Cale. Var. 14, 249-274 (2002) Calculus of Variations
DOI (Digital Object Identifier) 10.1007/s005260100086

Luigi De Pascale Aldo Pratelli

Regularity properties for Monge transport density
and for solutions of some shape optimization problem

Received: 16 November 2000 / Accepted: 4 December 2000 /
Published online: 18 January 200ZG-Springer-Verlag 2002

Abstract. In this paper we study the dimension of some measures which are related to the
classical Monge’s optimal mass transport problem and are solutions of a scalar shape opti-
mization problem. Moreover in the case of maximal dimension we will study the summability
of the associate densities.

1 Introduction

In this introductory section we briefly describe the Monge—Kantorovich problem,
the shape optimization problem and the connections between them.

1.1 The Monge—Kantorovich problem

This problem can be formulated in a very general setting, hence in this sédtion
will be a metric space equipped with a distadcén the rest of the paper, however,
the ambient space will be an open, bounded and convex s@usER”Y equipped
with the euclidean distance.

Given two positive measurest, f— on M of equal total mass, the transport
problem consists in finding, in the set of measurable mapsM — M such
thatoyxfT = f~ (Whereyy is the push—forward of any measurable mapping
@ : M — M), the minimum of the “work” functional

/ d(z, o (x)) df () (1.1)
M

whered is the distance o . Each of the admissible mapsan be thought as away
to transportf* on f— and then will be called sansport The set of such transports
can be empty, as it happens for example for= o andf~ = (§; + §_1)/2. A
weak formulation of Monge’s problem is the following:

min{/ d(x,y) dy(z,y): ye MH(M x M), myy=f", w;v—f}-
MxM (1 2)
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The set of the measurgsadmissible for (1.2), we will call each of thenpéan of
transport is not empty as it always contains at le@ist® f~. It is a standard fact
that if M is compact (1.2) has solution.

To each transpott one can associate the plan of transport= (id x )4 T,
and |y, ,, d(@,y) dy,(z,y) = [,, d( )) df T (x), then the minimum in (1.2)
is smaller than the infimum of (1.1). If the amblent space is an open, bounded and
convex subsef of RY and f* has no atom the equality holds (see [14] and [1]),
but in general the strict inequality can hold: this happens obviously when the set of
transports is empty, but also in less trivial cases.

An optimal mapy for problem (1.1) will be called aoptimal transporwhile
an optimal measure for problem (1.2) will be called aoptimal plan of transport
becauséz, y) € spt(y) means, in some sense, that part of the masssimould be
moved iny in order to minimize the work.

1.2 The shape optimization problem

Let £2 be an open, bounded subset®f and assume that we are given an heat
sourcef and a certain amount of a conductoiC (i.e. a material with a positive
conductivity coefficient). What is the best way to distribGte the assigned region

£2? The optimality criterion we will accept is that of the minimal “compliance”.
Taking as a model for the distribution 6fa nonnegative bounded measyria (2

such thath du = m, the energy associated to a smooth distribution of temperature
u € D(£2) is given by:

1
Bsw) = 5 [ IDuta) = (7.0 (L3)
For an assigned distributignof material let us define the following quantity
C(u) := inf FE(wp,u);
()= dnf  Blp,u)

the quantity—€ () is usually calleccompliance There exists an equilibrium tem-
peraturew,, (not necessarily smooth) which realizesn,, F(u, u) = €(u), where
Eisthe relaxed energy of (1.3) that we will write explicitely in (2.2). A distribution
uy of material is better thap, if €(u;) > €(us), therefore it is natural to look for
the maximum of€ (). It turns out (and we will see it in Sect. 3) that the problem

E(f) = sup{@(u) :,uEM"‘(Q),/d,uzm} 1.4
is related to
I(f) :=inf {(—f,u) : uw € Lip1(2)} (1.5)
by the formula )
E(f) = —[éQ , (1.6)

and (1.5) is dual to
sup{—/d|V:V€M(Q,JRN), —divy:f}; a.7)

formula (1.6) was proved in [5], while the duality argument is standard.
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It is possible to prove (see [5]) that these problems are related to

—div (uDyu) = f on 12

(WMEK) = { |Dyul =1 W— a.e.,

3.1)
whereD ,u is the tangential gradient afwith respect tqu introduced in [4] whose
definition and main properties will be recalled in Sect. 2.1.

More precisely, as proved in [5] and in Sect. 3 of this paper, the relationship
between the different problems is given by the fact that #éndv are extremals
for (1.5) and (1.7) respectively, thdm, |v|) solves (3.1). On the other hand, if
(u, 1) solves (3.1) them andp.D,,u are extremals for (1.5) and (1.7) respectively.
Finally . solves (3.1) together with somec Lip, (£2) if and only if —mu/I(f)
solves (1.4).

Problem (1.4) is usually referred togtsape optimization probleand a measure
which realizes the sup is callegtimal shapeHowever, since the measurgsn
the solutions of (3.1) are, up to a constant, optimal for (1.4), in this paper we will
refer to these measure —and not to the solutions of (1.4)— as optimal shapes.

1.3 Optimal plans and transport densities

In Sect. 4 we will give the following formula that associates to each optimal plan
of transporty an optimal shape, wheref = f* — f—:

it = [ ([ e, )) arten (4.2)

moreover each optimal shape can be obtained by an optimal megisittés way,
as proved in [1]. In this setting is calledtransport density

The support of an optimal plan of transperénjoys a very important property
called d—cyclical monotonicity This property has been widely used (see for ex-
ample [15]) in the case of Monge—Kantorovich problems with strictly convex costs
(i.e. whend in (1.1) is replaced by a strictly convex, positive functionddfand
much less in the case of linear costs, as in this paper and in [6]. In fact we will
use this property ofy to deduce some relationship between the dimension or the
summability off* andf~ and the related properties of the transport densithe
concept of the dimension of a measure will be recalled in Sect. 2.2). Let us be more
precise about the notion of cyclical monotonicity:

Definition 1.1. AsetS C M x M is saidd-cyclically monotone (or simply cycli-
cally monotone ifl is the euclidean distance in a subsetR{") if for any integer
n, any set of pair§z1,vy1), ..., (zn,yn) € S and any permutation in S,

d($17y1) +- 4+ d(mnyyn) < d(mhya(l)) et d<xn7yo‘(n))' (18)
In the caser = 2, (1.8) becomes
d(z1,y1) + d(x2,y2) < d(x1,y2) + d(22, 1), (1.9)

which holds whenevefz, y1) and(xs, y2) belong toS. Even if the general prop-
erty (1.8) is stronger and it is not difficult to construct an example for which (1.9)
holds but (1.8) does not, the proofs of Sect. 4 will use only the second and the
representation of given in (4.2).
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Our interest about the notion of the cyclical monotonicity follows by the well
known fact (see for example [15]) that-fis an optimal plan of transport then
spt(y) is d—cyclically monotone. Hence we will use (1.9) far;, y1) and(z2, y2)
in spt(7y).

Some of the main results of the paper are the following
Theorem If £+ (or f~) is absolutely continuous then any transport density is also
absolutely continuous. If botf™ and f~ are in L>° then any transport density is
in L*°. If both f™ and f~ are in L? then any transport density is ﬂp<q LP.

