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DUALITY THEORY AND OPTIMAL TRANSPORT FOR SAND
PILES GROWING IN A SILOS

LUIGI DE PASCALE AND CHLOÉ JIMENEZ

Abstract. We prove existence and uniqueness of solutions for a system of
PDEs which describes the growth of a sandpile in a silos with flat bottom
under the action of a vertical, measure source. The tools we use are a discrete
approximation of the source and the duality theory for optimal transport (or
Monge-Kantorovich) problems.

1. Introduction

Let Ω be a bounded, convex open subset of Rd with 2 ≤ d ∈ N, let g : ∂Ω→ R+

be a bounded lower semi-continuous function, and let f ∈ L∞(0, T,M(Ω)) with
0 ≤ f . We denote by M(Ω) the set of Borel measures on Ω with finite total
variation. When f is time constant we will prove existence of solutions (u, µ, ν) of
problem

(PDE) ∂tu− div(Dµtuµt) = f − ν in Rd×]0, T [,

(C): Constraints
{
|Du| ≤ 1 in Ω×]0, T [,
|Dµtu| = 1 µt-a.e. in Ω for a.e.t ∈]0, T [,

(B): Boundary conditions
{

(B1) 0 ≤ u(x, t) ≤ g(x) in ∂Ω×]0, T [,
(B2) u(x, t) = g(x) νt-a.e. (x, t) ∈ Ω×]0, T [,

(I): Initial conditions u(·, 0) = 0 in Ω,
(1.1)

with the regularity (1.2)1:

u ∈ L∞(0, T,W 1,∞(Ω)), ∂tu ∈ L∞(0, T,M(Ω)),
µ ∈ L∞(0, T,M+(Ω)), ν ∈ L∞(0, T,M+(∂Ω)).

(1.2)

Date: 25 April 2015.
2010 Mathematics Subject Classification. 49Q20, 35K20, 35K55, 47J20, 49K30, 35B99.
Key words and phrases. Sand piles models, Monge-Kantorovich problem, optimal transport
problem, convex duality, tangential gradient.
1As L∞(0, T,M+(Ω)) ⊂ M(Ω×]0, T [), we will often integrate with respect to µ or write µ-a.e.
(x, t) for µt-a.e. x, a.e. t.
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2 LUIGI DE PASCALE AND CHLOÉ JIMENEZ

A function u as above is, in particular, in C([0, T ];L2(Ω))2 which gives sense to
the initial data ((1.1),(I)).

In these equations Du denotes the spatial part of the derivative while ∂tu is
the time derivative of u. The divergence is only spatial and is intended in the
distributional sense. The meaning of Dµtu will be given later and should be seen
as the part of Du which is relevant for the measure µ.

As usually the equality given by (PDE) must be intended as
d

dt

∫
Rd
u(·, t)ϕ(·) dx+

∫
Dµtu ·Dϕ dµt =

∫
Ω

ϕdft −
∫
∂Ω

ϕ dνt, in D′(0, T )

for all ϕ ∈ D(Rd). Here D(A) denotes the space of smooth functions compactly
supported inside A.

The function u will be proved to be unique, we will show that the problem above
is equivalent to a variational inequality in the spirit of the original paper [29]. One
of the main tools will be the duality theory for optimal transport problems. This
approach will allow us to study some form of uniqueness and mild regularity for
µ. More precisely, we will prove the two following results:

Theorem 1.1. Let f ∈ L∞(0, T,M(Ω)) and (u, µ, ν) satisfying (1.2) with the
boundary condition (1.1,(B1)), and assume u(·, t) ∈ Lip1(Ω) a.e. t.
Then (u, µ, ν) is a solution of (1.1) if and only if (I) is satisfied and ft−∂tu(·, t) ∈
∂I∞(u(·, t))a.e. t ∈]0, T [.
This last condition means that u is a solution, a.e. t, of the following maximization
problem:

max{〈f − ∂tu(·, t), v〉 : v ∈ Lip1(Ω), 0 ≤ v(x) ≤ g(x) on ∂Ω}. (1.3)
Moreover (1.3) is the dual formulation of the mass transport problem (4.4) and to
any optimal choice of ν corresponds a unique optimal µ defined by:

〈µt, ϕ〉 =

∫
Ω

2

∫ 1

0

ϕ((1− s)x+ sy)|y − x| ds dγt(x, y) ∀ϕ ∈ Cb(Ω)

where γt (together with νt) is any solution of (4.4).

Theorem 1.2. Let f ∈ L∞(0, T,M(Ω)) be constant in time. Then (1.1) admits
a solution (u, µ, ν) satisfying (1.2). Moreover u is unique and ∂tu ∈ L2(Ω×]0, T [).

The results above will be proved by approximating f by a finite number of point
sources.

The differential system (1.1) has been proposed several years ago in [29] to
describe the growth of a sandpile on a bounded table under the action of a vertical
source here modeled by f . In the model the sandpile is described as composed
by an underlying standing layer, here modeled by u and a rolling layer which is
here modeled by µ. The material rolls downhill only when the standing layer
2see, for example, [22] page 54



SANDPILE IN A SILOS 3

reaches a critical slope which is characteristic of the material. This critical slope,
here, is normalised to 1 and the conditions (C) gives account of this aspect of the
behaviour. Together with the boundary conditions (BC) the system models the
growth of the pile inside a silos with wall on ∂Ω of height g. At some point the
sandpile will reach the top of the wall and the sand will start to fall out. The
measure ν describes where this will happen and how much sand will fall out from
each point. So at the beginning we expect νt to be 0 while after some time the
sandpile will stabilise and ∂tu will become 0 and ν will have the same mass of f .

Allowing ν to have sign (which is equivalent to assume that an additional source
of sand may appear on the boundary) could bring to a loss of uniqueness as shown
in the following example.

Example 1.3. Take d = 1, Ω =]0, 1[, f = 0, T = 1 and g constantly equal to 1.
Obviously (u, µ, ν) = (0, 0, 0) is a solution, but we may also take for instance:

u(x, t) = (t− x)1{(x,t):x≤t}(x, t), νt = −tδ0,∫
[0,1]

ϕ(x, t) dµt(x) =

∫ t

0

∫ 1

0

ϕ((1− s)x)x dsdx ∀ϕ ∈ Cb(]0, 1[).

The choice of f in the space of measures aims to model situations in which
the source has dimensions much smaller than the sensitivity of the measure in-
struments. A possible example from daily life is a hourglass where sometimes the
passage for the sand is small at the limit of the imperceptible.

A different approach to this problem is currently pursued by other authors [13].

Remark 1.4. When f is a measure it may happens that µ is not better than a
measure as shown in several examples in [5, 7]

As every model, this one is well suited for some situations and it fails in others.
An accessible description of several models (included the one we consider), may
be found in [27] together with several more references.

Most of the literature is concerned with the Dirichlet case (also known as table
problem) with a source f ∈ Lp(Ω). In that case the system describes a sandpile
growing on a table without walls. At some moment the pile reaches the boundary
of the table and the sand start to fall out stabilizing the pile. The standard
approach consisted in proving that in a regular setting the system is equivalent to
a variational inequality which may be written as

f − ∂tu ∈ ∂I∞(u) (1.4)

and then proving the existence and uniqueness of a solution u of (1.4) for a wide
class of f . For example, this has been done by Prigozhin in [29] where existence
and uniqueness of u (for the table problem without walls) is proved under the
assumption f ∈ (L4(0, T,W 1,4(Ω))′ which is wider than the space we consider.
Nevertheless, the meaning of µ is less explicit in that work. Making the link with
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optimal transport, and making use of the duality theory, allows us to give sense
to µ when f is a measure.

