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Like words together
we can make some sense
Much more than this
way beyond imagination
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CHAPTER 1
Introduction

In the last years, visual digital data gained a key role in providing infor-
mation. Images and videos are acquired and quickly shared between huge
amount of users through social media platforms. Statistics [1] show that a
relevant portion of the world’s total population owns a digital camera and
can capture pictures. Furthermore, one-third of the people can go online [2]
and upload their pictures on websites and social networks. In this sense, any
user is a potential source of information, shared through the visual data he
provides.

On the other hand, professional tools for image post processing are avail-
able and a↵ordable to both novice and proficient users. Most of them are easy
to use and allow any user to create realistic forgeries. This fact poses the prob-
lem of relying on digital images and videos as potential source of information,
especially when the source is unknown. This issue becomes critical when the
visual data is exhibited as a source of potential evidence in legal acts.

In recent years Image Forensics has been proposed as a solution for image
authentication problem. This technology concerns the analysis of the traces
left by any process occurring in the image lifetime to determine information
about its life cycle (e.g., which is its source; which processing it’s undergone;
if, where and how its content has been modified; . . . ).

To date, several tools have been provided by the research community to
look to an image at di↵erent levels of depth. Some of them analyse the image
metadata; others extract pixel level statistics to characterise specific traces
(e.g., the sensor noise, compression artefacts, . . . ). Finally other tools look at
the physical property of the image (light and perspective based) to identify
inconsistencies.

The e↵ectiveness and the limits of these tools has been investigated dur-
ing the years and there’s still a big gap to be filled, especially for forensic
application. When a specific query on an image is demanded by a legal part,

1



Introduction

problems may arise, mainly related to the methodology to be applied, the
reliability and the interpretation of the tools outputs.

methodology When an image is inspected to provide an evidence in court,
the forensic expert has to decide which are the tools to be used for the image
analysis and how to apply them. Whatever he does, he’s intrinsically applying
a methodology.

reliability Tools e↵ectiveness in not the same under every possible environ-
ments. That’s why tools performance are usually assessed on a certain amount
of heterogeneous data (that is usually very limited with respect to the huge
amount of image variability). This means that these results cannot be applied
indistinctly to any investigated image.

interpretation Most of the tools outputs can be hardly converted the ”prob-
ability” of the image to be tampered. Furthermore, most of these output can-
not be taken as they are and have to be interpreted by the expert, according
to the context. The interpretation of the result is much more critical when
several tools are applied: the expert, after their comparison, has to merge the
achieved results to produce a final record on the investigated image.

These issues are related to technical limits that make the current forensic
technologies still unready to work under uncontrolled environments. Some key
points can be identified in the following:

• Most of the techniques based on pixel level statistics are fragile against
common compression and filtering processing that are usually applied by
several social media platforms and smartphone camera software. This
means that huge false alarm can possibly occur if the expert applies
these techniques in the wild as they are;

• Forgery detection techniques are usually evaluated on unrealistic hoax
(synthetically or automatically created to produce huge amount of test
data). In most cases it is unknown how the performance changes when
facing high quality and sophisticated forgeries;

• Performance are mostly evaluated on limited datasets that are not rep-
resentative of the wild world of images. Dataset are usually composed
by images of the similar category, undergone through the same (simple)
chain of processing. Conversely, an image in the wild has possibly un-
dergone to longer or more complex processing chains, making hard to
apply the tools as they are;

• Some outputs depend on user interpretation and behaviour meaning that
two di↵erent users, with the same tool, may achieve di↵erent conclusion.
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Introduction

This usually happens when a user is required to select features in the
scene or to interpret image content;

• When a tool ”provides” some kind of evidence, scientific results have to
be transmitted to the legal part. The lack of communication between
these parts poses a problem of choosing the best investigation method-
ology, of proving the pertinence of the applied method, of presenting the
achieved results.

This work, starting from the available technologies, is focused in making
strides on some of above limitations. All the debated topics aim to improve
the application of forensic technologies in real case scenario, where images
from unknown source are investigated as a potential source of evidence. This
thesis addresses the following issues: i) Provide a methodology to investigate
a digital image with several tools and provide results to be presented in court;
ii) Improve the available forensic tools to solve current limitations; iii) Assess
the accuracy variability of available technologies under specific conditions iv)
Develop new applications for the available technologies that take advantage
of side information available on the web.

This document is organised as follow: in Chapter 2, Image Forensic tech-
nologies and main traces are summarised. A new forensic scale is defined to
provide more than a binary answer (the image is tampered or authentic) and
forensic traces are linked to the kind of evidence they are able to provide.
Chapter 3 summarises the best practices and standard available for digital
image investigation and introduces a new methodology for the forensic analy-
sis of images (and multimedia contents). Chapter 4 addresses the problem of
forgery detection against sophisticated image alteration, obtained by means
of advanced techniques. Image Compositions tools are surveyed and both
qualitative and quantitative tests are performed. In Chapter 5, focusing on
geometric-based features, we provide two contributes: i) a generalisation of
a perspective-based technique for tampering detection and ii) the reliability
assessment of a cropping detection technique based on principal point estima-
tion. In Chapter 6, basing on the promising trace of the sensor pattern noise,
we introduce an intelligence application to link social media profiles where im-
ages and/or videos are captured with the same device. Finally, in Chapter 7
we summarise the achieved results, their limitations and the open issues for
future works.
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CHAPTER 2
Image Forensics

Image Forensics has been proposed as a solution for authenticating the
contents of digital images [3, 4, 5]. This technology is based on the observation
that each phase of the image history—from the acquisition process, through its
storage in a compressed format, to any editing operation—leaves distinctive
traces on the data, as a sort of digital fingerprint [6]. It is then possible to
determine whether a digital image is authentic or modified, by detecting the
presence, the absence or the incongruence of such traces intrinsically tied to
the digital content itself. In the literature di↵erent classifications of traces and
tools have been proposed, each fitting di↵erent purposes.

In this chapter, starting from the available classifications, we highlight
main issues related to the applicability of these techniques in the wild. Fur-
thermore, we introduce a new general classification scale, called the FD (short
for Forgery Detection scale), based in the concept of image nativity. This scale
aims to extend the concept of distinguishing between pristine and tampered
images. The most relevant techniques are surveyed and their capabilities, both
in terms of applicability (i.e. when we can use them) and assessment (i.e. the
level that can be achieved in the FD scale) are investigated. Specifically, Sec-
tion 2.1 introduces the main distinction between signal-level and scene-level
traces, that exhibit few relevant di↵erences in terms of performance evalua-
tion and robustness when applied in the wild; in Section 2.2 we define the FD
scale, a classification of the most relevant forensic traces is reported and their
capabilities are investigated.

2.1 Signal-level vs Scene-level Traces

When a forensic tool provides an output, it’s important to clarify its re-
liability in the specific context. Few general issues can be highlighted by
distinguishing between signal-level and scene-level traces: the former include
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invisible footprints introduced in the signal statistics at a pixel level, e.g., de-
mosaicing artifacts [7], sensor noise [8] or compression artifacts [9, 10]; the
latter are based on a physical interpretation of the depicted scene, e.g., in-
consistencies in shadows [11], lights [12, 13], or in perspective and geometry
of objects [14, 15]). Signal-level traces are typically detected automatically
on most kind of image contents, allowing to test the algorithms on a huge
amount of heterogeneous data; on the other hand, any pixel processing pos-
sibly alter previous traces present on the image. Indeed, they often exhibit
lower e↵ectiveness when the investigated content has been subjected to an un-
known chain of processes (e.g., filtering, resizing, compression) that partially
or completely spoiled the searched traces [16]. Scene-level traces are typi-
cally di↵erent: they usually have stronger requirements on scene constraints
(e.g. the presence of Lambertian convex surfaces for lighting estimation [17],
or some objects with specific geometric shape), but have the advantage of
being robust to common image processing operations, thus appearing suitable
even for low resolution images, or when the content has undergone multiple
and/or strong compressions. Conversely, a critical point for this techniques
is their performance evaluation. This is mainly due to the fact that such al-
gorithms are usually tested on small datasets only, since they cannot exclude
some human intervention, e.g. for image feature selection or analysis super-
vision. This distinction is useful to understand two general open issues: i)
assess and improve the reliability of tools based on signal-level traces when
they are applied on images under uncontrolled environments; ii) automatise
tools based on scene-level traces to remove the human-in-the-loop.

In the next section we extend the concept of image authenticity considering
that each tool provides di↵erent kind of evidence, i.e. proving that the image
is not native, or detect a forged image, or localise a forgery, or identify the
tool exploited to make the forgery.

2.2 Forensic Traces and their Capabilities

According to recent surveys [3][18][19], there are two main fronts to digital
image forensics: source identification and forgery detection1 Source identifi-
cation tries to link an image to the device that took it. Acquisition traces are
extracted from the investigated image and then compared with a dataset of
possible fingerprints specific for each class/brand/model of devices. Matching
fingerprints are exploited to identify the image source device. This topic will
be examined in depth is Section 6. In this section we focus on forgery detec-
tion, i.e. on determining whether and how a target image has been altered.
Forgery detection mostly works twofold: either looking for patterns where

1Recently, some other applications are also addressed by the research community, e.g.,
image phylogeny and reverse engineering. This topics are out of the scope of this thesis and
are not addressed in this thesis.
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there shouldn’t be, or looking for the lack of patterns where there should be.
Let us consider, for example, an object spliced from an image into another,
and resized to be in the same scale as the target picture. The resizing oper-
ation inserts a pattern of correlation between neighboring pixels where there
shouldn’t be. Concurrently, several image traces can be possibly disrupted
by the splicing operation. The most simplistic view would pose that there
are only two outcomes for forgery detection: the image has been altered, or
no evidence of alteration is found. However, this classification might not be
su�cient. Simply compressing an image might be considered an alteration,
even though it is a commonplace operation, making this classification useless.
Di↵erent forensic techniques work on di↵erent assumptions of what traces
could be present on the image and what it can be inferred from them, e.g.,
the location or the nature of the forgery. However, there is no standard in the
literature, for classifying and comparing techniques based on their outcomes.

2.2.1 The Forgery Detection Scale

Here, we propose a new general classification scale called the FD (short
for Forgery Detection scale). This scale is based in the concept of an image
being native or not: a native image is an image that was captured by a device
and then outputted to the user “as-is”. Conceptually, this is easy to define,
but technically there might be some complications: di↵erent devices process
the image di↵erently. These problems will be discussed in detail further in
this section.

The FD scale ranks forensic techniques based on the type of evidence they
can possibly provide about an image’s history. The first possible outcome is
the negative case, when it is not possible to discover information supporting
that the image has undergone any form of alteration with respect to its original
form. This could happen because the image is really native, or because the
analyzed traces do not show forgeries, but it makes no di↵erence: it is not
possible to say that an image is truly native, only that there is no evidence
supporting it to be altered. This outcome falls outside our scale in practice,
but can be called FD0 for simplicity. The following are the di↵erent levels of
our Forensics Detection scale:

FD0 No evidence can be found that the image is not native.

FD1 The image has undergone some form of alteration from its native state,
but the nature and location of it is unknown.

FD2 The image has undergone some form of alteration from its native state
and the location of the alteration can be determined, but its nature is
not known.
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FD3 The image has undergone some form of alteration from its native state,
the location of the alteration can be determined and the nature of it is
known.

FD4 All the conclusions of the previous item, and a particular processing
tool or technique can be linked to the forgery.

These should be referred as FD (short for forgery detection) scale, with
values FD0-FD4. It could be argued that the ultimate form of forgery detec-
tion would go beyond identifying the used technique, by locating a forger or
even estimating the historic of the image’s alterations [20]. It is a valid point,
but they are not common in digital image forensics; then we do not consider
them for the moment. FD scale is backwards inclusive for FD> 0, meaning
that if FD4 can be guaranteed so can FD3, FD2 and FD1. The following
subsections provide in-depth explanation of the di↵erent levels of FD scale
and further considerations.

FD1: Nativity

The FD1 level di↵ers from the negative case FD0 because it is possible to
determine that the image is not native. This is not so simple to assess, as most
modern cameras have a processing pipeline comprised of several operations
(demosaicing, white balance, etc), changing the image before the user has
access to it. Furthermore, demosaicing is such a fundamental operation in
modern cameras that it makes little sense talking about images without it.
For the sake of generality, we propose that any form of pre-processing on
the image up until a single in-camera compression can be accepted without
breaching the image nativity. A forensic technique achieves FD1 when it is
able to find evidence of alteration after capture. Techniques that analyze
an image’s EXIF information are an example of FD1: they can detect an
inconsistency in the metadata proving an image is not native, but nothing
can be said about location or nature of the alteration.

FD2: Location

The FD2 level is obtained when the general location of the alteration in
the image is known. It is possible that a region of an image has been erased
by a series of copy-pasting operations, and then retouched with smoothing
brushes. In this case the boundaries of the forgery might not be as clear. If a
technique is able to obtain any form of specificity on the altered region, FD2
is achieved. This is the case when analyzing traces such as PRNU (Photo
Response Non-Uniformity, Section 2.2.2), CFA or ELA (Error Level Analysis,
Section 2.2.2), that are locally structured on the image. If evidence of any
global alteration on the image is found, then the location of the forgery is the
whole image. Similarly, operations that remove parts of the image such as

7
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seam carving and cropping can be detected but the actual altered area is not
present in the analyzed image anymore. It is argued that the forgery location
can be considered to be all image, reaching FD2.