The plan of the paper is the following: in the next section we will recall some no-
tations and some results we will use in the paper. In Sect. 3 we will study some prop-
erties of the solutions of (3.1) and prove the connections between problems (3.1),
(1.4), (1.5) and (1.7). In Sect. 4, after some technical lemmas, we will prove a lower
estimate on the dimension (in the sense of Sect. 2.2) of a generic transport density
and we will show that no nontrivial upper estimate can be given, finally we will
discuss the summability properties. Examples on the sharpness of the estimates
will be given in each case.

Note. After the completion of this work we heard about a related work by Feldman
and McCann, [12]. IR equipped with a uniformly strictly convex norm, they
study the case of the transport densities related to optimal transports and, under
the assumption that™ and f ~ are absolutely continuous, they prove the absolute
continuity and uniqueness gfin this class.

2 Notation and preliminaries

Here we briefly list some notations we use throughout the paper, even if most of
the symbols we use are standard.

Bz, p) Ball in RY of centrex and radiugp

Ty, TY Closed segment iR” and its length

D, p—tangential gradient (see Sect. 2.1)

W};P Sobolev space with respect to a measure (see Sect. 2.1)
Dim p Dimension of the measure(see Sect. 2.2)

05 (1, ) k—upper density of: atz (see Sect. 2.2)

d,(x) Pointwise dimension gf atz (see Sect. 2.2)

L Lebesgue measure

HE k—dimensional Hausdorff measure

H}Cy 1—dimensional Hausdorff measure on the segment
uwl B Restriction of the measugeto the setB

B(£2) Borel subsets of2

Lip, (£2) 1—Lipschitz functions o2 € RV

M(£2), M™T(£2) Spaces of the measures and of the positive
measures ot

7] Total variation ofy € M(£2)

17l Norm of v in the spaceM ({2), or total mass, i.e.
71(£2)

Wk If k£ is an integer, Lebesgue measure of the unit

ball in R*
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Throughout this paper the ambient space willlbean open, bounded and convex
subset oRY, N > 2 and its diameter will be denoted .

2.1 Calculus of Variations with respect to a measure

Here we introduce some notions from [4].
Given a positive measuge e M™(£2), we consider the space

X, ={pecL),: —div(pn) € M(2)},

in some sensg,, is the space of tangent fields o Then we define theangent
spaceto . for u-a.e.x € 2 as:

Tu(x) = p—ess| J{o(@) : ¢ € X,.}.

The p—essential union is defined asuameasurable closed multi-function such
that:

o pe X, = p(x) € T,(x)for p-a.ax € 1.
e Between all the multi-functions with the previous property fheessential
union is minimal with respect to the inclusion a.e. .

Properties and applications of this definition of tangent space to a measure have
been explored in various paper, among them we address to [4], [5], [3], [13]. Once
we have the notion of tangent spacetpit is natural to define the notion of
u-tangential gradiendf a functionu € D({?) as:

Dyu(z) = P,(z, Du(x)) W= a.e.,

where we denoted b, (z, -) the orthogonal projection dfi, (x) (which is clearly
a subspace). It can be shown that the oper&pfz) is closable inLE and this
leads to a suitable definition of Sobolev space with respect to

Definition 2.1. The Sobolev spad®,”(12) is the completion ab(2) with respect
to the norm:
ullyp o= llullcz + [Dyull .-

An important property is the following generalization of the integration by part
formula, which holds for any € W};P(Q) andy € X

/ Dyu- ¢ dp = —(div (p), u) (2.1)

Using these notions one can obtain that(f:) > —oo thenf € (W, *)" and the
relaxed energy of (1.3) is given by:

Bluw) = [ 1Dl du=(fw)  weWir@), @2

where(-, -) is the(W}?, (W 7)) duality.
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2.2 Dimension of a measure

In this section we introduce a notion of “dimension” for measures belonging to
MT(£2), which we will use later:

Definition 2.2. The dimension of € M ™ (£2) is defined by
Dim g := sup{k : p < H"}.
where?* denotes thé—dimensional Hausdorff measure.

Notice that ifu is made of pieces of different dimensions tHemn p is the
smallest of these.

In order to calculate the dimension of a measure it will be sometimes useful to
give another representation of it and this will be done in Proposition 2.5. First we
need to introduce the notion &éf-upper density of: atz:

Definition 2.3. Thek—upper density of. at x is defined by

w(B(z, p))

0;(p, z) == lim —

p—0 Wg P
A first useful result about; is the following

Theorem 2.4. The following facts hold:

a) 07(p, 1) <t Vo€ BeB(2) = ulB <2kt HFL B;
¢) 0;(u,z) < +oo for HE —ae. x € 0.

Parts a) and b) are two particular cases from Theorem 3.2 in [19]; c) can be
obtained immediately from b).

Thanks to Theorem 2.4 it is quite easy to obtain the following characterization
of the dimension:

Proposition 2.5. Givenp € M™(42), the following three numbers are equal:

D; = sup{k: u < H*} = Dim y;
Dy =inf{k: 3B C 2, u(B) > 0, H*(B) = 0};
D3 =sup{k: 0;(p,z) < 400 for p—a.e.x € 2}.

Proof. Letus note thatimmediate consequences of the definitions are the following:
p < H* forall k < Dy, 3B C 2 such thatu(B) > 0 andH*(B) = 0 for all

k > Do and@; (u, ) = 0 p—a.e. for allk < Ds.

Step 1.D; > Ds.

If k < Dy, by definition#*(B) = 0 implies (B) = 0; in other wordsy < H*,

and thenk < D;.

Step 2D, > Ds.

Let k¥ > Dy, B C {2 a subset as in the definition and;, =

{x € B: 6;(p,z) < i}; part a) of Theorem 2.4 implies tha{B;) = 0 for

all 4, and therd; (i, ) = +o0 p—a.e., therk > Ds.
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Step 3.D3 > D;.

Letk < Dy, thanks to part c) of Theorem 2.4 we ha\fé, v) < +oo HE— a.e.,

and thend; (u, z) < +oo p—a.e., becausp < H*. This assures thdt < Dj.
O

Definition 2.6. The pointwise dimension pfat « is defined by
d,(z) = sup{k: 0 (p, z) < +o0}.

Thanks to Proposition 2.5 the dimensionudé theu, — essin f of the pointwise
dimensions of.

We now prove some simple facts about the behavior of the dimension under the
action of Lipschitz continuous functions, which we will need in Sect. 4.3 to show
that no nontrivial upper estimates for the dimensiop @tn be given.

Lemma 2.7. If u € M*(£2) andy : 2 — RM is a Lipschitz continuous function,
thenDim ¢4 u < Dim p. Moreover, ify is bilipschitz therDim ¢4 p = Dim p.

