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Bijective Construction of Equivalent
Eco-systems

Srecko Brlek, Enrica Duchi, Elisa Pergola, Renzo Pinzani

ABSTRACT: First, we explicit an infinite family of equivalent succession rules
parametrized by a positive integer o, for which two specializations lead to the
equivalence of rules defining the Catalan and Schrider numbers. Then, from an
ECO-system for Dyck paths, we easily derive an ECO-system for complete binary
trees, by using a widely known bijection between these objects. We also give a
similar construction in the less easy case of Schréder paths and Schréder trees
which generalizes the previous one.

1 Introduction

The concept of succession rule was introduced in [4] by Chung et al. in the study
of Baxter permutations. Later West [12], Gire [6] and Guibert [7] used succes-
sion rules for the enumeration of permutations with forbidden sequences. More
recently, this concept was deepened by Barcucci et al. [2] as a fundamental tool for
ECO method, which is a method for constructing and enumerating combinatorial
ohjects. In particular, let © be a class of combinatorial objects and p a parameter
on @ such that O, = {0 € @Q|p(0) = n} is finite. ECO method provides, by
means of an operator ¥, a construction for the class O with respect to the param-
eter p. If ¥ is an operator on O satisfying the following conditions:

(i) for each O' € Opn41, there exists O € O, such that O’ € ¥9(0),
(ii) for each O,0" € Oy such that O # O, then 9(0) NYI(O") =0,

then the family of sets Fpy1 = {3(0) : O € O, } is a partition of Oy 1.

Note that many different operators may exist on a class Q. Consequently, when an
operator ¥ is fixed on @, we will denote it by ¥p, and the ECO-pair by (O, V0).
The subscript will be omitted when no confusion arises. The conditions (E) above
state that the construction of each object Q' € O,y is obtained from one and
only one object O € O,,. This construction can be described by a generating tree
[2, 4], a rooted tree whose vertices are objects of @. The objects having the same
value of p lie at the same level, and the sons of an object are the objects produced
from it by using 7. A generating tree can be sometimes described by means of a
succession rule of the form:

(E)

_ | (a)
A= { (k) ~t (61}(63)..,(ek), (1)

where a, k,e; € N, meaning that the root object has a sons, and the k objects
0},...,0;, produced by an object O are such that [#(O0})| = e;, 1 <i < k. A
succession rule 2 of type (1) defines a sequence {f,},, of positive integers, where
fn is the number of nodes at level n of the generating tree of €2.
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Given an ECO-system (O, p,¥0,A) and a bijection ® : © — )V between two
classes of combinatorial objects, it is always possible to map formally ¥ on the
class V along the bijection ®. Indeed, let O € O then we define the ECO-system
(V, p’v ‘sV: A) by

2(0) € Ju(®(0)) <= O € 96(0).

This means that the generating tree T for the class @ is mapped on the generating
tree Ty, where each node of T\, contains the image of the corresponding node of 7.
It is clear that in this case the same succession rule is obtained, but the problem
of describing the operator ¥y, independently from ®, remains and is not easy in
general. In Section 4, we describe explicitly this construction on two examples.
Firstly, we carry out the description in the easy case of the bijection between
Dyck paths and complete binary trees, and, secondly, in the less easy case of the
bijection between Schréder paths and Schrisder trees.

Two succession rules A and A’ are eguivalent (written A ~ A’ ) if they define
the same number sequence [9]. The problem of determining classes of equivalent
succession rules, is still open. In section 5, by using both a combinatorial and
a generating function approach, we prove that Q, ~ £, where Q, and 1, are
defined as follows. Let o € N,

i = { 2 (.
(k) ~ (e + 1)((1 +2)... (k- I)Ui:)(fﬁ—F B

(a)
0, = (@) ~ (@)**(2a)
(2ka) ~ (a)k* (2a)*"1(4a)*(60) . . . (2(k — 1)a)*(2ka)*(2(k + 1)a).
These succession rules are related to the well known classical rules for Catalan and
Schrider numbers.

2 Some classical combinatorial structures

In the plane Z x Z, we consider lattice paths using three step types: rise steps
(1,1), fall steps (1, 1) and k-length horizontal steps (k,0) (briefly, k-horizontal
steps).

Definition 2.1. A generalized Motzkin path is a sequence of rise, fall and k-hor-
izontal steps, running from (0, 0) to (n, 0), and remaining weakly above the z-axis.