A similar model for a sandpile growing under the action of a finite number
of sources was proposed earlier in [4] and in several unpublished notes by the
same author. The ODE arising from that approach was studied in [3] and in the
same paper Lp approximations as p → ∞ of the problem were also introduced.
The same kind of approximations are used in [26] to study the problem for more
general sources and to establish a first relationship with the optimal transportation
problem.

For the table problem a setting similar to the one of this paper is used in
[28, 23] for a source f ∈ L1(0, T,M(Ω)). The same papers contain some theory for
numerical approximations as well as numerical simulations. One of the difficulties
one has to face when f is a measure (in the space variable) is due to the lack
of regularity of µ. The approach of N. Igbida avoids this problem by working
with the flux and introducing some weak formulation of (1.1). To deal with this
lack of regularity of µ, we use the tangential calculus with respect to a measure
introduced by Bouchitté, Buttazzo and Seppecher in [7].

Convergence toward equilibrium in the table problem is studied in [12] . Then,
stationary solutions are studied, with or without explicit mention of the sand piles
model, in [8, 5, 11, 9, 10, 15, 17, 18]. There is still much work to do toward a
complete understanding of the time of convergence to equilibrium when the source
is not too regular or controlled from below. The literature on the silos problem is
not so rich. Some partial result together with numerics is contained in [14].

Here we choose to start from an empty silos. The theory would be the same (up
to technical details) if we assume any initial condition u0 which satisfies |Du0| <
1. If |Du0| = 1 on a set of positive measure then one enters the domain of
collapsing sand piles which is different from the one we are considering and is rich
of interesting problems (we suggest to start from [26] and to follow with the papers
in which that paper is cited).

Finally a remark on the convexity of Ω. It is clear that the problem would be
interesting also in non-convex domains. Some results for stationary (equilibrium)
solutions is contained in the recent paper [16] which also consider some anisotropic
generalization. Here the assumption of convexity is crucial in section 5 where we
use shortest line connecting internal points of Ω to some point on ∂Ω determined
by the values of g.

Notations : The Euclidian norm on Rd will be denoted by | · |. For any A subset
of Rd, ]0, T [ or Rd×]0, T [, we denote by:

• M(A) the bounded measures supported in A,M+(A) being the subset of
M(A) of non-negative, bounded measures,
• For any vectorial measure σ ∈ M(A,Rn), we will denote by |σ| the total
variation measure associated to σ,
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• C(A) the set of continuous functions on A while Cb(A) denotes the set
of continuous bounded functions on A equipped with the infinity norm
‖ · ‖∞, the smooth compactly supported functions on A will be denoted by
D(A) := C∞c (A).

For any functional space F , we will use F ′ for the topological dual of F . Slightly
abusing notations, we will write 〈µ, ϕ〉M(A),Cb(A) for 〈µ, ϕ〉(Cb(A))′,Cb(A) for any (µ, ϕ) ∈
M(A)× Cb(A).

2. Tangent space to a measure and integration by parts

When u is not regular enough the product of Du and a measure µ does not
make, a priori, any sense. Indeed Du may be not defined on a set which has
positive µ measure. Here we report few useful notations and results from [7]. This
will give sense to Dµtu appearing previously.

Let η ∈M+(Rd). We can set as in [7]:

Xη := {ψ ∈ L2
η(Rd)d : div(ψη) ∈M(Rd)},

Tη(x) := η − ess ∪ {ψ(x) : ψ ∈ Xη},
where the divergence is intended in the sense of measures. More precisely ψ ∈
L2
η(Rd)d is in Xη iff there exists a constant K such that:∫

Rd
Dϕ(x) · ψ(x)dη(x) ≤ K‖ϕ‖∞ ∀ϕ ∈ D(Rd).

For ϕ ∈ D(Rd), the tangential gradient to η at x of ϕ is defined as:
Dηϕ(x) := Pη(x)(Dϕ(x)) η-a.e.x, with Pη(x) := orthogonal projector on Tη(x).

As shown in [7], the operator u ∈ D(Rd) 7→ Dηu ∈ (L2
η)
d can be extended by

setting:
w =: Dηv ⇔ (∃vn ∈ D(Rd) : vn → v uniformly, Dηvn ⇀ w in (L2

η)
d).

The tangential Sobolev space H1
η is then define as the domain of Dη. By definition

any vector field in Xη belongs to the dual H−1
η and then the following integration

by parts formula holds∫
Rd
Dηu(x) ·ψ(x) dη(x) = 〈−div(ψη), u〉H−1

η ,H1
η
for all u ∈ H1

η and ψ ∈ Xη. (2.1)

Example 2.1. Assume η ∈M+(Ω) and let u ∈ W 1,∞(Ω). Denote by v any contin-
uous, compactly supported extension of u to Rd. It is easily seen that v belongs to
H1
η and that Dηv will be the same for any other compactly supported extension of

u. We denote by Dηu := Dηv. We have: |Dηu(x)| ≤ ‖Du‖∞ η-a.e.x. Moreover,
(2.1) rewrites as:∫

Ω

Dηu(x) · ψ(x) dη(x) = 〈−div(ψη), u〉M(Ω),Cb(Ω) for all ψ ∈ Xη.
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Remark 2.2. In order to build some notion of space-time tangential gradient, we
could have chosen some notion of space-time tangential gradient, to set for any
µ ∈ L∞(]0, T [,M(Rd)):

χµ = {ψ ∈ L2
µ(Rd×]0, T [)d : div(ψµ) ∈ L∞(0, T,M(Rd))}.

Nevertheless, the result will be exactly the same. Indeed, for any ψ ∈ L2
µ(Rd×]0, T [)d,

the following equivalence holds:

ψ ∈ χµ ⇔ ψ(·, t) ∈ Xµt for a.e. t ∈]0, T [.

Let us prove this equivalence. Assume that ψ(·, t) ∈ Xµt for a.e. t ∈]0, T [ and take
ϕ ∈ D(Rd), h ∈ D(]0, T [) then:∫ T

0

∫
Rd
D(hϕ)(x, t) · ψ(x, t)dµ(x, t) =

∫ T

0

h(t)

∫
Rd
Dϕ(x) · ψ(x, t)dµt(x)dt

≤ K

∫ T

0

h(t)‖ϕ(·)‖∞ dt ≤ K

∫ T

0

‖h(t) ϕ(·)‖∞ dt.

This means exactly that ψ ∈ χµ. The other implication is straightforward.

3. Duality and optimal transport

The results contained in [5] (see also [24]) suggests to consider the maximization
problem (3.1) defined below. Its link with our problem will appear clearly in
Theorem 3.2. The set Lip1(Ω) is defined by

Lip1(Ω) :=
{
v ∈ Lip(Rd) : v(y)− v(x) ≤ |x− y| in Ω× Ω

}
.

Following [5], we prove Proposition 3.1, Theorem 3.2 and Proposition 3.3.

Proposition 3.1. Let u ∈ Lip1(Ω) and ρ ∈ M(Ω). Then the following extremal
values coincide:

max{〈ρ, v〉M(Ω),Cb(Ω) : v ∈ Lip1(Ω), 0 ≤ v ≤ g on ∂Ω} (3.1)

inf
σ∈M(Ω,Rd),ν∈M(∂Ω)

{∫
Ω

d|σ|+
∫
∂Ω

gdν+ : −divσ = ρ− ν in Rd

}
. (3.2)

Note that any sequence (vn)n of admissible applications for (3.1) is uniformly
bounded on ∂Ω and as it is in Lip1(Ω), it is uniformly bounded in Ω. The existence
of a maximizer is then easily proved.