Proof. Using the definition of dimension of a measure we just need to prove that
opp < HF = p < H*. Then, letpypu < H* and letA € B(£2) be a set such
that#*(A) = 0: we haveu(A) < u(p=(p(A4)) = pxu(p(A)) = 0, where the

last equality holds becausé®(o(A)) = 0. Finally, if ¢ is bilipschitz, the same
argument gives also the other inequality, simgg(go#ﬂ) = u. O

Lemma2.8. Lety € M*(£2) and lety : 2 — RM be a Lipschitz map with
the property thaji—almost all of(2 can be covered by countable many Borel sets
An, n € N, suchthaty is bilipschitz on each of thd,,. ThenDim ¢4 4 = Dim p.

Proof. We just need to prove thddim pxp > Dim g, and this inequality will
follow if we prove thaty < H* = p,pu < HF; let thenk be such that < H*,
and A € B(RM) with #*¥(A) = 0. Thanks to the previous lemma and to the
assumptions, we have

pai(A) = p(e  (A) <Y ule (AN A,) =0.

neN
O
3 Transport set and connections between the different problems
In this section we will study the problem
[ —div (pDyu) = f on 12
(WMK) = { |Dyul =1 pw— a.e. (3.1)

already introduced in Sect. 1.2. Besides the deep connections with the Monge—
Kantorovich problem (see [3] and [1]), another interest of this problem is that,
as shown in Theorem 3.8, the measur a solution of (3.1), suitably rescaled,
solves (1.4) and each solution of (1.4) can be obtained in this way.
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Let u € Lip,(£2): it is usual (see [9], [20]) to associate tothe so-called
transport setas follows

T, :={z€ 2: 3z espt(ft)sit.u(z) — [z — 2| = u(z) and
Jy € spt(f7) st uly) + |y — 2| = u(2)} .

If 2,y andz are as in the definition df, then they are aligned, in fact (we recall
u € Lip,(£2)) we have

|z =yl > u(@) —uly) = [ — 2| + ]2 —y|.

Moreover the closed segmeny (which is often calledransport raywith respect
to ) is contained in the transport set.

Remark 3.1.T;, is contained in the union of the segments joinigg(f™) and

spt(f~).
Remark 3.2.T,, is a closed set.

In the next lemma we will use a test function which first appeared in a paper by
Janfalk [16] and was also used by Evans and Gangbo in [9]v lbet defined as
follows

£+ u(w) :
u(z) max ifu(z) >0
wespt -|— -|— —
v(z) = Sspilh) & 12(2_) u(g‘)’ 7 3.2)

Z) max ifu(z) <0,
)11)Espt(f)f—u(z)+|’w—z| f ()7

where¢ is a constant such that+ « > 0 everywhere orn?.

Lemma 3.3. The functionv is Lipschitz continuous and satisfies the following
properties:

a) v =uonspt(f);

b) |[Dv| <1lae,;

c) If x ¢ T, then there exist a balB centeredr and a constand € (0, 1) such
that|Dv| <1 -4 onB.

The proof of this lemma is simple but not short, and can be found in [9], page
19-22.

Theorem 3.4. Let (u, 1) be a solution of (3.1) and Ief,, be the transport set
related tou. Thenspt(p) C Ty,.

Proof. Letvbedefinedasin (3.2), ¢ T, andB, ¢ asin property c) ofLemma 3.3.
Using the integration by parts formula and the estimate b) of Lemma 3.3 we obtain:

/Udf:/ Dl,,u~Dvdu§/ |D,,,u\|DU|du+/ |D,u||Dv| dp
%) Q 2\B B

< / |Dyul dp+ (1 — (5)/ |Dyu| dp.
2\B B
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Then, since property a) of Lemma 3.3 impligsu df = [, v df, it follows

(5/ |D,ul dug/ |D,,ul du—/ u df
B 7 Q

= / |D/Lu‘2 dp — / ‘D/LU‘Q dp =0,
0 0

also using (2.1). Ay}, |D,u| du = p(B) we conclude tha(B) = 0 and then
o & spt(p). 0

Thanks to Remark 3.1 and Theorem 3.8, a consequence of the previous theorem
is the following result concerning the region occupied by optimal distributions of
the conductor, once given the heat sources.

Corollary 3.5. The optimal measures for problem (1.4) are supported in the union
of the segments joiningpt(f™) andspt(f ).

Remark 3.6.The set of the segments joiningt(f™) and spt(f~) is clearly a
subset of the convex envelope @ft(f), wheref = f* — f~, and it can be
strictly smaller. For example, ¥pt(f™) andspt(f~) are two concentric spherical
surfaces, the first set is the annulus between the surfaces while the second is the
whole sphere. It can also happen that the dimension of the first set is strictly smaller
than that of the second, as in the next example.

Example 3.7.Let ABCD be a square with sides of lengtrand definef* =

04 +dc and f~ = dp + ép. In this case each transport set is contained in the
boundary of the square, whose dimensioh ighile the convex envelope ept( f)

is the whole square, whose dimensiorzid et us write now an explicit formula
for the optimal shapes: denoted by= AB,b = BC,c = CD andd = DA the
sides of the square and fixék o < 1,

pi=a(M'La+H Lec)+(1—a)(H'Lb+H'Ld) (3.3)

defines a solution of (3.1) together with any Lip, (£2) suchthat(A) = u(C) =
landu(B) = u(D) = 0. Vice versa for any solutiofu, u1) of (3.1), the measure

can be written as in (3.3) for a suitakle To prove what stated we remark that the
admissible plans of transport have support contained.i B), (4, D), (C, B),

(C, D)}, soitis easy to write explicitely each of them (note that they are all optimal)
and then, thanks to the general formula (4.2), the optimal meagures

Let us finally prove the connections between (1.4), (1.5), (1.7) and (3.1) with
the following result, first given in [5]:

Theorem 3.8. Problem (1.4) has a solution and (1.6) holds. Moreover &dv
are optimal for (1.5) and (1.7) thefw, |v|) solves (3.1) and, conversely,(if, u)
solves (3.1) them and D, u are optimal for (1.5) and (1.7) respectively. Finally,
ameasure: solves (3.1) together with somes Lip, (£2) if and only if—mpu/I(f)
solves problem (1.4).
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Proof. Thanks to standard duality facts it is possible — even if not straigthforward
—to prove that

I(f):sup{—/d|z/|:VEM(Q,RN), —diVl/:f}, (3.4)
¢(u) =sup {—;/|0|2 du o€ LZ(Q,RN), —div (op)= f} (3.5)

and that the extremals in (1.5), (1.7) and (3.5) are reached. Then we have

Step 1:£(f) < —I(f)z/(2m)-
Let u € M*(82) with [ du = m, o such that-div (op) = f andu € Lip, (£2);

then
2
aﬂw2=(/aDqu < [1of du [ 1Duf? dn < [ 1o a,

which implies
5 1ot an < - L

thanks to (3.5), taking theip in the left hand side and thef in the right hand side
we obtain the claimed inequality.

Step 2:Let w andv be optimal respectively for (1.5) and (1.7): thanks to (3.4) we
have—I(f) = (f,u) = [ d|v|. Define thery = |v| and§ : 2 — RY such that

v = 6u (and thend| = 1 p—a.e.). Using (2.1) we have then

/du:‘/d|u\:<f, = (—div (Op),u /Du 0 du,

which implies|D,u| = 1 p—a.e. andd = D,u, then(u, u) solves (3.1). Define
nowgi = —mu/I(f)anda = —I(f)u/m: we have[ dp =mandf = —dive =
—div (zDyu) so that, thanks to (3.5) and using (2.1),

10

2m

(’3(#)>—1/\D ul? du__%g’@:_

thanks to the first step this gives the optimality jofor problem (1.4) and the
validity of (1.6).