These paths have been extensively studied, an account of which can be found in
[11] for instance. They include many classical lattice paths, and, among others,
Dyck, Motzkin and Schréder paths correspond respectively to the cases k = 0,
k =1and k = 2. A path remaining strictly above the z-axis except for (0,0)
and (n,0) is called elevated. A coloured generalized Motzkin path is a generalized
Motzkin path for which the horizontal steps can have more than one colour. We
give now the classical ECO construction for Dyck and Schrider paths.

Let D be the class of Dyck paths, and let D € D. Then, (D) is the set of Dyck
paths obtained by adding a peak on each point of the last sequence of D’s fall
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steps. The rule associated to this construction is the classical rule for Catalan
numbers:

1
QI:{ 1) ~ (2
(k) ~ (2)...(k)(k +1)

Let S be the class of Schroder paths and let § € S. The set ¥(S) contains the
Schréder paths obtained from S by inserting a horizontal step at the end of S, or
by inserting both a rise step in each point of the last sequence of fall and horizontal
steps, and a fall one at the end of S. The rule

—

>
)

FENR AN, N
/%é/\/%_.. AAA AA

/ B gem N AF N Pe AT
\ /@*@\@ﬁ*/ﬂ\/—/\/—v\/—\a

— e INI e e
@—e—@—"-/ N — N 2

Figure 1: Classical ECO construction for Schroder paths.

(2)
Qg = { (2) ~ (3)(3)
(k) ~ (3)... (k)(k +1)?

associated to this construction is the classical rule for Schréder numbers (Fig. 1).

Definition 2.2. A Schrider tree is either a leaf or a list (r, A1,..., Am), where
m > 2, and such that each A; is a Schréder tree.

The class 7 of Schroder trees contains planar trees whose internal nodes have
degree at least two, and are enumerated by little Schréder numbers (i.e. the half
of Schréder numbers) according to the number of their leaves [8]. As a particular
case, the class B of complete binary trees, i. e. binary trees whose nodes have
degree 0 or 2, is a subclass of 7.
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3 A construction for Dyck and Schréder paths

The specialisations o = 1 and a = 2 of (), yield two new succession rules defining,
respectively, Catalan and Schrisder numbers,

%= { M)~
[ (2K)~ (1)*(@)(6). .. (2(k — 1))(2K) 2(k + 1))
(@)

% = { @~EO

[ (4k) ~ (2)2%(4)(8)2(12)2 ... (4(k — 1)) (4k)2(4(k + 1)),

for which we are able to describe the corresponding constructions.

3.1 A construction for Dyck paths corresponding to

Each Dyck path D factors uniquely in blocks of elevated Dyck paths,
D=DDy...Dy,

and, D is said of even type (respectively odd type) if k = 2j for some j (resp.

k = 2j+1). The last sequence of fall steps, or last descent, of D is denoted £4(D)
and satisfies

£4(D) = £4(Dy).

Let P(D) be the set of points of £4(D), excepting the point at level 0. The set of
Dyck paths having length 2n is denoted by D,,, and the operator

Op : D, — 2Pnh1
is defined as follows:

D1. If D is of even type, then ¥p(D) contains a single Dyck path, obtained by
glueing a peak of height 1 at the end of D (see Fig. 2(D1)).

D2. If D is of odd type, then ¥p(D) is the set of Dyck paths obtained from D
by performing on each A € P(D) the following actions:
(a) insert a peak;

(b) let A’ be the leftmost point such that A’A is a Dyck path; remove the
subpath A’A from D, elevate it by 1, and glue it at the end of D (see
Fig. 2(D2)).

This construction yields the succession rule .
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Figure 2: The construction for Dyck paths according to the rule €.

3.2 A construction for Schriéder paths corresponding to (2,

We give now a similar construction for Schréder paths. Each Schroder path S
factors uniquely,
§=2585;...5,

where S;,1 < i < k, is either elevated or a horizontal step on the z-axis. The path
S is said of even type (respectively odd type) if the number of elevated factors
following the rightmost horizontal step is even (resp. odd). The last descent £4(S)
of S is the last run of fall steps, and P(S) is the set of its points, excepted the last
point on the x-axis.

The set of Schréder paths having length 2n is denoted S,,, and the operator
B 1 Sp — 25n+1

is defined by the following rules:

S1. If S is of even type, then 9¥5(S) contains two Schroder paths, obtained re-
spectively by glueing at the end of S, either a peak of height 1, resulting in
an odd type path, or a horizontal step, resulting in an even type path (Fig.
3(81)).

