
31 July 2024

Greedily improving our own closeness centrality in a network / Crescenzi, Pierluigi; D'Angelo, Gianlorenzo;
Severini, Lorenzo; Velaj, Yllka. - In: ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA. - ISSN
1556-4681. - ELETTRONICO. - 11:(2016), pp. 1-32. [10.1145/2953882]

Original Citation:

Greedily improving our own closeness centrality in a network

Published version:
10.1145/2953882

Terms of use:

Publisher copyright claim:

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/1051069 since: 2016-09-07T13:41:14Z

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

DOI:

1

Greedily improving our own closeness centrality in a network

PIERLUIGI CRESCENZI, University of Florence

GIANLORENZO D’ANGELO, Gran Sasso Science Institute (GSSI), L’Aquila

LORENZO SEVERINI, Gran Sasso Science Institute (GSSI), L’Aquila

YLLKA VELAJ, Gran Sasso Science Institute (GSSI), L’Aquila

The closeness centrality is a well-known measure of importance of a vertex within a given complex network.

Having high closeness centrality can have positive impact on the vertex itself: hence, in this paper we consider
the optimisation problem of determining how much a vertex can increase its centrality by creating a limited

amount of new edges incident to it. We will consider both the undirected and the directed graph case. In
both cases, we first prove that the optimisation problem does not admit a polynomial-time approximation

scheme (unless P = NP), and we then propose a greedy approximation algorithm (with an almost tight

approximation ratio), whose performance is then tested on synthetic graphs and real-world networks.

Categories and Subject Descriptors: G.2.2 [Discrete Mathematics]: Graph Theory—Graph Algorithms;

J.4 [Computer Applications]: Social And Behavioral Sciences

General Terms: Closeness Centrality, Collaboration Networks, Citation Networks

Additional Key Words and Phrases: Approximation Algorithms, Graph Augmentation, Greedy Algorithm,

Large Networks

1. INTRODUCTION

Looking for the most important vertices within a given complex network has always been
one of the main goals in the field of real-world network analysis. Different measures of
importance have been introduced in the literature, and several of them are related to the
notion of “centrality” of a vertex. This latter notion, in turn, has been explicitly formalized
in different ways: one of the most popular is the closeness centrality measure (see, for
example, [Boldi and Vigna 2014]). This measure somehow evaluates the efficiency of a
vertex while spreading information to all other vertices in its connected component: more
formally, the closeness centrality of u is equal to the sum of the reciprocal of the distances
to u from all other vertices. Computing closeness centrality, however, is too time expensive,
since it requires to run a breadth first search for each vertex, which is clearly infeasible for
networks with millions of vertices and edges (which is the “normal” size of many interesting
real-world networks). For this reason, several randomized and/or approximation algorithms
have been proposed for the computation of this centrality measure [Cohen et al. 2014].

In this paper, instead, we consider a different problem related to the closeness centrality,
that is, the problem of identifying which “strategy” a vertex should adopt in order to
increase its own centrality value. Indeed, increasing its own ranking in terms of centrality,

Preliminary results about this work have been presented in the 14th International Symposium on Experi-
mental Algorithms (SEA) [Crescenzi et al. 2015]
Author’s addresses: G. D’Angelo, L. Severini, and Y. Velaj, Gran Sasso Science Institute (GSSI), Viale
F. Crispi, 7, I-67100, L’Aquila Italy; P. Crescenzi, Department of Information Engineering, University of
Florence, Viale Morgagni, 65, I-50134, Florence, Italy.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
c© 2015 ACM 1556-4681/2015/05-ART1 $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1, Publication date: May 2015.

can have positive consequences for the vertex. For example, in the field of author citation
networks closeness centrality seems to be significantly correlated with citation counts (as it
has been already observed in the case of collaboration networks) [Yan and Ding 2009]. We
then consider the optimization problem of efficiently determining, for a given vertex u, the
set of k edges incident to u that, when added to the original graph, allows u to increase
as much as possible its closeness centrality and its ranking according to this measure. We
will analyze both the undirected and the directed graph case. We first prove that this
problem is hard to be approximated within an approximation factor greater than 1 − 1

15e

in the undirected case (respectively, 1− 1
3e in the directed case), and we then show that a

greedy approach yields a
(
1− 1

e

)
-approximation algorithm in both undirected and directed

cases. Successively, we present several experiments that we have performed (i) in order to
evaluate how good is the approximation factor in the case of relatively small randomly
generated graphs, (ii) in order to apply the greedy approach to real-world collaboration,
citation and transportation networks, and (iii) in order to evaluate the actual improvement
in information spread. As a result of the first set of experiments, we have that the greedy
algorithm seems to perform much better than the theoretical results, since it often computes
an optimal solution and, in any case, it achieves an approximation factor significantly larger
than the theoretical one. By applying the greedy algorithm to real-world networks, instead,
we observe that by adding very few edges a vertex can drastically increase its centrality
measure and, hence, its ranking. We note that, after adding a limited number of edges, the
number of informed nodes in the network highly increases.

The problem of adding edges to a graph in order to modify some general properties has
been widely studied. To the best of our knowledge, the problems that aim at optimizing
some property by adding a limited number of edges are: minimizing the average shortest-
path distance between all pair of nodes [Meyerson and Tagiku 2009; Papagelis et al. 2011;
Parotsidis et al. 2015], minimizing the average number of hops in shortest paths of weighted
graphs [Bauer et al. 2012], maximizing the leading eigenvalue of the adjacency matrix [Saha
et al. 2015; Tong et al. 2012], minimizing the diameter [Bilò et al. 2012; Frati et al. 2015],
maximizing or minimizing the number of triangles [Dehghani et al. 2015; Li and Yu 2015],
minimizing the eccentricity [Perumal et al. 2013], and minimizing the characteristic path
length [Papagelis 2015].

The problem analyzed in this paper differs from above mentioned ones as it focus on
improving the centrality of a predefined vertex. As far as we know, our problem has never
been attacked before, even though similar problems have been studied for other centrality
measures, i.e. page-rank [Avrachenkov and Litvak 2006; Olsen and Viglas 2014], eccentric-
ity [Demaine and Zadimoghaddam 2010], average distance [Meyerson and Tagiku 2009],
some measures related to the number of paths passing through a given node [Ishakian et al.
2012], and betweenness centrality [Crescenzi et al. 2015; D’Angelo et al. 2015]. Hence, we
had no other algorithms to compare with. However, we also consider other potential al-
ternative algorithms and show that the greedy algorithm significantly outperforms them,
whenever k > 1.

1.1. Motivating applications

In this section we motivate our study by showing two applications in which improving the
centrality of a specific node by adding edges incident to it can give benefits to the node
itself or to the whole network.

1.1.1. Increasing the spreading of information. Intuitively closeness centrality evaluates the ef-
ficiency of a vertex while spreading information to all other vertices in its connected compo-
nent. We show that solving our problem for a set of given vertices has positive consequences
for the spreading of information through the network. To this aim, we consider the Lin-
ear Threshold Model which is a widely studied model in network analysis to represent the

2

spread of information [Kempe et al. 2015]. In this model, we can distinguish between active
nodes (which spread the information) and inactive ones. The idea is that a node becomes
active if a large part of its neighbors are active. In detail, each node u has a threshold a
chosen uniformly at random in the interval [0, 1]. The threshold represents the fraction of
neighbors of u that must become active in order for u to become active. At the beginning of
the process a small percentage of nodes of the graph is set to active to let the information
diffusion process start, this nodes are called seeds. In subsequent steps of the process a node
becomes active if the fraction of its active neighbors is greater than its threshold.

In our experimental study, we show that adding a small number of edges incident to some
randomly-chosen seeds highly increases the spreading of information in terms of number of
nodes that become active. Note that this represents an improvement of the whole network
in terms of the efficiency of propagating information. We performed such experiments on
both undirected and directed networks.

1.1.2. Link recommendation. The link recommendation task consists in suggesting potential
connections to social network users with the aim of increasing their social circle. Link
recommendations improve the user experience and at the same time help to increase the
connectivity inside the network and speed-up the network growth. Most of the existing
link recommendation methods focus on estimating the likelihood that a link is adopted by
users and recommend links that are likely to be established [Backstrom and Leskovec 2011;
Liben-Nowell and Kleinberg 2003; Popescul and Ungar 2003; Yin et al. 2010].

Recently, a new approach has been proposed whose aim is to recommend a set of links
that, when added to the network, increases the centrality of a user in a network. In par-
ticular, suggesting links that minimize the expected average distance of a node accurately
predicts the links that will actually appear in the graph [Parotsidis et al. 2016]. An impor-
tant step in this approach is to determine the set of links that, when added to the network,
maximizes the specific centrality measure considered.1

Of particular interest in this context are the collaboration networks in which nodes repre-
sent users and links represent collaboration between users (e.g. authors collaborating in the
same papers or actors that acted in the same movie). The link recommendation problem in
such a case consists in suggesting possible persons to whom request for future collaboration.
In our experiments we show that we are able to compute a set of nodes that highly increases
the closeness centrality in very large collaboration networks such as those induced by the
DBLP and IMDB databases [Ley ; IMDB].

2. THE UNDIRECTED GRAPH CASE

In this section we will focus on undirected graphs. After giving all necessary definitions
and preliminary results, we will introduce the optimisation problem that will be considered,
we will prove a non-approximability result, and we will then describe an approximation
algorithm. Finally, we will present the experiments that we have performed in order to
validate this algorithm and to apply it to two quite big collaboration networks.

2.1. The maximum closeness improvement problem

Let G = (V,E) be an undirected graph, where V denotes the set of nodes, and E denotes
the set of edges {u, v} with u, v ∈ V . For each node u, Nu denotes the set of neighbors of
u, i.e. Nu = {v | {u, v} ∈ E}. Given two vertices u and v, we denote by duv the distance
from u to v in G, that is, the number of edges in a shortest path from u to v (if there is
no path from u to v, we then set duv =∞). For each node u, the closeness centrality (also

1Note that the centrality measure used in [Parotsidis et al. 2016] is the inverse of the arithmetic mean of
the distances to a node, while in this paper we consider the harmonic mean of the distances to a node.

3

called harmonic centrality [Boldi and Vigna 2014]) of u is defined as follows

cu =
∑
v∈V

duv<∞

1

duv
.