Step 3Let us takgu, 1) solution of (3.1) and define = D, u, then—div v = f:
we have

1)z~ [dil =~ [ == [1Du du=(~fo0) = 1),

so thatl(f) = (- f,u) = — [ d|v|, which gives the stated optimality efandv
for (1.5) and (1.7).
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Step 4:Let 11 be optimal for (1.4): then there exists € L?(£2,R") such that
—div (op) = fand&(f) = €(p) = —1/2 [ |o|? du. Let us definer = o and

note that
[ = [ 1ol du < \//UPdu\//du
_ _ I =
= V(i = (| =2 = 1)),
thenv is optimal for (1.7) ando| must be constant, whende| = —I(f)/m
p—a.e.: this implies that-I(f)u/m solves (3.1) together with any optimal
for (1.5). O

4 Dimension and summability of the transport density
4.1 Definition of the transport density

In this section we will report formula (4.1), which was first introduced in [3], to
write, starting from a solutiory of (1.2), a measure which is extremal for (1.7);
the measurg: = |v| —which is given by formula (4.2)- is called, as we said in
Sect. 1transport densityThen, as proved in Theorem 3;8solves (3.1) together
with any u extremal for (1.5) and, up to a rescaling constantealizes the sup
in (1.4). Depending on the point of view, then, this measuman be seen as a
transport density for Monge—Kantorovich problem or as an optimal shape for the
shape optimization problem. As seen in [1], [17] this meagLsalso related to an
ODE version of the optimal transport problem introduced by Brenier and explained
in [2] (see also [1]). Notice that will be defined starting from an optimal plan
of transporty, while the data of the problem are™ and f~: in fact, in general
different optimal plans can generate different transport densities, as it happens in
Example 3.7. However, in [1] it is proved that any optimal shajan be obtained
by formula (4.2), starting from a suitable optimal plarand that if at least one of
the measureg™ and f~ is absolutely continuous then there is a unique transport
density, which then can be found starting from any solutjoaf (1.2). In this
section we will study the regularity properties of the measuie relation with
the analogous properties 6f- and f~. We will not use anything that comes from
the particular choice of: then the properties we will find are owned by gay
solving (3.1).

From now on we consider a fixed optimal plan of transppifrom f* to
f~, and in this section we will caliransport rayeach closed segmeny such
that(x,y) € spt(y); the relationship with the transport set and the transport rays
defined in the previous section is that for each optimal plan of transpthrére
exists al—Lipschitz functionu such that the transport rays associated tare
contained inl;, and are transport rays also in the sense of Sect. 3 with respect to
u. Moreover, given,y € {2, we denote bw;y the one—dimensional Hausdorff
measure on the segmeny. Finally we can define € M (2, RY) as follows:



260 L. De Pascale, A. Pratelli

wor= [ ([ e T2t ) v @y

Vo € Co(£2,RYN). Let us prove now the extremality property:af

Proposition 4.1. The measure defined by (4.1) is extremal for (1.7).

Proof. First we need to verify that-div v = f, and this holds since for any
¢ € D(£2) we have

(—div v, ) = {1, D) = / /D —Y a4l (2) dy(z.y)
2% |

=/ o(x) — () dy(z,y)
2%

:/Q@dﬁ—/n@df‘:/gsodf:@wp%

Now, using a standard duality theorem for functional (1.2) due to Kantorovich,
we know that

sup (o, f) = / ly — 2| dy(z,y).
|De|<1 Qx0

On the other hand, using (4.1) we obtain

/ dlv| = / ly— 2l dy(e,y) = sup (o, f) = —I(F),
2 2%

|Del<1
that thanks to (3.4) gives the assert. O

We define now the transport densitywhich depends ofy) as the total variation
of v. To begin, itis useful to write an explicit formula far which follows from (4.1):

o= [ ( [+ cm;.yu)) b (). 4.2)

In particular from (4.2) it is possible to write the measpref a setd € B((2) as
P = [ ieyna) i), (4.3)
2%

wherel(zy N A) = H,, (A) is the length of the intersection between the segment
zy andA. It is easy to note that if the mass is moved frgrmto f~ following the
plan of transporty, thenu(A) is the work done in the set: this is the reason why

1 is called transport density.
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4.2 Some technical lemmas

In this section we report some technical results which we will need in Sects. 4.3
and 4.4. We will begin with two propositions, then we will give three geometric
lemmas. A first property which follows directly from the definition gfis the
following:

Proposition 4.2. u—a.e. point in{?2 is contained in the interior of some transport
ray.

Proof. This is a consequence of the definition aflet S be the subset of the
points of 2 which are not contained in the interior of a transport ray. For every
(z,y) € spt(y)wehaveryNS C {z,y} andther(zyNS) = 0 which, from (4.3),
gives the claimed assertion. O

Let us recall now a simple but useful property of the optimal plans of transport:

Proposition 4.3. If v € M™(§2 x 2) is an optimal plan of transport from#y
to 7@7 andr € M* (2 x 2) is a measure such that < v (i.e. 7(4) < v(A)
for eachA € B(12)), thent is an optimal plan fromrriﬁr to wir. In particular
~vL(B x 2), whereB is any Borel subset d?, is optimal.

Proof. By contradiction, ifr were not optimal, it would exist € M™* (2 x 2)
with the same marginals asbut less total work. In that case— = + 7 would
be a positive measure with the same marginaly asnd less total work, which
contradicts the optimality of. O

The above proposition will be very useful in the proofs of the next results, when it
will be convenient to divide? in subsets with assigned properties.

The next three lemmas consider a paigbntained in the interior of a transport
ray zy (which holds foru—a.a. point, thanks to Proposition 4.2) and give estimates
about the location of the extreme points of the other rays which meet an open ball
centered at and of sufficiently small radius: in particular in Lemma 4.4 we find a
region to which at least one of the extrems belongs, in Lemma 4.5 we find a region
to which both the extrems belong, but the estimate degeneratesandetreloser
toz ory, in Lemma 4.6 we find a region to which the first extrem of the ray belong,
but under the assumption thaits not contained in the support 6f . These lemmas
will play a key role in the proofs of all the next results of this paper.

To prove these lemmas we will only use property (1.9); it will be convenient to
reduce the possible configurations of the set of points we will use by moving them
suitably; obviously we are allowed only to move the points in such a way that (1.9)
continues to hold. Then, givém, y) and(z’,y) in spt(~), we will calladmissible
transformationsall the changes of the points such that the quantity

Ty+ a2’y —ay — 'y

decreases, which clearly maintain the validity of (1.9): for example, thanks to the
triangular inequality it is easily seen that movingo y or y to 2 on the linexy is
admissible, and the same holds #dry’ andx’y’.
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Lemma 4.4. If z is an interior point of a transport rayy, ¢ is sufficiently small
and another ray:’y’ of length less thanzy (with o > 1) intersectsB(z, ¢), then
eitherz’ or ¢’ belongs to the cylindef'. with axiszy and radius6ae.