Proof. Let us introduce for any (p, q) ∈ C(∂Ω)2 the following perturbation func-
tional:

H(p, q) := − sup{〈ρ, v〉M(Ω),Cb(Ω) : v ∈ Lip1(Ω), v + p ≤ g, 0 ≤ v + q on ∂Ω}.
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Now compute the Fenchel transform of H on a couple (p∗, q∗) ∈M(∂Ω)2:

H∗(p∗, q∗) = sup
p,q∈C(∂Ω)

{〈p∗, p〉M(∂Ω),C(∂Ω) + 〈q∗, q〉M(∂Ω),C(∂Ω) −H(p, q)}

= sup
p,q

sup
v
{〈p∗, p〉+ 〈q∗, q〉+ 〈ρ, v〉 : v ∈ Lip1(Ω), −q ≤ v, p ≤ g − v on ∂Ω} .

= sup
v

{
sup
p,q
{〈p∗, p〉+ 〈q∗, q〉 : −q ≤ v, p ≤ g − v on ∂Ω}+ 〈ρ, v〉 : v ∈ Lip1(Ω)

}
=

{
supv,p {〈ρ− q∗, v〉+ 〈p∗, p〉 : v ∈ Lip1(Ω), p ≤ g − v} if q∗ ≤ 0;

+∞ elsewhere.

It is easily seen that H∗(p∗, q∗) 6= +∞ only if p∗ ≥ 0. Let us assume this condition
is satisfied. We have:

H∗(p∗, q∗) ≤ 〈p∗, g〉+ sup
v
{〈ρ− p∗ − q∗, v〉 : v ∈ Lip1(Ω)} .

Let us show the opposite inequality. Let (gn)n a sequence in C(∂Ω) converging to
g at any point of ∂Ω with gn ≤ g. Then, by taking p = gn − v we have:

H∗(p∗, q∗) ≥ lim
n→+∞

∫
∂Ω

gn(x) dp∗(x) + sup
v
{〈ρ− p∗ − q∗, v〉 : v ∈ Lip1(Ω)} .

Finally the equality follows using Fatou’s lemma and we have:

H∗(p∗, q∗) =

{
〈p∗, g〉+ supv {〈ρ− p∗ − q∗, v〉 : v ∈ Lip1(Ω)} if p∗ ≥ 0 and q∗ ≤ 0;
+∞ elsewhere.

And, by standard duality (see [5]):

H∗(p∗, q∗) =


〈p∗, g〉+ infσ∈M(Ω,Rd)

{∫
Ω

d|σ| : −divσ = ρ− p∗ − q∗ in Rd

}
if p∗ ≥ 0 and q∗ ≤ 0;

+∞ elsewhere.

It can be easily proved that H is convex. Let us check that it is l.s.c. Let
(pn, qn) ∈ C(∂Ω)2 converging uniformly to (p, q) ∈ C(∂Ω)2. For any ε > 0 take
vn ∈ Lip1(Ω) ε-optimal for H(pn, qn) that is such that H(pn, qn) ≥ −〈ρ, vn〉 − ε.
Possibly extracting a subsequence, we may assume:

lim inf
n→+∞

H(pn, qn) = lim
n→+∞

H(pn, qn).

From the regularity of vn and the bounds on ∂Ω, we get:

vn(x) ≤ sup
y∈∂Ω
{|y − x|+ g(y)− pn(y)} ≤ diam(Ω) + ‖g − pn‖∞,

vn(x) ≥ inf
y∈∂Ω
{−|y − x| − qn(y)} ≥ −diam(Ω)− ‖qn‖∞.
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As (vn)n is an equicontinuous and bounded sequence, by Ascoli, a subsequence of
(vnk)k of (vn)n converges uniformly to some v ∈ Lip1(Ω) admissible for H(p, q).
Then:

lim inf
n→+∞

H(pn, qn) ≥ lim
k→+∞

−〈ρ, vnk〉 − ε = −〈ρ, v〉 − ε ≥ H(p, q)− ε.

By sending ε to 0, we get the lower semi-continuity of H. The result then follows
from the equality H(0, 0) = (H∗)∗(0, 0). �

Theorem 3.2. Let ρ ∈M(Ω).
(i) Assume that (u, µ, ν) ∈ Lip1(Ω)×M+(Ω)×M(∂Ω) is a solution of

−div(µDµu) = ρ− ν in Rd, |Dµu(x)| = 1 µ-a.e.x, (3.3)

with
{

0 ≤ u ≤ g on ∂Ω,
u(x) = 0 ν−-a.e. x, u(x) = g(x) ν+-a.e. x. (3.4)

Then u ∈ argmax(3.1) and, setting σ = Dµuµ, we have (σ, ν) ∈ argmin(3.2).

(ii) Moreover, if u ∈ Lip1(Ω) and (σ, ν) ∈M(Ω)d×M(∂Ω) are optimal solutions
of (3.1) and (3.2) then setting µ = |σ|, we have:{

σ = Dµuµ and |Dµu| = 1 µ− a.e,
u = 0 ν−-a.e. x, u(x) = g(x) ν+-a.e. x. (3.5)

Proof. (i) With the assumptions above, u and (σ = Dµuµ, ν) are admissible for
(3.1) and (3.2). An integrating by parts (see (2.1)) leads to:

〈ρ, u〉M(Ω),Cb(Ω) = 〈−div(µDµu) + ν, u〉M(Ω),C(Ω) =

∫
Ω

|Dµu|2 dµ+

∫
∂Ω

u dν

=

∫
Ω

d|σ|+
∫
∂Ω

g dν+.

By Proposition 3.1, this implies the result.
(ii) By Proposition 3.1:

〈ρ, u〉M(Ω),Cb(Ω) =

∫
Ω

dµ+

∫
∂Ω

g(x) dν+(x)

this implies

〈−div(σ) + ν, u〉M(Ω),C(Ω) =

∫
Ω

dµ+

∫
∂Ω

g(x) dν+(x),

and

〈−div(σ), u〉M(Ω),C(Ω) −
∫

Ω

dµ =

∫
∂Ω

g(x) dν+(x)−
∫
∂Ω

u(x) dν(x).
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Finally, integrating again by parts (see again (2.1)):∫
Ω

(Dµu(x) · dσ
dµ

(x)− 1) dµ(x) =

∫
∂Ω

(g(x)−u(x))dν+(x) +

∫
∂Ω

u(x)dν−(x). (3.6)

To conclude, we notice that on the one hand as u is in Lip1(Ω)

Dµu(x) · dσ
dµ

(x)− 1 ≤ 0, µ-a.e.x

on the other hand, on ∂Ω

g(x)− u(x) ≥ 0 and u(x) ≥ 0.

This inequalities, combined with (3.6) give (3.5). �

The following proposition shows that (3.1) can be seen as a variant of the dual
formulation of the classical Monge mass transportation problem (see [1] or [31] for
instance):

Proposition 3.3. Let ρ ∈ M(Ω). Then the extremal value (3.1) coincides with
the following extremal one:

min
γ∈M+(Ω×Ω),ν∈M(∂Ω)

{∫
Ω×Ω

|x− y|dγ(x, y) +

∫
∂Ω

gdν+ | π1
] γ = ρ− + ν+, π2

] γ = ρ+ + ν−
}
.

(3.7)

This is a consequence of classic duality in the L1 theory of optimal transport
(see for instance [5]) which implies the following equality:

min(3.7) = min
ν∈M(∂Ω)

{W1(ρ− + ν+, ρ+ + ν−) +

∫
∂Ω

g dν+} = inf(3.2). (3.8)

Where W1 is the Wasserstein distance:

W1(ρ− + ν+, ρ+ + ν−) :=

min
γ∈M+(Ω×Ω)

{∫
Ω×Ω

|x− y|dγ(x, y) : π1
] γ = ρ− + ν+, π2

] γ = ρ+ + ν−
}
.