FD3: Nature

The nature of the forgery can be subjective, because it is not possible to
predict all ways in which an image can be altered. The most commonly studied
forms of forgery such as splicing, copy-pasting and erasing, are just a subset
of possibilities. As was discussed on the introduction, image composition
techniques are able to alter the shape, texture and orientation of objects,
and even merge them together. For simplicity, any meaningful information in
addition to location of the processing that can be used to assist the forensics
analyst can be considered FD3. For instance, identifying that a spliced object
has been rotated and scaled awards an FD3 level on the scale. Even identifying
that an object is just spliced is worth an FD3 on the scale because the image
is not native (FD1), its location on the target image is evident (FD2), and the
nature of the alteration is known (FD3).

FD4: Technique

The highest level on our scale, FD4, is achieved when the analyst finds
evidences that can link the forgery to a particular technique or tool. A splicing
can be done by simply cutting a region from an image an pasting over another,
but there are also sophisticated ways to blend them, such as Alpha Matting or
Seamless Cloning. A forensic technique that is able to, after obtaining FD3,
provide further insight into the technique or tool used to perform the forgery
achieves FD4.

Accuracy and Confidence

The FD scale describes the scope of the information that a forensic tech-
nique can achieve. It does not evaluate the accuracy of techniques,
their confidence or applicability. If a technique provides an output map
of irregular pixels based on a general trace such as PRNU, it is going to be
FD2. Two di↵erent techniques that produce the same type of maps based on
PRNU, but one has better results are still both FD2. A forensic technique
that outputs the same type of probability map per pixel, but is looking for
traces left by a particular processing like local gaussian filtering would be an
FD3 on our scale. Visually both maps could be similar, but they are providing
a very di↵erent type of information.

Forensic approaches that heavily rely on feature descriptors or machine
learning to identify a specific type of forgery may at first seem to fall outside
our scale. For instance, a technique that evaluates the image as a whole to
identify if it has been spliced, but without providing a location seems to fall in

8
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FD3 but not in FD2. Our argument is that such general techniques are usually
trained on dataset composed only by one class of tampered images, exactly
the one that the method is looking for. Detecting splicing in this sense is only
detecting non-nativity (FD1) as it is unsure how the technique responds to
other types of forgery.

2.2.2 The forensics arsenal

The current state-of-the-art on digital image forensics provides an arsenal
of tools and techniques for forensics analysts. In this section we investigate the
most relevant approaches and their capabilities, both in terms of applicability
(i.e. when we can use them) and assessment (i.e. the level that can be achieved
in the FD scale). In a general way, it can be noted that there is a trade o↵
between the generality and the FD level that a technique is able to reach.
This is intuitive, because the higher the level on the scale, the more specific
the assessments are. FD1 can be simplified as a boolean statement (the image
is either native or not). From FD2 onwards, there is a large set of possible
answers (all di↵erent combinations of pixels in the image). To identify the
nature of the forgery in the image (FD3), a technique must be looking for
more specific features or traces. An image forensic tool is usually designed
considering three steps:

1. Some traces in the image - possibly introduced by the forgery process
- are considered;

2. Some image statistics are determined based on the considered trace,
resulting in features, which are usually numeric in nature;

3. A decision is taken about the image. This can be done using simple
thresholds on the calculated feature or on sophisticated machine learning
techniques.

Table 2.1: The steps of the tool by Carvalho et. al. [12].

Layer Example
Trace Illuminant or light

source of the image.
Feature Estimated illuminant colors

and light intensity on object edges.
Decision SVM classification.

In Table 2.1 we show a practical example of previous steps for the technique
developed by Carvalho et. al. [12] to detect splicing. The used trace is the

9



Image Forensics Forensic Traces and their Capabilities

����������	


���
�����	

�����	�


��

��	�

����

�������
���	�������	

��� 
 !����

"������	��
#���$�

���

 �����
%

���!��	�

&����'��

��
������(�

��'������	�

�
���
���	�

���!��
)�����	�	��

&!���*�


��%+�����

��������	�

&����
�
(�	�

�����
�	�

��,

��-

��.

��,

��-

��.

��,

��-

��/

Figure 2.1: Forensic techniques classification. Each type of trace is organized under its
correspondent phase on the forgery process. The techniques themselves were omitted
for the sake of clarity, but would appear as leaf nodes under their analyzed traces. On
the left, the relation to the FD scale is displayed. Only by analyzing specific editing
traces it would be possible to achieve FD4.

illuminant, or the light source. The key observation is that if an object is
spliced and the original image had di↵erent light conditions, such as indoor or
outdoor lighting, or even incandescent vs. fluorescent lights, this trace can be
used to identify it. The features used are the estimated illuminant colors and
the light intensity on the edges, for the di↵erent analyzed regions of the image.
The decision process uses a Support Vector Machine (SVM) to classify the
image as either spliced (FD3) or inconclusive (FD0) based on the features.

Forensic tools classification is based on the traces they analyze. Piva [19]
distinguishes between traces left by three di↵erent steps of the image formation
process: acquisition, coding and editing. Another intuitive classification has
been proposed by Farid [3] where the forensic techniques are grouped into five
main categories: pixel-based, format-based, camera-based, physically-based
and geometric-based. We propose a classification based on Piva’s approach
(Fig. 2.1), but with greater specificity to Farid’s.

The most relevant traces and correspondent tools developed by the forensic
community will be discussed in the following subsection. The FD scale will be
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used to describe which level of assessment can be expected when examining
an image using a specific tool.

Acquisition Traces (AT)

Native images come to life with distinctive marks (artifacts, noise, incon-
sistencies) due to the acquisition process. Both hardware (e.g., lens, sensor)
and software components (e.g., demosaicing algorithm, gamma correction)
contribute to the image formation, introducing specific traces into the output
(native) image. When a native image is processed some of these traces can be
deteriorated or destroyed, exposing evidence of tampering. Forgery detection
using acquisition traces generally falls in one of two categories:

1. Global : The analyzed trace is a global camera signature. Non-native
images can be exposed when this signature does match with the sup-
posed source device. For instance, in [21] non-native JPEG images are
exposed by analyzing quantization tables, thumbnails and information
embedded in EXIF metadata. In [22] the reference pattern noise of the
source device is taken as a unique identification fingerprint. The absence
of the supposed pattern is used as evidence that the image is non-native.

2. Local : The analyzed trace has a local structure in the image. Its incon-
sistencies in some portion of the image can be exploited to localize the
tampering. For instance, Ferrara [7] uses demosaicking artifacts that
form due to color interpolation. They can be analyzed at a local level to
derive the tampering probability of each 2⇥2 image block. Fridrich [8]
reveals forgeries by detecting the absence of the PRNU on specific re-
gions of the investigates image.

Let us note that some traces can be considered both at a global or local
level (e.g., demosaicing artefacts and PRNU), allowing to identify non-native
images (FD1) or to localize forgeries (FD2). The analysis of acquisition traces
is usually limited for the matching a known pattern, and they can be easily
disrupted. For this reason, FD2 is the highest we can expect to achieve on the
FD scale using acquisition traces. The analysis of acquisition traces generally
requires some additional information about the source device. In some cases
this information depends on the source device model or manufacturer (e.g.,
color filter array pattern, quantization tables), and can be easily obtained to
assess image nativity [23]. In other cases these traces are unique camera
fingerprints (e.g. PRNU) and can be obtained by having the source device
available, or be estimated by using di↵erent images captured by the same
device.

Coding Traces

Lossy compression often happen during digital images life-cycle:
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• Native images of non professional cameras and smartphones usually
come to life in JPEG format;

• When uploading a photo on a social network lossy compression is pos-
sibly applied to the image;

• When a JPEG image is altered and saved again in JPEG, double lossy
compression occurs.

For this reason, most of the literature has focused on studying the traces left
by single and multiple JPEG-compressions. This is a very prolific field of
study in forensics, with a wide variety of techniques. Fan [24] and Luo [25]
provide e�cient methods to determine whether an image has been previously
JPEG compressed, and, if so, are able to estimate some of the compression
parameters. Further advances have been also provided by Li et al. [9] to
identify high-quality compressed images basing on the analysis of noises in
multiple-cycle JPEG compression. On Bianchi’s technique [10], original and
forged regions are discriminated in double compressed images, either aligned
(A-DJPG) or nonaligned (NA-DJPG) even when no suspect region is detected.
Yang et al. [26] propose an error-based statistical feature extraction scheme
to face the challenging case where both compressions are based on the same
quantization matrix.

In most cases the analyst can exploit coding traces to disclose non-native
images or to localize the tampering, reaching FD1 and FD2 in the foren-
sic scale; FD3 has not been deeply investigated but, as shown in literature,
coding traces can reveal something more than mere localization of the tam-
per. Farid [27] shows that, when combining two images with di↵erent JPEG
compression quality, it may be possible to recover information of the original
compression quality of the tampered region. A stronger compression in later
stages usually deteriorates the traces of previous compressions, compromising
the e↵ectiveness of these techniques. This technique has been proved e↵ective
only if the tamper was initially compressed at a lower quality than the rest
of the image; on the contrary, when the compression is stronger in the lat-
ter stage, the traces of the first compression are probably damaged and the
detection fail.

A general rule of signal based techniques is that stronger compression in
later stages can possibly ruin the traces of previous traces and processing,
even another compression, thus making the tools ine↵ective.

Editing Traces

Image editing modifies the visual information of the image and the scene
depicted, introducing traces in several domains of the image such as pixel,
geometric, and physical. Editing traces are the most numerous, and can be
split into subcategories (Fig. 2.1) according to these domains.
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Image illumination inconsistencies (light source direction, cast and at-
tached shadows) are powerful traces considering that it is hard to achieve
a perfect illumination match when composing two images. The are two main
approaches for illumination techniques: geometric and illuminant. The first
are based on the geometric constraints of light, trying to use scene elements
as cues to determine if the arrangement of lights [28][29][30][13][31] or shad-
ows [11][32] are plausible. Illuminant techniques exploit the color, intensity
and temperature aspects of the illumination, and are able to detect if a region
or object in the image was di↵erently lighted [33][34].

Similarly, geometric relations within an image (e.g., object proportions, re-
flections) are based on the perspective model defining the projection of the 3D
real scene onto the image plane. This process is commonly modelled through
the pin hole camera model [35]. Any deviation from this model can be ex-
ploited as evidence of tampering. Perspective constrained method, proposed
by Yao [14], is used to compare the height ratio between two objects in an
image. Without the knowledge of any prior camera parameter, it is possible
to estimate the relative height of objects and eventually identify whether one
of those have been inserted on the scene without properly respect the perspec-
tive rule. An extension has been proposed by Iuliani et al. [15] to apply the
technique on images captured under general perspective conditions. Conot-
ter [36] describes a technique for detecting if a text on a sign or billboard
has been digitally inserted on the image. The method looks if the text shape
satisfies the expected geometric distortion due to the perspective projection
of a planar surface. The authors show that, when the text is manipulated, it
is unlikely to precisely satisfy this geometric mapping.

When an editing trace exposes evidence of forgery, we can expect to infer
something about its nature (FD3): if an object has as shadow inconsistent with
the scene, he was probably inserted; if the illuminant color is inconsistent, the
object could have been either spliced or retouched.

Obtaining other specific information about the techniques involved in the
tampering process (FD4) is a very challenging task. There are two main
reasons for this. The development of a technique for detecting the use of a
specific tampering process/tool may require a strong e↵ort compared to its
applicability in a narrow range. Secondly, proprietary algorithms have undis-
closed details about their implementation, making hard to develop analytical
models for their traces. A first step toward this kind of assessment has been
proposed by Zheng et al. [37] to identify the feather operation used to smooth
the boundary of pasted objects.

Here above we defined the forensic arsenal and what kind of evidence it can
possibly provide. To have a complete picture we should also consider the ca-
pability of the available techniques to create forges. A deeper investigation
of this topic is tackled in Chapter 4 where the image composition arsenal is
surveyed and some forensic techniques are tested over photorealistic forgeries.
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In the next chapter we focus on how forensic technologies should be applied
by the forensic expert when an image is involved in legal action and a possible
methodology for image investigation.
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CHAPTER 3
Methodologies and Standards

for Image Forensics

3.1 Images in the court

In digital investigations images are more and more frequently analysed
through Image Forensic tools and presented as potential digital evidences to
the court. In this scenario it is necessary to take into account salient aspects,
such as the chain of custody, data authentication, application of scientific
methods, documentation and reporting. Due to the rapid growth of multime-
dia technologies and the ever changing situations in the digital field, presently
there are no uniform procedures to face with all such issues, although guide-
lines and best practices are beginning to be proposed.

As described in the previous chapter, academic research has developed
many techniques for image analysis, but from the point of view of applying
these techniques in the courtroom, an important gap must be still bridged.
This gap includes the poor communication between the legal and the scientific
actors, as well as the not fully maturity of technologies, that are often tested
in laboratory conditions and not in real-world scenarios. Then, when a tool
“provides” some kind of evidence, scientific results have to be transmitted to
the legal part. This poses a problem in proving and reporting the pertinence
of the applied method and the reliability of the provided results.

