
DOI (Digital Object Identifier) 10.1007/s005260100086

Calc. Var. 14, 249–274 (2002) Calculus of Variations

Luigi De Pascale· Aldo Pratelli

Regularity properties for Monge transport density
and for solutions of some shape optimization problem

Received: 16 November 2000 / Accepted: 4 December 2000 /
Published online: 18 January 2002 –c© Springer-Verlag 2002

Abstract. In this paper we study the dimension of some measures which are related to the
classical Monge’s optimal mass transport problem and are solutions of a scalar shape opti-
mization problem. Moreover in the case of maximal dimension we will study the summability
of the associate densities.

1 Introduction

In this introductory section we briefly describe the Monge–Kantorovich problem,
the shape optimization problem and the connections between them.

1.1 The Monge–Kantorovich problem

This problem can be formulated in a very general setting, hence in this sectionM
will be a metric space equipped with a distanced. In the rest of the paper, however,
the ambient space will be an open, bounded and convex subsetΩ of RN equipped
with the euclidean distance.

Given two positive measuresf+, f− onM of equal total mass, the transport
problem consists in finding, in the set of measurable mapsϕ : M → M such
that ϕ#f

+ = f− (whereϕ# is the push–forward of any measurable mapping
ϕ : M →M ), the minimum of the “work” functional∫

M

d(x, ϕ(x)) df+(x) (1.1)

whered is the distance onM . Each of the admissible mapsϕ can be thought as a way
to transportf+ onf− and then will be called atransport. The set of such transports
can be empty, as it happens for example forf+ = δ0 andf− = (δ1 + δ−1)/2. A
weak formulation of Monge’s problem is the following:

min
{∫

M×M
d(x, y) dγ(x, y) : γ∈M+(M ×M), π1

#γ=f+, π2
#γ=f−

}
.

(1.2)
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The set of the measuresγ admissible for (1.2), we will call each of them aplan of
transport, is not empty as it always contains at leastf+ ⊗ f−. It is a standard fact
that ifM is compact (1.2) has solution.

To each transportϕ one can associate the plan of transportγϕ := (id×ϕ)#f+,
and

∫
M×M

d(x, y) dγϕ(x, y) =
∫
M
d(x, ϕ(x)) df+(x), then the minimum in (1.2)

is smaller than the infimum of (1.1). If the ambient space is an open, bounded and
convex subsetΩ of RN andf+ has no atom the equality holds (see [14] and [1]),
but in general the strict inequality can hold: this happens obviously when the set of
transports is empty, but also in less trivial cases.

An optimal mapϕ for problem (1.1) will be called anoptimal transport, while
an optimal measureγ for problem (1.2) will be called anoptimal plan of transport
because(x, y) ∈ spt(γ) means, in some sense, that part of the mass inx should be
moved iny in order to minimize the work.

1.2 The shape optimization problem

Let Ω be an open, bounded subset ofRN and assume that we are given an heat
sourcef and a certain amountm of a conductorC (i.e. a material with a positive
conductivity coefficient). What is the best way to distributeC in the assigned region
Ω? The optimality criterion we will accept is that of the minimal “compliance”.
Taking as a model for the distribution ofC a nonnegative bounded measureµ in Ω
such that

∫
Ω
dµ = m, the energy associated to a smooth distribution of temperature

u ∈ D(Ω) is given by:

E(µ, u) =
1
2

∫
Ω

|Du(x)|2dµ− 〈f, u〉. (1.3)

For an assigned distributionµ of material let us define the following quantity

C(µ) := inf
u∈D(Ω)

E(µ, u);

the quantity−C(µ) is usually calledcompliance. There exists an equilibrium tem-
peratureuµ (not necessarily smooth) which realizesminuE(µ, u) = C(µ), where
E is the relaxed energy of (1.3) that we will write explicitely in (2.2). A distribution
µ1 of material is better thanµ2 if C(µ1) > C(µ2), therefore it is natural to look for
the maximum ofC(µ). It turns out (and we will see it in Sect. 3) that the problem

E(f) := sup
{

C(µ) : µ ∈M+(Ω),
∫

dµ = m

}
(1.4)

is related to
I(f) := inf {〈−f, u〉 : u ∈ Lip1(Ω)} (1.5)

by the formula

E(f) = −I(f)2

2m
, (1.6)

and (1.5) is dual to

sup
{
−

∫
d|ν| : ν ∈M(Ω,RN ), − div ν = f

}
; (1.7)

formula (1.6) was proved in [5], while the duality argument is standard.
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It is possible to prove (see [5]) that these problems are related to

(WMK) =
{−div (µDµu) = f on Ω
|Dµu| = 1 µ− a.e.,

(3.1)

whereDµu is the tangential gradient ofuwith respect toµ introduced in [4] whose
definition and main properties will be recalled in Sect. 2.1.

More precisely, as proved in [5] and in Sect. 3 of this paper, the relationship
between the different problems is given by the fact that ifu andν are extremals
for (1.5) and (1.7) respectively, then(u, |ν|) solves (3.1). On the other hand, if
(u, µ) solves (3.1) thenu andµDµu are extremals for (1.5) and (1.7) respectively.
Finally µ solves (3.1) together with someu ∈ Lip1(Ω) if and only if−mµ/I(f)
solves (1.4).

Problem (1.4) is usually referred to asshapeoptimizationproblemand a measure
which realizes the sup is calledoptimal shape. However, since the measuresµ in
the solutions of (3.1) are, up to a constant, optimal for (1.4), in this paper we will
refer to these measure –and not to the solutions of (1.4)– as optimal shapes.

1.3 Optimal plans and transport densities

In Sect. 4 we will give the following formula that associates to each optimal plan
of transportγ an optimal shapeµ, wheref = f+ − f−:

〈µ, ϕ〉 :=
∫
Ω×Ω

(∫
Ω

ϕ(z) dH1
xy(z)

)
dγ(x, y); (4.2)

moreover each optimal shape can be obtained by an optimal measureγ in this way,
as proved in [1]. In this settingµ is calledtransport density.

The support of an optimal plan of transportγ enjoys a very important property
calledd−cyclical monotonicity. This property has been widely used (see for ex-
ample [15]) in the case of Monge–Kantorovich problems with strictly convex costs
(i.e. whend in (1.1) is replaced by a strictly convex, positive function ofd) and
much less in the case of linear costs, as in this paper and in [6]. In fact we will
use this property ofγ to deduce some relationship between the dimension or the
summability off+ andf− and the related properties of the transport densityµ (the
concept of the dimension of a measure will be recalled in Sect. 2.2). Let us be more
precise about the notion of cyclical monotonicity:

Definition 1.1. A setS ⊆M ×M is saidd-cyclically monotone (or simply cycli-
cally monotone ifd is the euclidean distance in a subset ofRN ) if for any integer
n, any set of pairs(x1, y1), . . . , (xn, yn) ∈ S and any permutationσ in Sn

d(x1, y1) + · · ·+ d(xn, yn) ≤ d(x1, yσ(1)) + · · ·+ d(xn, yσ(n)). (1.8)

In the casen = 2, (1.8) becomes

d(x1, y1) + d(x2, y2) ≤ d(x1, y2) + d(x2, y1), (1.9)

which holds whenever(x1, y1) and(x2, y2) belong toS. Even if the general prop-
erty (1.8) is stronger and it is not difficult to construct an example for which (1.9)
holds but (1.8) does not, the proofs of Sect. 4 will use only the second and the
representation ofµ given in (4.2).
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Our interest about the notion of the cyclical monotonicity follows by the well
known fact (see for example [15]) that ifγ is an optimal plan of transport then
spt(γ) isd−cyclically monotone. Hence we will use (1.9) for(x1, y1) and(x2, y2)
in spt(γ).

Some of the main results of the paper are the following

Theorem If f+ (or f−) is absolutely continuous then any transport density is also
absolutely continuous. If bothf+ andf− are inL∞ then any transport density is
in L∞. If bothf+ andf− are inLq then any transport density is in

⋂
p<q L

p.

The plan of the paper is the following: in the next section we will recall some no-
tations and some results we will use in the paper. In Sect. 3 we will study some prop-
erties of the solutions of (3.1) and prove the connections between problems (3.1),
(1.4), (1.5) and (1.7). In Sect. 4, after some technical lemmas, we will prove a lower
estimate on the dimension (in the sense of Sect. 2.2) of a generic transport density
and we will show that no nontrivial upper estimate can be given, finally we will
discuss the summability properties. Examples on the sharpness of the estimates
will be given in each case.