Given a set S of edges not in E, we denote by G(S) the graph augmented by adding the
edges in S to G, i.e. G(S) = (V,E ∪ S). For a parameter x of G, we denote by x(S) the
same parameter computed in the augmented graph G(S) (for example, the distance from u
to v in G(S) is denoted as duv(S)).

The closeness centrality of a vertex clearly depends on the graph structure: if we augment
a graph by adding a set of edges S, then the centrality of a vertex might change. Generally
speaking, adding edges incident to some vertex u can only increase the centrality of u. Given
a graph G = (V,E), a vertex u ∈ V , and an integer k, the Maximum Closeness Improvement
(in short, MCI) problem consists in finding a set S of edges incident to u not in E (that is,
S ⊆ {{u, v} : v ∈ V \Nu}) such that |S| ≤ k and cu(S) is maximum.

2.2. The non-approximability result

In this section, in order to derive our approximation hardness result for the MCI problem,
we will make use of the Minimum Dominating Set (in short, MDS) problem, which is
defined as follows: given an undirected graph G = (V,E), find a dominating set of minimum
cardinality, that is, a subset D of V such that V = D ∪

⋃
u∈DNu. It is known that, for

any r with 0 < r < 1, it cannot exist a (r ln |V |)-approximation algorithm for the MDS
problem, unless P = NP [Dinur and Steurer 2014]. We will now use this result in order to
show that the MCI problem does not admit a polynomial-time approximation scheme. To
this aim, we will design an algorithm A′ that, given an undirected graph G = (V,E) and
given the size k of the optimal dominating set of G, by using an approximation algorithm
A for the MCI problem will return a dominating set of G whose approximation ratio is
at most (r ln |V |). Clearly, we do not know the value of k, but we know that this value
must be at least 1 and at most |V |: hence, we run algorithm A′ for each possible value of
k, and return the smallest dominating set found. Algorithm A′ will run the approximation
algorithm A for the MCI problem multiple times. Each time A will find k nodes u ∈ V
which are the “new” neighbours of the node whose centrality has to be increased: we then
add these nodes to the dominating set and create a smaller instance of the MCI problem
(which will contain, among the others, all the nodes in V not yet dominated). We continue
until all nodes in V are dominated.

Theorem 2.1. For each γ > 1 − 1
15e , there is no γ-approximation algorithm for the

MCI problem, unless P = NP .

Proof. We will show that a γ-approximation algorithm A for the MCI problem, with
γ > 1− 1

15e , would imply a (r lnn)-approximation algorithm A′ for the MDS problem, thus
proving the theorem. In particular, the algorithm A′ is specified in Fig. 1, where k denotes a
“guess” of the size of an optimal solution for MDS with input the graph G. In the following,
ω will denote the number of times the while loop is executed. Since, at each iteration of
the loop, we include in the dominating set at most k nodes, at the end of the execution of
algorithm A′ the set D includes at most k · ω nodes. Hence, if k is the correct guess of the
value of the optimal solution for the MDS instance, then D is a ω-approximate solution for
the MDS problem (as we have already noticed, we don’t know the correct value of k, but
algorithm A′ can be executed for any possible value of k, that is, for each k ∈ [|V |]).

The first instruction of the while loop of algorithm A′ computes a transformed graph
G′ (to be used as part of the new instance for MCI) starting from the current graph
G = (V,EV), which is the subgraph of the original graph induced by the set {u1, . . . , un},

4

Algorithm: A′

Input : an undirected graph G = (V,E) and an integer k
Output: a dominating set D

1 D := ∅;
2 while V 6= ∅ do
3 Compute graph G′ starting from G (see Fig. 2);
4 S := A(G′, z, k);
5 D′ := {u : {z, u} ∈ S}
6 D := D ∪D′;
7 V := V −D′ −

⋃
u∈D′ Nu;

8 G := subgraph of G induced by V ;

9 return D;

Fig. 1. The approximation algorithm for the MDS problem, given a γ-approximation algorithm A for the
MCI problem and a “guess” k for the optimal value of MDS.

u1

u2

...
un

x1

x2

...
xn

y1

y2

...
yn

z
G

Fig. 2. The reduction used in Theorem 2.1. The dashed edges denote those added in a solution to MCI.

where n = |V |, of still not dominated nodes. This computation is done as follows (see Fig.
2). We add a new node z and two new nodes xi and yi, for each i with 1 ≤ i ≤ n. Moreover,
we add to EV the edges {z, yi}, {xi, yi}, and {xi, ui}, for each i with 1 ≤ i ≤ n. As it is
shown in the second line of the while loop, z is the node whose centrality cz has to be
increased by adding at most k edges: that is, the MCI instance is formed by G′, z, and k.
Observe that any solution for this instance that contains an edge {xi, z} can be modified,
without decreasing its measure, by substituting this edge with {ui, z}: hence, we can assume
that the solution S computed at the second line of the while loop of algorithm A′ contains
only edges connecting z to nodes in V (which are shown by dashed lines in Fig. 2).

First of all, note that, since k is (a guess of) the measure of an optimal solution D∗ for
MDS with input G, we have that the measure c∗(G′, z, k) of an optimal solution S∗ for
MCI with input G′ satisfies the following inequality:

c∗(G′, z, k) ≥ k +
1

2
(n− k) +

3

2
n =

1

2
k + 2n.

This is due to the fact that, by connecting z to all the k nodes in D∗, in the worst case we
have that k nodes in G are at distance 1, n − k nodes in G are at distance 2 (since D∗ is
a dominating set), the n nodes yi are at distance 1, and the n nodes xi are at distance 2
from z.

Given the solution S computed by the approximation algorithm A for MCI, let a and b
denote the number of nodes in G at distance 2 and 3, respectively, from z in G′(S). Since
all nodes in G′ are at distance at most 3 from z, we have that n = k+a+ b (we can assume,

5

without loss of generality, that n ≥ k): hence, a = n− b− k. Since A is a γ-approximation
algorithm for MCI, we have that cz(S) ≥ γc∗(G′, z, k). That is,

k +
1

2
a+

1

3
b+

3

2
n ≥ γ

(
1

2
k + 2n

)
.

From this inequality, it follows that

a ≥ γ(k + 4n)− 3n− 2k − 2

3
b.

By using the fact that a = n− b− k, we have that

n− b− k ≥ γ(k + 4n)− 3n− 2k − 2

3
b.

That is,

b ≤ 12(1− γ)n+ 3(1− γ)k.

Since k ≤ n, we then have that

b ≤ 15n(1− γ).

Assuming γ > 1 − 1
15e >

14
15 (which implies 15(1 − γ) < 1), then after one iteration of the

while loop of algorithm A′, the number of nodes in G decreases by a factor 15(1 − γ).
Hence, after ω − 1 iterations, the number n of nodes in the graph G is at most a fraction
[15(1−γ)]ω−1 of the number N of nodes in the original graph. Since we can stop as soon as
n < k, we need to find the maximum value of ω such that k ≤ N [15(1− γ)]ω−1. By solving
this inequality and by recalling that 15(1− γ) < 1, we obtain

ω − 1 ≤ log15(1−γ)
k

N
≤ log15(1−γ)

1

N
=

ln(N)

ln 1
15(1−γ)

.

One more iteration might be necessary to trivially deal with the remaining nodes, which are

less than k. Hence, the total number ω of iterations is at most ln(N)

ln 1
15(1−γ)

+ 1. If γ > 1− 1
15e ,

we have that r′ = 1
ln 1

15(1−γ)
< 1: as a consequence of the observation at the beginning of

the proof, the solution reported by algorithm A′ is an (r′ lnN + 1)-approximate solution.
Clearly, for any r with 0 < r′ < r < 1, there exists Nr sufficiently large, such that for
any N > Nr, r

′ lnN + 1 ≤ r lnN : hence, algorithm A′ would be an r lnN -approximation
algorithm for MDS, and, because of the result of [Dinur and Steurer 2014], P would be
equal to NP . Thus, we have that, if P 6= NP , then γ has to be not greater than 1 − 1

15e
and the theorem is proved.

2.3. The greedy approximation algorithm

Let us consider the following optimisation problem. Given a set X and an integer k, find a
subset Y of X of cardinality at most k that maximises the value f(Y), where f : 2X → N
is a specific objective function. If f is monotone submodular, that is, if, for any pair of sets
S ⊆ T ⊆ X and for any element e ∈ X \T , f(S∪{e})−f(S) ≥ f(T ∪{e})−f(T), then the
following greedy algorithm approximates the above problem within a factor 1− 1

e [Nemhauser
et al. 1978]: start with the empty set, and repeatedly add an element that gives the maximal
marginal gain. In this section, we exploit this result by showing that cu is monotone and
submodular with respect to the possible set of edges incident to u. Hence, the greedy
algorithm reported in Fig. 3 provides a

(
1− 1

e

)
-approximation. Note that the computational

complexity of such algorithm is O(k · n · g(n,m+ k)), where g(n,m+ k) is the complexity
of computing cu in a graph with n nodes and m+ k edges.

6

Algorithm: GreedyImprovement
Input : an undirected graph G = (V,E); a vertex u ∈ V ; and an integer k ∈ N
Output: set of edges S ⊆ {{u, v} | v ∈ V \Nu} such that |S| ≤ k

1 S := ∅;
2 for i = 1, 2, . . . , k do
3 foreach v ∈ V \Nu(S) do
4 Compute cu(S ∪ {u, v});
5 vmax := arg max{cu(S ∪ {u, v}) | v ∈ V \Nu(S)};
6 S := S ∪ {{u, vmax}};
7 return S;

Fig. 3. The greedy algorithm for undirected graphs.

Theorem 2.2. For each vertex u, function cu is monotone and submodular with respect
to any feasible solution for MCI.

Proof. To simplify the notation, in the following we will assume that 1
∞ = 0. To show

that cu is monotone increasing, it is enough to observe that, for each solution S to MCI,
for each edge {u, v} 6∈ E ∪ S, and for each node x ∈ V \ {u}, dux(S ∪ {{u, v}}) ≤ dux(S)
(since adding an edge cannot increase the distance between two nodes) and, therefore,

1
dux(S∪{{u,v}}) ≥

1
dux(S)

. We now show that, for each pair S and T of solutions for MCI

such that S ⊆ T , and for each edge {u, v} 6∈ T ∪ E,

cu(S ∪ {{u, v}})− cu(S) ≥ cu(T ∪ {{u, v}})− cu(T).