The previous chapter rounded up the current Image Forensic methods
for image analysis and authentication. In this chapter we will focus on the
available standards and best practices emerged so far relating to digital inves-
tigation where images are involved.
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3.2 Standards and Guidelines

The ISO/IEC JTC1 Working Group 4 has put its e↵ort in developing some
standards giving guidance on several aspects of the digital investigations. The
main International Standards which a↵ect the investigative process are:

• ISO/IEC 27035 (published in 2011, to be revised in 2013): Information
Security Incident Management

• ISO/IEC 27037 (published in 2012): Guidelines for the Identification,
Collection, Acquisition and Preservation of Digital Evidence

• ISO/IEC 27041 (published in 2015): Guidance on Assuring the Suitabil-
ity and Adequacy of Incident Investigative Methods

• ISO/IEC 27042 (published in 2015): Guidelines for the Analysis and
Interpretation of Digital Evidence

• ISO/IEC 27043 (published in 2015): Incident Investigation Principles
and Processes

The fundamental goal of these Standards is to promote good procedures
and methods for investigating digital evidences and to encourage the adop-
tion of similar digital forensics approaches internationally, thus making easier
comparison and combination of results coming from di↵erent people and or-
ganizations, also across di↵erent jurisdictions. ISO/IEC 27035 (in its three
parts) defines the steps that should be taken prior and during an incident,
in order to ensure that investigations can be conducted readily; it discusses
the means by which those involved in the early stages of the investigation can
ensure that su�cient potential digital evidences are captured, allowing the
investigation to proceed appropriately. ISO/IEC 27037 addresses the prob-
lem of maintaining the integrity of potential digital evidences during all their
life-cycle by adopting a correct chain of custody; it discusses the steps which
should be taken immediately following an incident. ISO/IEC 27041 deals with
methods by which the processes adopted at all stages of the investigation can
be shown to be appropriate; it o↵ers guidance on assuring the suitability and
adequacy for all the stages of the investigation process. ISO/IEC 27042 pro-
vides indications on the important phases of analysis and interpretation of
digital evidences; it discusses fundamental principles which are intended to
ensure that tools and techniques adopted for the analysis and interpretation
are selected appropriately. It provides a guidance on the analysis and inter-
pretation ensuring continuity, validity, reproducibility, repeatability. ISO/IEC
27043 defines the basic principles and processes underlying the investigation
of incidents, providing a general overview of the incident investigation process.
The indications coming from all these Standards highlight that a harmonised
investigation process model is needed (both in a criminal prosecution and
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in other frameworks such as information security incident) even if it can be
customized in di↵erent investigation scenarios.

From the United States some important indications on digital investiga-
tion come from the Scientific Working Group on Digital Evidence (SWGDE)
[38] and the Scientific Working Group Imaging Technology (SWGIT) [39].
SWGDE brings together organisations actively engaged in the field of digital
and multimedia evidence, in order to promote communication and coopera-
tion among them and to ensure quality and consistency within the forensic
community.

On the other hand, SWGIT focuses on imaging technology and aims to
facilitate the integration of imaging systems within the criminal justice system
by providing best practices and guidelines for the capture, storage, processing,
analysis, transmission, output of image and archiving. SWGIT makes avail-
able several documents, i.e. 24 Sections, presenting guidelines, best practices
and recommendations. The most interesting among them for our purpose of
investigating (i.e. analysis and interpretation) visual data are sections ad-
dressing the problem of forensic video analysis (Section 7), forensic image
analysis (Section 12) and image authentication (Section 14).

Regarding forensic image (and video) analysis, the process is seen as com-
posed by three main tasks: technical preparation, examination, interpretation.
Technical preparation concerns all those steps that are necessary to prepare
videos/images for the other tasks (examination and interpretation) as well as
the preparation of the outputs obtained from the forensic analysis process.
Examination represents the core activity of the analysis: it regards the appli-
cation of techniques for extracting the information conveyed by the video/im-
age itself, such as hidden messages, intrinsic device noise, manipulations, as
well as anthropometric measures that can be evidenced by some video/image
enhancement processing. Interpretation regards the visual analysis of digital
content by specific subject matter experts, providing conclusions about the
subjects/objects depicted in the observed video/image. Besides the descrip-
tion of the general tasks, these documents also suggest a set of best practices
for the implementation of such activities, including indications on the chain
of custody procedures, the appropriate documentation for any analysis step,
the demonstration of the analyst competency, the Standard Operating Proce-
dures (SOPs) describing the work flow of all the actions performed during the
forensic analysis. Regarding image authentication, Section 14 provides other
guidelines to perform image trustworthiness verification through appropriate
practices. Authenticity indicates that videos/images are an accurate represen-
tation of the original event. The tasks performed during the authentication
process include detection of manipulations, analysis of metadata included in
the image file, identification of provenance, etc., and all the conclusions coming
from this process (in terms of both numerical probabilities and more frequently
subjective criteria) should be detailed in a final report.
In the next Section, starting from the just mentioned standards and guide-
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lines, we focus on the specific task of investigating an image exploiting Image
Forensics technologies.

3.3 Proposed Methodology

The purpose of the proposed methodology is to accomplish the appropri-
ate application of Image Forensics technologies to acquire information from
the inspected image. Our e↵ort focuses on digital images but the proposed
methodology can be applied to any multimedia content [40] (digital audio and
video).
From now on we refer to the Forensic Analyst (FA) as the expert able to apply
such technologies following the proposed methodology, and to make a synthe-
sis of the multiple results. We will focus on the analysis of the image content
itself leaving aside the well known problem of the correct chain of custody for
digital data supposing that the FA is well trained and “fully experienced” in
the international standards ISO/IEC 27037 to deal with digital contents in
forensic contexts.

In Fig. 3.1 we sum up the proposed methodology for the investigation of
digital images.
The image file can be seen as a package composed by two main parts: i)

the header, containing a set of data (known as metadata) including some
information about the file content; ii) the content itself, that is the stream
forming the audio-visual signal (avs). The analysis process can be resumed
as follow:

1. metadata extraction and analysis

2. audio-visual inspection of the signal followed by

• source identification

• authentication assessment

• content enhancement and/or analysis

3. result analysis

4. reporting

The steps followed in the proposed methodology are now described in more
detail:

Metadata Extraction and Analysis Images come to life with their own
metadata containing information about the image itself. Depending on the
image format (JPEG, PSD, Raw, . . . ), di↵erent types of metadata can be em-
bedded into the file (Exif, XMP, PLUS . . . ). Embedded information including
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Figure 3.1: Methodology scheme

data source device, colour space, resolution and compression parameters, time
and GPS coordinates, . . . . Table 3.1 shows some information included in the
Exif metadata of a native image taken as an example.
When an image is opened or modified in someway, some traces may be left in
the embedded metadata, thus providing traces of the image history. Anyway
there are two main drawbacks in their use for forensic application: i) metadata
can be easily modified even by non expert users by free available softwares to
provide misleading traces; ii) some common processing (as social media plat-
forms upload) usually delete most interesting metadata from images.
Then, a first task in metadata analysis consists in the assessment of the com-
patibility, completeness and coherence of the extracted information in the
considered scenario. For instance, the absence of most metadata has noth-
ing strange in a Facebook image while is really suspect in an image that is
supposed to be native.

Visual Inspection The process of examining the picture through the visual
inspection essentially consists of: i) the interpretation of its content and ii)
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Table 3.1: Some metadata information included in the Exchangeable Image File
Format (Exif) header of an image taken as an example.

Tag Value

File Name 3948 122.jpg
File Size 381 kB
File Modification Date/Time 2014-07-16 16:06:14+02:00
File Access Date/Time 2014-07-17 13:16:36+02:00
File Inode Change Date/Time 2014-07-16 16:06:18+02:00
File Type JPEG
Make Canon
Camera Model Name Canon EOS REBEL T1i
Software Adobe Photoshop Lightroom
Modify Date 02/12/10 05:51 PM
Exposure Time 132
ISO 100
Date/Time Original 02/08/10 04:15 AM
Create Date 02/08/10 04:15 AM
Shutter Speed Value 132
Focal Length 18.0 mm
Focal Plane X Resolution 5315.436242
Focal Plane Y Resolution 5342.32715
Compression JPEG (old-style)
Thumbnail O↵set 728
Thumbnail Length 10155
Color Space sRGB
Aperture 4
Flash O↵, Did not fire
Image Size 1000x761
Shutter Speed 132
Focal Length 18.0 mm
Hyperfocal Distance 4.28 m
Light Value -3
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the identification of relevant details within depicted event. The interpretation
regards the contextual analysis of the image to understand what is happening,
the subjects/objects involved in the event, the depicted environment and all
the semantic information derivable from a human inspection; the identification
of relevant details is referred to the visual anomalies both on the signal level
(e.g., block or color artefacts) and scene level (e.g. light direction, shadows or
perspective). This phase may help the FA in developing the best strategy for
further analysis.

Source Identification The source identification process aims to recover
information about the source device (e.g. the camera or the recorder) of
the inspected image. A first classification consists in determining whether
the image comes from a camera, a scanner, a mobile phone or it has been
generated using computer graphics [41]. Furthermore, techniques also exist to
discriminate between di↵erent camera brands or even models [42]. Anyway
the most attractive is the so called image ballistic: given a group of cameras,
even of the same brand and model, the goal is to determine which one was
used to capture the image.

Authenticity Assessment The authentication problem addresses the task
of establishing if the image is an accurate rendition of the original event. The
criteria to define what is an accurate rendition is linked to the specific analysis
context. For instance, the contrast enhancement of a face could be considered
a forgery in a photographic contest; on the contrary, the same processing can
support the correct interpretation of the original event in a surveillance video.
In this phase signal and scene traces are investigated through the forensic tools
to determine the whether the image has been tampered and in case, where
and how. In fact an image can be globally a forgery, i.e., is computer gen-
erated, or locally spliced with another image. Recent researches also showed
that benefits can be also obtained by using several tools together in a synergic
way. Existing forensic tools are far from ideal and often give uncertain or even
wrong answers, so, whenever possible, it is wise to employ more than one tool
searching for the same trace. Furthermore, it may also be the case that the
presence of one trace inherently implies the absence of another, because the
traces are mutually exclusive by definition (e.g., aligned and not-aligned dou-
ble compression). In this case a decision fusion strategy [43] can be exploited
to merge the output of several tools into a final decision.

Content Enhancement/Analysis The FA exploits the image forensics
tools to extract content information and enhance the intelligibility of the im-
age. In visual content the process regards evaluations about people, objects
and the environment of the depicted scene. A non-complete list of interven-
tions is: signal enhancement to reveal details, extraction of dimensional rela-
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tions or parameters (such as the height of a subject), photographic comparison
to link known objects with something depicted in the scene.

Results Analysis The results achieved in each step of the analysis may
be too weak or sometimes misleading due to the unreliability of tools under
certain environments. Furthermore, by means of the current counter-forensics
technologies, expert users may deceive forensics tools and mislead the FA.
Results analysis aims at putting into relation the di↵erent outputs coming
from each analysis step to avoid errors and produce more complete, accurate
and robust conclusions. In fact, while it may be easy for a skilled, possibly
“forensic aware” image retoucher to conceal some traces of his work, it would
be far more di�cult for him to fool an heterogeneous set of analysis tools that
account for many di↵erent traces. Then, chances for the analyst to reveal the
manipulation increase significantly when many di↵erent clues are put together,
making the “perfect crime” much harder to accomplish. As an example, the
results achieved in the source identification phase can be related to some Exif,
e.g., Make, Camera Model Name, Software, Focal Length to determine their
coherence. Generally speaking the reliability of the results is stronger if it is
sustained by di↵erent kind of analyses

Reporting The process of reporting the results involves the communication
of scientific considerations to a legal part. A clear and correct reporting of
the applied methodology must satisfy lots of requirements otherwise the whole
analysis could be invalidated. Such requirements essentially regard the valida-
tion of the digital data and of the applied Multimedia Forensics technologies
in the legal procedure. In order to make the image accepted as digital data
the FA must guarantee that the whole chain of custody for digital data has
been respected during the whole investigation process. International Standard
ISO/IEC 27037 can be used as reference for such a purpose. On the other
hand the validation of the Multimedia Forensics technologies is not clear yet.
Few general guidances come from ISO/IEC 27041 in the assurance for digi-
tal evidence investigation methods; some other principles (Daubert principles)
regarding the admissibility of expert witnesses testimony come from United
States. They provide a set of general observations that are considered relevant
for establishing the validity of scientific testimony:

• Empirical testing: whether the theory or technique is falsifiable, refutable,
and/or testable

• Whether it has been subjected to peer review and publication

• The known or potential error rate

• The existence and maintenance of standards and controls concerning its
operation.
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• The degree to which the theory and technique is generally accepted by
a relevant scientific community.

Anyway there’s no clear standard for the validation of the applied Multimedia
Forensics technologies (and technological tools in general).
In the next section we apply the proposed methodology in a case study.

3.4 A Case Study

In this Section we present a practical case study, where we walk through
the steps of the proposed methodology. We received a set of digital images that
were seized by the police and had to be used within a trial; we were asked
to determine whether images underwent manipulations such as insertion or
removal of objects, possibly locating manipulated regions. In the following
we focus on one JPEG image (see Fig. 3.2) for sake of brevity, and show
the methodology and the technological instruments we used to answer the
questions about it.

Figure 3.2: Case study image (face was blurred on purpose).

Metadata Extraction and Analysis We began our analysis from the
first step, that is metadata extraction and analysis. By using the exiftool

software [44], we extracted the information stored in the Exif header of the
image. Unfortunately, no relevant metadata were present regarding the source
device nor the acquisition/modification date nor the gps coordinate of picture.
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Figure 3.3: Wall detail.

Table 3.2: Output of forgery detection tools and their fused score according to [49].

Tool Name ROI1 ROI2
Aligned JPEG [46] 65.5% 61.6%

Not-Aligned JPEG [48] 0% 8%
JPEG Ghost [47] 76.7% 68.2%
Fused score [49] 72.8% 52.7%

Visual Inspection By visual inspection some anomalies became evident:
the edge of the wall is “crunched” near the center of the picture, and the grain
of the picture above that region is much smoother compared to the rest.