Note.After the completion of this work we heard about a related work by Feldman
and McCann, [12]. InRN equipped with a uniformly strictly convex norm, they
study the case of the transport densities related to optimal transports and, under
the assumption thatf+ andf− are absolutely continuous, they prove the absolute
continuity and uniqueness ofµ in this class.

2 Notation and preliminaries

Here we briefly list some notations we use throughout the paper, even if most of
the symbols we use are standard.

B(x, ρ) Ball in RN of centrex and radiusρ
xy, xy Closed segment inRN and its length
Dµ µ−tangential gradient (see Sect. 2.1)
W1,p

µ Sobolev space with respect to a measure (see Sect. 2.1)
Dim µ Dimension of the measureµ (see Sect. 2.2)
θ∗
k(µ, x) k−upper density ofµ atx (see Sect. 2.2)
dµ(x) Pointwise dimension ofµ atx (see Sect. 2.2)
L Lebesgue measure
Hk k−dimensional Hausdorff measure
H1

xy 1−dimensional Hausdorff measure on the segmentxy
µ B Restriction of the measureµ to the setB
B(Ω) Borel subsets ofΩ
Lip1(Ω) 1−Lipschitz functions onΩ ⊆ RN

M(Ω), M+(Ω) Spaces of the measures and of the positive
measures onΩ

|γ| Total variation ofγ ∈M(Ω)
‖γ‖ Norm ofγ in the spaceM(Ω), or total mass, i.e.

|γ|(Ω)
ωk If k is an integer, Lebesgue measure of the unit

ball in Rk
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Throughout this paper the ambient space will beΩ, an open, bounded and convex
subset ofRN , N ≥ 2 and its diameter will be denoted byR.

2.1 Calculus of Variations with respect to a measure

Here we introduce some notions from [4].
Given a positive measureµ ∈M+(Ω), we consider the space

Xµ := {ϕ ∈ L1
µ : − div (ϕµ) ∈M(Ω)},

in some senseXµ is the space of tangent fields toµ. Then we define thetangent
spaceto µ for µ-a.e.x ∈ Ω as:

Tµ(x) := µ− ess
⋃
{ϕ(x) : ϕ ∈ Xµ}.

The µ−essential union is defined as aµ-measurable closed multi-function such
that:

• ϕ ∈ Xµ =⇒ ϕ(x) ∈ Tµ(x) for µ-a.a.x ∈ Ω.
• Between all the multi-functions with the previous property theµ−essential

union is minimal with respect to the inclusion a.e. .

Properties and applications of this definition of tangent space to a measure have
been explored in various paper, among them we address to [4], [5], [3], [13]. Once
we have the notion of tangent space toµ, it is natural to define the notion of
µ-tangential gradientof a functionu ∈ D(Ω) as:

Dµu(x) = Pµ(x,Du(x)) µ− a.e.,

where we denoted byPµ(x, ·) the orthogonal projection onTµ(x) (which is clearly
a subspace). It can be shown that the operatorDµ(x) is closable inLp

µ and this
leads to a suitable definition of Sobolev space with respect toµ:

Definition 2.1. TheSobolevspaceW1,p
µ (Ω) is thecompletionofD(Ω)with respect

to the norm:
‖u‖1,p := ‖u‖Lp

µ
+ ‖Dµu‖Lp

µ
.

An important property is the following generalization of the integration by part
formula, which holds for anyv ∈W1,p

µ (Ω) andϕ ∈ Xµ:∫
Dµu · ϕ dµ = −〈div (ϕµ), u〉 (2.1)

Using these notions one can obtain that ifC(µ) > −∞ thenf ∈ (W 1,p
µ )′ and the

relaxed energy of (1.3) is given by:

E(µ, u) =
1
2

∫
Ω

|Dµu|2 dµ− 〈f, u〉 u ∈W1,p
µ (Ω), (2.2)

where〈·, ·〉 is the(W1,p
µ , (W 1,p

µ )′) duality.
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2.2 Dimension of a measure

In this section we introduce a notion of “dimension” for measures belonging to
M+(Ω), which we will use later:

Definition 2.2. The dimension ofµ ∈M+(Ω) is defined by

Dim µ := sup{k : µ� Hk}.
whereHk denotes thek−dimensional Hausdorff measure.

Notice that ifµ is made of pieces of different dimensions thenDim µ is the
smallest of these.

In order to calculate the dimension of a measure it will be sometimes useful to
give another representation of it and this will be done in Proposition 2.5. First we
need to introduce the notion ofk−upper density ofµ atx:

Definition 2.3. Thek−upper density ofµ at x is defined by

θ∗
k(µ, x) := lim

ρ→0

µ(B(x, ρ))
ωkρk

.

A first useful result aboutθ∗
k is the following

Theorem 2.4. The following facts hold:

a) θ∗
k(µ, x) ≤ t ∀x ∈ B ∈ B(Ω) =⇒ µ B ≤ 2k tHk B;

b) θ∗
k(µ, x) ≥ t ∀x ∈ B ∈ B(Ω) =⇒ µ(B) ≥ tHk(B);

c) θ∗
k(µ, x) < +∞ forHk − a.e. x ∈ Ω.

Parts a) and b) are two particular cases from Theorem 3.2 in [19]; c) can be
obtained immediately from b).

Thanks to Theorem 2.4 it is quite easy to obtain the following characterization
of the dimension:

Proposition 2.5. Givenµ ∈M+(Ω), the following three numbers are equal:

D1 = sup{k : µ� Hk} = Dim µ;
D2 = inf{k : ∃B ⊆ Ω, µ(B) > 0, Hk(B) = 0};
D3 = sup{k : θ∗

k(µ, x) < +∞ for µ− a.e. x ∈ Ω}.
Proof. Let us note that immediate consequences of the definitions are the following:
µ � Hk for all k < D1, ∃B ⊆ Ω such thatµ(B) > 0 andHk(B) = 0 for all
k > D2 andθ∗

k(µ, x) = 0 µ−a.e. for allk < D3.
Step 1:D1 ≥ D2.
If k < D2, by definitionHk(B) = 0 impliesµ(B) = 0; in other words,µ� Hk,
and thenk ≤ D1.
Step 2:D2 ≥ D3.
Let k > D2, B ⊆ Ω a subset as in the definition andBi =
{x ∈ B : θ∗

k(µ, x) ≤ i}; part a) of Theorem 2.4 implies thatµ(Bi) = 0 for
all i, and thenθ∗

k(µ, x) = +∞ µ−a.e., thenk ≥ D3.
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Step 3:D3 ≥ D1.
Let k < D1, thanks to part c) of Theorem 2.4 we haveθ∗

k(µ, x) < +∞Hk− a.e.,
and thenθ∗

k(µ, x) < +∞ µ−a.e., becauseµ � Hk. This assures thatk < D3.
��

Definition 2.6. The pointwise dimension ofµ at x is defined by

dµ(x) = sup {k : θ∗
k(µ, x) < +∞} .

Thanks to Proposition 2.5 the dimension ofµ is theµ−essinf of the pointwise
dimensions ofµ.

We now prove some simple facts about the behavior of the dimension under the
action of Lipschitz continuous functions, which we will need in Sect. 4.3 to show
that no nontrivial upper estimates for the dimension ofµ can be given.

Lemma 2.7. If µ ∈M+(Ω) andϕ : Ω → RM is a Lipschitz continuous function,
thenDim ϕ#µ ≤ Dim µ. Moreover, ifϕ is bilipschitz thenDim ϕ#µ = Dim µ.

Proof. Using the definition of dimension of a measure we just need to prove that
ϕ#µ� Hk =⇒ µ� Hk. Then, letϕ#µ� Hk and letA ∈ B(Ω) be a set such
thatHk(A) = 0: we haveµ(A) ≤ µ(ϕ−1(ϕ(A)) = ϕ#µ(ϕ(A)) = 0, where the
last equality holds becauseHk(ϕ(A)) = 0. Finally, if ϕ is bilipschitz, the same
argument gives also the other inequality, sinceϕ−1

# (ϕ#µ) = µ. ��

Lemma 2.8. Let µ ∈ M+(Ω) and letϕ : Ω → RM be a Lipschitz map with
the property thatµ−almost all ofΩ can be covered by countable many Borel sets
An, n ∈ N, such thatϕ is bilipschitz on each of theAn. ThenDim ϕ#µ = Dim µ.