Proof. Let us assume < 1 and that there exists a transport rely/’ of length
less tharmzy that intersectsB(z, €) but neitherz’ nory’ is in the cilinder of axis
2y and radiugae: in order to prove the lemma we must show that this leads to a
contradiction.
By symmetry, we can assume tliet o < b < R, wherea = 7z, b = Ty and
Ris the diameter of?: let us mover’ closer toy’ moving it on the linex'y’ (which
is admissible) until the distance betweehand the linexy is 5as. We fix now

coordinates(cy, ..., ¢y} such that: is the origin, the segmenty is on the first
axis (withcy(x) < 0, ¢1(y) > 0), 2’ is on the plangcz = --- = ¢y = 0} with
ca(z") < 0 (and theree(2') = —5ae) andy’ is in the spacdcy = --- = ey =0}

with ¢3(y’) > 0. Since the distance betweghand the linery is greater thefiae,
x'y’ intersectsB(z, ) andes(z') = ¢3(z) = 0, from Pitagora’s theorem it follows
thates(y') > Sae: bring theny’ closer toz’ (moving it on the linex’y’) until
c2(y') = bae. The situation is illustrated in Fig. 1.

x/

Fig. 1. Geometry of lemma 4.4

Let us define now = ¢;(y') andl = ¢1(y') — ¢1(2"). We can assume> 0:
otherwise, applying te’ andy’ the simmetry across the hyperplafig = A} with
A =0, ¢1(y') oreg(2') respectively ife; (y') <0 < e¢1(2'), 0 < e1(y) < eq(2)
ore1(y') < c1(2’) < 0 changes the sign éfand is an admissible transformation,
becausery andz’y’ remain equal whilecy’ andz’y increase. Moreover we have
[ > e: otherwise, using (1.9) and the fact that it would#g’ > +/i2 + (10ae)?
andzy’ + 2’y = a + b+ 1 + (5ae)?(1/2a + 1/2b) + o(¢?), one easily find
[ > 4ab/(a + b) > e. We have therd >> ¢ and, as a consequence;> ¢: the
coordinates of the points are now

r  =(-a,0,00 y =(b0,0)
¥ = (6 —1,—bae,0) y' = (8, 5ae, he),

writing only the first three coordinates because all the points are in the space
{ea =+ =cn = 0}. The facts that'y' intersectsB(z, ¢), c3(z') = c3(2) = 0,
b>a>0andl <2’y < azyimply

0<h<2b5 6+e> I 6—e< I b>

O 10«

oa — 1 Sa+1 Ty L
5 .
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Let us write now the lengths of the segments:

2502 +0(1) 2

@:a+b, Fy:b+lf5+m€ ( )
4.5
x/y/zu_wgzy xfy/:ajupr%g

The inequality (1.9) givesy + 2’y < xy’ + 2’y and this, thanks to (4.5) and
using (4.4), implies

100a? + h? - 2502 N 2502 + h? b o(e) =
21 “2(b+1-6)  2(a+d)
100a? + h? 2502
l = 1/(20) +1— ((5a + 1)/10a)l
2502 4 h?

_— =
T Ga=1)/10a)
7500° — 4000* < h? (250° + 25a 4 4) =>
7500° — 4000* < 6.25 (250 + 250 +4)

which is easily seen to be false for eaeh> 1. a

Lemma 4.5. If z is an interior point of a transport rayy, « = min {7z, zy}, €
is sufficiently small and another transport rajy’ intersectsB(z, ), then bothz’
andy’ belong to the cylinde€. with axiszy and radiussRe/a.

Fig. 2. Geometry of Lemma 4.5

Proof. Possibly movinge closer toy or y closer tox on the linexy, which we
know to be an admissible transformation, we can assume&that2q andz is the
middle point ofzy; let us also assume that does not belong to the cylinder and
show that this leads to a contradiction. Sipteloes not belong to the bali(z, ¢)
but 2’y intersects the ball, we can mow¢ in the direction ofy’ until it crosses
B(z,¢) and exits from it, and this is admissible.

We can assume now that y, =’ andy’ are on a plane: in fact, moving to
the point of least distance fromi remaining on thé N — 2)—dimensional sphere
of the points whose distances frarrandy are fixed is admissible (because in this
way Ty, zy' andz’y remain fixed, whiler’y’ decreases) and causes all the point to
be on a same plane whitout changing the fact that C.. Finally we can move




264 L. De Pascale, A. Pratelli

1y’ closer tox’ until it reaches”,, and the situation is illustrated in Fig. 2. If we fix
coordinates in the obvious way (as we did in the previous lemma), the points are

y = (a,0)
x' = (de, he) Yy = (e +1,5Re/a)

and we know that
a<R I<R —-1<6<1 0<h<1: (4.6)

writing the lengths of the segments and using (1.9) and (4.6) exactly as we did in
the proof of Lemma 4.4, we find a contradiction, and then the desired inequality.
O

Lemma 4.6. If z is an interior point of a transport rayy, d(z, spt(f~)) =0 > 0,
¢ is sufficiently small and another ray/y’ intersectsB(z, ), thenz’ belongs to
the cylinderC. of axiszy and radius6 Rz /4, whereR is the diameter of?.

Fig. 3. Geometry of Lemma 4.6

Proof. Let us begin with the admissible transformations of bringjrandy’ closer
to z andz’ (on the linesry andz’y’) until they are at a distaneefrom z, which

is possible ife < 4. If 2’ belongs toB(z, ) we have nothing to prove, otherwise
7'y’ > §—sincezy’ = 6 andz’y’ intersects3(z, €)—and then, applying Lemma 4.4,
we know that either’ or 3/ belong to the cylinder of axisy and ray6ex’y’ /7y <
6Re/d. If 2/ belongs to that cylinder there is nothing to prove, then let us assume
thaty’ belongs to it and move closer toy until x = z. Finally we fix a system
of coordinates such thatis the origin,y = (4,0,...,0), ¥’ belongs to the plane
{ez3 =+ eny =0} withco(y') < 0andz’ belongsto the spadey = - - - ¢y = 0}.
Sincecs(y') = c3(z) = 0 anda’y’ intersectsB(z, ¢), it follows by similitude that
les(z")] < Re/(6 —e) < 2Re/d if e is sufficiently small. Moreover the fact that
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c2(y") < 0 implies, by a similar argument, that(z') > —2Re/4: it will be then
sufficient to prove that,(z') < 5Re/é.

To this aim let us note that belongs taC. andzy’ = §, and then it < 1 we
have|c; (y')| = J; then we can assume that(y’) > 0: in fact, if ¢; (y’) < 0 then
c1(y’') = —é and then either; (z') < 0, and then easilys(2’) < 5Re/dif ¢ < 1,
or c1(z') > 0, and then apply ta’ andy’ the simmetry across the hyperplane
{c1 = 0} is admissible and leads us to a situation in whicfy’) > 0.