Authenticity Assessment Following visual inspection, we resort to image
forensics tools for forgery localization and detection. First, we use the tool
presented in [45] for forgery detection and localization. The tool allows two
kinds of analysis: forgery localization, where a map associating each 8⇥8 block
of pixels to its probability of being tampered is generated using the forensics
algorithm proposed in [46], and forgery detection, where the analyst manually
selects suspect regions and the tool runs three di↵erent forensics algorithms
[47, 46, 48], combining their decisions through a decision fusion engine tailored
to image forensics [49]. Localization results are reported in Fig. 3.4: we
see that the region that raised suspects actually contains inconsistent traces
of double quantization compared to the rest of the background; moreover,
the region corresponding to the person’s shirt drawing also shows anomalous
traces; we will denote these two regions, respectively, with ROI1 and ROI2
in the following (Fig. 3.4). To further investigate the authenticity of these
regions, we employ the forgery detection tool and the decision fusion system;
results are reported in Table 3.2, where in the first three rows the scores
of each used algorithm for both ROIs are shown, and in the final row the
corresponding fused scores.

Results Analysis We obviously skip metadata analysis, since they were
not present for the image at hand. If they were available, particular attention

24



Methodologies and Standards for Image Forensics A Case Study

Figure 3.4: Forgery localization map produced by the tool in [46] for the case study
image. Suspect regions are highlighted by a black circle.

would have been devoted to comparing the DateTime and DateTimeOriginal

fields, since they are typically di↵erent when the image has been opened and
re-saved. Another telltale tag is Software, which usually contains the name
of the last software that wrote metadata. Turning to the visual inspection,
the anomalies visible on the wall are compatible with an incautious use of the
smudge tool, whose low-pass nature alters the natural image grain. Suspects
about ROI1 are also confirmed by the instrumental analysis: traces of double
compression were not detected in that region while they were detected in the
rest of the image. This is again consistent with the hypothesis that some
processing tool was used on those pixels, removing traces of the previous
JPEG compression. As to the other region (ROI2), the output of other tools
and the fused score is much lower (Table 3.2), and no anomalies are visible.
By comparing the localization map and the visual content of the image, we
can state that probably the region was signaled as suspect because it contains
many bright-to-dark transitions, a situation that is known to make the analysis
less reliable [46]. Therefore, there is not clear evidence of manipulation for
that particular region.

Finally, based on our analysis, we can state that the complete analysis
supports the hypothesis that the image was manipulated, probably by erasing
someone/something that was present in ROI1.

In the next Chapter we introduce our contributions to the forensic tech-
nologies for image analysis and investigation.
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CHAPTER 4
Image Tampering Detection

faces Image Composition

4.1 Introduction

Current research suggests that people are not very keen on discerning be-
tween real and edited pictures [50]. This poses a critical problem, as softwares
such as Adobe Photoshop [51] and GIMP [52] allow anyone to easily create
high-quality composites. In such a scenario, an arms race between forgers and
forensics analysts is in progress [3]. While new and more sophisticated forges
are being conceived, forensic techniques keep evolving to catch them. Most
image manipulations, however, are neither malicious nor dangerous. There
are plenty of legitimate reasons to edit images, such as for marketing and de-
sign. Unfortunately, sophisticated tools developed for these tasks can be used
by forgers and the analysts have to struggle to catch up. In this section we
analyze the current state of this arms race between the field of image forensics
and image composition techniques. Here, image composition is used as an
umbrella term for all techniques from areas such as computer graphics, com-
putational photography, image processing and computer vision, that could be
used to modify an image. More specifically, we discuss works that have the
potential to either be used to perform or hide forges in digital images.

While many modern image-composition techniques could be used to make
sophisticated forgeries, almost none of them have been scrutinized by forensic
works. There is, however, a large body of forensic tools that could be used
for this task. Next section ( 4.2) surveys and classify the image composition
techniques, basing on the type of forgery they can perform, to identify the
best strategies to analyze these novel forgeries. Then both qualitative and
quantitative test are performed to assess forgery detection e↵ectiveness against
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image composition.

(a) (b) (c)

(d) (e) (f) (g)

Figure 4.1: Di↵erent ways in which composition techniques can be used to alter im-
ages. a) Removing soft shadows [53]. The hand shadow from the top image has been
removed on the bottom image. b) Inserting synthetic objects [54]. The marble angel
in the picture is not real, it was rendered into the scene along with its complex light
interactions. c) Performing edge-aware filtering [55]. The bottom image was filtered
to perform a localized color editing on some of the stone statues. d-f) Morphing two
di↵erent objects together to create a blend [56]. The cat in Figure 4.1e is a composite
of the cat in Figure 4.1d and the lion in Figure 4.1f. g) Transferring an object from
one image to another, adjusting its illumination according to the target scene [57]:
the building was spliced on the field in the top image, and in the bottom it had its
lighting adjusted to match the composition.

4.2 Image Composition Arsenal

The term “Image Composition” is used to encompass di↵erent fields such
as Computational Photography, Image Processing, Image Synthesis, Com-
puter Graphics and even Computer Vision. Recent works on all of these fields
were surveyed to determine which ones could be used to aid in forgery. For this
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purpose, techniques that a forger could use to perform any form of operation
were considered, from splicing to highly creative operations.

The techniques were classified in five general classes based on the type of
forgery they could perform:

• Object Transfering: transfering an object or region from one image
to another image, or even to the same image. This is the most com-
mon type of forgery, and encompasses both splicing and copy-and-paste
operations. It is mainly divided into Alpha Matting, Cut-Out, Gradient
Domain, Structurally Changing andInpainting ;

• Object Insertion and Manipulation: inserting synthetic objects into
an image or manipulating an existing object to change its properties. It
is divided into Object Insertion, Object Manipulation and Hair ;

• Lighting: altering image aspects related to lights and lighting. It is
divided into Global Reillumination, Object Reillumination, Intrinsic Im-
ages, Reflections, Shadows and Lens Flare;

• Erasing: removing an object or region from the image and concealing
it. It is divided into Image Retargeting and Inpainting ;

• Image Enhancement and Tweaking: this is the most general class of
forgery, and is related to what is considered retouching on the forensics
literature. It is divided into Filtering, Image Morphing, Style Transfer,
Recoloring, Perspective Manipulation and Restoration/Retouching.

It must be noted that some of the surveyed techniques could be used
to perform more than one type of forgery in the classification. Erasing, for
instance, is often performed by copy-pasting regions of the image to conceal an
object. In this sense, a technique under the Object Transfering classification
can be also considered on the Erasing class.

In the following, we discuss each of the di↵erent forgery classes and their
relation to the forensic traces and techniques.

4.2.1 Object Transferring

This class contains techniques that can be used with an end goal of trans-
ferring objects between images or in the same image. A fundamental task of
transferring an object or region is defining its boundaries, and techniques that
can help on making good contours are classified as Cut-out [58][59]. These
techniques do not change the content from the source or target images, they
only aid in selecting a pixel area.

Most techniques to detect splicing or copy-and-paste are well-suited against
Cut-out forgeries, because the pixel content is unaltered. From a forensics
point of view, well-defined boundaries on the transferred region reduce the
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amount of information being carried from the original image. This might
alter some traces and a↵ect the performance of techniques based on those
traces [60]. A bad cut can also be easy to note visually, without the use of
additional tools.

One of the main limitation of transferring objects by cut-and-paste is that
transparency is ignored. Hair, thin fabrics, glass, and edges may contain a
mix of colors from the foreground and background of the source image. This
can cause visual artifacts on the resulting composition, and the presence of
foreign colors that can be used for traces. Alpha Matting techniques can esti-
mate the transparency of a region in the image, which can be used to better
extract it from the source image, and then composite on the target image
(Fig. 3e-h). The visual aspect is the most critical on the use of alpha mat-
ting for object transferring, as it blends colors on borders and transparent
regions, making convincing forgeries. On most cases greater transparency is
present only on a small part of the composition, such as borders. The ma-
jority of the composited area remains una↵ected as a regular splicing. The
most sophisticated object transferring techniques are Gradient Domain ones.
These techniques aim to combine the gradient of the transferred object with
the target image, making a complex blend. The simplest technique is Poisson
Image Editing [61], which matches the gradients by solving a Poisson equa-
tion from the boundaries of the transferred region. The resulting object has
di↵erent colors and gradient, blending with the scene. Poisson Image Editing,
also commonly referred to as Seamless Cloning, spawned several works that
improved its basic idea of solving di↵erential equations for gradient matching
on transferred regions [62][63].

Works such as Sunkavalli’s [64] focus on the Laplacian Pyramid as the main
component for sophisticated blends between images, being able to maintain
the noise and texture of the target image (Figures 4.2e through 4.2h) to some
degree. This kind of approach was generalized [65] and improved [66] by other
authors.

Gradient Domain techniques can blend the whole transferred area and
merge the images on a profound level. There are big variations on the inner
workings of each technique, and the results are very dependent on the images
to be combined. Furthermore, most of these techniques can be finely tuned.
This makes them hard to be analysed from a forensics point of view. The
safest way to detect forgeries of this kind would be focusing on high-level
traces such as shadows and geometry. Light-based traces could help in cases
where a full object is being transferred, because the resulting colors after the
blending may create irregular lighting. When transferring parts of objects,
such as changing faces on an existing head (Figure 4.2d), it is possible that
the result can have plausible lighting and illuminant traces.

Object Transferring techniques are arguably the most relevant to the foren-
sics community, because they can be used to perform both splicing and copy-
pasting. Figure 4.2 shows an Alpha Matting (top row), and a Gradient Domain
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.2: Example of splicing using object transferring techniques. The top row
represents Alpha Matting, and uses the Shared Matting technique [67]. The bottom
row corresponds to Gradient Domain, and uses Multi Scale Harmonization [64]. The
source images are on the first column, the target images on the second colum, the
transference masks are on the third column, and the final result is displayed on the
fourth column for each technique.

(bottom row) splicing. Both forgeries are visually unnoticeable. Notice how
the alpha matte (Figure 4.2g) contains very precise information about the
transparency of each hair, and the mixture of colors on the final composition
(Figure 4.2h). The Gradient Domain composition exemplified does not use
transparency information (Figure 4.2c), but is able to transfer some of the
color and texture of the target image (Figure 4.2b) into the transferred region
of the source region (Figure 4.2a). The final result (Figure 4.2d) is a very
convincing composition.

4.2.2 Object Insertion and Manipulation

Images are 2D projections of a 3D scene, with complex interactions of
light and geometry. To insert a new object into the image, or to manipulate
existing objects, the properties of the 3D scene must be known. This is a
very challenging task. Techniques under this category focus on estimating
characteristics of the 3D scene or its objects, providing means to alter them
on a visually convincing way.

Rendering a synthetic object into an image is a simple task if the scene
lighting and camera parameters are known. Additional knowledge about scene
geometry also helps to increase realism. The challenge is to obtain this infor-
mation from a single image. The most advanced techniques for object inser-
tion, developed by Karsch, are able to estimate perspective, scene geometry,
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light sources and even occlusion between objects. In [68] heavy user input
was needed to aid the parameter estimation, whereas in a second work (Fig-
ure 4.1b) [54] most input tasks were replaced with computer vision techniques
to infer scene parameters.

The manipulation of objects in an image su↵ers from similar problems
than insertion. Scene lighting, camera parameters and geometry are required
for a visually convincing composition, and the geometry of the object being
modified must be also known. A slight advantage in relation to rendering
synthetic objects is that the photographic texture of the modified object can be
used, providing a more photo-realistic touch. It is possible to perform resizing
operations on objects without directly dealing with its 3D geometry [69], but
most techniques will focus on modeling it.

The easiest way to work with the geometry of objects in an image is to
limit the scope to simple primitives. Zheng [70] focus on cube-like objects,
modeling them through “cuboid proxies”, which allow for transformations
such as scale, rotation, and translation in real time. Chen’s work [71] uses
user input to model an objects geometry through swipe operations. This
technique works specially well on objects with some kind of symmetry, such
as a candelabrum or a vase, and allows changes in the geometry itself. Another
solution for dealing with object geometry is to use a database of 3D models,
and find one that fits with the object depicted in the image [72].

Manipulating human body parts in images is a specially hard task, be-
cause human bodies vary greatly in shape, and clothes a↵ect the geometry.
This type of manipulation, however, is of special interest due to its applica-
tions in marketing photography and modeling. Zhou [73] uses a parametric
model of the human body, and fits a photography to a warped 3D model,
achieving a correspondence between body parts in the image and 3D geome-
try. This allows the reshaping of body parts, making a person in a picture look
thinner, stronger, taller, etc. Hair manipulation is also a hot topic in image
composition, with a special focus on changing hair styles after the picture has
been taken [74][75].

Even though state-of-the-art techniques in image insertion and manipula-
tion can create visually convincing results, they should not pose a problem for
modern forensic techniques. Distinguishing between real and synthetic images
is a very debated topic [76][77], and there are forensic techniques that focus
on identifying them [78][79].

The weak point for this category of image composition is in the acquisition
traces. The process of rendering a synthetic object is di↵erent from capturing
it from a camera, so the acquisition traces should point to the manipulation,
providing FD1 or FD2 results (see section 2.2.1). Similarly, when performing
transformations on an object (scaling, rotating, deforming, etc.), its pixels
have to be resampled, changing the acquisition traces. Resampling detection
also could be used to obtain an FD3 result in these cases, while compression-
based techniques could identify this type of manipulation if the original image
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was compressed. Kee has demonstrated that object insertion might be able
to fool geometry-based lighting techniques [32], which could also extend to
object manipulation. The reason for this is that the same lighting parame-
ters estimated to verify the integrity of the scene were used to generate the
composition.

4.2.3 Erasing

An manipulation is usually called erasing when an element of the image is
intentionally removed or hidden, and not a consequence of other editing. This
category is comprised mostly of Inpanting and Image Retargeting techniques.