Proof. We just need to prove thatDim ϕ#µ ≥ Dim µ, and this inequality will
follow if we prove thatµ� Hk =⇒ ϕ#µ� Hk; let thenk be such thatµ� Hk,
andA ∈ B(RM ) with Hk(A) = 0. Thanks to the previous lemma and to the
assumptions, we have

ϕ#µ(A) = µ(ϕ−1(A)) ≤
∑
n∈N

µ(ϕ−1(A) ∩An) = 0.

��

3 Transport set and connections between the different problems

In this section we will study the problem

(WMK) =
{−div (µDµu) = f on Ω
|Dµu| = 1 µ− a.e.

(3.1)

already introduced in Sect. 1.2. Besides the deep connections with the Monge–
Kantorovich problem (see [3] and [1]), another interest of this problem is that,
as shown in Theorem 3.8, the measureµ in a solution of (3.1), suitably rescaled,
solves (1.4) and each solution of (1.4) can be obtained in this way.
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Let u ∈ Lip1(Ω): it is usual (see [9], [20]) to associate tou the so-called
transport setas follows

Tu :=
{
z ∈ Ω : ∃x ∈ spt(f+) s.t. u(x)− |z − x| = u(z) and

∃y ∈ spt(f−) s.t. u(y) + |y − z| = u(z)
}
.

If x, y andz are as in the definition ofTu then they are aligned, in fact (we recall
u ∈ Lip1(Ω)) we have

|x− y| ≥ u(x)− u(y) = |x− z|+ |z − y|.
Moreover the closed segmentxy (which is often calledtransport raywith respect
to u) is contained in the transport set.

Remark 3.1.Tu is contained in the union of the segments joiningspt(f+) and
spt(f−).

Remark 3.2.Tu is a closed set.

In the next lemma we will use a test function which first appeared in a paper by
Janfalk [16] and was also used by Evans and Gangbo in [9]. Letv be defined as
follows

v(z) =


u(z) max

w∈spt(f)

ξ + u(w)
ξ + u(z) + |w − z| if u(z) ≥ 0

u(z) max
w∈spt(f)

ξ − u(w)
ξ − u(z) + |w − z| if u(z) ≤ 0,

(3.2)

whereξ is a constant such thatξ ± u > 0 everywhere onΩ.

Lemma 3.3. The functionv is Lipschitz continuous and satisfies the following
properties:

a) v = u onspt(f);
b) |Dv| ≤ 1 a.e.;
c) If x /∈ Tu then there exist a ballB centeredx and a constantδ ∈ (0, 1) such

that |Dv| ≤ 1− δ onB.

The proof of this lemma is simple but not short, and can be found in [9], page
19–22.

Theorem 3.4. Let (u, µ) be a solution of (3.1) and letTu be the transport set
related tou. Thenspt(µ) ⊆ Tu.

Proof. Letv be defined as in (3.2),x0 /∈ Tu andB, δ as in property c) of Lemma 3.3.
Using the integration by parts formula and the estimate b) of Lemma 3.3 we obtain:∫

Ω

v df =
∫
Ω

Dµu ·Dv dµ ≤
∫
Ω\B

|Dµu||Dv| dµ+
∫
B

|Dµu||Dv| dµ

≤
∫
Ω\B

|Dµu| dµ+ (1− δ)
∫
B

|Dµu| dµ.
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Then, since property a) of Lemma 3.3 implies
∫
Ω
u df =

∫
Ω
v df , it follows

δ

∫
B

|Dµu| dµ ≤
∫
Ω

|Dµu| dµ−
∫
Ω

u df

=
∫
Ω

|Dµu|2 dµ−
∫
Ω

|Dµu|2 dµ = 0,

also using (2.1). As
∫
B
|Dµu| dµ = µ(B) we conclude thatµ(B) = 0 and then

x0 /∈ spt(µ). ��
Thanks to Remark 3.1 and Theorem 3.8, a consequence of the previous theorem

is the following result concerning the region occupied by optimal distributions of
the conductor, once given the heat sources.

Corollary 3.5. The optimal measures for problem (1.4) are supported in the union
of the segments joiningspt(f+) andspt(f−).

Remark 3.6.The set of the segments joiningspt(f+) and spt(f−) is clearly a
subset of the convex envelope ofspt(f), wheref = f+ − f−, and it can be
strictly smaller. For example, ifspt(f+) andspt(f−) are two concentric spherical
surfaces, the first set is the annulus between the surfaces while the second is the
whole sphere. It can also happen that the dimension of the first set is strictly smaller
than that of the second, as in the next example.

Example 3.7.Let ABCD be a square with sides of lengthl and definef+ =
δA + δC andf− = δB + δD. In this case each transport set is contained in the
boundary of the square, whose dimension is1, while the convex envelope ofspt(f)
is the whole square, whose dimension is2. Let us write now an explicit formula
for the optimal shapes: denoted bya = AB, b = BC, c = CD andd = DA the
sides of the square and fixed0 ≤ α ≤ 1,

µ := α
(H1 a+H1 c

)
+ (1− α)

(H1 b+H1 d
)

(3.3)

defines a solution of (3.1) together with anyu ∈ Lip1(Ω) such thatu(A) = u(C) =
l andu(B) = u(D) = 0. Vice versa for any solution(u, µ) of (3.1), the measureµ
can be written as in (3.3) for a suitableα. To prove what stated we remark that the
admissible plans of transport have support contained in{(A,B), (A,D), (C,B),
(C,D)}, so it is easy to write explicitely each of them (note that they are all optimal)
and then, thanks to the general formula (4.2), the optimal measuresµ.

Let us finally prove the connections between (1.4), (1.5), (1.7) and (3.1) with
the following result, first given in [5]:

Theorem 3.8. Problem (1.4) has a solution and (1.6) holds. Moreover ifu andν
are optimal for (1.5) and (1.7) then(u, |ν|) solves (3.1) and, conversely, if(u, µ)
solves (3.1) thenu andµDµu are optimal for (1.5) and (1.7) respectively. Finally,
a measureµ solves (3.1) together with someu ∈ Lip1(Ω) if and only if−mµ/I(f)
solves problem (1.4).
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Proof. Thanks to standard duality facts it is possible – even if not straigthforward
– to prove that

I(f)=sup
{
−

∫
d|ν| : ν ∈M(Ω,RN ), − div ν = f

}
, (3.4)

C(µ)=sup
{
−1
2

∫
|σ|2 dµ : σ ∈ L2

µ(Ω,RN ), − div (σµ)= f

}
(3.5)

and that the extremals in (1.5), (1.7) and (3.5) are reached. Then we have

Step 1:E(f) ≤ −I(f)2/(2m).
Let µ ∈ M+(Ω) with

∫
dµ = m, σ such that−div (σµ) = f andu ∈ Lip1(Ω);

then

〈f, u〉2 =
(∫

σDu dµ

)2

≤
∫
|σ|2 dµ

∫
|Du|2 dµ ≤ m

∫
|σ|2 dµ,

which implies

−1
2

∫
|σ|2 dµ ≤ −〈f, u〉

2

2m
:

thanks to (3.5), taking thesup in the left hand side and theinf in the right hand side
we obtain the claimed inequality.
Step 2:Let u andν be optimal respectively for (1.5) and (1.7): thanks to (3.4) we
have−I(f) = 〈f, u〉 = ∫

d|ν|. Define thenµ = |ν| andθ : Ω → RN such that
ν = θµ (and then|θ| = 1 µ−a.e.). Using (2.1) we have then∫

dµ =
∫

d|ν| = 〈f, u〉 = 〈−div (θµ), u〉 =
∫

Dµu · θ dµ,

which implies|Dµu| = 1 µ−a.e. andθ = Dµu, then(u, µ) solves (3.1). Define
now µ̄ = −mµ/I(f) andū = −I(f)u/m: we have

∫
dµ̄ = m andf = −div ν =

−div (µ̄Dµ̄ū) so that, thanks to (3.5) and using (2.1),

C(µ̄) ≥ −1
2

∫
|Dµ̄ū|2 dµ̄ = −1

2
〈f, ū〉 = −I(f)2

2m
:

thanks to the first step this gives the optimality ofµ̄ for problem (1.4) and the
validity of (1.6).
Step 3:Let us take(u, µ) solution of (3.1) and defineν = µDµu, then−div ν = f :
we have

I(f) ≥ −
∫

d|ν| = −
∫

dµ = −
∫
|Dµu|2 dµ = 〈−f, u〉 ≥ I(f),

so thatI(f) = 〈−f, u〉 = − ∫
d|ν|, which gives the stated optimality ofu andν

for (1.5) and (1.7).
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Step 4:Let µ be optimal for (1.4): then there existsσ ∈ L2
µ(Ω,RN ) such that