If c2(y’) > —3e a similitude argument similar to that we already used implies
ca(z') < BRe/d; if ea(y’) < —3e, let us consider the situation, illustrated by
Fig. 3: denoting byz, the projection ofz’ on the plang{c; = --- = ¢y = 0},
sincex’y’ intersectsB(z, €), the pointz, is over the lines, and sincer’y’ < a'y
(from (1.9) recalling thatty = xy/) it is under the ling, the axis of the segment
yy' thency (') = co(x2) < co(w). With some elementary (and a little boring)
calculations we can then write the equations of the linesd¢ and using the
fact that, thanks to our assumptions;,(y') = dsin(260) € [3¢,6Re /0], we find
ca(w) < 4e <4Re/6 if ¢ < 1, that concludes the proof. O

4.3 Dimension of the optimal measure

This section is entirely devoted to discuss estimates for the dimension (in the sense
of Sect. 2.2) of:: we will prove Theorem 4.7, which gives a lower estimate (sharp
thanks to an example), and then we will show that no upper estimate is possible.
Let us begin with the lower estimate, which follows by a careful analysis from
Lemma 4.5.

Theorem 4.7. Dim p > max{Dim f*, Dim f~, 1}.

Proof. Step 1Dim p > 1.
From (4.3) it follows that for any: € {2 andp > 0 we haveu(B(x, p)) < 2p||v||
which implies, from Definition 2.3, thay (u, z) < ||| for any . Then using
Proposition 2.5 we have the claim.

Let us assume now th&itim f* > Dim f~ (we can do it by the symmetry of
the problem) and denofe= Dim f*. We have to prove thddim p > k.
Step 2:Assume for the moment that the following hypothesis holds:

3K : Yz € 2,V¥p>0 fT(B(z,p)) < Kp; (4.7)

we will get rid of it in the next step.

If zis contained in the interior of some transport rayanda = min{zz, zy},
let C, be the cylinder or axigy and radiu$sRp/a, which clearly can be covered
by M (z)/p balls of radius: this, thanks to (4.7), assures that

176 < 2 kot < wrp .

Then, if p is sufficiently small, using Lemma 4.5 we have

u(B ) = [

C,xC,
< 2pf*(C,) < 2M(2)Kp".

I(zy N B(z,p)) dy(z,y) < 2p/c . dy(w,y)
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We then infer that/; (u,z) < +oo for everz € 2 which is contained in the
interior of some transport ray, and then from Propositions 2.5 and 4.2 it follows that
Dim p > k. The theorem is then proved under the additional assumption (4.7).
Step 3:General case.

Fix ¢ > 0 and define for anyn € N

Qme ={r € Q2:¥p>0, fT(B(z,p)) < mpk_8}~

Sincek — e < Dim f*, we havet;__(f*,z) = 0 ft—a.e., as noted in the
beginning of the proof of Proposition 2.5, and then

wp F7(Bl)

- <400  for ff-aeux:
p>0 priTE

then, varyingm, (2,, . is an increasing sequence of subsets thatfillsp to an
ft—negligible set and then, a& — +oo, fTL 2, . — fT in the strong
convergence of\ ™ (£2). Defining v, . = YL(2, x 2) and recalling that
w;n = f* we infer thaty,, . — ~. Let us define now,,, . from~,, . by (4.2). It

is clear from the definition that,, . — , and thanks to Proposition 4.3 we can
apply the result of step 2 t€,, . to obtainDim px,, . > k — e: this, thanks to the
definition of dimension and to the convergence.gf ., impliesDim p > k — e.
Finally the generality of completes the proof. a

The next example shows that the lower estimate given in Theorems 4.7 is sharp.

Example 4.8.Let S; and S, be two disjoint segments of lengthlying on the
same line, and lef+ and f~ be the restrictions of the measut£ to S; and

S, respectively. Clearly an optimal transport is given by the translation, then it is
simple to calculate:, which is the measure on the line which density ietween

the segments, goes tolinearly on the segments and(sout, and which is then
one—dimensional.

On the other hand, it is not possible to give a non-trivial estimate from above
of the dimension, as the following example shows:

Example 4.9.Let 21, x5, By and B, be respectively two points and two balls of
unitvolume ing2, and letf* = §,, + LL_ By andf~ = §,, + LL Bo:if z; is near
to B, x5 is near toB; andx;, B, are far fromz,, By, there is a unique optimal
plan of transport, which distributes dB, the mass ofr; and concentrates oy
the mass oB;. In this case the dimension pfis easily seen to b&’, the maximum
possible, while the dimensions ¢~ and f~ is 0, the least possible.

The lack of control in the previous example is due to the fact that the pointwise
dimensions off * and f~ are not constant. However, even if the pointwise dimen-
sions are constant it is not possible to give an upper estimdbemf(f ™ @ )
in terms of Dim f* andDim f~ (on this topic see: 3.2.23, 2.10.45, 2.10.29 of
[11] and theorem 5.11 of [10]). As in the next example we show how to construct
an optimal measurg whose dimension is equal im (f* ® f~) + 1, it is not
possible to give a non trivial estimate from abovdXfn ;. even if the pointwise
dimensions off ™ and f~ are constant.
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Example 4.10.Let p, k be two positive integers such that- 1+ k < N, S be the
unit sphere of the subspace®f" given by the firs{p + 1) coordinates and be

the unit ball of the subspace given by the coordinates fronfjghe2) — th to the
(p+1+4k)—th.Letf* andf~ be two probability measures shrandB respectively.

By the symmetry of the problem it follows that any plan of transport is optimal. If
we take, for exampley = f+ ® f—, then we remark that is the push forward

of f* ® f~ ® £'L[0, 1] through the mag : S x B x [0,1] — R" defined by
(x,y,t) = tz+(1—t)y. Applying Lemma 2.8 takingl,, = SxBx(1/n,1-1/n),

we obtainDim y = Dim (f* @ f~ ® £'L[0,1]) =Dim (f* ® f~) + 1.

4.4 Summability of the optimal measure

In this section we will investigate the summability of Let us first remark that

for a measure the property of being absolutely continuous is a bit stronger than
having dimensionV, which is obviously the maximal possible dimensionfim

From Theorem 4.7 we already know thatfif has dimensionV, then also the
dimension ofu is N. The first result we will give will be a little step forward and

it represents the connection between the study of the dimension and that of the
summability ofy:

Theorem 4.11. If at least one betweefi™ and f~ is absolutely continuous with
respect to the Lebesgue measure, thda absolutely continuous with respect to
the same measure.

Proof. Step 1Let us first assume thgt™ € L.

If z is contained in the interior of some transport ray, a simple application of
Lemma 4.5 (similar to the one made in second step of Theorem 4.7) gives a constant
K(z) such thatu(B(z,¢)) < K(2)|f*||L<e’ for e sufficiently small, and then

0% (i, z) < 4o0. Since this holds for each contained in the interior of some
transport ray, from Proposition 4.2 we have

On(p, z) < +o0o for p—a.e.z. (4.8)

If now £(B) = 0 and we defineB,, = {z € B : 0% (u,2z) < m}, part a) of
Theorem 2.4 implies

w(Bp) < 2Y m MY (B,) < 2N mHN (B) =0,

which together with (4.8) assurg$B) = 0. Theny € L.