Inpainting techniques are used to complete a region in an image, filling it
with appropriate content [80]. By selecting a region that one wants erased
as the region to be completed, inpainting can make objects disappear. Sev-
eral works on inpainting are focused on stitching di↵erent parts of images
together [81][82], or filling large gaps [83]. There are implementations of in-
painting techniques already available on commercial editing sofware, such as
Photoshop’s Spot Healing Brush and Content Aware Fill tools. The main
limitation of inpainting is filling regions with high amount of details, or using
image features which are not local in the filling. Huang’s [84] work is capa-
ble of identifying global planar structures in the image, and uses “mid-level
structural cues” to help the composition process.

Image retargeting is a form of content-aware image resizing. It allows to
rescale some elements in an image and not others, by carving seams in the
image, i.e. removing non-aligned lines or columns of pixels [85]. The seams
usually follow an energy minimization, removing regions of “low-energy” from
the image. The objects and regions that have seams removed will shrink, while
the rest of the image will be preserved. This can be used to remove regions
of the image by forcing the seams to pass through certain places instead of
strictly following the energy minimization. Most research on image retargeting
focus on better identifying regions in the image to be preserved, and choosing
the optimal seam paths [86][87].

Erasing manipulations should behave in a similar fashion to object in-
sertion and manipulation, as the modified region will not come from a pho-
tograph, but from an estimation. This a↵ects acquisition and compression
traces, provided the original images were compressed. Image retargeting has
already been analyzed from the point of view of image anonymization [88],
and there is even a specific technique for its detection [89]. Detecting that
a seam carving has been done in an image would constitute and FD4 in our
scale.
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4.2.4 Lighting

Lighting techniques are capable of changing the lighting of scenes [90]
and objects [91][92], inserting light e↵ects such as reflections [93][94], lens
flare [95][96], and even manipulating shadows [97][98]. From a forensics point
of view, lighting techniques are dangerous due to their potential of concealing
other forgeries. After splicing an object in an image, for instance, a forger
could add convincing shadows and change its lighting, making it harder for
both human analysts and forensic techniques to detect it. Indeed, it is a
concern in image composition when the source and target lighting conditions
are di↵erent, and there are works focused on correcting this issue [99][100].

Due to the variety of lighting techniques, it is hard to make a general
statement about them from a forensics point of view. As always, it seems
plausible that at least an FD2 result can be achieved if compression is involved
in the forgery. Techniques that add shadows or change the lighting in a visually
convincing way, but do not account for all lighting parameters of the scene,
could fail to deceive geometry and light-based forensics analysis. Specifically
identifying light inconsistencies is an FD3 in our scale.

4.2.5 Image Enhancement/Tweaking

This is a broad classification for techniques that perform image modifi-
cations and are too specific to have their own category. Image morphing
techniques [56][101] can fuse objects together, creating a composite that is
a combination of them. Style transfer techniques are able to transform an
image to match the style of another image [102], a high-level description of a
style [103], or an image collection [104][105]. In the same vein, recoloring tech-
niques can add or change the color of image elements [106], and even simulate
a di↵erent photographic process [107].

Filtering techniques can be very flexible, allowing for a wide variety of
e↵ects. They can be used to remove noise or detail from images (Figure 4.1c)
[108], [109], or even to add detail [55] while preserving edges. Di↵erent filters
may be designed to obtain di↵erent e↵ects. From a forensics point of view,
filtering techniques can be used to remove low-level traces. A simple median
or gaussian filter is able to remove compression and CFA traces, but it is easily
detectable, as it softens edges. Edge-aware filtering, however, can be used to
destroy such traces preserving edges. If used in a careful way, it can remove
the aforementioned traces in a visually imperceptible way.

Perspective manipulation techniques allow an user to change the geom-
etry [110], and perspective [111] of a scene, or to recapture an image from
a di↵erent view point [112]. Its uses are mostly artistic and aesthetic, but
these techniques could be used to forge photographic evidence. The final type
of manipulation that will be discussed is Retouching. Retouching techniques
aim to perform adjusts on image properties such as white balance [113][114],
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focus [115], or several at the same time [116]. They can also aid in performing
adjustments in several images at the same time [117].

4.3 Experiments

In addition to the general analysis in Section 4.2, to understand how image
composition a↵ects forensics traces, we performed a set of experiments. This
task was challenging since there are no available implementations for most
composition techniques. Firstly, we performed test a more qualitative analysis
considering a broad variety of techniques, and a more quantitative experiment
focusing on a few state-of-the art techniques. The following two subsections
discuss both phases in detail.

4.3.1 Qualitative Analysis

Firstly, to test on a broader scope how di↵erent image composition tech-
niques a↵ect forensics traces, we gathered images from 12 di↵erent works on
image composition, either from the publication website or directly from the
authors. Approximately 80 images generated with 9 di↵erent types of forgery
described on Section 4.2 were studied. Our main goal was to analyze the
images directly before and after the composition has been applied.

In particular, we applied forensics techniques that analyze traces of CFA [7],
PRNU [8], Double JPEG compression [10], ELA, and high-frequency noise 1;
all these techniques generate as output a detection that can be used to visually
identify if the composition had any outstanding impact on the corresponding
traces. No objective conclusion can be achieved from the provided images
considering their limited number, the di↵erent amounts of pre-processing and
compression applied to them, the lack of knowledge about the tuning details
of the algorithms. However, the most interesting results and their descrip-
tions are shown in Figure 4.3. Then we focused the analysis on few available
composition techniques and on a well studied tampering detection approach
to provide quantitative results.

4.3.2 Quantitative Analysis based on JPEG Artifacts

For our quantitative experiment we focused on one of the most generally
e↵ective forensic approaches: image forgery localization via block grained anal-
ysis of JPEG artifacts, as proposed in [119]. This approach, by assuming that
tampered images present a double JPEG compression, either aligned (AD-
JPG) or nonaligned (NADJPG), can be used to detect a suspect region. We
replicated the experiments by considering the scenario where half of the image
has undergone manipulation; but while in the original paper only splicing was

1https://29a.ch/photo-forensics
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(a) (b) (c)

(d) (e) (f) (g)

Figure 4.3: Results of analyzing di↵erent traces for the images on Figure 4.1. (a)
ELA [118] of Soft Shadow Removal. In this case, it is not possible to identify any
irregularity in the composited image. (b) Noise analysis of object insertion. The first
identifiable irregularity is that the noise pattern for the shadow cast by the synthetic
object greatly di↵ers from other shadowed regions in the image (red arrows). The
indirect illumination estimated after the scene’s light interactions with the object
appear as salient planes in the noise map (orange arrows). (c) PRNU analysis of lo-
calized recoloring. The more yellow, higher is the correlation between the region and
the cameras sensor pattern noise. On the first image, there are some false positives
thorough the image caused by high frequency areas. On the recolored image, the
probability map shifts completely to the altered region. (d)-(f) Noise analysis of im-
age morphing. The morphing process creates distinct warping artifacts on the noise
pattern. (g) Double JPEG compression analysis of reillumination. The more yel-
low, higher the probability that the region has undergone double JPEG compression.
While the top image shows a very noisy pattern, in the bottom image the uniform
interpretation of a salient portion suggest that di↵erent compression traces (single
and double) are present in the image.

considered, here we compared its performance considering three object trans-
ferring approaches: Splicing (SP), Alpha Composition (AC) [67] and Seamless
Cloning (SC) [64].
Similarly to [119] we considered uncompressed TIFF images belonging to three
di↵erent cameras (Nikon D90, Canon 5D, Lumix G2): 100 images were used
for SP and AC while only 10 images for SC, due to its heavy computational
cost2. They were acquired with the highest possible resolution and their cen-

2It must be noted that these ten base images actually produced 1100 sample test images.
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tral portion 1024⇥1024 was cropped. Then the following steps were performed
for each image to produce A-DJPEG artefacts: i) JPEG compression withQF1

was applied, ii) the left half of the image was replaced with the original TIFF
applying each di↵erent object transferring technique, iii) JPEG compression
with QF2 was applied. The NA-DJPG artifacts are produced by removing a
random number of rows and columns between one and seven before step (ii).
The QF1 and QF2 are taken from the sets [50, 55, . . . , 95] and [50, . . . , 100]
respectively. We performed our analysis using 6 DCT coe�cients. The results
were evaluated using the area under the ROC curve (AUC) by varying QF2

(exactly as defined in [119]): AUC usually assumes values between 0.5 (ran-
dom classification) and 1 (exact classification). In the following we discuss the
achieved results, that are summarized in Figures 4.4 and 4.5 for the aligned
and not-aligned cases respectively.

Figure 4.4: (Best viewed in colours): Performance comparison of the A-DJPEG anal-
ysis for di↵erent object transferring approaches. Dotted lines show the results of
di↵erent alpha value ranges for alpha composition.

Alpha Composition: Since the result of the composition is strongly in-
fluenced by the value of ↵ defining the transparency of the tampering pixel
by pixel (see Section 4.2), to test all the possible outcomes we applied a linear
transparency gradient mask from the bottom left to the upper right corner
of the tampering (see example in Fig. 4.6a), with four di↵erent ↵ ranges: i)
[0, 1] - average response; ii) [0, 0.3] - high transparency; iii) (0.3, 0.7] - mid
transparency; iv) (0.7, 1] - low transparency. The results confirm that both A-
DJPEG and NA-DJPEG performance are strongly influenced by the ↵ value:
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Figure 4.5: (Best viewed in colours): Performance comparison of the NA-DJPEG
against splicing, alpha composition and seamless cloning tampering. Dotted lines
show the impact of tampering transparency on the performances.

transparent objects can be hardly detected unless the last compression is re-
ally slight. Conversely, in case of low transparency objects, there is no real
di↵erence between SP and AC. Considering that, in most real cases, high
transparency is applied only on a small percentage of the composition (like
borders or hair), we expect that the use of this technique would not degrade
the performance of the detection.

Seamless Cloning: The multi-scale technique allows to transfer the ap-
pearance of one image to another. It aims to to harmonize the visual ap-
pearance of images before blending them. Furthermore seamless boundary
conditions are imposed to produce a highly realistic result. To exploit the
peculiarity of this technique, the tampering region was slightly reduced ac-
cording to the mask frame shown in Fig. 4.6b. The achieved results show
that, similarly to the SP case, the detector produces an almost random out-
put when the second compression is too strong. Anyway, when QF2 is high,
the detector is still able to detect the tampering, although with lower accuracy
with respect to the SP case.

4.4 Conclusions

In this section we surveyed the fields of Image Composition and we as-
sessed the applicability of an e↵ective forensic technique for splicing detection
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(a) (b)

Figure 4.6: (a) One of the considered gradient transparency mask (↵ from 0 to 1)
applied for AC composition; (b) the mask frame adopted to reduce the tampering
region for SC composition.

against di↵erent kind of object transferring techniques quantifying how the
performances are a↵ected both on the kind of artifact (aligned or not-aligned
double compression) and the parameters introduced by the composition tech-
nique (e.g., transparency factor in alpha composition).

A natural extension for this work would be to increase the number of tech-
niques surveyed and tested, considering other traces and forensic approaches.
Since both fields are in an “eternal arms race” the list of available works to
be compared will keep increasing each year.
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CHAPTER 5
Geometric Based Tampering

Detection

It is well known that, when an image has undergone several processing
as filtering and compression (e.g., it has been uploaded to a social network
or modified with in-camera apps), the performances of most tools based on
signal-level traces may be strongly a↵ected, in an unpredictable way. Fur-
thermore, when the image has been strongly compressed in the end of its life
cycle, most of these traces are ruined by the quantisation operations. In these
cases, techniques based on scene-level traces, e.g., geometry, have proved to
be much more robust to common processing. In this chapter we investigate
two techniques based on geometrical properties of the image. Specifically, in
Section 5.1 we introduce the geometrical model for the mapping of the 3D
scene on the image plane; in Section 5.2 and 5.3 we discuss two techniques for
Splicing and Cropping Detection respectively. The first is based on a general
perspective constraints, the second on image principal point shift introduced
by image cropping. For both techniques we also investigate their applicability
on images exchanged through a social network.

5.1 Introduction to Pinhole Model

A digital image is the outcome of a 3D world scene mapped onto a 2D
plane. This process can be modelled by means of the pinhole model consisting
in a central projection of space points onto a plane.
Let us consider a Euclidean coordinate system and the plane Z = f , called
image plane or focal plane. As shown in Fig. 5.1, a world point X is mapped
to the point on the image plane where a line joining the point X to the centre
of projection meets the image plane. The center of the projection is usually
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called camera centre or optic centre. The line from the camera centre per-
pendicular to the image plane is called the principal axis of the camera, and
the intersection between the principal axis and the image plane is called the
principal point.

Figure 5.1: Pinhole Model

If we represent the world and image points by homogeneous vectors, the
central projection of the 3D scene onto the image plane can be simply ex-
pressed as a linear mapping [35]:

x = K[I|0]X (5.1)

where X = (X,Y, Z, 1) and x = (x, y, 1) are the homogeneous coordinates
of world and image points respectively, whereas K is the camera calibration
matrix containing the internal camera parameters. The general form of K is
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where f is the focal length, while the aspect ratio ⇢ and skew s take into
account the actual shape of a pixel. Lastly, (p

x

, p
y

) are the coordinates of the
principal point.
Modern cameras have reached a high level of quality, with unity aspect ratio
and zero skew. So, without significant loss of accuracy, the K matrix can be
often modelled with ⇢ = 1 and s = 0, passing from 5 to 3 degrees of freedom.
In the proposed model, the camera is assumed to be located at coordinate
system origin with the principal axis of the camera pointing straight down the
Z-axis with the points expressed in this coordinate system, called the camera
coordinate frame. In general, points in space can be expressed in terms of a
di↵erent Euclidean coordinate frame, known as the world coordinate frame.
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The two coordinate frames are related via a rotation R and a translation t.
In this case the general projection rule takes the form:

x = K[R|t]X (5.3)

with [R|t] defining the extrinsic matrix. In general we refer to the camera
matrix P = K[R|t], which is usually called projection matrix.
In the following section we briefly review the theory behind the vanishing
points that are required for the proposed applications.