−div (σµ) = f andE(f) = C(µ) = −1/2 ∫ |σ|2 dµ. Let us defineν = σµ and
note that ∫

d|ν| =
∫
|σ| dµ ≤

√∫
|σ|2 dµ

√∫
dµ

=
√
−2E(f)√m =

√
I(f)2

m

√
m = −I(f),

then ν is optimal for (1.7) and|σ| must be constant, whence|σ| = −I(f)/m
µ−a.e.: this implies that−I(f)µ/m solves (3.1) together with anyu optimal
for (1.5). ��

4 Dimension and summability of the transport density

4.1 Definition of the transport density

In this section we will report formula (4.1), which was first introduced in [3], to
write, starting from a solutionγ of (1.2), a measureν which is extremal for (1.7);
the measureµ = |ν| –which is given by formula (4.2)– is called, as we said in
Sect. 1,transport density. Then, as proved in Theorem 3.8,µ solves (3.1) together
with anyu extremal for (1.5) and, up to a rescaling constant,µ realizes the sup
in (1.4). Depending on the point of view, then, this measureµ can be seen as a
transport density for Monge–Kantorovich problem or as an optimal shape for the
shape optimization problem. As seen in [1], [17] this measureµ is also related to an
ODE version of the optimal transport problem introduced by Brenier and explained
in [2] (see also [1]). Notice thatµ will be defined starting from an optimal plan
of transportγ, while the data of the problem aref+ andf−: in fact, in general
different optimal plans can generate different transport densities, as it happens in
Example 3.7. However, in [1] it is proved that any optimal shapeµ can be obtained
by formula (4.2), starting from a suitable optimal planγ, and that if at least one of
the measuresf+ andf− is absolutely continuous then there is a unique transport
density, which then can be found starting from any solutionγ of (1.2). In this
section we will study the regularity properties of the measureµ in relation with
the analogous properties off+ andf−. We will not use anything that comes from
the particular choice ofγ: then the properties we will find are owned by anyµ
solving (3.1).

From now on we consider a fixed optimal plan of transportγ from f+ to
f−, and in this section we will calltransport rayeach closed segmentxy such
that(x, y) ∈ spt(γ); the relationship with the transport set and the transport rays
defined in the previous section is that for each optimal plan of transportγ there
exists a1−Lipschitz functionu such that the transport rays associated toγ are
contained inTu and are transport rays also in the sense of Sect. 3 with respect to
u. Moreover, givenx, y ∈ Ω, we denote byH1

xy the one–dimensional Hausdorff
measure on the segmentxy. Finally we can defineν ∈M(Ω,RN ) as follows:
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〈ν, ϕ〉 :=
∫
Ω×Ω

(∫
Ω

ϕ(z) · x− y

|x− y| dH
1
xy(z)

)
dγ(x, y) (4.1)

∀ϕ ∈ C0(Ω,RN ). Let us prove now the extremality property ofν:

Proposition 4.1. The measureν defined by (4.1) is extremal for (1.7).

Proof. First we need to verify that−div ν = f , and this holds since for any
ϕ ∈ D(Ω) we have

〈−div ν, ϕ〉 = 〈ν,Dϕ〉 =
∫
Ω×Ω

∫
Ω

Dϕ(z) · x− y

|x− y| dH
1
xy(z) dγ(x, y)

=
∫
Ω×Ω

ϕ(x)− ϕ(y) dγ(x, y)

=
∫
Ω

ϕ df+ −
∫
Ω

ϕ df− =
∫
Ω

ϕ df = 〈f, ϕ〉.

Now, using a standard duality theorem for functional (1.2) due to Kantorovich,
we know that

sup
|Dϕ|≤1

〈ϕ, f〉 =
∫
Ω×Ω

|y − x| dγ(x, y).

On the other hand, using (4.1) we obtain∫
Ω

d|ν| =
∫
Ω×Ω

|y − x| dγ(x, y) = sup
|Dϕ|≤1

〈ϕ, f〉 = −I(f),

that thanks to (3.4) gives the assert. ��

We define now the transport densityµ (which depends onγ) as the total variation
ofν. To begin, it is useful to write an explicit formula forµ, which follows from (4.1):

〈µ, ϕ〉 :=
∫
Ω×Ω

(∫
Ω

ϕ(z) dH1
xy(z)

)
dγ(x, y). (4.2)

In particular from (4.2) it is possible to write the measureµ of a setA ∈ B(Ω) as

µ(A) =
∫
Ω×Ω

l(xy ∩A) dγ(x, y), (4.3)

wherel(xy ∩ A) = H1
xy(A) is the length of the intersection between the segment

xy andA. It is easy to note that if the mass is moved fromf+ to f− following the
plan of transportγ, thenµ(A) is the work done in the setA: this is the reason why
µ is called transport density.
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4.2 Some technical lemmas

In this section we report some technical results which we will need in Sects. 4.3
and 4.4. We will begin with two propositions, then we will give three geometric
lemmas. A first property which follows directly from the definition ofµ is the
following:

Proposition 4.2. µ−a.e. point inΩ is contained in the interior of some transport
ray.

Proof. This is a consequence of the definition ofµ: let S be the subset of the
points ofΩ which are not contained in the interior of a transport ray. For every
(x, y) ∈ spt(γ)we havexy∩S ⊆ {x, y} and thenl(xy∩S) = 0which, from (4.3),
gives the claimed assertion. ��
Let us recall now a simple but useful property of the optimal plans of transport:

Proposition 4.3. If γ ∈ M+(Ω × Ω) is an optimal plan of transport fromπ1
#γ

to π2
#γ and τ ∈ M+(Ω × Ω) is a measure such thatτ ≤ γ (i.e. τ(A) ≤ γ(A)

for eachA ∈ B(Ω)), thenτ is an optimal plan fromπ1
#τ to π2

#τ . In particular
γ (B ×Ω), whereB is any Borel subset ofΩ, is optimal.

Proof. By contradiction, ifτ were not optimal, it would exist̃τ ∈ M+(Ω × Ω)
with the same marginals asτ but less total work. In that caseγ − τ + τ̃ would
be a positive measure with the same marginals asγ and less total work, which
contradicts the optimality ofγ. ��
The above proposition will be very useful in the proofs of the next results, when it
will be convenient to divideΩ in subsets with assigned properties.

The next three lemmas consider a pointz contained in the interior of a transport
rayxy (which holds forµ−a.a. point, thanks to Proposition 4.2) and give estimates
about the location of the extreme points of the other rays which meet an open ball
centered atz and of sufficiently small radius: in particular in Lemma 4.4 we find a
region to which at least one of the extrems belongs, in Lemma 4.5 we find a region
to which both the extrems belong, but the estimate degenerates whenz get closer
tox or y, in Lemma 4.6 we find a region to which the first extrem of the ray belong,
but under the assumption thatz is not contained in the support off−. These lemmas
will play a key role in the proofs of all the next results of this paper.

To prove these lemmas we will only use property (1.9); it will be convenient to
reduce the possible configurations of the set of points we will use by moving them
suitably; obviously we are allowed only to move the points in such a way that (1.9)
continues to hold. Then, given(x, y) and(x′, y′) in spt(γ), we will call admissible
transformationsall the changes of the points such that the quantity

xy + x′y′ − xy′ − x′y

decreases, which clearly maintain the validity of (1.9): for example, thanks to the
triangular inequality it is easily seen that movingx to y or y to x on the linexy is
admissible, and the same holds forx′, y′ andx′y′.
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Lemma 4.4. If z is an interior point of a transport rayxy, ε is sufficiently small
and another rayx′y′ of length less thanαxy (withα ≥ 1) intersectsB(z, ε), then
eitherx′ or y′ belongs to the cylinderCε with axisxy and radius6αε.

Proof. Let us assumeε � 1 and that there exists a transport rayx′y′ of length
less thanαxy that intersectsB(z, ε) but neitherx′ nor y′ is in the cilinder of axis
xy and radius6αε: in order to prove the lemma we must show that this leads to a
contradiction.