Step 2:General case.

Let 2, = {z € 2: ft(z) <m}, vm = vL(2, x 2) and letyu,, be defined
from ~,,, using (4.2). Thanks to Proposition 4.3 and to the first step we can infer
thaty,,, € L. Arguing as in the proof of Theorem 45, — v in M* (2 x £2),

and theny,,, — p in M™*(£2), which givesi, € L' in the general case too. O

We can generalize this last result, studying what happefis {br f ~) belongs
to L4 for someq > 1. The previous theorem shows that L', but we can also
prove thaty belongs tol.? for somep > 1. Let us begin with the casg= +oo,
the general result will then follow. In the sequel we will denotebyhe conjugate
exponent ofy, i.e.1/a+ 1/’ = 1.
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Lemma4.12.If f* € L thenu € LP for all p < (2N)’. More precisely
1/p’ 1
laller < KIFIZZNFNL,
whereK depends only o, N andp.

Proof. Given (z,y) € spt(v), lety, be the point on the segmeny such that
Uy, = o, ory, = x if Ty < o. Let us define the measurg as follows:

i = [ ([ ol dt, )] drtan), (4.9)

Thanks to (4.2), itis clear that = ugr + pir/2 + pir/a + ..., WhereR is the
diameter off2. From Theorem 4.11 we know that ¢ L', and thenu, € L'
because:, < pu. Itis useful to write the measuye. of a setA, which from (4.9)
is
pe) = [ e 0 4) (o),
2x8

wherel(zy N A) is understood as in (4.3).

Step 1:Let us fixr > 0 and begin with a very particular case: we assume that
spt(f~) C Q, whereQ is an hypercube of sidesuch that\v/N < r/2 (note that
MV/N is the diameter of)). From the definition, it follows thatpt (1,.) is contained

in an annulusS with radii » — \v/N /2 and2r + A\v/N /2 centered at the center of
the hypercube, furthermoiéy, y2, N S) < r for all (z,y) and then

el = pr(S) <7 f7(Q). (4.10)

On the other hand, the hypothesis’ N < r/2 assures thai(S, Q) > /2 and
then from Lemma 4.6 (arguing as in the proofs of Theorems 4.7 and 4.11) it follows
that

6rR\"! CllfF e
e <2wn_1 [ — RIft| e = —2L 127 4.11
[trllLee < 2wNn—1 <r/2> 17 TN (4.11)
It is well known that ifp € L' N L*° theny € LP and

1 1/p’
lellzr < llel P llell 12,

then from (4.10) and (4.11) we infer that

o (CllfF || Lo 1/p’ K +1/P 1/p
lpellze < (rf=(Q))" (”TJ:\[Hf) = ||fT|]|V - N/E)Q) :

Step 2:Let us coverspt(f~) with N(r) disjoint hypercubes); with sides as in
step 1 and defing; = vL(§2 x Q;). From Proposition 4.3 it follows tha; is an
optimal plan of transport fronf;” = )., to f;” = 7%y = f~ L Q;. Definep,.;
from ~; using (4.9): from the first step and the fact thf || . < || f*]/L~ we
obtain thatp‘r = Hr1 + Hr,2 + 4+ Hor N (r) and

anﬂ\”p £ Q)M
pN—1-N/p :
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Applying the inequality between the arithmetic mean andptie mean, inte-
grating, extracting the-th root and using the fact thgt" (£2) = f~(2), we obtain
that

VS
1 + 1
[ter|lLe < N(r) /P N-1-N/p_ f(82) /P,
We recally = pr + pirs2 + pir/a + ... and we remark that, up to a geometric
constantN(r) < »—¥, then it suffices to show that

> (5

ieN

—N+1+N/p—N/p’
> < +o0; (4.12)

a simple calculation assures that (4.12) holds if and only i (2N)’, and this
concludes the proof. O

We now derive the general result:
Theorem 4.13.1f f+ € Lithenpu € LP forall p < (2N) A (1 + (¢ —1)/2).

Proof. Letp < (2N)' A (14 (¢ —1)/2) and let us write2 = | J, f2; upto a

ft—negligible set, wher&?;, = {z : i — 1 < f*(x) < i}. Asin the previous
lemma we can defing; = L ({2; x £2) andy; from~; using (4.2). Observe that,
thanks to Proposition 4.3; is an optimal plan of transport. As< (2N)’, we can
then apply Lemma 4.12 obtaining

luillr < K7 fH@Q)P < KV (0|2 < Kl .
Denoted\; = |£2;|, it is sufficient to prove tha} _, i)\i/p < +o0. Let us define

B Y YAt L Joif N > @00
PET0 it a <00 DT it <0

it is clear thaty", i\l/? = 3. ip,/? + 3, io)/P. Sincep < 1+ (¢ — 1)/2, the
fact thato; < (1= implies, by a simple calculation, th@iia}/” < +o0.
Moreover f* € L4 easily implies)_ i9)\; < +oco and then, since by definition

ip;/p <9\, Zip;/p < +o0, that gives the assert. O

Now, a natural question that arises is the following: which is the greatest
such thatf* € LY = u € LP? The previous theorem gives a lower bound for
this number, but it is easy to give also an upper bound. In fact, thanks to the next
example, this number cannot be greater thien

Example 4.14InR? let B, = [-2,—1] x [0, 1] andRy = [1, 2] x [0, 1]. Moreover
letg : [0,1] — R be an absolutely continuous function, considér: R; — R
anda™ : Ry — R defined bya™(z,y) = a=(—z,y) = g(y) and definef* =
aTH?L R, and f~ = a~H?L_ R,. Thanks to the symmetry of the problem the
horizontal translation of + on £~ is an optimal transport, then using formula (4.2)
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we can explicitely write the measureobtaining that it is absolutely continuous
and supported ifi-2, 2] x [0, 1] with density given by

g(y)(x+2)if x € [-2,—1]
9(y)(2—a)ifx € [1,2].

Then the summability of: is exactly the same of ™ and f~.

Another fact is thatf™ ¢ L° does not implyy € L* (and in a similar way
fT € LP does not imply: € LP), as the next example shows:

Example 4.15Let f~ be the Dirac mass if and f* be the restriction of the
Lebesgue measure to an annulus centerédand of unitary volume, theit €
L*. Obviouslyy = f* ® f—, which brings all the mass gf* in 0, is the unique
plan of transport and then is optimal. It is then easy, using (4.3), to evaljaje
for each Lebesgue pointfor i, which we already know, thanks to Theorem 4.11,
to be absolutely continuous: it follows(x)  |=|*~% for x in the interior of the
annulus, and then ¢ L°°; more preciselyy € LP ifand only ifp < N/(N —1).