5.1.1 Vanishing points estimation

It is well known that the perspective image projection of parallel lines in
the 3D world intersect at a vanishing point (VP). It can be easily shown that
the vanishing point v

d

for a 3D direction d = (d
x

, d
y

, d
z

)> —expressed in a
coordinate frame with its origin in the camera center and its Z-axis coincident
with the optical axis—is

v
d

= Kd (5.4)

In a practical scenario, if more than two concurrent lines are available,
their intersection will not be unique (see Fig. 5.2)—since noise can perturb the
image line detection—and the VP have to be estimated with an optimization
algorithm. In our experiments we employ the solution reported in [35], Chapt
8, where, after initializing the VP by solving a linear least square problem, a
non-linear optimization is carried out.

Figure 5.2: (Best viewed in color) In red, green and blue three sets of image lines cor-
responding to orthogonal 3D directions. Since noise can perturb the line orientations
the intersection can be not unique, as shown in the magnified area.
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5.2 Splicing Detection based on General
Perspective Constraints

In this section we present a method for forgery detection based on perspec-
tive constraints; similar techniques have been proposed in the past but they
are e↵ective only when the image is captured with no tilt and no roll thus been
unusable in most natural scenes. Here, this solution is extended to include
these cases, and we show its applicability even when the image is exchanged
through a social network (specifically Facebook and Twitter) where the image
is subjected to heavy compression and resizing. This section is organized as
follow: in Section 5.2.1 recent works based on geometric traces are reported;
in Section 5.2.2 we summarize the method proposed in [120] to detect spliced
subjects in low perspective image; in Section 5.2.4 we introduce the theoretical
model to obtain height ratio in general perspective images; in Section 5.2.5
the proposed method is explained in details Finally, in Section 5.2.6 experi-
mental results are shown on native images and on the same images exchanged
through social media platforms, namely Facebook and Twitter. Finally, in
Section 5.2.8 some conclusions are drawn.

5.2.1 Related Works

In last years di↵erent kinds of geometric constraints have been exploited
to expose spliced images: in [121] the authors demonstrate that in presence of
translation of a person or of an object, the principal point (the projection of
the camera center onto the image plane) is shifted proportionally. Di↵erences
in the estimated principal point across the image can then be used as evidence
of manipulation. The manipulation may concern not only the splicing of peo-
ple and objects but also the tampering of other details in the picture. For
instance a text on a sign or billboard is relatively easy to do in a perceptually
convincing way.
In [122] Conotter et al. show how to determine whether the depicted text pre-
cisely satisfies the geometric mapping of a plan under perspective projection.
Any deviations from the model are exploited to expose the tampering.
In [120] a perspective-constraint method is proposed to detect image splicing.
The method is based on the computation of the height ratio of two subjects in
an image starting from the vanishing line of the plane on which both subjects
of interest are placed, and the vertical vanishing point, whereas the knowledge
of camera parameters is not required. The authors observe that while pasting
a subject into an image, it is di�cult to properly size it in such a way to re-
spect the principles of visual perspective. Then, if the estimated ratio exceeds
a tolerable interval, then it is revealed that one of the two subjects was spliced
into the scene. Unfortunately this detection method can be applied only if
the picture is taken with no tilt and no roll, resulting almost useless on many
natural images.
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We propose then a generalization of this last method in general perspective
condition. Furthermore we test its e↵ectiveness on images that have been
downloaded from most relevant social network, namely Facebook and Twitter,
thus proving its applicability in social scenario and its robustness to compres-
sion.

5.2.2 Height Ratio Estimation in low perspective images

Yao et al. [120] describe a method to determine whether two subjects in an
image have proper relationship in size satisfying the perspective rules. This
is done by estimating the ratio of their height in uncalibrated scene and by
checking its consistency with respect to the supposed known ratio.
In the following we describe the procedure pushing back the theoretical model
that will be deeply analyzed in the next section.
The authors consider a simplified scenario in which the two subjects, namely
A and B are placed on the same plane (called reference plane) and the scene
is taken with no roll or tilt of the camera so that the optical axis is parallel
to the reference plane. In this case the ratio of their respective heights, say
ZA
ZB

, can be easily estimated from the vanishing line of the reference plane
and is independent of the camera’s intrinsic parameters. The procedure is
composed by four steps: objects selection, vanishing line detection, height
ratio computation and consistency measure.

Objects selection The user manually selects in the image coordinates the
top and bottom of the two subjects to be checked, obtaining on the vertical
axis v the points having coordinates (t

A

, b
A

) and (t
B

, b
B

) respectively (as
shown in Fig. 5.3);

Vanishing line detection With no tilt or roll the vanishing line V L of the
reference plan is horizontal and thus can be determined from a single vanishing
point having ordinate v0. Since usual scenes contain several lines that in the
real world are parallel (like road sides, buildings, furniture), the vanishing
point can be obtained from the intersection of these lines in the image plain.

5.2.3 Height ratio estimation

Given the above coordinates, the height ratio � of the two subjects can be
easily estimated (see Eq. (7) in [120]) as:

� =
Z
A

Z
B

=
(t

A

� b
A

)(v0 � b
B

)

(v0 � b
A

)(t
B

� b
B

)
(5.5)
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Figure 5.3: Two subjects, A and B, are placed on the reference plane. tA, bA, tB , bB
represent their top and bottom ordinates in the image coordinates; v0 is the ordinate
of the vanishing line (V L) of the reference plane.

Consistency measure The estimated ratio � is then compared with the
correct ratio ↵ obtained by some a priori knowledge about the real size of
the subjects under analysis or indirectly derived from some reference object
with known height having the same depth of the two targets. In absence of
tampering, the estimated ratio obeys the Gaussian distribution with a mean
equal to the correct ratio ↵, such that (��↵) ⇠ N(0,�2). Then it is possible
to define a consistency measure C as

C = 2F (�|� � ↵|; 0,�2) (5.6)

where F (x) is the cumulative distribution function of (x � ↵). As it is de-
fined, the measure C 2 [0, 1], reaches its maximum when � = ↵ (when the
estimated and expected value are exactly the same) while decreases when the
di↵erence between � and ↵ increases. Thus, if C < T , where T is a properly
defined threshold, then it is derived that one of the subjects under analysis is
doctored.
According to the authors of [120], this method is e↵ective in tampering detec-
tion even with low tilt or roll of the image but cannot handle images captured
under general perspective. In the next section, we show how the estimation
can be extended to more general conditions.

5.2.4 Height Ratio Estimation in uncalibrated scenes

Let us consider a reference plane with the X and Y -axes spanning the
plane, and a direction Z not parallel to the plane (see Fig. 5.4). Then the
first three columns of the projection matrix P represent the vanishing points
of the directions X,Y and Z respectively (see Lemma 1), so that v

X

= p
1

,
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v
Y

= p
2

and v
Z

= p
3

. It can be easily shown that we can set p
4

= l

||l|| = l

with l = v
X

⇥ v
Y

(because in natural photos the mapping of the reference
plan Z = 0 onto the image is not degenerate so that the homography defined
by [p

1

,p
2

,p
4

] is full rank).
Therefore the projection matrix can be rewritten as:

P = [v
x

v
y

↵v
z

l] (5.7)

with ↵ the factor defining the scale of the projection.

Lemma 1. Given the world reference system in the space XY Z and v
X

, v
Y

,
v
Z

the vanishing points corresponding to the directions of X, Y and Z axes
respectively. Let P = [p

1

p
2

p
3

p
4

] the projection matrix. Then v
X

= p
1

,
v
Y

= p
2

and v
Z

= p
3

.

Proof. A world line can be parameterized as X(�) = A+ �D, with A a point
on the line and D = (dT , 0) a direction in the space. X spans all the points
on the line, including the point to the infinity D when � ! 1. The world
point X(�) is mapped on x(�) by the projection rule

x(�) = P (A+ �D) = a+ �PD (5.8)

and the vanishing point for direction D as

lim
�!1

x(�) = PD. (5.9)

Then, the vanishing point v
X

of the direction D
X

= (1, 0, 0, 0)T is

v
X

= [p
1

p
2

p
3

p
4

]

2

664

1
0
0
0

3

775 = p
1

(5.10)

and similarly that v
Y

= p
2

and v
Z

= p
3

.

Let us consider a target A placed on the reference plane, such that its
base and top a�ne coordinates in the 3D space are X

A

= (X
A

, Y
A

, 0) and
X0

A

= (X
A

, Y
A

, Z
A

) respectively. If P is the projection matrix, these points
are mapped onto the image points through x

A

= PX
A

, x0
A

= X0
A

.
As shown in [123] the height Z

A

of the target A can be determined up to the
scale factor ↵ as

↵Z
A

=
||x

A

⇥ x
0
A

||
(l ·x

A

)||v
Z

⇥ x
0
A

||
(5.11)
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Figure 5.4: World reference system XY Z with vertical direction Z not parallel to
the reference plane XY , the vertical vanishing point vZ and the vanishing line of the
reference plane l.

where ( · ) and (⇥) are scalar and cross products respectively.
Then, given a second target B on the reference plan, height ratio ZA

ZB
can be

easily determined using eq. (5.11) as

Z
A

Z
B

=
||x

A

⇥ x
0
A

||
||x

B

⇥ x
0
B

||
(l ·x

B

)||v
Z

⇥ x
0
B

||
(l ·x

A

)||v
Z

⇥ x
0
A

||
(5.12)

Equation (5.12) shows that the height ratio between targets A and B, both
placed on the reference plane, can be computed from their image coordinates,
if we assume the knowledge of the vanishing line of the reference plane and
the vanishing point of the vertical direction.

5.2.5 Proposed Method

The proposed method can be decomposed (as shown in Fig. 5.5) in two
main steps: i) an user interaction step, consisting in the selection of points
to determine the vanishing line of the reference plane, the vanishing point of
the vertical direction and the targets borders, ii) the automatic procedure in
which the height ratio is estimated and it’s consistency is evaluated.

Vanishing line/points detection First step is the estimation of the van-
ishing line l of the reference plane and the vertical vanishing point v

Z

. The
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Figure 5.5: Scheme of the proposed method: in the user interaction step the needed
image point coordinates are acquired, while in the automatic part the height ratio is
computed and the consistency measure derived.

vanishing line can be commonly identified by the cross product of the vanish-
ing points of two non parallel directions of the reference plane (e.g., v

X

v
Y

);
geometric elements or drawings present on the reference plane can fit for this
purpose. Similarly, v

Z

can be determined from the intersection of vertical
lines of buildings and furniture.
At least two lines are needed to estimate a vanishing point but if more are
available, then their intersection can be robustly estimated as shown in [35].
In our experiments we choose the vanishing point as the one that minimizes
the sum of its euclidean distances from the given lines.

Targets Selection Top and bottom of the two targets A and B are man-
ually selected by the user, thus obtaining x

0
A

, x
A

, x
0
B

and x
B

. Each couple
of top and bottom should be aligned with v

Z

(being the target aligned to the
vertical direction), then the points selected by the user have to be corrected
to satisfy the geometric constraint. In our experiment, given a couple x0, x,
we detect the correct points y0, y by solving

min
y

0
,y

[||x0 � y0||22 + ||x� y||22] (5.13)

subjected to the alignment constraint

v
Z

· (y0 ⇥ y) = 0 (5.14)

Height Ratio Estimation Height ratio � can be estimated through Eq.
(5.12) using the detected vanishing line l, the vertical vanishing point v

Z

and
the two corrected points y0, y of both considered subjects.

Consistency Measure The computed ratio � is compared with the sup-
posed ratio ↵ and the consistency factor C is obtained through Eq. (5.6).
Similarly to [120] we set � = 0.1↵. Finally, given a threshold T , the image is
classified as tampered if C < T .
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5.2.6 Experiments

The proposed method has been tested on native images and then on the
same images exchanged through social networks, namely Facebook and Twit-
ter. All the pictures have been captured in a general perspective with tilt and
roll of the camera with respect to the reference plane1. The subjects depicted
in the scene consist both in objects and people thus taking into consideration
the possible errors introduced by border selection on di↵erent types of targets.
The dataset is composed by 7 high resolution images (6-8 Mpixel) containing
both authentic and tampered elements, specifically:

• n. 5 images containing 4 authentic and 2 tampered elements;

• n. 1 image containing 6 authentic and 3 tampered elements (reported
as an example in Fig. 5.6);

• n.1 image containing 6 authentic elements.

Figure 5.6: Example of image from the dataset used in the tests. Tampered elements
are highlighted by red dots.

As shown in Table 5.1, with the considered dataset, 118 couples of subjects
have been evaluated. Specifically 60 authentic couples (in which both elements
are really depicted in the scene) and 58 tampered couples (in which only one
of the two elements is really depicted into the scene while the other is tam-
pered) have been tested. Considering that the performance of the method are
influenced by user interaction in the vanishing points and border selection, the
test has been carried out by three di↵erent users to average their introduced
error.

1the dataset is available at https://iapp.dinfo.unifi.it/index.php/english/

materials_en/datasets_en.
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The height of each analyzed subject is known, so that the real ratios ↵
i

,
with i = 1, ..., 118, between any two elements can be exactly determined; then
the same ratios have been estimated with the proposed method obtaining �

i

.
Finally the consistency factors C

i

have been computed through the Eq. (5.6)
for each couple of elements in the same image.