By symmetry, we can assume that0 < a ≤ b ≤ R, wherea = xz, b = xy and
R is the diameter ofΩ: let us movex′ closer toy′ moving it on the linex′y′ (which
is admissible) until the distance betweenx′ and the linexy is 5αε. We fix now
coordinates{c1, . . . , cN} such thatz is the origin, the segmentxy is on the first
axis (with c1(x) < 0, c1(y) > 0), x′ is on the plane{c3 = · · · = cN = 0} with
c2(x′) < 0 (and thenc2(x′) = −5αε) andy′ is in the space{c4 = · · · = cN = 0}
with c3(y′) ≥ 0. Since the distance betweeny′ and the linexy is greater then6αε,
x′y′ intersectsB(z, ε) andc3(x′) = c3(z) = 0, from Pitagora’s theorem it follows
that c2(y′) > 5αε: bring theny′ closer tox′ (moving it on the linex′y′) until
c2(y′) = 5αε. The situation is illustrated in Fig. 1.

zx

y′

y

x′

Fig. 1.Geometry of lemma 4.4

Let us define nowδ = c1(y′) andl = c1(y′) − c1(x′). We can assumel ≥ 0:
otherwise, applying tox′ andy′ the simmetry across the hyperplane{c1 = λ}with
λ = 0, c1(y′) or c1(x′) respectively ifc1(y′) ≤ 0 ≤ c1(x′), 0 ≤ c1(y′) ≤ c1(x′)
or c1(y′) ≤ c1(x′) ≤ 0 changes the sign ofl and is an admissible transformation,
becausexy andx′y′ remain equal whilexy′ andx′y increase. Moreover we have
l ! ε: otherwise, using (1.9) and the fact that it would bex′y′ ≥ √

l2 + (10αε)2
andxy′ + x′y = a + b + l + (5αε)2(1/2a + 1/2b) + o(ε2), one easily find
l ≥ 4ab/(a + b) ! ε. We have thenl ! ε and, as a consequence,δ ! ε: the
coordinates of the points are now

x ≡ (−a, 0, 0) y ≡ (b, 0, 0)
x′ ≡ (δ − l,−5αε, 0) y′ ≡ (δ, 5αε, hε),

writing only the first three coordinates because all the points are in the space
{c4 = · · · = cN = 0}. The facts thatx′y′ intersectsB(z, ε), c3(x′) = c3(z) = 0,
b ≥ a > 0 andl ≤ x′y′ ≤ αxy imply

0 ≤ h < 2.5 δ + ε ≥ 5α− 1
10α

l δ − ε ≤ 5α+ 1
10α

l b ≥ xy

2
≥ l

2α
. (4.4)
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Let us write now the lengths of the segments:

xy = a+ b, x′y = b+ l − δ + 25α2+o(1)
2(b+l−δ) ε2

x′y′ = l + 100α2+h2+o(1)
2l ε2, xy′ = a+ δ + 25α2+h2+o(1)

2(a+δ) ε2.
(4.5)

The inequality (1.9) givesxy + x′y′ ≤ xy′ + x′y and this, thanks to (4.5) and
using (4.4), implies

100α2 + h2

2l
≤ 25α2

2(b+ l − δ)
+

25α2 + h2

2(a+ δ)
+ o(ε2) =⇒

100α2 + h2

l
≤ 25α2

l/(2α) + l − ((5α+ 1)/10α)l

+
25α2 + h2

((5α− 1)/10α)l
=⇒

750α3 − 400α2 ≤ h2 (
25α2 + 25α+ 4

)
=⇒

750α3 − 400α2 ≤ 6.25
(
25α2 + 25α+ 4

)
,

which is easily seen to be false for eachα ≥ 1. ��
Lemma 4.5. If z is an interior point of a transport rayxy, a = min {xz, zy}, ε
is sufficiently small and another transport rayx′y′ intersectsB(z, ε), then bothx′

andy′ belong to the cylinderCε with axisxy and radius5Rε/a.

zx

y′

x′

y

Fig. 2.Geometry of Lemma 4.5

Proof. Possibly movingx closer toy or y closer tox on the linexy, which we
know to be an admissible transformation, we can assume thatxy = 2a andz is the
middle point ofxy; let us also assume thaty′ does not belong to the cylinder and
show that this leads to a contradiction. Sincey′ does not belong to the ballB(z, ε)
but x′y′ intersects the ball, we can movex′ in the direction ofy′ until it crosses
B(z, ε) and exits from it, and this is admissible.

We can assume now thatx, y, x′ andy′ are on a plane: in fact, movingy′ to
the point of least distance fromx′ remaining on the(N − 2)−dimensional sphere
of the points whose distances fromx andy are fixed is admissible (because in this
wayxy, xy′ andx′y remain fixed, whilex′y′ decreases) and causes all the point to
be on a same plane whitout changing the fact thaty′ /∈ Cε. Finally we can move
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y′ closer tox′ until it reachesCε, and the situation is illustrated in Fig. 2. If we fix
coordinates in the obvious way (as we did in the previous lemma), the points are

x ≡ (−a, 0) y ≡ (a, 0)
x′ ≡ (δε, hε) y′ ≡ (δε+ l, 5Rε/a)

and we know that

a ≤ R l ≤ R − 1 ≤ δ ≤ 1 0 ≤ h ≤ 1 : (4.6)

writing the lengths of the segments and using (1.9) and (4.6) exactly as we did in
the proof of Lemma 4.4, we find a contradiction, and then the desired inequality.

��
Lemma 4.6. If z is an interior point of a transport rayxy, d(z, spt(f−)) = δ > 0,
ε is sufficiently small and another rayx′y′ intersectsB(z, ε), thenx′ belongs to
the cylinderCε of axisxy and radius6Rε/δ, whereR is the diameter ofΩ.

θ
z y

y′

w

6Rε
δ

t

s

Fig. 3.Geometry of Lemma 4.6

Proof. Let us begin with the admissible transformations of bringingy andy′ closer
to x andx′ (on the linesxy andx′y′) until they are at a distanceδ from z, which
is possible ifε ≤ δ. If x′ belongs toB(z, ε) we have nothing to prove, otherwise
x′y′ ≥ δ –sincezy′ = δ andx′y′ intersectsB(z, ε)– and then, applying Lemma 4.4,
we know that eitherx′ or y′ belong to the cylinder of axisxy and ray6εx′y′/xy ≤
6Rε/δ. If x′ belongs to that cylinder there is nothing to prove, then let us assume
thaty′ belongs to it and movex closer toy until x ≡ z. Finally we fix a system
of coordinates such thatz is the origin,y ≡ (δ, 0, . . . , 0), y′ belongs to the plane
{c3 = · · · cN = 0}with c2(y′) ≤ 0 andx′ belongs to the space{c4 = · · · cN = 0}.
Sincec3(y′) = c3(z) = 0 andx′y′ intersectsB(z, ε), it follows by similitude that
|c3(x′)| ≤ Rε/(δ − ε) ≤ 2Rε/δ if ε is sufficiently small. Moreover the fact that
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c2(y′) ≤ 0 implies, by a similar argument, thatc2(x′) ≥ −2Rε/δ: it will be then
sufficient to prove thatc2(x′) ≤ 5Rε/δ.

To this aim let us note thaty′ belongs toCε andzy′ = δ, and then ifε� 1 we
have|c1(y′)| ≈ δ; then we can assume thatc1(y′) > 0: in fact, if c1(y′) ≤ 0 then
c1(y′) ≈ −δ and then eitherc1(x′) ≤ 0, and then easilyc2(x′) < 5Rε/δ if ε� 1,
or c1(x′) > 0, and then apply tox′ andy′ the simmetry across the hyperplane
{c1 = 0} is admissible and leads us to a situation in whichc1(y′) > 0.

If c2(y′) ≥ −3ε a similitude argument similar to that we already used implies
c2(x′) ≤ 5Rε/δ; if c2(y′) < −3ε, let us consider the situation, illustrated by
Fig. 3: denoting byx2 the projection ofx′ on the plane{c3 = · · · = cN = 0},
sincex′y′ intersectsB(z, ε), the pointx2 is over the lines, and sincex′y′ ≤ x′y
(from (1.9) recalling thatxy = xy′) it is under the linet, the axis of the segment
yy′: thenc2(x′) = c2(x2) ≤ c2(w). With some elementary (and a little boring)
calculations we can then write the equations of the liness and t and using the
fact that, thanks to our assumptions,−c2(y′) = δ sin(2θ) ∈ [3ε, 6Rε/δ], we find
c2(w) ≤ 4ε ≤ 4Rε/δ if ε� 1, that concludes the proof. ��

4.3 Dimension of the optimal measure

This section is entirely devoted to discuss estimates for the dimension (in the sense
of Sect. 2.2) ofµ: we will prove Theorem 4.7, which gives a lower estimate (sharp
thanks to an example), and then we will show that no upper estimate is possible.
Let us begin with the lower estimate, which follows by a careful analysis from
Lemma 4.5.