We have the following result:

Lemma 3.4. (i) Let (γ, ν) ∈M(Ω×Ω)×M(∂Ω) be a solution of (3.7), then
it exists a unique σ ∈M(Ω,Rd) such that (σ, ν) is a solution of (3.2):

〈σ, φ〉M(Ω,Rd),Cb(Ω,Rd) :=

∫
Ω2

∫ 1

0

φ((1−s)x+sy)·(y−x) dsdγ(x, y) ∀φ ∈ Cb(Ω,Rd).

On the contrary, if (σ, ν) is a solution of (3.2), it exists γ such that (γ, ν)
is optimal for (3.7) and the previous expression of σ holds.
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(ii) Let u optimal for (3.1) and σ as in (i). Then u is differentiable |σ|-almost
everywhere and:

D|σ|u(x) = Du(x) |σ|-a.e. x.
(iii) Let (γ, ν, u) admissible for (3.7) and (3.1), then (γ, ν, u) are optimal if and

only if: {
u(y)− u(x) = |x− y| γ − a.e. (x, y)
u(x) = 0 ν−-a.e. x, u(x) = g(x) ν+-a.e. x.

Proof. Point (i), using (3.8), is a consequence of Theorem 4.6. of [5]. Uniqueness
of σ can found in [2]. Point (iii) gives a Primal-Dual optimality condition for (3.7)
and (3.1), it is a corollary of Proposition 3.3, it is very classic in the usual Monge
case (see [1], Corollary 2.1.). The differentiability of u |σ|-a.e. is a well known
result in the L1 theory of optimal transport, moreover it has been proved that (see
for instance [24] for both properties):

(z ∈]x, y[, u(y)− u(x) = |y − x|)⇒ Du(z) =
y − x
|y − x|

.

Then by (i) and (iii), dσ
d|σ| = Du and so by Theorem 3.2 Du = D|σ|u |σ|-a.e. �

Remark 3.5. In addition to point (iii), we have:

〈ρ, u〉 ≤
∫
|y − x| dγ(x, y) +

∫
g dν+

for any admissible (u, γ, ν) for (3.1) and (3.7). Equality implies optimality of u
and (γ, ν).

Let γ be an optimal plan for (3.7) (and let ν the corresponding boundary mea-
sure) we can decompose γ in four parts according to the origin and the destination
of the mass transported

γ = γii + γbi + γib + γbb
with γii = γ|Ω×Ω, γbi = γ|∂Ω×Ω, γib = γ|Ω×∂Ω, γbb = γ|∂Ω×∂Ω,

where i is for interior and b is for boundary. We have ν+ = π1
] (γbi + γbb) and

ν− = π2
] (γib + γbb), then:∫

Ω×Ω

|x− y|dγ(x, y) +

∫
∂Ω

gdν+ =

∫
Ω×Ω

|x− y|dγii +

∫
∂Ω×Ω

{|x− y|+ g(x)}dγbi

+

∫
Ω×∂Ω

|x− y|dγib +

∫
∂Ω×∂Ω

{|x− y|+ g(x)}dγbb.

Note that
∫
∂Ω×∂Ω

{|x− y|+ g(x)}dγbb(x, y) ≥ 0 and γ− γbb is still admissible for
(3.7). Then since γ is minimizing we have∫

∂Ω×∂Ω

{|x− y|+ g(x)}dγbb(x, y) = 0.
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From now on we will assume that γbb = 0 (Otherwise spt(γbb) ⊂ {(x, x) : g(x) =
0}). The minimizing properties of γ and the duality of Proposition 3.3 permits to
characterize the points in the supports of γbi and γib.

Proposition 3.6. We define the following multivalued maps:

p+
g (y) = {z ∈ ∂Ω : |y − z|+ g(z) ≤ |y − x|+ g(x) ∀x ∈ ∂Ω},

p−(x) = {ω ∈ ∂Ω : |x− ω| ≤ |x− y| ∀y ∈ ∂Ω}.
If (x, y) ∈ sptγbi then x ∈ p+

g (y), if (x, y) ∈ sptγib then y ∈ p−(x).

Proof. We prove the statement about γbi, the other being similar. The part of the
cost we look at is ∫

∂Ω×Ω

{|x− y|+ g(x)} dγbi(x, y).

By definition of p+
g we have that |z − y| + g(z) ≤ |x − y| + g(x) γbi-a.e.(x, y) for

all z ∈ p+
g (y). Then, for all measurable selection s of p+

g if we replace γbi by
γ̃bi = (s× id)]π

2
] γbi we obtain a new γ admissible for (3.7) and with lower cost. �

For later use we set:

d+
g (y) := min

x∈∂Ω
{g(x) + |x− y|} = g(z) + |z − y| ∀z ∈ p+

g (y).

The following Lemma will also be needed:

Lemma 3.7. Let (γ, ν) a couple of solutions of (3.7) such that γbb = 0. If (3.1)
admits a solution such that u ≥ 0 in Ω then:

ν is a non-negative measure and γ = γii + γbi

with marginals ρ+ = π2
] γ, ρ− = π1

] γii and ν = π1
] γbi.

Proof. Using Lemma 3.4 we get for γib-a.e.(x, y) the equality −u(x) = dΩ(x, y). If
u ≥ 0 this imply that γib = 0 and ν− = 0. �

4. Some general results about the PDE

The following result shows that, if it exists a solution to (1.1), this solution is
non-decreasing in time and unique.

Proposition 4.1. Suppose that f 1 ≥ f 2 and u1
0 ≥ u2

0. Assume that for i = 1, 2,
(ui, µi, νi) are solutions of (PDE) satisfying (1.2), (C), (B1) with f = f i, initial
and boundary conditions:

ui(x) = 0 (νi)
−-a.e. x, ui(x) = g(x) (νi)

+-a.e. x,

ui(x, 0) = ui0 ∀x ∈ Ω.

Then we have u1 ≥ u2.
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It is a classical result when f is absolutely continuous, the following proof is
adapted from [12]. It requires the following lemma.

Lemma 4.2. Let v : [0, T [×Ω→ R be such that v ∈ L1(0, T,W 1,∞(Ω)) and
∂tv ∈ L1(0, T,M(Ω)). Then we have:

d

dt

(∫
Ω

|v(x, t)|2 dx
)

= 2〈∂tv(x, t), v(x, t)〉M(Ω),Cb(Ω) in D′(]0, T [).

Proof. This is easily seen since applying Theorem 2.3.1 of [22], it exists Φn ∈
D(Ω×]0, T [) such that:∫ T

0

‖Φn(·, t)− v(·, t)‖∞dt→ 0,

∫ T

0

|∂tΦn(·, t)− ∂tv(·, t)|(Ω) dt→ 0.

�

Proof. (of Proposition 4.1) By Theorem 3.2, we have for a.e. t ∈]0, T [:

ui(·, t) ∈ argmax{〈f it − ∂tui(·, t), v〉M(Ω),Cb(Ω) : v ∈ Lip1(Ω), 0 ≤ v ≤ g on ∂Ω}.
Let u+(x, t) = max{u1(x, t), u2(x, t)} and u−(x, t) = min{u1(x, t), u2(x, t)}. Using
the optimality of u1 leads 〈f 1 − ∂tu

1, u+ − u1〉 ≤ 0 a.e. t and as f 1 ≥ f 2 and
u+ ≥ u1, we have:

〈f 2 − ∂tu1, u+ − u1〉 ≤ 0 a.e. t. (4.1)
On the other side, we have: u− − u2 = (u1 − u2)1{u1<u2} = (u1 − u+)1{u1<u2} =
u1 − u+ and ∂tu21{u1<u2} = ∂tu

+1{u1<u2} a.e. t. These equalities imply

〈f 2 − ∂tu2, u− − u2〉 = 〈f 2 − ∂tu+, u1 − u+〉 ≤ 0 a.e. t.