To this aim, we prove that each term of cu is submodular, that is, that, for each vertex
x ∈ V \ {u},

1

dux(S ∪ {{u, v}})
− 1

dux(S)
≥ 1

dux(T ∪ {{u, v}})
− 1

dux(T)
. (1)

Let us consider the shortest paths from u to x in G(T ∪ {{u, v}}), and let us distinguish
the following two cases.

(1) The first edge of a shortest path from u to x in G(T ∪ {{u, v}}) is {u, v} or be-
longs to S ∪ E. In this case, such a path is a shortest path also in G(S ∪ {{u, v}}),
as it cannot contain edges in T \ S (since these edges are all incident to u). Then,
dux(S ∪ {{u, v}}) = dux(T ∪ {{u, v}}) and 1

dux(S∪{{u,v}}) = 1
dux(T∪{{u,v}}) . Moreover,

dux(S) ≥ dux(T) (since S ⊆ T) and, therefore, − 1
dux(S)

≥ − 1
dux(T) .

(2) The first edge of all shortest paths from u to x in G(T ∪ {{u, v}}) belongs to T \ S. In
this case, dux(T) = dux(T ∪ {{u, v}}) and, therefore, 1

dux(T∪{{u,v}}) −
1

dux(T) = 0. As
1

dux(S)
is monotone increasing, then 1

dux(S∪{{u,v}}) −
1

dux(S)
≥ 0.

In both cases, we have that the inequality (1) is satisfied and, hence, the theorem follows.

Corollary 2.3. The MCI problem is approximable within a factor
(
1− 1

e

)
.

As it can be seen, there is quite a significant gap between the non-approximability result
proved in Theorem 2.1 (that is, the upper bound equal to 1− 1

15e ≈ 0.98), and the approx-

imability result of the above corollary (that is, the lower bound
(
1− 1

e

)
≈ 0.63). One of the

main goals of the next experimental session is to analyse the “real” performance, in terms of
solution quality, of the greedy algorithm on relatively small real-world and synthetic graphs.

7

Table I. Comparison between the GreedyImprovement
algorithm and the optimum in random graphs. The first
three columns reports the type and size of the graphs; the
fourth column reports the minimum measured approxima-
tion ratio.

Network n = |V | m = |E| Min Approx.
PA 100 130 0.9939
PA 500 650 0.9921
ER 100 200 0.9828
ER 100 500 0.9938
ER 100 1000 0.9970
ER 500 5000 0.9971
ER 500 12500 0.9991
ER 500 25000 1
CM 100 200 0.9946
CM 500 1000 0.9995
WS 100 500 0.9798
WS 100 600 0.9798
WS 100 800 0.9856
WS 100 1200 0.9946

Table II. Comparison between the GreedyImprovement algorithm
and the optimum in real world graphs. The first three columns reports
the name and size of the graphs; the fourth column reports the
minimum measured approximation ratio.

Network n = |V | m = |E| Min Approx.
s838 st 512 819 0.9862
jazz 198 2742 0.9968
coli1 328 456 0.9947

celegans metabolic 346 1493 0.9981

2.4. The experimental study: part I

In this section we analyse the greedy algorithm from an experimental point of view. First, we
compare the solution of the greedy algorithm with the optimal solution computed by using
an integer program formulation of the MCI problem, in order to assess its real performance
in terms of solution quality. Then, we compare the greedy algorithm with several alternative
baselines. Finally, we study how the spreading of information increases as a consequence of
the augmentation of the graph due to our algorithm.

All our experiments have been performed on a computer equipped with two Intel Xeon
E5-2643 CPUs, each with 6 cores clocked at 3.4GHz and 128GB of main memory, and our
programs have been implemented in C++ (gcc compiler v4.8.2 with optimization level O3).

2.4.1. Evaluating the solution quality. In this section we evaluate the quality of the solution
produced by the greedy algorithm by measuring its approximation ratio on several, rela-
tively small, randomly generated networks and on four real-world networks. In particular,
we considered four random graph generating models, that is, undirected Preferential At-
tachment (in short, PA) [Barabasi and Albert 1999], Erdős-Rényi (in short, ER) [Erdős and
Rényi 1959], Configuration Model (in short, CM) [Molloy and Reed 1995; Bender and Can-
field 1978], and Watts-Strogatz model (in short WS) [Watts and Strogatz 1998]. The size
of the generated graphs is reported in Table I. For each combination (n, m), we generated
five random undirected graphs. Moreover, we considered the four real-world graphs, whose
size is reported in Table II. The first graph is the collaboration network between Jazz mu-
sicians that have played together in a band, and it has been obtained from the Konect
database [Kunegis 2013], while the last three graphs have been downloaded from the Uri
AlonLab [Uri AlonLab] database: in particular, s838 st is an electronic network, while the
other two graphs are biological networks.

8

For both random and real-world graphs we focused our attention on twenty vertices u,
which have been chosen on the basis of their original closeness ranking. In particular, we
have divided the list of vertices, sorted by their original ranking, in four intervals, and chosen
five random vertices uniformly at random in each interval: we denote by uX% the average
value of the vertices in the interval of the top Xth percentile. The value of k ranged from
1 to 10. In the experiments, we measured the ratio between the value of the solution found
by the greedy algorithm and the optimal value computed by using the integer program
formulation of the MCI problem, defined as follows.

Maximize
∑

s∈V \{u}
v∈V \Nu

(
1

dsu({u, v})
− 1

dsu

)
ysv +

∑
s∈V \{u}

1

dsu

subject to
∑

v∈V \Nu

ysv ≤ 1, for each s ∈ V \ {u}

ysv ≤ xv, for each s ∈ V \ {u}, v ∈ V \Nu,∑
v∈V \Nu

xv ≤ k,

xv, ysv ∈ {0, 1}, for each s ∈ V \ {u}, v ∈ V \Nu.

The decision variables xv and ysv specify a solution S of the MCI problem as follows. For
any v ∈ V \Nu,

xv =

{
1 if {u, v} ∈ S,
0 otherwise,

and, for each s ∈ V \ {u} and v ∈ V \Nu,

ysv =

{
1 if a shortest path from s to u in G({u, v}) passes through edge {u, v},
0 otherwise.

The first constraint of the integer program ensures that each node s can be covered by
at most one edge {u, v} and, hence, that the distance from s to u is counted only once in
the objective function, while the second constraint ensures that if ysv = 1, then xv = 1
and, hence, that the shortest path from s to u passing through {u, v} is considered only if
{u, v} ∈ S. Finally, note that in the objective function, the value of 1

dsu({u,v}) and 1
dsu

can

be preprocessed, and that the term
∑
s∈V \{u}

1
dsu

is a constant.

We solved the above integer program by using the GLPK solver [glp]. The results are
reported in Table I and in Table II where we show the minimum (i.e. worst-case) approx-
imation ratio obtained by the greedy algorithm. The experiments clearly show that the
experimental approximation ratio is by far better than the theoretical one proven in the
previous section. In fact, in the worst case the ratio is 0.9798.

In Fig. 4, instead, we plot the average closeness centrality and ranking of vertices u as
a function of k in a small real-world network, namely the s838 st electrical network. We
observe that the charts on the top, where the values are computed using the Greedy-
Improvement algorithm, and the charts on the bottom, in which we used the optimal
algorithm, are almost identical. Indeed, the approximation ratio in the worst case is 0.9862:
that is, the GreedyImprovement algorithm performs very well in practice.

Finally, we tested our algorithm on several artificial instances generated by the Erdős-
Rényi and the Watts-Strogatz models. In the former model we can choose appropriate
values of the graph density, while in the latter one we can choose the clustering coefficient.
It turned out that the performance of our algorithm are not influenced by these two factors.

9

60

80

100

120

140

160

180

0 2 4 6 8 10

C
lo

se
n

es
s

k

u25%
u50%
u75%
u100%

(a) GreedyImprovement algorithm.

0
50

100
150
200
250
300
350
400
450
500

0 2 4 6 8 10

C
lo

se
n

es
s

R
an

k

k

u25%
u50%
u75%
u100%

(b) GreedyImprovement algorithm.

60

80

100

120

140

160

180

0 2 4 6 8 10

C
lo

se
n

es
s

k

u25%
u50%
u75%
u100%

(c) Optimal algorithm.

0
50

100
150
200
250
300
350
400
450
500

0 2 4 6 8 10

C
lo

se
n

es
s

R
an

k
in

g

k

u25%
u50%
u75%
u100%

(d) Optimal algorithm.

Fig. 4. Closeness centrality and ranking of vertices in the four intervals u as a function of k in the network
s838 st. Comparison between the GreedyImprovement algorithm and the optimal one.

Indeed, the approximation ratio ranges in [0.9798, 1] and improves a little when the density
is very high (i.e. m > 0.5n2).

2.4.2. The comparison with alternative baselines. In this section we compare our algorithm
with the following algorithms:

(1) The algorithm that connects u to a set of k nodes extracted uniformly at random
(Random).

(2) The algorithm that connects u to a set of k nodes having the highest degree (Degree).
(3) The algorithm that connects u to a set of k nodes having the highest harmonic centrality

(Top-k).
(4) The algorithm that connects u to a set of k nodes that have the highest fractional value

when solving the linear relaxation of the integer program (Rounding).
(5) The algorithm that connects u to a set of k nodes computed with an approximation

algorithm for the k-median with penalties problem given in [Meyerson and Tagiku 2009]
(k-Median).

The first two algorithms are easy to describe and implement efficiently. In what follows
we give more details on the implementation of the last three algorithms.

The Top-k algorithm. The classical algorithm to find the k nodes having the highest
value of centrality, consists, for each node v, in determining all the distances to v by running
a Breadth First Search (BFS) and computing cv. With such an approach computing the
k nodes having the highest value of centrality requires O(n · (n + m)). In Fig. 6 we give

10

an algorithm that reduces the computation time by using a branch-and-bound technique
that prunes the unnecessary BFS by comparing the intermediate results of centrality with
a properly defined upper bound.