S2. If S'is of odd type, then ¥5(9) is the set obtained by performing the following
actions on every point A € P(S) (Fig. 3(52)):

(a) insert a peak of height 1 or a horizontal step;

(b) let A’ be the leftmost point such that A’A is a Schréder path. Then
cut A’A, elevate it by 1, and glue it at the end of S;

(c) let A” be the first left point such that A” A is a Schréder path; if A”A
is not empty, then replace it by a horizontal step and glue A” A at the
end of S; if A”A is empty then glue a horizontal step at the end of S.
In this way we obtain an even type path.
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Figure 3: The construction for Schréder paths corresponding to the rule Q.

The previous construction for Schréder paths, can be easily extended to Schréder
a-coloured paths by using a-coloured horizontal steps. It leads to the succession
rule Q, ., with @ > 2. For instance, when horizontal steps of two colours are
used, we obtain Schréder bi-coloured paths associated to the succession rule €.
Moreover, if we use a—coloured horizontal steps in the classical ECO construction
for Schroder paths we obtain a-coloured Schréder paths to which the rule Qat1,
« = 2, is associated. So we have proved the equivalence between 2, and €, in a
combinatorial way.

4 A new construction for the classes B and 7

In this section we show how to transport an operator ¥ along a bijection, and we
provide a description that is independent from the bijection in two classes of trees.

The nodes of a planar tree T' can be totally ordered by means of the prefix traversal,
and indexed increasingly by the integers, so that, given two nodes x; and z;,

I <IT; — i<y
Accordingly, the maximum of two nodes is defined by
max(r;,z;) = x; <= i<j.

Also, the total order allows to define notions like first, last, successor, predecessor,
etc., consequently, for every node p of T, we denote by (see Fig. 5 and 7):
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- Li(T),6(T),£5(T) the last, respectively, internal node, leaf, internal sibling;

[f(p) the set of leaves following p;
father(p) the father of p;

- suce(p) the successor of p;

A common abuse of notation identifies a tree with the name of its root, and,
consequently subtrees as nodes. The total order extends to the the class F of
forests, whose objects are lists of trees, in the obvious way, making all the above
definitions relevant for forests as well.

For convenience we denote the tree consisting of a single point by “e”, and define
the “tree” and “raise” constructors

tree,raise : F — T

respectively, by
tree(T, 13, ..., Tk) = (0,11, T, ..., Ti),

and (see Fig. 4),
raise(Tl,Tg, b ,Tk) = tree(Tl, O - .).

A useful operation on trees is the substitution. Given two trees Ti,T» € T, the

Figure 4: The raise constructor.

substituting of Ty by 1) (7% « T1) is denoted
subs(Ty,T3).

Moreover, we say that T is of even type (resp. odd type) if the length of its rightmost
branch is even (resp. odd).

>From here on, we consider this total order on two subclasses of planar trees,
namely, the class B of complete binary trees and the class 7 of Schrider trees.
The parameter p considered on these two classes of combinatorial objects is the
number of leaves.

There is a well-known bijection between Dyck paths and complete binary trees,
v:D— B
(for instance, see [10] and Fig. 5). For D € D and B = ¥(D), define
P(B) = f(¢:(B)) \ {&(B)},
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Figure 5: A complete binary tree B in Br, and the corresponding Dyck path.

and observe that the number of elevated Dyck paths in D corresponds to the length
of the right branch of B. Moreover, we have the underlying set bijection on nodes

fl&(B)) = W(La(D));
P(B) = ¥(P(D)).

These observations lead to an almost direct translation of the operator ¥p. Indeed,
let B,, be the set of binary trees having n leaves, and let B € B,,, then the operator

dg: B, — 2Bni1
is defined as follows (see Fig. 6):

B1. if B is of even type then add two sons to £;(B), i.e.
¥p(B) = subs(raise(s), £,(B));

B2. if B is of odd type then ¥g(B) is the set of complete binary trees obtained
by performing on each leaf A € P(B) the following actions:

(a) subs(raise(s), A);

(b) let A’ be the largest complete binary subtree of B such that A = £;(A’);
then, do
subs(raise(A’), £;(B)) and subs(s, A").

Clearly, ¥p and ¥5 share the same succession rule .