Combining this last inequality with (4.1) and using Lemma 4.2, we get:
d

dt

1

2
‖u+ − u1‖2

L2 = 〈∂tu+ − ∂tu1, u+ − u1〉

= 〈−f 2 + ∂tu
+, u+ − u−〉+ 〈f 2 − ∂tu1, u+ − u1〉 ≤ 0 a.e. t.

So ‖u+− u1‖2
L2 is constant in time and as at time t = 0, it is zero, we get u1 ≥ u2

at any time. �

We are now able to prove Theorem 1.1. As in [29], we introduce the following
functional on Cb(Ω):

I∞(v) =

{
0 if v ∈ Lip1(Ω) and 0 ≤ v ≤ g on ∂Ω,

+∞ otherwise.

For any ρ ∈M(Ω), denoting ∂I∞ the subdifferential of I∞, by definition:

ρ ∈ ∂I∞(v)⇔ v ∈ argmax{〈ρ, w〉 : w ∈ Lip1(Ω) and 0 ≤ w ≤ g on ∂Ω}.
For the record we write the following optimization problems which corresponds
to (3.1), (3.2) and (3.7) with ρ = ft − ∂tu. We will make an intense use of
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these new notations in the present and following sections. Recall that the equality
min(4.3) = max(4.2) = min(4.4) holds with:

max{〈ft − ∂tu(·, t), v〉 : v ∈ Lip1(Ω), 0 ≤ v(x) ≤ g(x) on ∂Ω}, (4.2)

min
σ∈M(Ω,Rd),ν∈M(∂Ω)

{∫
d|σ|+

∫
∂Ω

g(x)dν+(x) : −divσ = ft − ∂tu(·, t)− ν in Rd

}
,

(4.3)

min
γ∈M+(Ω×Ω),ν∈M(∂Ω)

{∫
Ω×Ω

|x− y|dγ(x, y) +

∫
∂Ω

g(x)dν+(x) :

π1
] γ = ∂tu+ ν+, π2

] γ = ft + ν−
}
. (4.4)

We have the following result:

Theorem 4.3. Let u ∈ L∞(]0, T [,W 1,∞(Ω)) be such that ∂tu ∈ L∞(]0, T [,M(Ω))
and

|Du(x, t)| ≤ 1 a.e. (x, t), 0 ≤ u(x, t) ≤ g(x) on ∂Ω×]0, T [.

1) (i) If (u, µ, ν) is a solution of (1.1) satisfying (1.2) then:

ft − ∂tu(·, t) ∈ ∂I∞(u(·, t)) a.e. t ∈]0, T [.

(ii) Assume u is non-negative, u(·, 0) = 0, and ft− ∂tu(·, t) ∈ ∂I∞(u(·, t))
a.e. t ∈]0, T [. Then it exists µ ∈ L∞(]0, T [,M+(Ω)) and ν ∈
L∞(]0, T [,M+(∂Ω)) such that (u, µ, ν) is a solution of (1.1).

2) Assume the conditions above are satisfied.
• (Uniqueness of u and µ) The function u is unique. Moreover, to each
ν corresponds a unique µ, and taking any γt such that (γt, νt) is a
solution of (4.4) a.e. t ∈]0, T [, the following formula holds:

〈µt, ϕ〉M(Ω),Cb(Ω) :=

∫
Ω2

∫ 1

0

ϕ((1− s)x+ sy)|y − x| dsdγt(x, y) ∀ϕ ∈ Cb(Ω).

• For a.e. t ∈]0, T [, u(·, t) is space differentiable µt-almost everywhere
and: Dµtu(x, t) = Du(x, t) µt-a.e. x.

Remark 4.4. a) In the original article [29], in case g = 0 and f ∈ L∞(]0, T [, L∞(Ω))′,
L. Prigozhin, in the first place, proved (a similar result to) point 1). In the case
he considered, µ is expected to be in L∞(]0, T [,W 1,∞(Ω))′ and (PDE) has to be
understood in the following sense:

〈∂tu− f, ϕ〉+ 〈µ,Du ·Dϕ〉 = 0 ∀ϕ ∈ L∞(]0, T [, L∞(Ω)). (4.5)

In our case, (4.5) can be recovered by extending µ in L∞(]0, T [, L∞(Ω))′ using the
Hahn-Banach Theorem (cf Theorem 4.3, point 2)).
b) The proof of 1)(ii) below says actually more than required. Assume that ft −
∂tu(·, t) ∈ ∂I∞(u(·, t)) for a.e. t ∈]0, T [ and take, for a.e. t, (σt, νt) any solution of
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(4.3) with νt ≥ 0. Then, under the assumption of the theorem, setting µt = |σt|,
we have that (u, µ, ν) satisfies (PDE) and

|Dµtu(x, t)| = 1 µ-a.e. (x, t), u(x, t) = g(x) ν-a.e. (x, t).
Moeover we have: σt = Dµtu(·, t)µt.
Proof. 1)(i) is an immediate consequence of Theorem 3.2 (since νt ≥ 0).
1) (ii) With these assumptions, u(·, t) is optimal for (4.2) for a.e. t. Take (σt, νt)
a solution of (4.3) with ν non-negative: this is possible by lemma 3.4 and 3.7. By
Theorem 3.2 (ii), setting µt = |σt| we get the result.
2) The uniqueness property of u comes from Proposition 4.1 while the properties
of µ are contained in Lemma 3.4 as (σt := Dµtuµt, νt) is a solution of (4.3) by
Theorem 3.2. For the last property, see Lemma 3.4. �

5. The case of a finite number of sources

In the spirit of [4] and [3], we are now looking at (1.1) when ft =
∑k

j=1 cjδyj .
As it is constant in time we will often write f for ft.

In the next two lemmas we develop an heuristic of the shape of solutions for this
special f . Starting from this idea we then show existence of a solution in Theorem
5.4.

Assume for a while that a solution u ∈ L∞(0, T,W 1,∞(Ω)) of (1.1) is known.
By the previous section, we know u(·, t) is a solution of (4.2) for a.e. time, it’s
non-negative and non-decreasing in time. Moreover take (γt, νt) a solution of (4.4)
for a.e. t ∈ [0, T ] with the following decomposition given by Lemma 3.7:

γt = γii,t + γbi,t and νt = π1
] γbi,t ≥ 0.

The Lemmas 5.1 and 5.2 will give us some clues to guess the shape of u:

Lemma 5.1. Let us set:

rj(·) := u(yj, ·), u(x, t) := max
j
{rj(t)− |x− yj|, 0}.

Then u(·, t) is in Lip1(Ω) for all t ∈]0, T [, rj ∈ C([0, T ],R+) and they satisfy:
(i) u(x, t) ≥ u(x, t) for all (x, t) with equality for x = yi and any x ∈

spt(∂tu(·, t)) ∪ spt(νt),
(ii) rj(t) ∈ [0, d+

g (yj)] with rj(t) = d+
g (yj) = g(x) + |x − yj| γbi,t-a.e. (x, yj)

for a.e. t ∈ [0, T ].
Moreover 0 ≤ u(x, t) ≤ g(x) on ∂Ω for all t and u(·, t) is also optimal for (4.2).

Proof. (i) The inequality comes from the Lipschitz property of u and the def-
inition of rj. The equality at every yj follows from the definition rj(t) =
u(yj, t) ≥ 0. Then by Lemma 3.4:

u(yj, t)− u(x, t) = |x− yj| γt-a.e.(x, yj). (5.1)
This gives the equality on spt(∂tu(·, t)) ∪ spt(νt) since π1

] γ = ∂tu(·, t) + νt.