Algorithm: PrunedBFS
Input : An undirected graph G(S); a node v, a double minc

Output: cv

1 Q := ∅;
2 visited := ∅;
3 duv(S ∪ {u, v}) := 0;
4 foreach x ∈ Nv(S) do
5 dux(S ∪ {u, v}) := 1;
6 Vx := Vx + 1;

7 visited := {u, v} ∪Nu(S);
8 cv := 0;
9 foreach x ∈ Nv(S) do

10 Q.push(x);

11 while ¬Q.empty() do
12 x := Q.pop();
13 Vx := Vx − 1;

14 cv := 1
dux(S)

;

15 foreach y ∈ Nx(S) do
16 if (y /∈ visited) ∧ (duy(S) > dux(S ∪ {u, v}+ 1)) then
17 duy(S ∪ {u, v}) := dux(S ∪ {u, v}) + 1;
18 Q.push(y);
19 visited := visited ∪ {y};
20 Vx := Vx + 1

21 UBv := cv + |Vx| · 1
dvx

+ (|V | − |visited| − |Vx|) · 1
dvx+1

;

22 if UBv ≤ minc then
23 return

24 return cv

Fig. 5. Algorithm PrunedBFS.

Algorithm: Top-k
Input : an undirected graph G = (V,E); and an integer k ∈ N
Output: set of nodes S ⊆ V such that |S| = k

1 S: Min priority queue;
2 Sort V according to according to the node degree;
3 Compute the centrality of the first k nodes in V and compute their centrality;
4 for i = k, k + 1, . . . , |V | do
5 minc := S.getMin();
6 cj := PrunedBFS(j,minc);
7 if cj > minc then
8 S.pop();
9 S.push(j, cj);

10 return S

Fig. 6. Algorithm Top-k.

11

Let Ck be the set of k nodes having the highest centrality. We represent Ck with a min-
heap in order to find the minimum in constant time. First of all, Top-k algorithm inserts
the k nodes with highest degree in Ck and computes their centrality. Then, it computes the
centrality of other nodes v by performing a BFS starting at each v. The algorithm uses the
minimum value of centrality in Ck as a lower bound and prunes the BFS from v when such
lower bound is greater then an upper bound (to be defined later) on cv. Such upper bound
is computed every time a node is extracted from the BFS queue. If the BFS is completed
without any pruning, it removes the minimum from Ck and it inserts the node v in it.

The upper bound estimates the value of the centrality of a node v. The main idea is that,
at each BFS step, when we extract a node x at distance dvx from v, we can maintain the
exact number of nodes that are at distance dvx and that are not visited yet. Moreover, we
can upper bound the distance to any other node. When x is extracted from the queue, let
Vx be the set of nodes at distance dvx from the source v that are not visited, visited be
the set of nodes currently visited during the BFS, and Currc be the value of the centrality
at the current step, that is Currc =

∑
y∈visited

1
dvy

. Then, we have that |Vx| nodes are at

distance dvx from v, while the remaining |V |− |visited|− |Vx| nodes are at distance at most
dvx + 1 from v. Hence the upper bound is defined as:

UBv = Currc+ |Vx| ·
1

dvx
+ (|V | − |visited| − |Vx|) ·

1

dvx + 1
.

The Rounding algorithm. This approach consists in adding the edges which are obtained
by rounding to one k variables of the optimal solution to the linear relaxation of the integer
program for the MCI problem given in Section 2.4.1. In particular, we connect u to the
nodes corresponding to the k highest values in an optimal fractional solution.

The k-Median algorithm. This approach consists in connecting u with the k nodes which
are solution of the k-median with penalties problem [Meyerson and Tagiku 2009]. In this
problem, we are given a set of cities and a set of potential facility locations. Each city has
a demand that needs to be served by a facility. Each city also has a penalty cost, which we
pay if we refuse to serve the city. If we choose to serve a city, we must pay the distance
between the city and its assigned facility for each unit demand. Our job is to find a set of k
facilities to open, a set of cities to be served, and an assignment of cities to open facilities
such that our total cost is minimized. We implemented the approximation algorithm given
in [Meyerson and Tagiku 2009] that is based on local search.

Analysis of the results. In order to compare the solution obtained by the GreedyIm-
provement algorithm with that obtained by using the other aforementioned approaches,
we run all the algorithms on several real-world networks reported in Tables II and III. We
first observe that the rounding and the k-median algorithms cannot be executed on networks
having more than few hundred of nodes in reasonable computational time. Therefore, in
what follows we first compare GreedyImprovement with Degree, Random, and Top-
k on network ca-HepPh, which is a well known collaboration network obtained from the
SNAP database [Leskovec and Krevl 2014], and then we compare GreedyImprovement
with Rounding and k-Median on the network jazz. The results for the other networks
are similar (but for the networks in Table III and the Rounding and k-Median algorithms
for which we have no results due to the high computational time).

In Fig. 7 we plot the closeness centrality and the ranking of vertex u as a function of
k on network ca-HepPh. We observe that any vertex becomes central by adding just few
edges. In Fig. 8, we compare the ranking obtained with the solution given by our algorithm
with that obtained with the solution given by the other approaches on the same network.

12

Table III. Real-world graphs used in the comparison
between the GreedyImprovement algorithm and
the other baselines. The columns reports the type
and size of the graphs.

Network n = |V | m = |E|
advogato 5272 45903

ca-AstroPh 17903 196972
ca-CondMat 21363 91286
ca-HepPh 11204 117619
ca-HepTh 8638 24806

dip20090126 19928 41202
Newman-Cond mat 95-99 22015 58578

PGPgiantcompo 10680 24316

2000
2200
2400
2600
2800
3000
3200
3400
3600
3800

0 2 4 6 8 10

C
lo

se
n

es
s

k

u25%
u50%
u75%
u100%

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0 2 4 6 8 10

C
lo

se
n

es
s

R
a
n
k
in

g

k

u25%
u50%
u75%
u100%

Fig. 7. Closeness centrality and ranking of vertex u as a function of k in network ca-HepPh.

In particular, we show the average relative ranking position that is:

ru(SB)− ru(SGR)

ru(SGR)
,

where SGR and SB are the solutions given by our algorithm and one baseline algorithm,
respectively, and ru(S) denotes the closeness ranking of node u in G(S). The average relative
ranking position represents the gain of our algorithm over any other baseline in terms of
ranking position. Each curve represents the average relative ranking position in a given
interval and the values are expressed in percentage. We observe that the greedy algorithm
significantly outperforms Random, Degree, and Top-k, whenever k > 1.

In Fig. 9, we compare, the ranking of node u in the solution given by our algorithm
with that given by the Rounding and k-Median. We confirm that our algorithm is by far
better than the other approaches. In some cases, Rounding gives better solutions in terms
of objective function value, however, such cases correspond to the instances in which the
fractional solution is integral and therefore is optimal for the problem. Note that computing
such a solution requires a long computational time and that we cannot apply such an
approach for instances having more than few hundred nodes.

2.4.3. The analysis of information spreading. In this section we analyze how adding a limited
number of edges incident to some randomly-chosen seeds highly increases the number of
nodes that become active in the threshold model.

In the experiments we have choose a number of seeds that is 2%, 4%, 6%, 8% and 10%
of the number of nodes of the graph. The seeds are chosen uniformly at random. We run
different experiment where the threshold a is uniform and equal to 0.2, 0.3 and 0.4. We

13

0
10
20
30
40
50
60
70
80

0 2 4 6 8 10

C
lo

se
n

es
s

R
an

k
in

g

k

u25%
u50%
u75%
u100%

(a) Degree

0
10
20
30
40
50
60
70
80
90

100

0 2 4 6 8 10

C
lo

se
n

es
s

R
a
n

k
in

g

k

u25%
u50%
u75%
u100%

(b) Random

0
10
20
30
40
50
60
70

0 2 4 6 8 10

C
lo

se
n

es
s

R
a
n
k
in

g

k

u25%
u50%
u75%
u100%

(c) Top-k

Fig. 8. Average relative ranking position between the Ranking of the solution obtained by the GreedyIm-
provement algorithm and the different baselines in network ca-HepPh.

-5
0
5

10
15
20
25
30
35
40

0 2 4 6 8 10

C
lo

se
n

es
s

R
an

k
in

g

k

u25%
u50%
u75%
u100%

(a) Rounding

0
5

10
15
20
25
30
35
40
45

0 2 4 6 8 10

C
lo

se
n

es
s

R
an

k
in

g

k

u25%
u50%
u75%
u100%

(b) k-Median

Fig. 9. Average relative ranking position between the Ranking of the solution obtained by the GreedyIm-
provement algorithm and the different baselines in network jazz.

measured the number of nodes that become active at the end of the process in the graphs
of Tables II and III.

In Fig. 10 we plot the percentage of active nodes as a function of k for the coli1 undirected
network. The value for k = 0 is the percentage of active nodes in the original graph. The
plots clearly show that the number of active nodes highly increases even with few edges
addition and that the percentage of active nodes tends to 100%. The results for the other
networks in Tables II and III are similar.

14

0
10
20
30
40
50
60
70
80
90

100

0 2 4 6 8 10

A
ct

iv
e

n
o
d

es

k

a = 0.2
a = 0.3
a = 0.4

0
10
20
30
40
50
60
70
80
90

100

0 2 4 6 8 10

A
ct

iv
e

n
o
d

es

k

a = 0.2
a = 0.3
a = 0.4

0
10
20
30
40
50
60
70
80
90

100

0 2 4 6 8 10

A
ct

iv
e

n
o
d

es

k

a = 0.2
a = 0.3
a = 0.4

10
20
30
40
50
60
70
80
90

100

0 2 4 6 8 10
A

ct
iv

e
n

o
d

es

k

a = 0.2
a = 0.3
a = 0.4

30
40
50
60
70
80
90

100

0 2 4 6 8 10

A
ct

iv
e

n
o
d

es

k

a = 0.2
a = 0.3
a = 0.4

Fig. 10. Percentage of active nodes in coli1 network as a function of k. Parameter a denotes the threshold
and the percentage of seeds is equal to 2%, 4%, 6%, 8%, 10%, respectively.

2.5. Improving the greedy algorithm running time

In this section we show how to improve the running time of GreedyImprovement. This
algorithm requires O(k · n · g(n,m + k)) computational time, where g(n,m + k) is the
complexity of computing cu in a graph with n nodes and m+k edges. The classical algorithm
to compute cu consists in determining all the distances to u by running a BFS starting
from u. Therefore, with such an approach GreedyImprovement requires O(k · n · (n +
m + k)) in the worst case. In this section we provide a dynamic algorithm to reduce the
time required to compute cu.2 Furthermore, we show how to exploit the submodularity

2Note that the idea of incrementally updating the closeness centrality as been already explored in the
literature [Kas et al. 2013; Sariyüce et al. 2013]. However, in this paper we consider the harmonic mean to
compute the closeness centrality instead of the arithmetic mean that is used in other papers. The motivation
is that the harmonic mean has been showed to be more robust in the case of undirected disconnected

15

of cu in order to reduce the running time of iterations i ≥ 2 of the for loop at line 2 of
GreedyImprovement.

