on service-oriented calculi only assure that clients
are never stuck inside a single session, see [1,7,12] for detailed discussions, including
comparisons between the session-based and the traditional behavioural type systems
of mobile processes, e.g. [22,15]. We only say here that our interaction type system
is inspired by deadlock-free typing systems [14,15,22]. In [1,7,12], structured session
primitives help to give simpler typing systems for progress.

The first papers considering progress for interleaved sessions required the nesting of
sessions in Java [8,6] and SOC [1,16,5]. The present approach significantly improves
the binary session system for progress in [7] by treating the following points:

(1) asynchrony of the communication with queues, which enhances progress;
(2) a general mechanism of process recursion instead of the limited permanent accepts;
(3) a more liberal treatment of the channels which can be sent; and
(4) the standard semantics for the reception of channels with roles, which permits to get
rid of process sequencing.

None of the previous work had treated progress across interfered, dynamically inter-
leaved multiparty sessions.

Acknowledgements. We thank Kohei Honda and the Concur reviewers for their com-
ments on an early version of this paper and Gary Brown for his collaboration on an
implementation of multiparty session types.
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