SANDPILE IN A SILOS 15

(ii) Consider x ∈ p+
g (yj), by the boundary condition (B1) and the Lipschitz

property of u:

rj(t) := u(yj, t) ≤ u(x, t) + |x− yj| ≤ g(x) + |x− yj| = d+
g (yj) for all j = 1, ..., k.

This implies u(x, t) ≤ g(x) on ∂Ω. Moreover, by Proposition 3.6 combined
with (5.1) every inequality above becomes an equality for γbi,t-a.e (x, yj).

As u(·, t) is admissible for (4.2) and equals u(·, t) on spt(f) ∪ spt(∂tu(·, t)) ∪
(spt(νt)), it is optimal. �

For j = 1, . . . , k, let us introduce the following subset of Ω:

Aj(t) := {x ∈ Ω : rj(t)− |x− yj| = max
n
{rn(t)− |x− yn|, 0}}, (5.2)

so that u(x, t) =
k∑
j=1

(rj(t)− |x− yj|)1Aj(t)(x). (5.3)

Lemma 5.2. Assume for all j = 1, ...k, rj is derivable for almost every t ∈]0, T [.
Then for all t > 0 and a.e. x:

∂tu(x, t) =
k∑
j=1

ṙj(t)1Aj(t)(x) a.e. (x, t).

Proof. We have Int(Aj(t)) = {x ∈ Ω : rj(t) − |x − yj| > maxm6=j{rm(t) − |x −
ym|, 0}} and the boundary of Aj(t) is negligible. Indeed the sets Am(t) ∩ Aj(t) =
{x ∈ Ω : |x − ym| − |x − yj| = rm(t) − rj(t)} and {x ∈ Ω : |x − yj| = rj(t)} are
negligible as d ≥ 2 and Ω is convex.
Let x in the interior of Aj(t), then rj(t)−|x−yj| > maxm 6=j{rm(t)−|x−ym|, 0}. As
rj ∈ C([0, T ]), this inequality remains true at time t+ h with |h| small enough, as
a consequence if rj is derivable on t: limh→0

u(x,t+h)−u(x,t)
h

= limh→0
rj(t+h)−rj(t)

h
=

ṙj(t). We then get ∂tu(x, t) = ṙj(t) for all x ∈ Int(Aj(t)) for almost every t.
�

In the sequel, we are going to see that, with the appropriate choice of rj, the
application u = u is the unique solution of (1.1).
By Lemma 4.1, if u is a solution of (1.1), the function rj := u(yj, ·) are non-
decreasing, moreover by the initial condition (I), rj(0) = 0. Take γt optimal for
(4.4). We deduce that, for small times rj(t) < d+

g (yj) and by Lemma 5.1, for such
t, γbi,t and νt are 0. So that, if u = u, then, for small t, the map γt has marginals∑k

j=1 ṙj(t)1Aj(t)(x) a.e. (x, t) and f =
∑k

j=1 cjδyj by (5.1) and (5.3), this implies:

ṙj(t)|Aj(t)| = cj ∀j = 1, ..., k, (5.4)

γt(x, y) =
k∑
j=1

ṙj(t)1Aj(t)(x)⊗ δyj(y).
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Finally, every time (5.4) holds, rj remains strictly non-decreasing and by Lemma
5.1, when rj reaches d+

g (yj), it cannot increase anymore.
All this remarks leads us to look at the ODE (5.5) 3.

Lemma 5.3. There exist times (t1, ..., tk) ∈ Rk
+ and functions rj ∈ C1(0, tj) ∩

C0([0,+∞)) which satisfy:
ṙj(t) =

cj
|Aj(t)| ∀t ∈]0, tj[,

rj(0) = 0,
rj(t) = d+

g (yj) = minx∈∂Ω{g(x) + |x− yj|} ∀t > tj

(5.5)

with Aj(t) defined above in (5.2). Moreover yj ∈ Aj for all t and if t < tj then
0 < |Aj(t)|.

Proof. Step 1: Letm1 = mini 6=j |yi−yj|,m2 = mini d(yi, ∂Ω) andm = min{m1,m2},
also consider c = maxi ci. For small times i.e. for

t ≤ ωd
(d+ 1)c

(
m

2
)d+1 := t0

the functions ri(t) = ( ci
ωd

(d + 1)t)1/d+1 are solutions of the ODE above with the
correct initial data.
Step 2: Starting from t0 the sets where ri(t)− |x− yi| > 0 may start to intersect
or may touch the boundary of Ω and for the existence of solutions we appeal to a
standard existence theorem. This requires that we prove that the functions

(r1, . . . rk) 7→
1

|Ai(r1, . . . rk)|
are continuous 4. First we prove that, for every i ∈ {1, . . . , k}, (r1, . . . rk) 7→
|Ai(r1, . . . rk)| is continuous on R+ × · · · × R+.

Let ε = (ε1, . . . , εk). Define ε = maxj{εi, εi − εj} and ε = minj{εi, εi − εj}.

Ai(r1 + ε1, . . . , rk + εk) =

= {x ∈ Ω : 0 ≤ ri + εi − |x− yi|, rj + εj − |x− yj| ≤ ri + εi − |x− yi| ∀ j}
⊂ {x ∈ Ω : 0 ≤ ri + ε− |x− yi|, rj − |x− yj| ≤ ri + ε− |x− yi| ∀ j}
= Ai(r1, . . . , ri + ε, . . . , rk)

and similarly Ai(r1, . . . , ri + ε, . . . , rk) ⊂ Ai(r1 + ε1, . . . , rk + εk).
If εn ↘ 0 then Ai(r1, . . . , ri + εn+1, . . . , rk) ⊂ Ai(r1, . . . , ri + εn, . . . , rk), and

Ai(r1, . . . , rk) = ∩nAi(r1, . . . , ri + εn, . . . , rk), it follows that

|Ai(r1, . . . , rk)| = lim
n→0
|Ai(r1, . . . , ri + εn, . . . , rk)|.

3This ODE first appeared in [4], see also [3].
4This holds true if d > 1.



SANDPILE IN A SILOS 17

If εn ↗ 0 then Ai(r1, . . . , ri + εn, . . . , rk) ⊂ Ai(r1, . . . , ri + εn+1, . . . , rk), and

Ai(r1, . . . , rk)\({x ∈ Ω : 0 = ri−|x−yi|}∪∪j{x ∈ Ω : rj−|x−yj| = ri−|x−yi|}) =

∪n Ai(r1, . . . , ri + εn, . . . , rk),

and since5

|{x ∈ Ω : 0 = ri − |x− yi|}| = 0 and |{x ∈ Ω : rj − |x− yj| = ri − |x− yi|}| = 0

it follows that

|Ai(r1, . . . , rk)| = lim
n→0
|Ai(r1, . . . , ri + εn, . . . , rk)|.

Step 3: To get the existence of a solution of the ODE, it only remains to show
that the measures of Ai(t) do not tend to 0 when ri(t) < d+

g (yi). By the triangular
inequality, if Ai 6= ∅ then yi ∈ Ai. If limt→t |Ai(t)| = 0 then there exists at least
one j 6= i such that limt→t rj(t) − ri(t) = |yi − yj|. Indeed, if for all j 6= i we
have 0 > Lj = limt→t rj(t) − ri(t) − |yi − yj| then there exists 0 ≤ l such that
B(yi, l) ⊂ Ai(s) for s close enough to t which prevents the measure of Ai from
going to 0.