4.1 A construction for Schrider trees

Let &' be the class of Schréder paths, without horizontal steps at level 0, and let
1P g be the restriction of ¥s to &’. That is

9s(S,) =9s(Sa)NSpyy , ¥R > 1.
As for Dyck paths, we show how to transport the operator 95 along the bijection

[8](see Fig.7)
v:.8 —T.
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Figure 6: The construction for complete binary trees.

This bijection provides a simple interpretation of the required parameters. Indeed,
a rise (resp. fall) step of S corresponds to a leftmost (resp. rightmost) sibling of
T, and the horizontal steps of S correspond to the internal siblings of T, that is,
those siblings strictly between the leftmost one and the rightmost one. The last
run of fall steps £4(S) corresponds to, either the leaves following the last internal
node £;(T), or, the last internal sibling £,(T) and its successors, whichever occurs
the last. Therefore, define

z = max(suce(6;(T)), £:(T)),
(z=14 in Fig. 7), and set
P(T) = W'(P(8)) = {z} U f(2) \ {&(T)}.
Observe that this generalizes the corresponding definition in the class B.

Figure 7: A Schrdder tree and its corresponding path.

Let 7, be the set of Schréder trees having n-leaves. The operator

O : T, — 27
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is defined as follows (see Fig. 8):

ST1. If T is of even type, then ¥ (T") = subs(raise(e), £(T")) (see Fig. 8(ST1)).

ST2. If T is of odd type, then ¥7(T) is obtained by performing on each point
A € P(T) the following actions (see Fig. 8(ST2)):
(a) subs(raise(s), A), or add a left brother to suce(A);

(b) let A’ be the largest Schrider subforest of T, such that A = #(A');
then, do
subs(raise(A’), £;(T)) and subs(e, A");

(¢) if A # z, let A" be the tree having father(A) for root; then, do
subs(A”, £;(T)), subs(e, A”), and add a right brother to A" .

IS

SN

Figure 8 The construction for Schroder trees.

A careful comparison between the constructions associated to the operators ¥+ and
s shows some differences. Indeed, since we are concerned with the restriction g/,
it was necessary to avoid the cases that generate a Schrider path with a horizontal
step at level 0. This occurs precisely when the node z is treated.
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5 Equivalence between two succession rules

We show now that the two succession rules Q, and 9/, defined in Section 1 have
the same generating function. The computation is based on the kernel method,
which was succesfully used for similar computations in [1, 3].

The bivariate generating function F(z,y) counts the structures which satisfy Q,
according to their size and the value of the associated label. Obviously, we suppose
the size of the structure represented by the root of the generating tree being equal
to 0. Therefore, we have:

ca+1
F(z,y) (” e —w“) = 4"+ Z—F(z,1).

1 11—y
R @
1+%—mya:0, (2)
then
xy°+1
i F(z,1) =0.
¥+ (z,1)

The solution of the equation (2) is:

zla—1)+1—/(z(l —a) — 1) - dza

Yo(z) = 2za
so, the generating function for €0, is:
=]
Fl,) = wE-1
zyo(x)
z(l—a)+1—/(z(1-a)-1)? —dza
2z )

In an analogous way we determine the generating function G(z,y) arising from
Q.. After some computations we get:

G(Isy) =Bl($:y) +Bﬂ(‘rr9)7 (3)

where

9
Bi(z,y) = y* + z(a — 1)y*Bi(z,1) + wy“aa—yBg(x, v) :
i

and

Ty
l—y

2
03
Ba(a,y) = ayBu(e, Dtay(a—1)Ba(@, D+ 1 By(a, 1)~ - Ba(z,y)+ayBa(a,v),

which simplify into:

_ 1+ By(z,1)

Ehigl)= 1-—za+2z
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and

_ yo(z) —1
Balz, )= a —za? 4 3za — 2z — zyo(z)a + 2zyo(x)

where

1-z(a—-1)— /(z(a—1)-1)2 — 4z
2z '

Substituting these values in (3), we have F(z,1) = G(z, 1), that is 2, and (2, are
equivalent.

yo(z) =

6 Concluding remarks

The constructions we provided in this paper are natural because, in a sense, they
commute. Indeed let 7p and 7z be the projections

Tp:S —D; and ng: T — B;

which erase, respectively, the horizontal steps and the internal siblings. The fol-
lowing diagram

& X x
7D | L 78
D 2 B

commutes, and the ECO-operators also commute. We believe that the problem of
characterizing the natural bijections between objects (allowing the translation of
ECO-operators) is a problem that is worth investigating.
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