Authentic
Targets

Tampered
Targets

Number of
Pictures

Autentic
Couples

Tampered
Couples

4 2 5 30 = 6x5 40 = 8x5
6 3 1 15 18
6 0 1 15 0

TOT 60 58

Table 5.1: Details of the subjects considered in each picture and corresponding num-
ber of the estimated consistency factors evaluated during the tests.

In Fig. 5.7 we report the Receiver Operating Characteristic (ROC) curve
showing the detection rate against the false alarm rate obtained by varying
the threshold. The results show that a with a false alarm rate of 1.7%, the
algorithm yields a detection rate of 98%, thus validating the e↵ectiveness of
the proposed idea.

Figure 5.7: The ROC curve describing the performance of the method in terms of
correct detection vs. false alarm probability.
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(a) Original photo (b) Facebook version (c) Twitter version

Figure 5.8: Detail of one picture in its native version (a), Facebook version (b) and
Twitter version (c).

5.2.7 Application to social network images

We tested the applicability of the proposed method in a social web scenario,
specifically when the image under analysis is exchanged through Facebook and
Twitter. The study has been carried out on images of the same dataset that
have been uploaded on Facebook (choosing the worst quality) and Twitter,
and then downloaded from them. In Table 5.2 we report an example of the
signal degradation introduced by Facebook and Twitter processing on one
image of the dataset. The quality factor (QF) of the compression has been
estimated through Jpeg Snoop [124] and reported in the last column. An
example of visual degradation introduced by the processing associated to the
upload on the social platform is shown in Fig. 5.8.

Table 5.2: Signal degradation introduced into one image of the dataset by exchange
through social networks

Type Resolution Compression Estimated

(MPixel) (in %) QF
Native 6.9 0 93

Facebook 0.4 94,2 77
Twitter 0.2 97,1 74

Table 5.3: Area Under Curve for Native, Facebook and Twitter Images.

Type AUC

Native Dataset 0.9807
Facebook Dataset 0.9776
Twitter Dataset 0.9778

The test has been carried out again by three di↵erent users, and the re-
sults in terms of ROC have been reported in Fig. 5.7. The curves are almost
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unchanged with respect to the one obtained on the native dataset, thus show-
ing that the method is robust to the degradation introduced by resize and
compression. To have a quantitative evaluation, in Table 5.3 the Area Under
the Curve (AUC) is reported for all the three cases.

5.2.8 Discussion

We proposed a method for forgery detection based on general perspective
constraints and we showed its applicability even when the image is down-
loaded from a social network (specifically Facebook and Twitter) where the
image is subjected to heavy compression and resize. This method improves a
similar technique proposed in the past that is e↵ective only when the image is
captured with no tilt and no roll thus been unusable in most natural scenes.
The method is based on the comparison of two targets placed on the same
reference plane that is not always possible. Future works will allow the pos-
sibility of compare targets placed on parallel planes or to compare more than
two targets to obtain more accurate results. Another issue that has to be
investigated is the modelling of the uncertainty due to the user selection of
vanishing lines and borders of the targets. This study is needed to assess the
reliability of the achieved results.

In the next section we’ll consider another physical trace, namely the image
principal point and we’ll focus on assessing the reliability of its estimation
under di↵erent environments.

5.3 Cropping Detection based on Principal Point
Estimation

In this section we consider another scene-level trace, namely the image
principal point (PP). Forensic community developed techniques, based on PP,
to expose both image splicing and cropping [121, 125, 126]. Here, focusing
on the latter application we evaluate the reliability of its estimation under
di↵erent conditions, showing how state of the art results may be a↵ected.
In particular, we studied the estimation of the PP, by exploiting vanishing
points related to three mutually orthogonal directions [35]. Several tests were
performed, on synthetic as well as real images, by varying both the point of
view—so as to obtain di↵erent perspective conditions—and the number and
position of the extracted features. A critical study of the obtained results led
us to define a novel feature, referred to as Minimum Vanishing Angle (MVA),
allowing us to measure the reliability of the PP identified into the image
under analysis. Using the MVA concept, it’s possible to establish a criterion
to select lines on the image to achieve better performance. Specifically, one
should just care about to choose lines providing the widest possible MVA,
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since the accuracy of PP estimation relies on MVA amplitude rather than on
the number of image lines used.

The section is organized as follows: in Section 5.3.1 the related works are
reported and in Sect. 5.3.2 we briefly review the theory behind the adopted
PP estimation method. In Section 5.3.3 we introduce the MVA and its re-
lation with the image perspective conditions. Then in Sect. 5.3.4 an in deep
analysis of the reliability of the method is provided. Section 5.3.5 presents the
forensic applications of the PP for cropping detection. Section 5.3.6 concludes
summarizes the contributions in light of the achieved results.

5.3.1 Related Works

The estimation of the image PP from a single image is a known issue
in computer vision and photogrammetry, usually embedded into the cam-
era calibration problem, where the intrinsic parameters of the camera taking
images of the scene (including focal length, principal point, pixel skew and
aspect ratio) need to be estimated [127, Chapter 2]. In order to calibrate
the camera, accurate o↵-line techniques usually require a known pattern into
the scene [128, 129]. Other methods use video sequences or multiple images
to self-calibrate the camera while solving the Structure from Motion prob-
lem [130]. In addition, solutions that exploit specific characteristics of the
scene or particular objects in it have been proposed. In [131], coaxial circles
are extracted from objects in the scene and used to estimate the calibration.
In [132, 133, 134], the structural layout of a Manhattan World scene [135] is
used instead to recover the intrinsic parameters by detecting the vanishing
points corresponding to mutually orthogonal directions.

All the reported methods assume to use genuine images only, without
any malicious modification. This hypothesis allows the authors to impose
constraints on the parameters to ease and improve the estimation (for example,
the PP is often initialized in the image center). Obviously, in the forensic
application scenario, this assumption doesn’t hold: no a priori information on
the parameters can be supposed in the estimation process. Moreover, we have
to typically deal with single images already acquired, so it’s often impossible
to employ solutions that require multiple images or a calibration pattern in
the scene. The only viable approach is to find useful characteristics already
present in the images. Given the abundance of line elements in pictures of
real scenes, we focus on techniques based on vanishing points computation.

Given these di�culties, forensic literature presented only few methods that
try to exploit the camera PP as a cue for tampering detection. In [121],
the authors presented a method based on the estimation of the homography
mapping a person’s eyes to the image plane. Then, the PP is recovered by
homography decomposition (supposing focal length is known) and exploited
for splicing detection. A similar approach, that exploits circles in the image
to obtain the PP position, is presented in [125]. In [126], the authors notice
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that asymmetric cropping of an image introduces a correspondent shift of
the principal point. Hence, the distance between the estimated PP and the
image center can be exploited as evidence of cropping. Slightly di↵erent, but
still related to this topic, is the approach described in [136] where, instead of
estimating the PP, tampering detection is based on the direct observation of
the vanishing points of di↵erent 3D structures (e.g. buildings).

5.3.2 Principal Point Estimation

The image PP can be estimated by determining three vanishing points
corresponding to three orthonormal directions. Let d1, d2 two orthogonal
directions in the 3D space and v1, v2, their correspondent vanishing points
respectively. Using Eq.(5.4), it holds

0 = d>
1 d2 = (K�1v1)

>(K�1v2) = v>
1 !v2 , (5.15)

where ! = (KKT )�1 is the image of the absolute conic, depending on the
three camera parameters f and (p

x

, p
y

). Given three vanishing points corre-
sponding to three orthogonal directions, we can thus define three independent
constraints and finally estimate ! by solving a linear homogeneous system.
Eventually K can be obtained using the Cholesky factorization of !, from
which both focal length and principal point can be estimated [35].

Summarizing, the estimation of the PP on a single image requires three
main steps: (1) selection of three groups of concurrent image lines, correspond-
ing to mutually orthogonal direction in the scene; (2) estimation of vanishing
points; (3) computation of ! and recovery of f and (p

x

, p
y

). The first step can
be done in a manual or semi-automatic way. To the best of our knowledge,
no fully automatic method is actually available to detect mutually orthogonal
lines, if no a priori information can be used, like in a forensic scenario. Indeed,
in the computer vision field, many works have appeared dealing with the prob-
lem of line selection and grouping. Typically, these methods firstly retrieve
the image line segments (e.g., using the Canny method [137]), then execute a
clustering step to group lines converging to the same vanishing point. This can
be achieved through iterative refinement with an Expectation-Maximization
approach [138], by using a schema based on the Hough transform [139], or us-
ing a robust estimator based on the Random Sample Consensus (RANSAC)
method [140], usually modified to be able to deal with multiple models, such
as the J-Linkage algorithm [141], employed in [142].

The main issue here is the selection of mutually orthogonal line clusters:
if the camera calibration is known, this problem can be solved with less ef-
fort, even simultaneously with the line clustering by including orthogonality
constraints [143], and operating directly in the image space [144], or in par-
ticular accumulation spaces, such as the Gaussian sphere [145]. On the other
hand, if neither the focal length, nor the principal point can be fixed a priori,
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it isn’t possible to check the vanishing point orthogonality without an user
intervention, or anyway under the hypothesis that the three most populated
line clusters are related to orthogonal directions. Given these criticisms, in
this work we preferred to use a manual line selection scheme. Moreover, notice
that also in [136] parallel lines are validated by the user; while in [126] no spe-
cific indication is given about the method to automatically detect orthogonal
vanishing points.

5.3.3 Perspective Analysis

In this section, we evaluate the performance of the PP estimation algo-
rithm under di↵erent perspective conditions, so as to determine if and how its
accuracy changes when passing from weak to strong perspective images. The
following two subsections report the results of synthetic and real world tests
respectively.

Synthetic tests

In order to carry out extensive tests, a synthetic dataset featuring 248
representative camera poses was built as follows. A 3D cube with unit length
sides was placed in the center of the world coordinate frame with its X, Y , Z
axes aligned with the cube. Then, 248 camera center positions were sampled
over a sphere of radius r, by varying their azimuth by an angle ↵ 2 (0,⇡/4] and
their altitude by an angle � 2 (0,⇡/2) with steps of ⇡

32 and ⇡

64 respectively;
all other perspective conditions can be deduced by symmetry. Since the VPs
are invariant to translation, the camera distance with respect to the world
coordinate frame (i.e. the radius r) was kept fixed. In the camera coordinate
frame, the z-axis is the line passing through the camera center and the world
coordinate origin. The x-axis is perpendicular to the z-axis and parallel to
the world plane defined by X and Y and, finally, the y-axis is obtained from
the cross product between the unit vectors of the z and x axes (see Fig. 5.9).

We excluded extrema positions — i.e. when ↵ = 0, � = 0, � = ⇡/2 —
that produce orthographic images of the cube, thus leading to known degen-
eracies in VP estimation. Likewise, camera roll was not taken into account
considering that, as any pure rotation, no parallax e↵ects are induced, thus
leaving the perspective appearance of the image unaltered. From each camera
pose P (↵,�), an image of the cube was acquired by using a virtual cam-
era with known PP and focal length. With noise-free measurements (i.e.,
line points are selected with no error), the PPs were estimated with an Eu-
clidean error with respect to the ground truth lower than 10�9 pixels in all
the positions. The behaviour in the presence of noise was then evaluated by
carrying out a Monte Carlo simulation: for each pose we collected 1000 prin-
cipal points PP (↵,�) = {PP1(↵,�), . . . , PP1000(↵,�)} by perturbing the line
points with a noise from a zero mean Gaussian distribution with standard
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Figure 5.9: (Best viewed in color) Synthetic data setup. A cube is placed at the
center of the world coordinate system O, with its sides aligned with the axis X,Y ,Z.
The image is taken from the camera — represented here as a pyramid — with center
o(↵,�) with a relative coordinate system x, y, z.

deviation � = 0.5 pixel — representing an uncertainty of at most 1.5 pixel
radius in points selection. For each test we determined a robust index for
the dispersion of the collected PP (↵,�) as follows: we trimmed the 5% of the
points with highest distance from the ground truth PP, then we calculated the
standard deviations (STD

x

, STD
y

) of the remaining points along the x and y
axes and we chose their maximum as a dispersion index of the estimated PP
for that position.

Results are graphically reported in Fig. 5.10a, where the synthetic cube
is placed in the origin of the coordinate frame aligned with the orthogonal
axes, while each point represents a camera position, colored according to the
correspondent estimated dispersion. Notice that the scattering of the esti-
mated PPs is strictly related to the image perspective: Most of the poses have
comparable uncertainty, except when marginal ↵ or � occurs. In those cases,
the computation accuracy of the VPs strongly drops, and the PP estimates
become unreliable and virtually useless for forensic purposes.

These results suggest the possibility to define a novel image feature to be
used by the forensic analyst to evaluate the expected accuracy. Firstly, given
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(b)

Figure 5.10: (Best viewed in color) 3D plots representing results obtained with the
synthetic data setup: in both figures, the virtual cube is placed in the origin of the
coordinate system, aligned with the orthogonal axis. Colored points represent the
tested camera positions. In (a) we report the maximum STD (between x and y-axis)
of the estimated PP: the PP dispersion is bigger for reddish and, lower for blueish
points. In (b) the same camera poses are reported but with color related to the MVA:
poses with wider MVA are reported in blue, while poses with narrower MVA are in
red. Note that poses with lower STD are characterized by wider MVA, and vice-versa.
In both plots, the thresholds used to assign colors are obtained from the deciles (i.e.
ten quantile with step of 10%) of the respective distribution (STD and MVA).

a vanishing point v
i

, let ✓
i

be the widest angle among those obtained from
the pairwise intersection of lines concurrent to v

i

(see Fig. 5.12). Then, given
✓1, ✓2, and ✓3, related to three mutually orthogonal VPs, we can define the
Minimum Vanishing Angle (MVA) as

MVA = min(✓1, ✓2, ✓3) (5.16)

A visual representation of the MVA values for di↵erent camera poses is re-
ported in Fig. 5.10b. Its comparison with the results in Fig. 5.10a confirms
our intuition that the proposed feature is a sensible indicator of PP disper-
sion. Indeed, small MVAs are associated to marginal poses characterized by
a weaker perspective.