Let us assume that we add an edge {u, v} 6∈ E∪S to graph G(S). The dynamic algorithm
aims at computing only the distances between u and any other node that change as a
consequence of the addition of edge {u, v} (i.e. nodes w such that duw(S) 6= duw(S∪{u, v}))
and keep the old distances to any other node in the graph. The algorithm is based on the
following observation: if we add an edge {u, v} to G(S), then duw(S) 6= duw(S ∪ {u, v}),
for some w ∈ V , only if the shortest path between u and w in G(S ∪ {u, v}) contains
edge {u, v}. Therefore, we can determine the nodes that change their distance to u by
finding all the shortest paths passing through edge {u, v} in G(S ∪ {u, v}). To this aim,
the dynamic algorithm executes a BFS starting from node v and prunes the search as soon
as a node that does not change its distance to u is extracted from the queue. We report
the dynamic algorithm DynamicBFS in Figure 11. In detail, Procedure DynamicBFS
returns the value ∆Clo which corresponds to the increment to cu(S) which is obtained by
adding edge {u, v}. To compute ∆Clo, the algorithm computes the distances between u
and any node y such that duy(S) 6= duy(S ∪ {u, v}). First, it computes the distances of u
and its neighbors (lines 3–5) and the initial increment ∆Clo that is equal to the difference
between the reciprocal of the new distance and that of the old distance (line 7). Then, it
pushes in queue Q the neighbors of u (lines 8 and 9) and performs the BFS starting from
v (lines 10–17). For each extracted node, it updates ∆Clo by subtracting the reciprocal of
the old distance and adding the new one (line 12). After that, it enqueues a neighbor y
of the extracted node x only if the old distance duy(S) is greater than the length of the
path made of the shortest path from u to x in G(S ∪ {u, v}) and the edge {x, y} (that
is dux(S ∪ {u, v}) + 1, see the test at line 14). Note that this condition is satisfied only if
the shortest path between u and y passes through edge {u, v}. The procedure repeats this
process until the queue is empty.

We give an example of execution of Algorithm 11 in Figure 12.
In order to analyze the computational complexity of Algorithm 11, let us define as γuv(S)

as the set of nodes that change their distance to u as a consequence of the addition of edge
{u, v} to G(S), that is

γuv(S) = {w ∈ V | dxu(S) 6= dxu(S ∪ {{u, v}})}.
Moreover, let Γuv(S) be the number of edges incident to nodes in γuv(S), that is Γuv(S) =∑
w∈γuv(S) |N(w)|. Parameters |γuv(S)| and Γuv(S) measure the minimal number of nodes

and edges, respectively, that must be visited in order to update all the distance to u after
the addition of edge {u, v}. Note that Γuv(S) = O(m + n) in the worst case, however it is
much smaller than m in many practical cases as shown in the next section. In Figure 12,
the nodes in γuv(S) are represented in gray, while the number of double edges is Γuv(S).
The next theorem gives the computational complexity of Algorithm 11 as a function of
O(Γuv(S)).

Theorem 2.4. Algorithm 11 requires O(Γuv(S)) time.

Proof. Lines 1–9 require O(Nv(S)) = O(Γuv(S)) time. In the loop at lines 10–17,
variable visited ensures that each node is inserted into Q at most once. Therefore, the
overall time requirement of such loop is equal to the sum of Nx(S), for all the nodes x that
are inserted into Q. Hence, to prove the statement, we show that all the nodes inserted
into Q belong to γuv(S). We first show that, for each x ∈ γuv(S) all the distances dxu(S ∪
{{u, v}}) between u and x in G(S ∪ {{u, v}}) are correctly computed by Algorithm 11.
By contradiction, suppose that the distance between some node in γuv(S) and u is not

networks or directed not-strongly connected networks [Boldi and Vigna 2014]. Therefore, we cannot directly
use the algorithms in the literature and we devise a new dynamic algorithm.

16

Algorithm: DynamicBFS
Input : An undirected graph G(S); edge {u, v}; distances dux(S), for each x ∈ V
Output: ∆Clo, the increment to cu obtained when adding edge {u, v} to G(S)

1 Q := ∅;
2 visited := ∅;
3 duv(S ∪ {u, v}) := 1;
4 foreach x ∈ Nv(S) do
5 dux(S ∪ {u, v}) := min{2, dux(S)};
6 visited := {u, v} ∪Nu(S);

7 ∆Clo := 1− 1
duv(S)

;

8 foreach x ∈ Nv(S) do
9 Q.push(x);

10 while ¬Q.empty() do
11 x := Q.pop();

12 ∆Clo := ∆Clo + 1
dux(S∪{u,v})(x) −

1
dux(S)

;

13 foreach y ∈ Nx(S) do
14 if (y /∈ visited) ∧ (duy(S) > dux(S ∪ {u, v}) + 1) then
15 duy(S ∪ {u, v}) := dux(S ∪ {u, v}) + 1;
16 Q.push(y);
17 visited := visited ∪ {y};

18 return ∆Clo

Fig. 11. Algorithm DynamicBFS.

correctly computed and consider a node y ∈ γuv(S) having minimal distance to u among
such nodes. At the last iteration when y is inserted into Q, there exists a node x ∈ N(y)
such that duy(S) > dux(S ∪{u, v}) + 1. It follows that duy(S ∪{u, v}) = dux(S ∪{u, v}) + 1
(see the test at line 14). Since the distance between y and u is minimal among those that
are not correctly computed by the algorithm, then dux(S ∪ {u, v}) is correct. It follows
that the distance between y and u is correctly computed at line 15, a contradiction. By
contradiction, suppose that some node not in γuv(S) is inserted into Q and consider a
node y 6∈ γuv(S) having minimal distance to u among such nodes. Since y has minimal
distance to u among the nodes not in γuv(S) inserted into Q, then the node x for which
the condition at line 14 is satisfied when y is inserted into Q must belong to γuv(S). By
the previous arguments, dux(S ∪ {u, v}) is correctly computed by the algorithm and then
duy(S ∪ {u, v}) = dux(S ∪ {u, v}) + 1 < duy(S), a contradiction to the fact that y does not
belong to γuv(S).

The new dynamic algorithm can now be obtained by the GreedyImprovement algo-
rithm shown in Figure 3, by doing the following modifications.

— Before line 2, we compute cu in G.
— At line 4, we incrementally compute cu(S ∪ {u, v}) by making use of algorithm
DynamicBFS instead of a full BFS.

Note that, for each v ∈ V , Γuv(S) is maximized when S = ∅, then the algorithm requires
an overall O(k · nΓ) computational time, where Γ = maxv∈V {Γuv(∅)}.

We now show how to exploit the definition of submodularity to reduce the running time
of iterations i ≥ 2 of the for loop at line 2 of GreedyImprovement. Let ∆cu(S∪{{u, v}})
be the increment to the centrality of node u after adding the edge {u, v} to graph G(S).
Since cu is submodular, then ∆cu(S ∪{{u, v}}) is monotonic non-increasing. It follows that
∆cu(S ∪ {{u, v}}) is upper bounded by ∆cu(S′ ∪ {{u, v}}), where S′ ⊆ S. We exploit this

17

u

a

c

v

g

b

d

f

h

i

j

(a) Graph G, the dashed
edge is the newly added edge
{u, v}, gray nodes and dou-
ble edges are visited by Al-
gorithm 11.

Node
Iter. extracted ∆Clo Q

from Q
0 v 2/3 (c, f, g)
1 c 2/3 (f, g)
2 f 5/6 (g, h, d)
3 g 13/12 (h, d)
4 h 7/6 (d, i, j)
5 d 7/6 (i, j)
6 i 7/6 (j)
7 j 7/6 ∅

(b) Iterations of the algorithm: the second col-
umn is the node extracted from Q, the last two
columns represent the status of ∆Clo and Q
at the end of the iteration. Iteration 0 corre-
sponds to lines 1–9 of Algorithm 11.

x dxu dxu({u, v})
u 0 0
a 1 1
b 1 1
c 2 2
d 2 2
v 3 1
f 3 2
g 4 2
h 4 3
i 3 3
j 4 4

(c) Distances before and af-
ter the edge addition.

Fig. 12. Example of execution of Algorithm 11.

observation in algorithm DynamicGreedyImprovement given in Figure 13. First, we
compute cu and initialize ∆cu (lines 1–3). For each iteration i of the for loop at line 6, we
use variable LB (line 7) to maintain the maximum improvement to closeness found so far,
that is LB is a lower bound to the improvement that will be found at the end of iteration i.
If at iteration i ≥ 2, for some node v ∈ V \Nu(S), we have that LB ≥ ∆cu({S′∪{{u, v}}})
(line 9), where S′ is the value of S at iteration i − 1, then edge {u, v} cannot increase the
value of cu more than the maximum found so far. Therefore, in this case we prune the
search. Otherwise, we compute ∆cu(S∪{{u, v}}) and check whether it improves LB or not
(line 11). In the affirmative case, we update LB (line 12).

We can improve the performance of DynamicGreedyImprovement by means of two
further heuristics. First, we sort the nodes of Nv(S), for each v ∈ V , in non-increasing
order of distance from u and we stop the for loop of line 13 of algorithm DynamicBFS
when a node y such that duy(S) ≤ dux(S ∪ {u, v}) + 1 is extracted. In fact, for any other
node adjacent to x with a distance to u greater than duy(S) the condition at line 14 is not
satisfied. Then, we can easily parallelize algorithm DynamicGreedyImprovement over

p processors since V \ (Nv(S)) can be divided into sets of
⌊
|V \(Nv(S))|

p

⌋
nodes and the for

18

Algorithm: DynamicGreedyImprovement
Input : An Undirected graph G = (V,E); a vertex v ∈ V ; and an integer k ∈ N
Output: Set of edges S ⊆ {{u, v} | u ∈ V \Nv} such that |S| ≤ k

1 Compute cu by using full BFS;
2 foreach v ∈ V \Nu do
3 ∆cu({{u, v}}) := 0;

4 S := ∅;
5 S′ := ∅;
6 for i = 1, 2, . . . , k do
7 LB := 0;
8 foreach v ∈ V \Nu(S) do
9 if (i = 1) ∨ (LB < ∆cu(S′ ∪ {{u, v}})) then

10 ∆cu(S ∪ {{u, v}}) := DynamicBFS(G(S), {u, v}, {dux(S)}x∈V);
11 if ∆cu(S ∪ {{u, v}}) > LB then
12 LB := ∆cu(S ∪ {{u, v}});
13 max := v;

14 S′ := S;
15 S := S ∪ {{u,max}};
16 Compute distances dux(S), for each x ∈ V ;

17 return S

Fig. 13. Algorithm DynamicGreedyImprovement.

loop at line 8 of algorithm DynamicGreedyImprovement can be executed in parallel for
each set. In this case, LB is given by the maximum over each subset.