Theorem 4.7.Dim µ ≥ max{Dim f+, Dim f−, 1}.
Proof. Step 1:Dim µ ≥ 1.
From (4.3) it follows that for anyx ∈ Ω andρ > 0 we haveµ(B(x, ρ)) ≤ 2ρ‖γ‖
which implies, from Definition 2.3, thatθ∗

1(µ, x) ≤ ‖γ‖ for any x. Then using
Proposition 2.5 we have the claim.

Let us assume now thatDim f+ ≥ Dim f− (we can do it by the symmetry of
the problem) and denotek = Dim f+. We have to prove thatDim µ ≥ k.
Step 2:Assume for the moment that the following hypothesis holds:

∃K : ∀x ∈ Ω, ∀ρ > 0 f+(B(x, ρ)) ≤ Kρk; (4.7)

we will get rid of it in the next step.
If z is contained in the interior of some transport rayxy anda = min{xz, zy},

let Cρ be the cylinder or axisxy and radius5Rρ/a, which clearly can be covered
byM(z)/ρ balls of radiusρ: this, thanks to (4.7), assures that

f+(Cρ) ≤ M(z)
ρ

Kρk ≤M(z)Kρk−1.

Then, ifρ is sufficiently small, using Lemma 4.5 we have

µ(B(z, ρ)) =
∫
Cρ×Cρ

l(xy ∩B(z, ρ)) dγ(x, y) ≤ 2ρ
∫
Cρ×Cρ

dγ(x, y)

≤ 2ρf+(Cρ) ≤ 2M(z)Kρk.
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We then infer thatθ∗
k(µ, x) < +∞ for everz ∈ Ω which is contained in the

interior of some transport ray, and then from Propositions 2.5 and 4.2 it follows that
Dim µ ≥ k. The theorem is then proved under the additional assumption (4.7).
Step 3:General case.
Fix ε > 0 and define for anym ∈ N

Ωm,ε = {x ∈ Ω : ∀ρ > 0, f+(B(x, ρ)) ≤ mρk−ε}.
Sincek − ε < Dim f+, we haveθ∗

k−ε(f
+, x) = 0 f+−a.e., as noted in the

beginning of the proof of Proposition 2.5, and then

sup
ρ>0

f+(B(x, ρ))
ρk−ε

< +∞ for f+−a.e.x :

then, varyingm, Ωm,ε is an increasing sequence of subsets that fillsΩ up to an
f+−negligible set and then, asm → +∞, f+ Ωm,ε −→ f+ in the strong
convergence ofM+(Ω). Defining γm,ε = γ (Ωm,ε × Ω) and recalling that
π1

#γ = f+ we infer thatγm,ε −→ γ. Let us define nowµm,ε fromγm,ε by (4.2). It
is clear from the definition thatµm,ε −→ µ, and thanks to Proposition 4.3 we can
apply the result of step 2 toΩm,ε to obtainDim µm,ε ≥ k − ε: this, thanks to the
definition of dimension and to the convergence ofµm,ε, impliesDim µ ≥ k − ε.
Finally the generality ofε completes the proof. ��

The next example shows that the lower estimate given in Theorems 4.7 is sharp.

Example 4.8.Let S1 andS2 be two disjoint segments of lengthl lying on the
same line, and letf+ andf− be the restrictions of the measureH1 to S1 and
S2 respectively. Clearly an optimal transport is given by the translation, then it is
simple to calculateµ, which is the measure on the line which density isl between
the segments, goes to0 linearly on the segments and is0 out, and which is then
one–dimensional.

On the other hand, it is not possible to give a non-trivial estimate from above
of the dimension, as the following example shows:

Example 4.9.Let x1, x2, B1 andB2 be respectively two points and two balls of
unit volume inΩ, and letf+ = δx1 +L B1 andf− = δx2 +L B2: if x1 is near
to B2, x2 is near toB1 andx1, B2 are far fromx2, B1, there is a unique optimal
plan of transport, which distributes onB2 the mass ofx1 and concentrates onx2
the mass ofB1. In this case the dimension ofµ is easily seen to beN , the maximum
possible, while the dimensions off+ andf− is 0, the least possible.

The lack of control in the previous example is due to the fact that the pointwise
dimensions off+ andf− are not constant. However, even if the pointwise dimen-
sions are constant it is not possible to give an upper estimate ofDim (f+ ⊗ f−)
in terms ofDim f+ andDim f− (on this topic see: 3.2.23, 2.10.45, 2.10.29 of
[11] and theorem 5.11 of [10]). As in the next example we show how to construct
an optimal measureµ whose dimension is equal toDim (f+ ⊗ f−) + 1, it is not
possible to give a non trivial estimate from above ofDim µ even if the pointwise
dimensions off+ andf− are constant.
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Example 4.10.Let p, k be two positive integers such thatp+1+k ≤ N , S be the
unit sphere of the subspace ofRN given by the first(p+ 1) coordinates andB be
the unit ball of the subspace given by the coordinates from the(p+ 2)− th to the
(p+1+k)−th. Letf+ andf− be two probability measures onS andB respectively.
By the symmetry of the problem it follows that any plan of transport is optimal. If
we take, for example,γ = f+ ⊗ f−, then we remark thatµ is the push forward
of f+ ⊗ f− ⊗ L1 [0, 1] through the mapϕ : S × B × [0, 1] → RN defined by
(x, y, t)→ tx+(1−t)y. Applying Lemma 2.8 takingAn = S×B×(1/n, 1−1/n),
we obtainDim µ = Dim (f+ ⊗ f− ⊗ L1 [0, 1]) = Dim (f+ ⊗ f−) + 1.

4.4 Summability of the optimal measure

In this section we will investigate the summability ofµ. Let us first remark that
for a measure the property of being absolutely continuous is a bit stronger than
having dimensionN , which is obviously the maximal possible dimension inΩ.
From Theorem 4.7 we already know that iff+ has dimensionN , then also the
dimension ofµ is N . The first result we will give will be a little step forward and
it represents the connection between the study of the dimension and that of the
summability ofµ:

Theorem 4.11. If at least one betweenf+ andf− is absolutely continuous with
respect to the Lebesgue measure, thenµ is absolutely continuous with respect to
the same measure.

Proof. Step 1:Let us first assume thatf+ ∈ L∞.
If z is contained in the interior of some transport ray, a simple application of
Lemma 4.5 (similar to the one made in second step of Theorem 4.7) gives a constant
K(z) such thatµ(B(z, ε)) ≤ K(z)‖f+‖L∞εN for ε sufficiently small, and then
θ∗
N (µ, z) < +∞. Since this holds for eachz contained in the interior of some

transport ray, from Proposition 4.2 we have

θ∗
N (µ, z) < +∞ for µ−a.e.z. (4.8)

If now L(B) = 0 and we defineBm = {z ∈ B : θ∗
N (µ, z) ≤ m}, part a) of

Theorem 2.4 implies

µ(Bm) ≤ 2N mHN (Bm) ≤ 2N mHN (B) = 0,

which together with (4.8) assuresµ(B) = 0. Thenµ ∈ L1.
Step 2:General case.
Let Ωm = {x ∈ Ω : f+(x) ≤ m}, γm = γ (Ωm × Ω) and letµm be defined
from γm using (4.2). Thanks to Proposition 4.3 and to the first step we can infer
thatµm ∈ L1. Arguing as in the proof of Theorem 4.7,γm −→ γ inM+(Ω×Ω),
and thenµm −→ µ inM+(Ω), which givesµ ∈ L1 in the general case too. ��

We can generalize this last result, studying what happens iff+ (or f−) belongs
to Lq for someq > 1. The previous theorem shows thatµ ∈ L1, but we can also
prove thatµ belongs toLp for somep > 1. Let us begin with the caseq = +∞,
the general result will then follow. In the sequel we will denote byα′ the conjugate
exponent ofα, i.e.1/α+ 1/α′ = 1.



268 L. De Pascale, A. Pratelli

Lemma 4.12. If f+ ∈ L∞ thenµ ∈ Lp for all p < (2N)′. More precisely

‖µ‖Lp ≤ K‖f+‖1/p′

L∞ ‖f+‖1/pL1 ,

whereK depends only onR, N andp.