Then we proceed by contradiction and assume it exist t and i0 such that
limt→t |Ai0(t)| = 0 and ri0(t) < d+

g (yi0). Let I(t̄) := {i : ri(t̄) < d+
g (yi)}. Since

t 7→ ri(t) is non-decreasing∑
i∈I(t̄)

|Ai(t)| ≥
∑
i∈I(t̄)

|Ai(t0)| > 0

so there exist at least two indices (m, j) ∈ I(t̄)× I(t̄) such that
(1) limt→t rm(t)− rj(t) = |yj − ym|,
(2) limt→t |Aj(t)| = 0,
(3) limt→t |Am(t)| = L > 0.

But this is impossible since, taking a derivative (as j ∈ I(t̄)), we also deduce
limt→t rm(t)− rj(t) = −∞. Which concludes the proof.
Step 4: Now we observe that

ci
|Ai|
≥ ci
|Ω|

and then ri reaches the value d+
g (yi) in finite time ti.

�

We are now able to give the solutions of (1.1) and the associated optimization
problems:

• Set u(x, t) :=
∑k

j=1(rj(t) − |x − yj|)1Aj(t)(x) with rj and Aj as in the
previous lemma;

5and here we are using both the convexity of Ω and the dimension 2 ≤ d
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• Take I1(t) = {j : t < tj} and I2(t) = {j : t > tj} two families of indices
and set for any t 6∈ {tj : j = 1, ..., k}:

νt :=
∑
j∈I2(t)

νj with νj ∈M+
b (∂Ω) such that: νj(∂Ω) = cj, spt(νj) ⊂ p+

g (yj),

γt = γii,t + γbi,t, γii,t(x, y) =
∑
j∈I1(t)

cj
|Aj|

1Aj(t)(x)⊗ δyj(y), γbi,t =
∑
j∈I2(t)

νj ⊗ δyj ;

• For a.e. t, define µt ∈M(Ω) as:∫
Ω

ϕ(x)dµt(x) =

∫
Ω2

∫ 1

0

ϕ((1− s)x+ sy)× |y − x| dsdγt(x, y), ∀ϕ ∈ Cb(Ω).

The following result holds:

Theorem 5.4. With the above definitions, (1.2) holds, moreover:

1) The triplet (u, µ, ν) is a solution of (1.1), with uniqueness on u,
2) For a.e. t ∈ [0, T ], u(·, t) is a solution of (4.2) and (γt, νt) is a solution of

(4.4),
3) The couple (Dµtu(·, t)µt, νt) is a solution of (4.3) a.e. t ∈ [0, T ].

Proof. Step 1: We show first that (1.2) is satisfied. Indeed for a.e. t ∈]0, T [ by
(ODE):

0 ≤
∫

Ω

∂tu(·, t) =
∑
j∈I1

∫
Aj

ṙj(t) dx =
∑
j∈I1

cj ≤
∫

Ω

df(x),

by definition of ν:

νt(∂Ω) =
∑
j∈I2

cj ≤
∫

Ω

df(x),

and finally:∫
Ω

dµt(x) = sup
‖ϕ‖∞=1

∣∣∣∣∫
Ω2

∫ 1

0

ϕ((1− s)x+ sy)× |y − x| dsdγ(x, y)

∣∣∣∣
≤ diam(Ω)× γ(Ω2) = diam(Ω)×

∫
Ω

df(x).

Step 2: Note that, by Lemma 5.3, as yj ∈ Aj(t), we have u(yj, t) = rj(t) for all
time t ∈]0, T [. Let us now prove 2). Indeed, as for any j ∈ I1, cj = ṙj|Aj|, we
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have for a.e. t ∈]0, T [:

〈
k∑
j=1

cjδyj − ∂tu(·, t), u(·, t)〉M(Ω),Cb(Ω) =
k∑
j=1

cju(yj, t)−
∑
j∈I1

∫
Aj

u(x, t)ṙj(t) dx

=
∑
j∈I1

∫
Aj

[rj(t)− u(x, t)] ṙj(t) dx+
∑
j∈I2

cjrj(t) =
∑
j∈I1

∫
Aj

|x− yj| ṙj(t) dx+
∑
j∈I2

cjd
+
g (yj)

=

∫
Ω2

|x− y| dγii,t(x, y) +
∑
j∈I2

∫
p+g (yj)

|x− yj|+ g(x) dνj(x)

=

∫
Ω2

|x− y| dγii,t(x, y) +

∫
Ω

2
|x− y| dγbi,t(x, y) +

∫
∂Ω

g(x) dνt(x)

=

∫
Ω

2
|x− y| dγt(x, y) +

∫
∂Ω

g(x) dνt(x).

As we know u(·, t) is admissible by Lemma 5.1 so, by duality (see Remark 3.5), it
is optimal and also is (γt, νt).
Step 3: Lemma 3.4 gives a measure σt ∈ Mb(Ω,Rd) such that (σt, νt) is an
optimal solution of (4.3) for a.e. t ∈]0, T [:

〈σ, φ〉M(Ω)d,Cb(Ω)d :=

∫
Ω2

∫ 1

0

φ((1− s)x+ sy) · (y − x) dsdγt(x, y).

Then by Theorem 3.2 σt = D|σt|u(·, t)|σt| so 1) and 3) are proved (as µt = |σt|).
�

Note for later use the following estimations:

Proposition 5.5. The following estimates hold for a.e. t ∈]0, T [:

‖u(·, t)‖∞ ≤ ‖g‖∞ + diam(Ω), ‖Du(·, t)‖∞ ≤ 1,

νt(∂Ω) ≤
∫

Ω

df(x),

∫
Ω

∂tu(·, t)dx ≤
∫

Ω

df(x),∫
Ω

dµt(x) ≤ diam(Ω)×
∫

Ω

df(x).

Moreover, we have:

‖∂tu‖L2(Ω×]0,T [) ≤ ‖u(·, t)‖∞ ×
∫

Ω

df(x).

Proof. The only remaining points are the estimates on ‖u(·, t)‖∞ and ‖∂tu‖L2(Ω×]0,T [).
By the Lipschitz property of u and condition (B1) taking x ∈ Ω and y ∈ ∂Ω leads:
0 ≤ u(x, t) ≤ g(y) + |x− y| for all t ∈]0, T [. This gives the first inequality. Let us



20 LUIGI DE PASCALE AND CHLOÉ JIMENEZ

now show the last one:

‖∂tu‖L2(Ω×]0,T [) =

∫ T

0

∫
Ω

k∑
j=1

(ṙj(t))
21Aj(t)(x) dtdx =

∫ T

0

k∑
j=1

(ṙj(t))
2|Aj(t)|dt

=

∫ T

0

k∑
j=1

cj ṙj(t)dt =
k∑
j=1

cju(yj, T ) ≤ ‖u(·, t)‖∞
∫

Ω

f(x)dx.

�

6. A more general case

Let ft = f ∈ M+(Ω), constant in time, we now aim to show that (1.1) admits
a solution (which will be unique by Proposition 4.1).
We approximate f by a sequence (fn)n inM+(Ω) such that:

fn =
n∑
i=1

cni δyni with yni ∈ Ω, fn(Ω) ≤ f(Ω), fn
∗
⇀ f in Ω.

By the last section, it exists (un, µn, νn)n in L∞(0, T ;W 1,∞(Ω))×L∞(0, T ;M(Ω))×
L∞(0, T ;M+(∂Ω)) satisfying Theorem 5.4 and Proposition 5.5.

Proposition 6.1. (Convergence of un, ∂tun, νn) There exist u ∈ L∞(0, T ;W 1,∞(Ω))
and ν ∈ L∞(0, T ;M(∂Ω)) such that:

i) u(·, t) ∈ Lip1(Ω), ∂tu ∈ L∞(0, T ;M+(∂Ω)) ∩ L2(Ω×]0, T [) and u satisfies
the conditions (B1) and (I) of (1.1);

ii) up to a subsequence, un converges to u for the strong topology of L1(0, T, Cb(Ω))
and ∂tun converges to ∂tu for the weak star topology of L∞(0, T,M(Ω));

iii) ν(·, t) ∈ M+(∂Ω) a.e. t and νn converges to ν for the weak star topology
of L∞(0, T,M(∂Ω)) (up to a subsequence) and (B2) is satisfied.