2.6. The experimental study: part II

We also conducted a second type of experiment by measuring the improvement in the
value of closeness of u and in the closeness ranking of u within the network. In particu-
lar, we studied two large real-world networks obtained from the DBLP [Ley] and IMDB
database [IMDB]. In such networks, the nodes are authors or actors and there is an edge
connecting vertex x and vertex y if the author, or actor, corresponding to vertex x col-
laborated with y for writing a paper or for acting in the same movie. For each graph, we
used twenty vertices as u but, differently from the experiments on random graphs, these
vertices have been chosen on the basis of their degree ranking: in particular, we divided the
list of vertices sorted by their ranking in 4 parts and chosen randomly five vertices for each
interval. The value of k ranges from 1 to 10.

The analysis of these two large networks has been possible only by using the Dynamic-
GreedyImprovement algorithm, since this algorithm visits only few edges of the graph
(as explained in the previous section): in particular, for all the iterations i = 1, 2, . . . , k the
algorithm visits only 0.09% of the edges. The results for the DBLP network (n = 1305445,
m = 6108727) are plotted in Fig. 14, while the results for the IMDB network (n = 1797446,
m = 72880156) are similar and are shown in Fig. 15. In the chart on the left we plot the
closeness centrality of vertex u as a function of k. We observe that any vertex improves its
closeness value by adding just few edges. In the right chart we plot the execution time of
the algorithm DynamicGreedyImprovement. We notice that the computational effort
is high for k = 1 but then it is almost constant for k > 1: this is due to the submodularity
property.

In order to test the scalability of the parallelized version of DynamicGreedyImprove-
ment algorithm, we run the same set of experiments with different numbers of cores and
we measured the execution time and the speedup i.e. the ratio between the execution time

19

295000

300000

305000

310000

315000

320000

325000

1 2 3 4 5 6 7 8 9 10

C
lo

se
n

es
s

k

u25%
u50%
u75%
u100%

0

10000

20000

30000

40000

50000

60000

0 2 4 6 8 10

T
im

e
(s

ec
.)

k

u25%
u50%
u75%
u100%

Fig. 14. (Left) Performance of DynamicGreedyImprovement algorithm on network DBLP. (Right) Execu-
tion time of DynamicGreedyImprovement algorithm.

500000
510000
520000
530000
540000
550000
560000
570000

1 2 3 4 5 6 7 8 9 10

C
lo

se
n

es
s

k

u25%
u50%
u75%
u100%

0
5000

10000
15000
20000
25000
30000
35000

0 2 4 6 8 10

T
im

e
(s

ec
.)

k

u25%
u50%
u75%
u100%

Fig. 15. (Left) Performance of DynamicGreedyImprovement algorithm on network IMDB. (Right) Execu-
tion time of DynamicGreedyImprovement algorithm.

Table IV. Execution time and speedup of DynamicGreedyImprovement algorithm
on DBLP and IMDB networks with different number of cores.

Avg. Avg. Avg. Avg. Avg.
Execution Time Speedup Speedup Speedup Speedup

Network (1 core) (2 cores) (4 cores) (6 cores) (8 cores)
DBLP 17671 s 1.91 3.01 4.01 4.63
IMDB 10710 s 1.57 2.10 3.12 3.27

with 1 core and the execution time with p cores for p = 2, 4, 6, 8. The results are reported
in Table IV. We notice that the parallel algorithm shows a good scalability in terms of exe-
cution time. Note that the small increase in the case of 8 cores is due to the fact that in our
machine, each CPU has 6 physical cores and hence in the case of 8 cores the computation
is performed by two different processors.

3. THE DIRECTED GRAPH CASE

In this section we will focus on directed graphs. After giving all necessary definitions and
preliminary results, we will introduce the optimisation problem that will be considered,
we will prove a non-approximability result, and we will then describe an almost optimal
approximation algorithm. Finally, we will present the experiments that we have performed
in order to validate this algorithm and to apply it to a quite big citation network and a web
graph.

20

3.1. The maximum directed closeness improvement problem

Let G = (V,A) be a directed graph, where V denotes the set of nodes, and A denotes the
set of arcs (u, v) with u and v in V (note that (u, v) ∈ A does not imply that (v, u) ∈ A).
For each node u, Nu denotes the set of in-neighbours of u, i.e. Nu = {v | (v, u) ∈ A}.
Given two vertices u and v, dvu is defined as in the undirected graph case. Given a set S
of arcs not in A, we denote by G(S) the graph augmented by adding the arcs in S to G,
i.e. G(S) = (V,A ∪ S). Once again, for a parameter x of G, we denote by x(S) the same
parameter in graph G(S). For each node u, the closeness centrality of u is defined as follows:

cu =
∑

v∈V \{u}
dvu<∞

1

dvu
.

Given a directed graph G = (V,A), a vertex u ∈ V , and an integer k, the Maximum
Directed Closeness Improvement (in short, MDCI) problem consists in finding a set S of
arcs entering u not in A (that is, S ⊆ {(v, u) : v ∈ V \Nu}) such that |S| ≤ k and cu(S) is
maximum.

We observe that the following results hold also for the related problem in which the
edges to be added to the graph are outgoing from u and the closeness centrality considers
distances duv instead of dvu.

3.2. The non-approximability result

In this section, in order to derive our approximation hardness result for the MDCI problem,
we will make use of the Maximum Set Coverage (in short, MSC) problem, which is defined
as follows: given a set X, a collection F = {S1, S2, . . . S|F|} of subsets of X, and an integer
k, find a sub-collection F ′ ⊆ F such that |F ′| ≤ k and s(F ′) = | ∪Si∈F ′ Si| is maximised.
It is known that the MSC problem cannot be approximated within a factor greater than
1 − 1

e , unless P = NP [Feige 1998]. We will now use this result in order to show that the
MDCI problem does not admit a polynomial-time approximation scheme.

Theorem 3.1. The MDCI problem cannot be approximated within a factor greater
than 1− 1

3e , unless P = NP .

Proof. We give an L-reduction with parameters a and b [Papadimitriou and Yannakakis
1991]. In detail, we will give a polynomial-time algorithm that transforms any instance IMSC

of MSC into an instance IMDCI of MDCI and a polynomial-time algorithm that transforms
any solution S for IMDCI into a solution F ′ for IMSC such that the following two conditions
are satisfied for some values a and b:

OPT (IMDCI) ≤ aOPT (IMSC) (2)

OPT (IMSC)− s(F ′) ≤ b (OPT (IMDCI)− cu(S)) . (3)

where OPT denotes the optimal value of an instance of an optimization problem. If the
above conditions are satisfied and there exists a α-approximation algorithm for MDCI,
then there exists a (1 − ab(1 − α))-approximation algorithm for MSC [Papadimitriou and
Yannakakis 1991]. Since MSC is hard to approximate within a factor greater than 1 − 1

e ,

then 1− ab(1− α) < 1− 1
e , unless P = NP . This implies that α < 1− 1

abe .
Given an instance IMSC = (X,F , k) of MSC, we define an instance IMCI = (G, u, k) of

MDCI as follows (see Fig. 16): G = (V,A), where V = {u}∪{vxi | xi ∈ X}∪{vSj | Sj ∈ F}
and A = {(vxi , vSj) | xi ∈ Sj}.

Without loss of generality, we can assume that any solution S of MDCI contains only
arcs (vSj , u) for some Sj ∈ F . In fact, if a solution does not satisfy this property, then we
can improve it in polynomial time by repeatedly applying the following rule: if S contains
an arc (vxi , u), for some xi ∈ X, then exchange such arc with an arc (vSj , u) such that

21

vx1

vx2

...
vx|X|

vS1

vS2

...
vS|F|

u

Fig. 16. The reduction used in Theorem 2.1 (in this example, x1 ∈ S1, x1 ∈ S2, x2 ∈ S1, and x2 ∈ S|F|).
The dashed arcs denote those added in a solution.

(vSj , u) 6∈ S (note that such an arc must exist, since otherwise |F| ≤ k and IMSC could be
easily solved). The above rule does not decrease the value of cu(S): indeed, if we exchange
an arc (vxi , u) with an arc (vSj , u) such that (vSj , u) 6∈ S, then the closeness centrality of u

decreases by either 1 or 1
2 (because of the deletion of (vxi , u)) but certainly increases by 1

(because of the insertion of (vSj , u)).
Given a solution S of MDCI, let F ′ be the solution of MSC such that Sj ∈ F ′ if and

only if (vSj , u) ∈ S. We now show that cu(S) = 1
2s(F

′) + k. To this aim, let us note that
the distance from a vertex vxi to u is equal to 2 if an arc (xSj , u) such that xi ∈ Sj belongs
to S, and it is ∞ otherwise. Similarly, the distance from a vertex vSj to u is equal to 1
if (xSj , u) ∈ S, and it is ∞ otherwise. Moreover, the set of elements xi of X such that
dvxiu(S) <∞ is equal to {xi | xi ∈ Sj ∧ (vSj , u) ∈ S} =

⋃
Sj∈F ′ Sj . Therefore,

cu(S) =
∑

v∈V \{u}
dvu(S)<∞

1

dvu(S)
=

∑
xi∈X

dvxiu
(S)<∞

1

dvxiu(S)
+

∑
Sj∈F

dvSj u
(S)<∞

1

dvSju(S)

=
1

2
|{xi ∈ X | dvxiu(S) <∞}|+ |{Sj ∈ F | dvSju(S) <∞}|

=
1

2

∣∣∣∣∣∣
⋃

Sj∈F ′
Sj

∣∣∣∣∣∣+ |{Sj | (vSj , u) ∈ S}| = 1

2
s(F ′) + k.