We want finally study what happens when bgth, f~ € L4 we already
know, by Example 4.14, that need not to belong to ang? with p > ¢, but we
can expect some result stronger than Theorem 4.13, due to the summability of both
the measureg™ and f~. We start with the following technical lemma:

Lemma4.16.1f g =3,y |g;], ¢; € L° N L', X C Zandl < p < +o0, then

P
gill Lt
[orar<y 12 (Zginm) .
i€X J<i

1gill L

Proof. Let us first assume thaX is finite. Then, in the subset ¢fL>° N Ll)X

for which ||g;||.: and||g;||.~ are fixed, the maximum of ¢” is attained in the
caseg; = \|9i||L°°XAi- whereL(A;)|lg:|l~ = ||gi]|z2 and the sets}, intersect

as much as possible. The formula is then straightforwaid is composed by two
elements, and an easy induction argument implies the validity in general. Since all
the terms are positive, a passage to the limit gives the assert alsdriéinite. O

We can prove now that if botfi™ and f~ are inL> then alsqu € L*°.

Proposition 4.17. If both = and f~ are in L>°, thenu € L. More precisely,
lullzee < 2RwN - 128 ([f Flpee + (17 |22 )-

Proof. Let us define 4; = {(z,y) € 2x2: R/2"" <7y < R/2'},
whereR is the diameter of2, andu;, i € N, by

pi(4) = [ tayn ) driey). (4.13)
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Recalling (4.3) it is clear that = >, u;. We already know that € L', and
theny; € L' for eachi € N: let us give then the last definition,

s.t. z isin the interior of xy} .

From (4.13) it follows thaj:;(2;) = 0, because for eacfr, y) € A; we have
xy N 2; C {z,y} and then(zy N ;) = 0. Then£L(§2;) = 0, and this implies
L(U; $2;) = 0 and theru(lJ, £2;) = 0.

Let = ¢ J, £2; be a Lebesgue point for each of the such thatu(z) =
> wi(z) > 0, and letj be the least integer such thaf(z) > 0. Sincez ¢ 2},
there exists a transport ray such that: is in the interior ofuv and R/27+! <
wv < R/27, and then ifty < R/27 we havery < 2uw. Let us then denote by,
the cylinder of axisw and radiusl 2r: thanks to Lemma 4.4, if < 1

Zui(B(z,r)) = /‘<R/2j U(B(z,7)Nay) dy(z,y)

<2r (/C mdv(wyyH/mCTdv(m,y))
<2 (fH(C)+7(Cr)).

Since the volume of the cor@, is less thamR wy _ (12r)V 1,
Zuz ) < 2rRuwn -1 (120)V 7 (15 e + 11 les)
which gives
9= Y () < 2R 128 (I 1 1 ) :

since this inequality holds fqi—a.e. pointz, this completes the proof. O

Once we solved the problem fgir™, f~ € L°°, we can prove the general
assert, which shows the situation when bgth f~ ¢ L4:

Theorem 4.18. If both f*, f~ € L4, theny € LP for1 <p < q.
Proof. Let us define2,", 2.7, u;; and\;; with 4, j € N as follows

0 ={reN: fF(z) <1}, Qf::{xeﬁ: 271 < fE () < 27},

Wij = / Uzy NA) dy(z,y), Xij =7 (02} x .Q]_) :
of x>
thenp =3~ ; wij, itis easy to give the bound

i(g—1) £+ HE
Hfin >ZQ(% 1>q£ _Qi >Zw (4.14)

1>1 i>1
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and we have alsd_; \i; = (") and)_,; Ai; = f~(£2;). From the definition

it follows that ||z, H7L1 < RM\;; and, sinceyL_(£2; x £2;) is an optimal plan of
transport for the problem given by his marginals, thanks to Proposition 4.17 we
have||u;|| L= < K(2' 4+ 27). Thanks to these estimates, to give an upper bound
for the LP norm of u we can make use of Lemma 4.16 with= N after given an
isomorphism betweelN andN x N, or equivalently an order t& x N. We do it

by setting(m,n) < (i,j)if mVn <iVjorifmvn=ivjandmAn <iAj,

orif m = j,n = ¢ andm < n. Then Lemma 4.16 gives

R);; P
P < ) m n
e <3 iy (X Kere). @
i, (m,n)<(4,5)
Butif : > j then
dooem 2t <2(i+1) (142444 4+20) < (4 1) 27,

(m,n)<(,5)

and then from (4.15) we have
Nij ((141) 2042)P Nij ((G+1)2712)P
i < o=t (30 M DEEN 5 2 (02 DPEDY

2 27
2] i<

< 4P RKP-1! (Z Nij (Z +1)P 9i(p—1) + Z Nij (j + 1)P 21(1)—1)>

i>j i<j

< K(Z (G + 1y 207D > Xis)
> (G + 1y 2200 ) Aij))

< R(Z(i + 1)P 2= ()

i

+ Z(j +1)? 2J‘<P—1>f—(rzj)).

J

By (4.14) and the fact that < ¢, this proves the assert. O

Remark 4.19.Atthe moment, we do not know if a better interpolation allows, from
Proposition 4.17, to prove Theorem 4.18 even with ¢. In fact, we do not know
any example whif*, f~ € LP andu ¢ LP.

The last result can be strengthened if the supportg™ofind f~ are disjointed:

in this case we can prove thatff- and f~ are in L? theny is also inLP. This
hypothesis of disjointeness plays an important role in many other situations, even
because it is needed to use PDE tools: this is why, for example, it is assumed in [9],
[15] and [8].
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Theorem 4.20. If both f+ and f~ are in L andd(spt(f™), spt(f~)) =6 > 0,
theny € LP. More precisely,

K(|[f e +11f " [lzv)
”/“L”L” < SIN-1)/p’ )

whereK depends only o, N andp.

Proof. Letus defineB* = {z € 2 : d(x, spt(f*) > §/2}: sinced is the distance
between the supports ¢ft and f—, 2 = BT U B, then we will study the
summability ofy* = pl_ B*. Let us first define, foi € Z, £, = {r : 2 <
() <2004, fiF = AL, v = (02 x 2), fi; from v, using (4.2) and
pi = fi; LB~ itis clear tha™ = ), _, uu;. Moreover thanks to the definition of
f;" we have|| f;7 || < 271 L(02;) and|| f7]17, > 2'PL(£2;), and ther| £ 17, >
2P~ =1 fF| 11; since fT = 3., fi7 and the supports of;" are disjointed, it
follows )
1 = 5 2 2N (4.16)
V€7

Thanks to the definition ofi;, the L*—norm of y; is less thenR| f;7||1:;
moreover, using Lemma 4.6 we know thatifc B~ ande is sufficiently small,
then

i(B(w,¢)) < 2ef;7(C.) <262 Rwy 4 (5/2

summarizing, we have found the following estimates/for

GRE)N_l ,

wN716N—1RN2i+2

(6/2

il < BRIl palloe < )N,l

Thanks to Lemma 4.16 witll = Z, this gives

oDl (Y
()P <> ([l Lo
1€EZL j=—00

il o
< RN (5/2) (N—1)(1—P)w%—jl6(N—1)(p—1)

x 3 20|
i€z
_ (N-1)(1—p) p— —1)(p— _
< RMN=D(5)2) T Gl e A i
using also (4.16). To estimate ti& norm of .+, clearly, we can make exactly
the same calculation above changing all thé vith “ —" and vice versa and then,
sincep < pt + pu~, we can conclude the proof with the estimate

93=1/p RIH(N=1)/p' , /P’ 19(N=1)/p' -
el < e (7 e + 117w )-
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