Proof. Given(x, y) ∈ spt(γ), let yσ be the point on the segmentxy such that
yyσ = σ, or yσ = x if xy < σ. Let us define the measureµr as follows:

〈µr, ϕ〉 :=
∫
Ω×Ω

(∫
Ω

ϕ(z) dH1
yry2r

(z)
)
dγ(x, y). (4.9)

Thanks to (4.2), it is clear thatµ = µR + µR/2 + µR/4 + . . ., whereR is the
diameter ofΩ. From Theorem 4.11 we know thatµ ∈ L1, and thenµr ∈ L1

becauseµr � µ. It is useful to write the measureµr of a setA, which from (4.9)
is

µr(A) =
∫
Ω×Ω

l(yry2r ∩A) dγ(x, y),

wherel(xy ∩A) is understood as in (4.3).
Step 1:Let us fix r > 0 and begin with a very particular case: we assume that
spt(f−) ⊆ Q, whereQ is an hypercube of sideλ such thatλ

√
N ≤ r/2 (note that

λ
√
N is the diameter ofQ). From the definition, it follows thatspt(µr) is contained

in an annulusS with radii r− λ
√
N/2 and2r+ λ

√
N/2 centered at the center of

the hypercube, furthermorel(yry2r ∩ S) ≤ r for all (x, y) and then

‖µr‖L1 = µr(S) ≤ rf−(Q). (4.10)

On the other hand, the hypothesisλ
√
N ≤ r/2 assures thatd(S,Q) ≥ r/2 and

then from Lemma 4.6 (arguing as in the proofs of Theorems 4.7 and 4.11) it follows
that

‖µr‖L∞ ≤ 2ωN−1

(
6R
r/2

)N−1

R ‖f+‖L∞ =
C‖f+‖L∞

rN−1 (4.11)

It is well known that ifϕ ∈ L1 ∩ L∞ thenϕ ∈ Lp and

‖ϕ‖Lp ≤ ‖ϕ‖1/pL1 ‖ϕ‖1/p
′

L∞ ,

then from (4.10) and (4.11) we infer that

‖µr‖Lp ≤ (
rf−(Q)

)1/p
(
C‖f+‖L∞

rN−1

)1/p′

≤ K‖f+‖1/p′

L∞ f−(Q)1/p

rN−1−N/p
.

Step 2:Let us coverspt(f−) with N(r) disjoint hypercubesQi with sides as in
step 1 and defineγi = γ (Ω ×Qi). From Proposition 4.3 it follows thatγi is an
optimal plan of transport fromf+

i = π1
#γi to f−

i = π2
#γi = f− Qi. Defineµr,i

from γi using (4.9): from the first step and the fact that‖f+
i ‖L∞ ≤ ‖f+‖L∞ we

obtain thatµr = µr,1 + µr,2 + · · ·+ µr,N(r) and

‖µr,i‖Lp ≤ K ‖f+‖1/p′
∞ f−(Qi)1/p

rN−1−N/p
.
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Applying the inequality between the arithmetic mean and thep-th mean, inte-
grating, extracting thep-th root and using the fact thatf+(Ω) = f−(Ω), we obtain
that

‖µr‖Lp ≤ N(r)1/p
′ K ‖f+‖1/p′

∞
rN−1−N/p

f+(Ω)1/p.

We recallµ = µR + µR/2 + µR/4 + . . . and we remark that, up to a geometric
constant,N(r) ≤ r−N , then it suffices to show that

∑
i∈N

(
R

2i

)−N+1+N/p−N/p′

< +∞; (4.12)

a simple calculation assures that (4.12) holds if and only ifp < (2N)′, and this
concludes the proof. ��

We now derive the general result:

Theorem 4.13. If f+ ∈ Lq thenµ ∈ Lp for all p < (2N)′ ∧ (1 + (q − 1)/2).

Proof. Let p < (2N)′ ∧ (1 + (q − 1)/2) and let us writeΩ =
⋃

iΩi up to a
f+−negligible set, whereΩi = {x : i− 1 ≤ f+(x) < i}. As in the previous

lemma we can defineγi = γ (Ωi ×Ω) andµi from γi using (4.2). Observe that,
thanks to Proposition 4.3,γi is an optimal plan of transport. Asp < (2N)′, we can
then apply Lemma 4.12 obtaining

‖µi‖Lp ≤ Ki1/p
′
f+(Ωi)1/p ≤ Ki1/p

′
(i · |Ωi|)1/p ≤ Ki|Ωi|1/p.

Denotedλi = |Ωi|, it is sufficient to prove that
∑

i iλ
1/p
i < +∞. Let us define

ρi :=
{
λi if λi ≥ ip

′(1−q)

0 if λi < ip
′(1−q) σi :=

{
0 if λi ≥ ip

′(1−q)

λi if λi < ip
′(1−q) :

it is clear that
∑

i iλ
1/p
i =

∑
i iρ

1/p
i +

∑
i iσ

1/p
i . Sincep < 1 + (q − 1)/2, the

fact thatσi < ip
′(1−q) implies, by a simple calculation, that

∑
i iσ

1/p
i < +∞.

Moreoverf+ ∈ Lq easily implies
∑

iqλi < +∞ and then, since by definition
iρ

1/p
i ≤ iqλi,

∑
iρ

1/p
i < +∞, that gives the assert. ��

Now, a natural question that arises is the following: which is the greatestp
such thatf+ ∈ Lq =⇒ µ ∈ Lp? The previous theorem gives a lower bound for
this number, but it is easy to give also an upper bound. In fact, thanks to the next
example, this number cannot be greater thenq:

Example 4.14.In R2 letR1 = [−2,−1]× [0, 1] andR2 = [1, 2]× [0, 1]. Moreover
let g : [0, 1] → R be an absolutely continuous function, considera+ : R1 → R
anda− : R2 → R defined bya+(x, y) = a−(−x, y) = g(y) and definef+ =
a+H2 R1 andf− = a−H2 R2. Thanks to the symmetry of the problem the
horizontal translation off+ onf− is an optimal transport, then using formula (4.2)
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we can explicitely write the measureµ obtaining that it is absolutely continuous
and supported in[−2, 2]× [0, 1] with density given by

v(x, y) =


g(y)(x+ 2) if x ∈ [−2,−1]
g(y) if x ∈ [−1, 1]
g(y)(2− x) if x ∈ [1, 2].

Then the summability ofµ is exactly the same off+ andf−.

Another fact is thatf+ ∈ L∞ does not implyµ ∈ L∞ (and in a similar way
f+ ∈ Lp does not implyµ ∈ Lp), as the next example shows:

Example 4.15.Let f− be the Dirac mass in0 andf+ be the restriction of the
Lebesgue measure to an annulus centered in0 and of unitary volume, thenf+ ∈
L∞. Obviouslyγ = f+ ⊗ f−, which brings all the mass off+ in 0, is the unique
plan of transport and then is optimal. It is then easy, using (4.3), to evaluateµ(x)
for each Lebesgue pointx for µ, which we already know, thanks to Theorem 4.11,
to be absolutely continuous: it followsµ(x) ∝ |x|1−N for x in the interior of the
annulus, and thenµ /∈ L∞; more precisely,µ ∈ Lp if and only if p < N/(N − 1).

We want finally study what happens when bothf+, f− ∈ Lq: we already
know, by Example 4.14, thatµ need not to belong to anyLp with p > q, but we
can expect some result stronger than Theorem 4.13, due to the summability of both
the measuresf+ andf−. We start with the following technical lemma:

Lemma 4.16. If g =
∑

i∈X |gi|, gi ∈ L∞ ∩ L1, X ⊆ Z and1 ≤ p < +∞, then∫
gpdx ≤

∑
i∈X

‖gi‖L1

‖gi‖L∞

( ∑
j≤i

‖gi‖L∞

)p

.

Proof. Let us first assume thatX is finite. Then, in the subset of
(
L∞ ∩ L1

)X
for which ‖gi‖L1 and‖gi‖L∞ are fixed, the maximum of

∫
gp is attained in the

casegi = ‖gi‖L∞χ
Ai

, whereL(Ai)‖gi‖L∞ = ‖gi‖L1 and the setsAi intersect
as much as possible. The formula is then straightforward isX is composed by two
elements, and an easy induction argument implies the validity in general. Since all
the terms are positive, a passage to the limit gives the assert also forX infinite. ��

We can prove now that if bothf+ andf− are inL∞ then alsoµ ∈ L∞.

Proposition 4.17. If both f+ andf− are inL∞, thenµ ∈ L∞. More precisely,
‖µ‖L∞ ≤ 2RωN−112N−1

(‖f+‖L∞ + ‖f−‖L∞
)
.