It follows that Conditions (2) and (3) are satisfied for a = 3
2 and b = 2. Indeed,

OPT (IMDCI) = 1
2OPT (IMSC) + k ≤ 3

2OPT (IMSC), where the inequality is due to the fact
that OPT (IMSC) ≥ k, since otherwise the greedy algorithm would find an optimal solu-
tion for IMSC. Moreover, OPT (IMSC) − s(F ′) = 2 (OPT (IMDCI)− k) − 2 (cu(S)− k) =
2 (OPT (IMDCI)− cu(S)). The theorem follows by plugging the values of a and b into
α < 1− 1

abe .

3.3. The greedy approximation algorithm

As in the case of undirected graphs, we can show that, for each vertex u, the function cu
is monotone and submodular with respect to any feasible solution for MDCI. Indeed, the
proof of Theorem 2.2 can be easily adapted to the directed graph case, and the following
result holds.

Corollary 3.2. The algorithm shown in Fig. 17 is a
(
1− 1

e

)
-approximation algorithm

for the MDCI problem.

Also in this case, there is a gap between the non-approximability result proved in Theo-
rem 3.1 (that is, the upper bound equal to 1− 1

3e ≈ 0.88), and the approximability result of

the above corollary (that is, the lower bound
(
1− 1

e

)
≈ 0.63). One of the main goals of the

22

Algorithm: DirectedGreedyImprovement
Input : a directed graph G = (V,A), a vertex u ∈ V , and an integer k ∈ N
Output: set of arcs S ⊆ {(v, u) | v ∈ V \Nu} such that |S| ≤ k

1 S := ∅;
2 for i = 1, 2, . . . , k do
3 foreach v ∈ V \Nu(S) do
4 Compute cu(S ∪ {(v, u)})
5 vmax := arg max{cu(S ∪ {(v, u)}) | v ∈ V \Nu(S)};
6 S := S ∪ {(vmax, u)};
7 return S;

Fig. 17. The greedy algorithm for directed graphs.

next experimental session is to analyse the “real” performance, in terms of solution quality,
of the greedy algorithm on relatively small real-world and synthetic graphs.

3.4. Experimental results

As in the undirected graph case in this section we analyse the greedy algorithm from an
experimental point of view. First, we compare the solution of the greedy algorithm with
the optimal solution in order to assess its real performance in terms of solution quality.
Then, we compare the greedy algorithm with the other approaches used in the undirected
cases, but k-Median because it cannot be applied in the directed case. We adapted the
DynamicGreedyImprovement algorithm used for the undirected case. In particular, we
run the (pruned) BFSs on the transpose graph of G to reduce the time required to compute
cu and to improve the computational complexity of GreedyImprovement. Moreover, we
show the results of our experiments on a real-world graph measuring the improvement in
the value of closeness of u within the network. Finally, we analyse how the information
spread increases.

We measured the approximation ratio of the greedy algorithm on five types of randomly
generated directed networks, namely directed Preferential Attachment (in short, PA) [Bol-
lobás et al. 2003], Erdős-Rényi (in short, ER) [Erdős and Rényi 1959], Copying (in short,
COPY) [Kumar et al. 2000], Compressible Web (in short, COMP) [Chierichetti et al. 2009]
and Forest Fire (in short, FF) [Leskovec et al. 2007]. The size of the graphs is reported in
Table V. For each combination (n, m), we generated five random directed graphs and used
twenty vertices as u. These vertices have been chosen on the basis of their original closeness
ranking as in the undirected case.

The results of the experiments are reported in Table V, where we show, similarly to the
undirected graph case, the minimum ratio obtained. The experiments show that in the worst
case the ratio is 0.9668.

For the comparison with the other approaches we used real-world citation networks ob-
tained from the Arnetminer database [arn] (see Table VI for details). In the Arnetminer’s
networks, there is a vertex for each author and an arc from vertex x to vertex y if the author
corresponding to vertex x cited in his paper one paper written by the author corresponding
to y. We parsed the Arnetminer database in order to select a sub-network induced by the
authors that published at least a paper in one of the main conferences or journals. As in the
previous experiment, for each graph, we used twenty vertices as u. The value of k ranges
from 1 to 10.

The results for the citation network Information Security are plotted in Fig. 18. In
the two charts we plot the closeness centrality and the ranking of vertex u as a function
of k. We observe that any vertex becomes central by adding just few arcs. For example a

23

Table V. Comparison between the DirectedGreedyImprove-
ment algorithm and the optimum. The first three columns reports
the type and size of the graphs; the fourth column reports the
approximation ratio.

Network n = |V | m = |E| Min Approx. Ratio
PA 100 130 0.9816
PA 500 650 0.9956
PA 1000 1300 1
ER 100 200 0.9668
ER 100 500 0.9744
ER 100 1000 0.9780
ER 500 5000 0.9890
ER 500 12500 0.9819
ER 500 25000 0.9994

COMP 100 200 0.9968
COMP 100 500 0.9764
COMP 100 1000 1
COMP 500 5000 0.9848
COMP 500 12500 1
COMP 500 25000 1
COPY 100 200 0.9911
COPY 100 500 0.9753
COPY 100 1000 0.9820
COPY 500 5000 0.9825
COPY 500 12500 0.9726
COPY 500 25000 0.9690
FF 100 200 0.9911
FF 200 400 0.9714
FF 500 1000 0.9892

Table VI. Collaboration networks obtained from Arnetminer
database.

Network n = |V | m = |E|
Software Engineering 3141 14787
Information Security 1067 4253

Computer Graphics Multimedia 8336 41925
Theoretical Computer Science 4172 14272

Artificial Intelligence 27617 268460
High-Performance Computing 4869 35036

Computer Networks 9420 53003
Interdisciplinary Studies 577 1504

0

50

100

150

200

250

300

0 2 4 6 8 10

C
lo

se
n

es
s

k

u25%
u50%
u75%
u100%

0
50

100
150
200
250
300
350
400
450
500

0 2 4 6 8 10

C
lo

se
n

es
s

R
an

k
in

g

k

u25%
u50%
u75%
u100%

Fig. 18. Performance of the DirectedGreedyImprovement algorithm on network Information Security.

vertex with the smallest closeness centrality which initially has closeness 0 and is ranked
509, improves its closeness and ranking to 213.32 and 1, respectively, by adding only 7 arcs.

24

0
10
20
30
40
50
60
70
80
90

0 2 4 6 8 10

C
lo

se
n

es
s

R
a
n
k
in

g

k

u25%
u50%
u75%
u100%

(a) Degree

0
10
20
30
40
50
60
70
80
90

0 2 4 6 8 10

C
lo

se
n

es
s

R
a
n

k
in

g

k

u25%
u50%
u75%
u100%

(b) Top-k

0
10
20
30
40
50
60
70
80
90

100

0 2 4 6 8 10

C
lo

se
n

es
s

R
a
n

k
in

g

k

u25%
u50%
u75%
u100%

(c) Random

Fig. 19. Average relative ranking position between the Ranking obtained by the DirectedGreedyIm-
provement algorithm and the different baselines in the network Information security.

In the chart in Fig. 19 we compare the greedy algorithm with the other approaches. We
report the comparison of the average relative ranking position reached by the nodes. We
do not show the results for Rounding as such algorithm is not able to terminate within
a reasonable amount of time. The experiments clearly show that the greedy algorithm
outperforms the other approaches.

We further used the DynamicGreedyImprovement algorithm to analyse a web net-
work [LAW]. The results for the web network uk-2007 (n = 100000, m = 3050615) are
plotted in Fig. 20. In the right chart we report the execution time of the algorithm. The Dy-
namicGreedyImprovement algorithm is up to 103 times faster than the basic Greedy-
Improvement algorithm and for all the iteration it visits only the 0.18% of the arcs of
the graph: using the DynamicGreedyImprovement algorithm, it is possible to solve the
MCI problem on very large graphs where it is impossible to obtain a solution using the
GreedyImprovement algorithm.

Like in the undirected case, we run the same set of experiments with different numbers
of cores and we measured the execution time and the speedup i.e. the ratio between the
execution time with 1 core and the execution time with p cores for p = 2, 4, 6, 8. The
results are reported in Table VII. We notice that the parallel algorithm shows a very good
scalability in terms of execution time.

Finally, we measured the increase in information spreading when few edges are added to
a small set of randomly-chosen seeds. We performed experiments similar to those shown
in the undirected case in the graphs of Table VI. In Fig. 21, we plot the results for the
Information security directed network. We observe that also in this case the informed
nodes percentage increases. The results for the other networks in Table VI are similar.

25

37000
38000
39000
40000
41000
42000
43000
44000

1 2 3 4 5 6 7 8 9 10

C
lo

se
n

es
s

k

u25%
u50%
u75%
u100%

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0 2 4 6 8 10

T
im

e
(s

ec
.)

k

u25%
u50%
u75%
u100%

Fig. 20. (Right) Performance of the DynamicGreedyImprovement algorithm on network uk-2007. (Left)
Time of execution.

Table VII. Execution time and speedup of DynamicGreedyImprovement algorithm
on uk-2007 network with different number of cores.

Avg. Avg. Avg. Avg. Avg.
Execution Time Speedup Speedup Speedup Speedup

Network (1 core) (2 cores) (4 cores) (6 cores) (8 cores)
uk-2007 1382 s 1,83 3,70 5,58 7,44

4. CONCLUSION AND FUTURE RESEARCH

We considered the problem of adding k edges in a (directed or undirected) graph in order to
maximize the closeness of a predefined vertex. For undirected graphs, we have shown that
the problem cannot be approximated within a factor larger than 1− 1

15e , and we proposed

a greedy algorithm that guarantees an approximation factor of 1− 1
e . For directed graphs,

the problem cannot be approximated within a factor larger than 1 − 1
3e , while the greedy

algorithm still guarantees an approximation factor of 1 − 1
e . We experimentally evaluated

such algorithms and showed that they often compute an optimal solution and, in any case,
they achieve an approximation factor significantly better than the theoretical one. Moreover,
by adding very few edges a vertex can drastically increase its centrality measure and its
ranking.

As future works, we plan to extend our work to further centrality measures such as
betweenness, to generalize the problem by allowing the addition of edges incident to other
nodes of the graph, and to maximize the ranking of a node instead of the centrality value.

REFERENCES

Arnetminer. http://arnetminer.org. Accessed: 2015-01-15.