Proof. Step 1: By the estimates on (un)n, it is a bounded sequence inBV (Ω×]0, T [),
as a consequence (see Theorem 4 p176 of [25]):

unk → u in L1(Ω×]0, T [) and for a.e. t

for some u ∈ L1(Ω×]0, T [) and some subsequence (unk)k of (un)n. Possibly ex-
tracting again a subsequence, we can assume:

unk(x, t)→ u(x, t) for almost every (x, t) ∈ Ω×]0, T [.

Step 2: By Ascoli-Arzela Theorem, for all t ∈ [0, T [, (unk(·, t))k admits a cluster
point vt ∈ Lip1(Ω) (depending on t) for the uniform convergence. Using Step 1, we
get u(x, t) = vt(x) for almost every (x, t) ∈ Ω×]0, T [. This shows the uniqueness
of the cluster point of (unk(·, t))k for the uniform convergence, so that:

unk(·, t)→ u(·, t) ∀t ∈ [0, T [, uniformly in Ω.
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This gives (B1) and (I). To get the convergence in L1(0, T, Cb(Ω)) of (unk)k, we use
the dominated convergence Theorem and the following bound (unk is in Lip1(Ω)
and it is bounded by ‖g‖∞ on ∂Ω):

sup
t,x
|unk(x, t)− u(x, t)| ≤ 2(diam(Ω) + ‖g‖∞).

Step 3: L∞(0, T ; Cb(Ω)) being separable, (see for instance [22], Corollary 1.3.2.
p 13), using the bound on ∂tu

n, possibly passing to a subsequence, it admits a
limit m ∈ L∞(0, T,M(Ω)) for the weak star topology. It can easily be seen that
m = ∂tu in the sense of distribution. In the same way, ∂tu ∈ L2(Ω×]0, T [) and,
up to a subsequence ∂tun ⇀ ∂tu in L2.

The point iii) is left to the reader. To get (B2) just note that
0 = lim

n→+∞
〈νn, g − un〉 = 〈ν, g − u〉

up to some subsequence. �

Remark 6.2. The proof shows also a different kind of convergence for (un)n: up
to a subsequence, un(·, t) converges uniformly to u for all t. As we will prove, u
is the unique solution of (1.1), as a consequence the complete sequence (un(·, t))n
converges to u uniformly for all t.

Proposition 6.3. (Convergence of µn and Dµtnu
nµn) It exists µ ∈ L∞(0, T,M(Ω))

and ξ ∈ L2
µ(Ω)d such that, up to a subsequence:

µn
∗
⇀ µ for the weak star topology of L∞(0, T,M(Ω)),

Dµnt
unµn

∗
⇀ ξµ for the weak star topology ofM(Ω×]0, T [)d,

lim inf
n→+∞

∫ T

0

∫
Ω

dµn ≥
∫ T

0

∫
Ω

|ξ(x, t)|dµ(x, t).

Proof. The convergence of (µn)n follows from its boundedness. Moreover, we have:∫ T

0

∫
Ω

|Dµnt
un(x, t)|2dµn(x, t) =

∫ T

0

∫
Ω

dµn ≤ T ×
∫

Ω

df

so Lemma 3.3 p13 of [6] applies and we get the rest of the proposition as:∫ T

0

∫
Ω

|Dµnt
un(x, t)|dµn(x, t) =

∫ T

0

∫
Ω

dµn.

�

Proposition 6.4. (Passing to the limit in the PDE) The following equality holds:

ξ = Dµtu µ-a.e.(x, t), |Dµtu| = 1 µ-a.e.(x, t).

Moreover:
−div(Dµtuµt) = f − ∂tu− ν in Rd×]0, T [.
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Proof. Passing to the limit, it is easily seen that:
−div(ξµt) = f − ∂tu− ν in Rd×]0, T [.

So that ξ(·, t)µt is admissible for (4.3) at almost every t ∈]0, T [. As, by Proposition
6.1, u(·, t) is admissible for (4.2) at almost every t ∈]0, T [, by duality we have:

〈f−∂tu(·, t), u(·, t)〉M(Ω),Cb(Ω) ≤ sup(4.2) = inf(4.3) ≤
∫

Ω

|ξ(·, t)| dµt+
∫
∂Ω

g(x)dνt(x) a.e.t.

(6.1)
By Theorem 5.4, we have:∫ T

0

〈fn − ∂tun(·, t), un(·, t)〉M(Ω),Cb(Ω) dt =

∫ T

0

∫
Ω

dµn +

∫ T

0

∫
∂Ω

g(x)dνn(x, t).

Then by Proposition 6.3:∫ T

0

〈f − ∂tu(·, t), u(·, t)〉 dt = lim
n→+∞

∫ T

0

〈fn − ∂tun(·, t), un(·, t)〉 dt

= lim inf
n→+∞

∫ T

0

∫
Ω

dµn +

∫ T

0

∫
∂Ω

g(x)dνn(x, t) ≥
∫ T

0

∫
Ω

|ξ| dµ+

∫ T

0

∫
∂Ω

g(x)dν(x, t).

This implies that (6.1) is an equality and u is optimal for (4.2) and (ξµ, ν) is
optimal for (4.3). Then by Theorem 4.3 and Remark 4.4, we get the desired
result. �

To conclude (recall Remark 6.2), we have proved the following result:

Theorem 6.5. Let f ∈ M+(Ω), the equations (1.1) admit a solution (u, µ, ν)
satisfying (1.2). Moreover:

1) u is the unique solution of (1.1), it is non decreasing. For a.e. t, the mea-
sure ∂tu(·, t) is absolutely continuous with respect to the Lebesgue measure.
Actually: ∂tu ∈ L2(Ω×]0, T [).

2) ν is non-negative, supported on p+
g (spt(f)). Moreover, to any ν corresponds

a unique µ which can be built as:

〈µt, ϕ〉 =

∫
Ω

2

∫ 1

0

ϕ((1− s)x+ sy)|y − x| ds dγt(x, y) ∀ϕ ∈ Cb(Ω).

where γt is any solution of (4.4).
3) For a.e. t ∈]0, T [, u(·, t) is space differentiable µt-almost everywhere and:

Dµtu(x, t) = Du(x, t), µt-a.e. x.
Moreover, for any time such that u(·, t) < g on ∂Ω we have νt = 0, µt <<
LΩ, and uniqueness on µt.

4) Taking fn =
∑n

i=1 c
n
i δyni any sequence converging (weak star) to f with

yni ∈ Ω and fn(Ω) ≤ f(Ω), u can be obtained as the uniform limit for all t
of the sequence (un)n defined as:

un(x, t) := max{rni (t)− dΩ(x, yni ), 0}
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where rni ∈ C1(0, ti) ∩ C0([0,+∞)) satisfy the following ODE for some
tni > 0: 

ṙni (t) =
cni

|Ani (t)| ∀t ∈]0, tni [,

rni (0) = 0,
rni (t) = d+

g (yni ) ∀t ∈ [tni ,+∞),

Ani (t) := {x ∈ Ω : rni (t)− |x− yni | = max
j
{rnj (t)− |x− ynj |, 0}}.

Proof. It only remains to show the second part of 3). Indeed, when u(·, t) < g,
by Lemma 3.4, νt = 0. So γt is the solution of the Monge transportation problem
with marginals ∂tu(·, t) and f . As ∂tu(·, t) is absolutely continuous, so is µt (see
[20, 19, 21, 30]). �
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