Proof. Let us define Λi =
{
(x, y) ∈ Ω ×Ω : R/2i+1 < xy ≤ R/2i

}
,

whereR is the diameter ofΩ, andµi, i ∈ N, by

µi(A) :=
∫
Λi

l(xy ∩A) dγ(x, y). (4.13)
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Recalling (4.3) it is clear thatµ =
∑

i∈N
µi. We already know thatµ ∈ L1, and

thenµi ∈ L1 for eachi ∈ N: let us give then the last definition,

Ωi := {z ∈ Ω : µi(z) > 0, �(x, y) ∈ Λi ∩ spt(γ)
s.t. z is in the interior of xy} .

From (4.13) it follows thatµi(Ωi) = 0, because for each(x, y) ∈ Λi we have
xy ∩ Ωi ⊆ {x, y} and thenl(xy ∩ Ωi) = 0. ThenL(Ωi) = 0, and this implies
L(⋃iΩi) = 0 and thenµ(

⋃
iΩi) = 0.

Let z /∈ ⋃
iΩi be a Lebesgue point for each of theµi such thatµ(z) =∑

i µi(z) > 0, and letj be the least integer such thatµj(z) > 0. Sincez /∈ Ωj ,
there exists a transport rayuv such thatz is in the interior ofuv andR/2j+1 <
uv ≤ R/2j , and then ifxy ≤ R/2j we havexy ≤ 2uv. Let us then denote byCr

the cylinder of axisuv and radius12r: thanks to Lemma 4.4, ifr � 1
∞∑
i=j

µi(B(z, r)) =
∫
xy≤R/2j

l(B(z, r) ∩ xy) dγ(x, y)

≤ 2r
(∫

Cr×Ω

dγ(x, y) +
∫
Ω×Cr

dγ(x, y)
)

≤ 2r
(
f+(Cr)+ f−(Cr)

)
.

Since the volume of the coneCr is less thanRωN−1(12r)N−1,

∞∑
i=j

µi(B(z, r)) ≤ 2rRωN−1(12r)N−1 (‖f+‖L∞ + ‖f−‖L∞
)
,

which gives

µ(z) =
∞∑
i=j

µi(z) ≤ 2RωN−112N−1 (‖f+‖L∞ + ‖f−‖L∞
)
:

since this inequality holds forµ−a.e. pointz, this completes the proof. ��
Once we solved the problem forf+, f− ∈ L∞, we can prove the general

assert, which shows the situation when bothf+, f− ∈ Lq:

Theorem 4.18. If bothf+, f− ∈ Lq, thenµ ∈ Lp for 1 ≤ p < q.

Proof. Let us defineΩ+
i , Ω

−
i , µij andλij with i, j ∈ N as follows

Ω±
0 :=

{
x ∈ Ω : f±(x) ≤ 1

}
, Ω±

i :=
{
x ∈ Ω : 2i−1 < f±(x) ≤ 2i

}
,

µij :=
∫
Ω+

i ×Ω−
j

l(xy ∩A) dγ(x, y), λij := γ
(
Ω+

i ×Ω−
j

)
:

thenµ =
∑

i,j µij , it is easy to give the bound

‖f±‖qLq ≥
∑
i≥1

2(i−1)qL(Ω±
i ) ≥

∑
i≥1

2i(q−1)f±(Ω±
i )

2q
(4.14)
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and we have also
∑

j λij = f+(Ω+
i ) and

∑
i λij = f−(Ω−

j ). From the definition
it follows that ‖µij‖L1 ≤ Rλij and, sinceγ (Ωi × Ωj) is an optimal plan of
transport for the problem given by his marginals, thanks to Proposition 4.17 we
have‖µij‖L∞ ≤ K(2i + 2j). Thanks to these estimates, to give an upper bound
for theLp norm ofµ we can make use of Lemma 4.16 withX = N after given an
isomorphism betweenN andN × N, or equivalently an order toN × N. We do it
by setting(m,n) < (i, j) if m∨n < i∨ j, or if m∨n = i∨ j andm∧n < i∧ j,
or if m = j, n = i andm < n. Then Lemma 4.16 gives

‖µ‖pLp ≤
∑
i,j

Rλij
K (2i + 2j)

( ∑
(m,n)≤(i,j)

K (2m + 2n)
)p

. (4.15)

But if i ≥ j then∑
(m,n)≤(i,j)

2m + 2n ≤ 2(i+ 1)
(
1 + 2 + 4 + · · ·+ 2i

) ≤ (i+ 1) 2i+2,

and then from (4.15) we have

‖µ‖pLp ≤ RKp−1
( ∑

i≥j

λij
(
(i+ 1) 2i+2

)p
2i

+
∑
i≤j

λij
(
(j + 1) 2j+2

)p
2j

)

≤ 4pRKp−1
( ∑

i≥j

λij (i+ 1)p 2i(p−1) +
∑
i≤j

λij (j + 1)p 2j(p−1)
)

≤ K̃

( ∑
i

(
(i+ 1)p 2i(p−1)

∑
j

λij

)
+

∑
j

(
(j + 1)p 2j(p−1)

∑
i

λij

))

≤ K̃

( ∑
i

(i+ 1)p 2i(p−1)f+(Ω+
i )

+
∑
j

(j + 1)p 2j(p−1)f−(Ω−
j )

)
.

By (4.14) and the fact thatp < q, this proves the assert. ��

Remark 4.19.At the moment, we do not know if a better interpolation allows, from
Proposition 4.17, to prove Theorem 4.18 even withp = q. In fact, we do not know
any example whitf+, f− ∈ Lp andµ /∈ Lp.

The last result can be strengthened if the supports off+ andf− are disjointed:
in this case we can prove that iff+ andf− are inLp thenµ is also inLp. This
hypothesis of disjointeness plays an important role in many other situations, even
because it is needed to use PDE tools: this is why, for example, it is assumed in [9],
[15] and [8].
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Theorem 4.20. If bothf+ andf− are inLp andd
(
spt(f+), spt(f−)

)
= δ > 0,

thenµ ∈ Lp. More precisely,

‖µ‖Lp ≤ K
(‖f+‖Lp + ‖f−‖Lp

)
δ(N−1)/p′ ,

whereK depends only onR, N andp.

Proof. Let us defineB± = {x ∈ Ω : d(x, spt(f±) ≥ δ/2}: sinceδ is the distance
between the supports off+ and f−, Ω = B+ ∪ B−, then we will study the
summability ofµ± = µ B±. Let us first define, fori ∈ Z, Ωi = {x : 2i <
f+(x) ≤ 2i+1}, f+

i = f+ Ωi, γi = γ (Ωi × Ω), µ̃i from γi using (4.2) and
µi = µ̃i B−: it is clear thatµ− =

∑
i∈Z

µi. Moreover thanks to the definition of
f+
i we have‖f+

i ‖L1 ≤ 2i+1L(Ωi) and‖f+
i ‖pLp ≥ 2ipL(Ωi), and then‖f+

i ‖pLp ≥
2ip−i−1‖f+

i ‖L1 ; sincef+ =
∑

i∈Z
f+
i and the supports off+

i are disjointed, it
follows

‖f+‖pLp ≥ 1
2

∑
i∈Z

2i(p−1)‖f+
i ‖L1 . (4.16)

Thanks to the definition ofµi, the L1−norm of µi is less thenR‖f+
i ‖L1 ;

moreover, using Lemma 4.6 we know that ifx ∈ B− andε is sufficiently small,
then

µi(B(x, ε)) ≤ 2εf+
i (Cε) ≤ 2ε2i+1RωN−1

(
6Rε
δ/2

)N−1

:

summarizing, we have found the following estimates forµi

‖µi‖L1 ≤ R‖f+
i ‖L1 ‖µi‖L∞ ≤ ωN−16N−1RN2i+2(

δ/2
)N−1 .

Thanks to Lemma 4.16 withX = Z, this gives∫
(µ−)p ≤

∑
i∈Z

‖µi‖L1

‖µi‖L∞

( i∑
j=−∞

‖µi‖L∞

)p

≤ R1+N(p−1)(δ/2)(N−1)(1−p)
ωp−1
N−16

(N−1)(p−1)

×
∑
i∈Z

2(i+3)p−(i+2)‖f+
i ‖L1

≤ R1+N(p−1)(δ/2)(N−1)(1−p)
ωp−1
N−16

(N−1)(p−1)23p−1‖f+‖pLp ,

using also (4.16). To estimate theLp norm ofµ+, clearly, we can make exactly
the same calculation above changing all the “+” with “−” and vice versa and then,
sinceµ ≤ µ+ + µ−, we can conclude the proof with the estimate

‖µ‖Lp ≤ 23−1/pR1+(N−1)/p′
ω

1/p′

N−112
(N−1)/p′

δ(N−1)/p′

(
‖f+‖Lp + ‖f−‖Lp

)
.

��
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