GLPK – GNU Linear Programming Kit. http://www.gnu.org/software/glpk.

Avrachenkov, K. and Litvak, N. 2006. The effect of new links on google pagerank. Stoc. Models 22, 2,
319–331.

Backstrom, L. and Leskovec, J. 2011. Supervised random walks: Predicting and recommending links in
social networks. In Proceedings of the Fourth ACM International Conference on Web Search and Data
Mining. WSDM ’11. ACM, 635–644.

Barabasi, A.-L. and Albert, R. 1999. Emergence of scaling in random networks. Science 286, 5439,
509–512.

Bauer, R., D’Angelo, G., Delling, D., Schumm, A., and Wagner, D. 2012. The shortcut problem -
complexity and algorithms. J. Graph Algorithms Appl. 16, 2, 447–481.

Bender, E. A. and Canfield, E. 1978. The asymptotic number of labeled graphs with given degree
sequences. Journal of Combinatorial Theory, Series A 24, 3, 296 – 307.

Bilò, D., Gualà, L., and Proietti, G. 2012. Improved approximability and non-approximability results
for graph diameter decreasing problems. Theor. Comput. Sci. 417, 12–22.

26

0

10

20

30

40

50

60

0 2 4 6 8 10

A
ct

iv
e

n
o
d

es

k

a = 0.2
a = 0.3
a = 0.4

5
10
15
20
25
30
35
40
45
50
55
60

0 2 4 6 8 10

A
ct

iv
e

n
o
d

es

k

a = 0.2
a = 0.3
a = 0.4

5
10
15
20
25
30
35
40
45
50
55
60

0 2 4 6 8 10

A
ct

iv
e

n
o
d

es

k

a = 0.2
a = 0.3
a = 0.4

15
20
25
30
35
40
45
50
55
60
65

0 2 4 6 8 10
A

ct
iv

e
n

o
d

es

k

a = 0.2
a = 0.3
a = 0.4

20
25
30
35
40
45
50
55
60
65

0 2 4 6 8 10

A
ct

iv
e

n
o
d

es

k

a = 0.2
a = 0.3
a = 0.4

Fig. 21. Percentage of active nodes in Information security network as a function of k. Parameter a
denotes the threshold and the percentage of seeds is equal to 2%, 4%, 6%, 8%, 10%, respectively.

Boldi, P. and Vigna, S. 2014. Axioms for centrality. Internet Mathematics 10, 3–4, 222–262.

Bollobás, B., Borgs, C., Chayes, J., and Riordan, O. 2003. Directed scale-free graphs. In Proceedings
of the 14th annual ACM-SIAM symposium on Discrete algorithms (SODA). SIAM, 132–139.

Chierichetti, F., Kumar, R., Lattanzi, S., Panconesi, A., and Raghavan, P. 2009. Models for the
compressible web. In Proceedings of the 50th Annual Symposium on Foundations of Computer Science
(FOCS). IEEE, 331–340.

Cohen, E., Delling, D., Pajor, T., and Werneck, R. F. 2014. Computing classic closeness centrality, at
scale. Tech. Rep. MSR-TR-2014-71.

Crescenzi, P., D’Angelo, G., Severini, L., and Velaj, Y. 2015. Greedily improving our own centrality
in a network. In Proceedings of the 14th International Symposium on Experimental Algorithms (SEA
2015). Lecture Notes in Computer Science Series, vol. 9125. Springer, 43–55.

D’Angelo, G., Severini, L., and Velaj, Y. 2015. On the maximum betweenness improvement problem. In
Proceedings of the 16th Italian Conference on Theoretical Computer Science (ICTCS15). To appear.

Dehghani, S., Fazli, M. A., Habibi, J., and Yazdanbod, S. 2015. Using shortcut edges to maximize the
number of triangles in graphs. Operations Research Letters 43, 6.

27

Demaine, E. D. and Zadimoghaddam, M. 2010. Minimizing the diameter of a network using shortcut
edges. In Proc. of the 12th Scandinavian Symp. and Work. on Algorithm Theory (SWAT). Lecture
Notes in Computer Science Series, vol. 6139. Springer, 420–431.

Dinur, I. and Steurer, D. 2014. Analytical approach to parallel repetition. In Proc. of the 46th Ann.
ACM Symp. on Theory of Comp. ACM, 624–633.

Erdős, P. and Rényi, A. 1959. On random graphs I. Publicationes Mathematicae 6, 290–297.

Feige, U. 1998. A threshold of ln n for approximating set cover. Journal of the ACM 45, 4.

Frati, F., Gaspers, S., Gudmundsson, J., and Mathieson, L. 2015. Augmenting graphs to minimize the
diameter. Algorithmica 72, 4, 995–1010.

IMDB. IMDB. http://www.imdb.com. Accessed: 2015-01-15.

Ishakian, V., Erdös, D., Terzi, E., and Bestavros, A. 2012. A framework for the evaluation and man-
agement of network centrality. In Proc. of the 12th SIAM Int. Conf. on Data Mining (SDM). SIAM,
427–438.

Kas, M., Wachs, M., Carley, K. M., and Carley, L. R. 2013. Incremental algorithm for updating
betweenness centrality in dynamically growing networks. In Advances in Social Networks Analysis and
Mining 2013, ASONAM ’13. ACM, 33–40.

Kempe, D., Kleinberg, J., and Éva Tardos. 2015. Maximizing the spread of influence through a social
network. Theory of Computing 11, 4, 105–147.

Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., and Upfal, E. 2000. Stochas-
tic models for the web graph. In Proceedings ot the 41st Annual Symposium on Foundations of Com-
puter Science (FOCS). IEEE, 57–65.

Kunegis, J. 2013. KONECT - The Koblenz network collection. In Proceedings of the 1st International Web
Observatory Workshop (WOW). 1343–1350.

LAW. Laboratory for Web Algorithmics. http://law.di.unimi.it/index.php. Accessed: 2015-01-15.

Leskovec, J., Kleinberg, J., and Faloutsos, C. 2007. Graph evolution: Densification and shrinking
diameters. ACM Trans. Knowl. Discov. Data 1, 1.

Leskovec, J. and Krevl, A. 2014. SNAP Datasets: Stanford large network dataset collection. http:
//snap.stanford.edu/data.

Ley, M. DBLP. http://dblp.uni-trier.de/. Accessed: 2015-01-15.

Li, R. and Yu, J. X. 2015. Triangle minimization in large networks. Knowledge and Information Sys-
tems 45, 3, 617–643.

Liben-Nowell, D. and Kleinberg, J. 2003. The link prediction problem for social networks. In Proceedings
of the Twelfth International Conference on Information and Knowledge Management. CIKM ’03. ACM,
556–559.

Meyerson, A. and Tagiku, B. 2009. Minimizing average shortest path distances via shortcut edge addition.
In Proc. of the 13th Int. Work. on Approx. Alg. for Comb. Opt. Prob. (APPROX). Lecture Notes in
Computer Science Series, vol. 5687. Springer, 272–285.

Molloy, M. and Reed, B. 1995. A critical point for random graphs with a given degree sequence. Random
Structures & Algorithms 6, 2–3, 161–180.

Nemhauser, G., Wolsey, L., and Fisher, M. 1978. An analysis of approximations for maximizing sub-
modular set functions–I. Mathematical Programming 14, 1, 265–294.

Olsen, M. and Viglas, A. 2014. On the approximability of the link building problem. Theor. Comput.
Sci. 518, 96–116.

Papadimitriou, C. H. and Yannakakis, M. 1991. Optimization, approximation, and complexity classes.
Journal of Computer and System Sciences 43, 3, 425–440.

Papagelis, M. 2015. Refining social graph connectivity via shortcut edge addition. ACM Trans. Knowl.
Discov. Data 10, 2, 12.

Papagelis, M., Bonchi, F., and Gionis, A. 2011. Suggesting ghost edges for a smaller world. In Proceedings
of the 20th ACM International Conference on Information and Knowledge Management. CIKM ’11.
ACM, 2305–2308.

Parotsidis, N., Pitoura, E., and Tsaparas, P. 2015. Selecting shortcuts for a smaller world. In Proceedings
of the 2015 SIAM International Conference on Data Mining. SIAM, 28–36.

Parotsidis, N., Pitoura, E., and Tsaparas, P. 2016. Centrality-aware link recommendations. In Proceed-
ings of the Ninth ACM International Conference on Web Search and Data Mining. WSDM ’16. ACM,
503–512.

Perumal, S., Basu, P., and Guan, Z. 2013. Minimizing eccentricity in composite networks via constrained
edge additions. In Military Communications Conference, MILCOM 2013 - 2013 IEEE. 1894–1899.

28

Popescul, A. and Ungar, L. H. 2003. Statistical relational learning for link prediction. In IJCAI workshop
on learning statistical models from relational data.

Saha, S., Adiga, A., Prakash, B. A., and Vullikanti, A. K. S. 2015. Approximation algorithms for
reducing the spectral radius to control epidemic spread. In Proceedings of the 2015 SIAM International
Conference on Data Mining. SIAM, 568–576.

Sariyüce, A. E., Kaya, K., Saule, E., and Çatalyürek, Ü. V. 2013. Incremental algorithms for closeness
centrality. In Proceedings of the 2013 IEEE International Conference on Big Data. IEEE, 487–492.

Tong, H., Prakash, B. A., Eliassi-Rad, T., Faloutsos, M., and Faloutsos, C. 2012. Gelling, and
melting, large graphs by edge manipulation. In Proceedings of the 21st ACM International Conference
on Information and Knowledge Management. CIKM ’12. ACM, 245–254.

Uri AlonLab. Uri alonlab. http://www.weizmann.ac.il/mcb/UriAlon/. Accessed: 2015-01-15.

Watts, D. J. and Strogatz, S. H. 1998. Collective dynamics of ’small-world’ networks. Nature 393, 6684,
440–442.

Yan, E. and Ding, Y. 2009. Applying centrality measures to impact analysis: A coauthorship network
analysis. Journal of the Association for Information Science and Technology 60, 10, 2107–2118.

Yin, Z., Gupta, M., Weninger, T., and Han, J. 2010. A unified framework for link recommendation using
random walks. In International Conference on Advances in Social Networks Analysis and Mining,
ASONAM 2010, Odense, Denmark, August 9-11, 2010. IEEE Computer Society, 152–159.

Received T; revised O; accepted D

O

29