Tests on real images

To compare the synthetic data with real experiments we clustered the 248
synthetic poses in three groups according to their correspondent MVAs: Weak
Perspective (MVA < 1.5�), Mid Perspective (1.5�  MVA < 4�), and Strong
Perspective (MVA � 4�). Then we considered 12 images from the York
Urban Database [146] spanning several MVAs between 0� and 7.52�. For
each image 25 di↵erent PPs were computed, as described in Section 5.3.2, by
letting 25 di↵erent users to select three lines for each direction. In Figure 5.11
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(P1080104) (P1080005) (P1030004) (P1080057)

(P1080021) (P1080025) (P1020867) (P1080047)

(P1020829) (P1040863) (P1020830) (P1040798)

Figure 5.11: Twelve images, and their names, from the York Urban Database [146],
used in the real test to corroborate results achieved with the synthetic cube dataset.
Top row shows images with strong perspective, with MVAs spanning from 7.52� to
5.53�. Second row includes mid perspective images with MVAs from 3.96� to 2.11�.
Finally, the last row shows images with low perspective and MVAs from 1.09� to
⇠ 0.00 �. MVA here reported are the mean value of the MVAs computed on each
image during the tests, since any user can select di↵erent lines and obtain slightly
dissimilar MVA.

Figure 5.12: (Best viewed in color) Graphical visualization of angles obtained from
the pairwise intersection of lines concurrent to the same VP. In this case ✓i correspond
to ↵1,4 since it is widest angle available.

we reported the name of the selected images, their MVAs estimated by users
selection and the perspective group they belong to (Weak, Mid or Strong).

The achieved results are compared in Figure 5.13. Crosses represent the
estimated PPs on real images: in red, green and blue for the images belong-
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Figure 5.13: (Best viewed in color) Comparison of results achieved from synthetic
and real images. Crosses represent the estimated PPs (red for subway, green for hall,
blue for building). Ellipses enclose the PPs distribution obtained in synthetic tests.

ing to Weak, Mid and Strong perspective groups respectively. The plotted
ellipses represent the 95% confidence ellipses estimated on the corresponding
synthetic clusters. Synthetic results show that the estimation is expected to
be extremely noisy on the Weak perspective cluster while more accuracy and
stability is expected on the Mid and Strong cluster where the MVA is wide
enough. Real data confirm the synthetic prediction (STD

x

is 435.69, 38.52
and 29.69 pixels on Weak, Mid and Strong perspective clusters respectively).
Looking at the picture, a horizontal dispersion of the real data sticks out. This
is due to the fact that the images of the considered dataset are characterized
by small altitudes, while the synthetic data is built considering all possible
viewing angles.

5.3.4 Image Characteristic Analysis

In the previous section we defined the MVA feature, after observing a
strong relationship between the amplitude of the vanishing angles and the
PP estimation accuracy. In practical cases, the scene may allow the forensic
analyst to extract more lines for each direction and possibly forming even wider
MVAs. In this section we investigate more deeply the estimation accuracy
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(a) (b)

(c) (d)

Figure 5.14: (Best viewed in color) Example images produced to test the PP esti-
mation algorithm with reference to the extracted features. On the left, images with
two lines for each VP, with di↵erent minimum vanishing angle (i.e. MVA={5,20});
on the right, similar images but with five lines. Lines with the same color converge
to the same vanishing point.

with reference to the MVA amplitude. For this purpose, we take into account
only MVAs with su�cient amplitude able to provide reliable results, and we
evaluate how its increase a↵ects the estimation accuracy.

We also study how the performance is sensitive to an increase in the num-
ber of lines intersecting in the same VP: Since VPs are obtained by minimiza-
tion, we expect an accuracy improvement when more data are available. As
for the tests of Section 5.3.3, a synthetic image dataset is used first, then tests
on real images are carried out to corroborate the synthetic results.

Synthetic tests

We generated di↵erent MVAs with di↵erent numbers of lines: starting with
two lines for each VP, with an angle of incidence of 5�, we progressively added
new lines into the image and increased the angle. More specifically, we used
n = {2, 3, 4, 5} lines, with a length of 200px, and angles ✓ = {5�, 10�, 15�, 20�}
(see Fig. 5.14 for some synthetic image examples). Gaussian noise with zero
mean and standard deviation � = 0.5 pixel was added to the point coordinates,
and the evaluation was repeated 1000 times for each image.

Table 5.4 shows the maximum STDs (as defined in Section 5.3.3) for the
estimated PPs, along the x and y image directions. As clearly visible, the
accuracy is almost stable when adding new lines, while it significantly grows
using well spaced lines (i.e., wider MVAs).
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Table 5.4: Max STD of estimated PPs between x and y direction

MVAs
5� 10� 15� 20�

#
L
in
es

2 18.55 10.15 7.09 5.98
3 19.54 9.85 6.59 5.56
4 18.67 9.53 6.17 5.12
5 17.03 8.74 6.12 4.79

(a) (b)

Figure 5.15: Examples of lines selected by the user on the real image searching for
(a) narrow and (b) wide MVAs.

Tests on real images

As before, the results achieved with the synthetic data were validated on
real tests with the help of 25 di↵erent users, having to select up to five lines
per VP, with quasi regular spacing. For this purpose, the image of a cube-
like checkerboard pattern was used. The considered image allows the user to
select either narrow or wide MVAs of approximatively 5� and 20� respectively.
25 PPs were collected in both cases — i.e. the narrow (Fig. 5.15a) and wide
(Fig. 5.15b) selection schemes — and the results were evaluated with respect
to MVA amplitude and number of lines.

The PPs estimated on real images are represented as colored dots in
Fig. 5.16a — in red for angles of 5�, in blue for wider angles (20�). The
95% confidence ellipses of PPs obtained during the synthetic tests (see Sec-
tion 5.3.4) are also shown, with the same color coding. In Fig. 5.16b, a similar
plot considering instead the line number is presented. Almost all PPs obtained
on the real images fall inside the associated ellipse, confirming that synthetic
results are in close agreement with the real ones. Furthermore, these tests
corroborate the observation that increasing the MVA clearly improves the es-
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timation stability (Fig. 5.16a), while adding more lines does not significantly
a↵ect the performance (Fig. 5.16b).

In conclusion, results obtained in Sections 5.3.3 and 5.3.4 can be summa-
rized in two main outcomes: (i) Images characterized by a narrow MVA should
not be used for forensic analysis based on PP; (ii) To improve accuracy, the
selection of few well spaced lines is preferable over many, closely spaced lines.
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Figure 5.16: (Best viewed in color) Results on real images obtained by varying MVA
ans and line number. In (a) dots represent estimated PPs, clustered with respect
to the MVA, while in (b) PPs are grouped by the line number. Reported ellipses
represent the PP dispersion on the synthetic data. The coordinate system is centered
in the ground truth PP.

5.3.5 Forensic Case Studies

In [126] the distance between the PP and the image center is exploited to
identify asymmetrically cropped images (see Fig. 5.17). Once computed, the
image and the PP are normalized in the interval [�1, 1]. A cropping threshold
(CT) — i.e. the radius of a circle centered in the estimated PP — is defined,
and the image is labeled as cropped if the distance of the PP from the image
center exceeds CT. In the following tests we show how the achieved results
can support the analyst in assessing the cropping detection performance:

• Perspective-based Test : we verify that the MVA amplitude can suggest
whether the cropping detection is applicable on a query image. The test
is performed on the synthetic and real data defined in Section 5.3.3 and
confirms that the technique cannot be applied on images with a narrow
MVA;

• Characteristic-based Test : we assess the performance variations when
more lines and wider MVAs are available on the image. The test is
performed on the synthetic and real data defined in Section 5.3.4;
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Figure 5.17: (Best viewed in color) In a pristine image (surrounded by a red border)
the image center (red cross) falls near the PP (purple dot). On the other hand, if an
upper-right cut (green area) is performed, the image center (green cross) shifts falling
away from the PP, that remains fixed. The green area is related to the cropping
percentage (CP). Blue and cyan circles, centered on the PP, represent instead two
cropping thresholds (CT): note that in this example, using the smaller CT (blue
circle) the cropping will be successfully detected, since the center of the cropped
image center (green cross) fall outside the circle. On the other hand, using the bigger
threshold (cyan circle), the image will be erroneously labeled as pristine. Note that
in this figure we changed the aspect ratio of the original image (Fig. 5.11(P1030004))
so to visualize the normalization process in [-1,1].

• Robustness Test : we verify the robustness of the cropping detection to
image compression and resizing. We consider a practical case where the
image has been exchanged through Facebook at low quality, thus having
been resized and compressed.

In our experiments we consider both cropping percentage (CP) — i.e. the
size of the cut — and CT from 0% to 50% of the image size, with steps of
5%. Results are reported for an upper-left cropping only, where both dimen-
sions of the image have been cut with the same percentage, thus leaving un-
changed the image aspect ratio. However, tests were performed on all the other
eleven cases of asymmetric cropping too (upper, left, right, bottom, upper-left,
upper-right, bottom-left, bottom-right, left-upper-right, upper-right-bottom,
right-bottom-left, bottom-left-upper). These results are summarized in the
Appendix A where is shown that performances significantly increase between
Weak and Mid perspective in all the cropping cases, confirming that the pro-
posed feature allows the analyst to decide whether the cropping detection can
possibly be applied to a query image.

When useful, the performance was evaluated using the Receiver Operating
Characteristic (ROC) curve, where each point corresponds to True Positive
(TP) and False Alarm (FA) rates for a given CT. The Area Under Curve

62



Geometric Based Tampering Detection Cropping Detection based on Principal Point Estimation

Table 5.5: AUC for Perspective based Test on synthetic and real data

Synthetic Data
CP Weak Mid Strong

<25% 0.60 0.70 0.72
25%-50% 0.82 0.97 0.99

Real Data
CP Weak Mid Strong

<25% 0.56 0.77 0.81
25%-50% 0.73 1.00 1.00

(AUC) is used to compare the overall performance under di↵erent conditions:
the more the AUC is close to one, the better is the detector accuracy. In
some cases the mean accuracy, computed as the average of TP and TN rates
on all considered cropping percentages, was also reported. For the sake of
presentation, results have been grouped into two clusters, corresponding to
slightly cropped (lower than 25% of the image) or strongly cropped (between
25% and 50%) images.

Perspective-based Test

In this test we assess the performance of the cropping detection with ref-
erence to perspective conditions. We considered both synthetic and real PPs
acquired in section 5.3.3. The cropping detection performance was evaluated
separately on the three clusters (Weak, Mid and Strong Perspective) for both
synthetic and real PPs. In Figure 5.18 we reported the ROC curves consider-
ing slightly and strongly cropped images, while in Table 5.5 we reported the
AUC values. In Table 5.6 we summarize the cropping detection performance
on the three clusters for di↵erent CTs, namely: FA rate, TP rate for both
slight and strong cropping, and the mean accuracy. Note that we only re-
port results considering the CTs in [0.05, 0.25], since we noticed a progressive
performance drop for higher CTs.

These results suggest that, given a threshold, the false alarm rate may
strongly depend on the MVA. For instance, a false alarm of 0.03 on the Mid
perspective cluster (real data) corresponds to a threshold of 0.25 of the image.
However, the same threshold on the Weak perspective cluster corresponds to a
false alarm of 0.73. Both synthetic and real results confirm that the cropping
detection can hardly be applied on Weak perspective images and a threshold
on the MVA can be chosen to discern unusable images (AUC passes from
0.73 to 1 from Weak to Mid perspective on real images). Furthermore we
notice that, on images characterized by decent perspective (MVA > 1.5�),
the technique is extremely e↵ective when the applied cropping is greater than
25% of the image.

Characteristic-based Test

In this test we assess the performance of the cropping detection with refer-
ence to the number of lines and their MVAs. We tested the cropping detection
on the synthetic PPs acquired in Sections 5.3.4 (for angles of 5� or 20�, and
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(a) (b) (c)

Figure 5.18: (Best viewed in color) ROC curves of the cropping detection for synthetic
and real data. The results are reported for (a) Weak, (b) Mid and (c) Strong cluster
separately.

Table 5.6: Cropping detection on both synthetic and real data, considering Weak
(a,b), Mid (c,d), and Strong perspective (e,f)

(a)

Synthetic Weak Perspective

CT FA
TP

(<25%)
TP

(25%-50%)
Mean

Accuracy
0.05 0.96 0.99 1.00 0.52
0.10 0.86 0.96 1.00 0.56
0.15 0.73 0.90 1.00 0.61
0.20 0.62 0.81 1.00 0.65
0.25 0.53 0.71 0.99 0.67

(b)

Real Weak Perspective

CT FA
TP

(<25%)
TP

(25%-50%)
Mean

Accuracy
0.05 0.97 0.99 1.00 0.52
0.10 0.90 0.96 1.00 0.56
0.15 0.80 0.90 1.00 0.61
0.20 0.75 0.81 1.00 0.65
0.25 0.73 0.71 0.99 0.67

(c)

Synthetic Mid Perspective

CT FA
TP

(<25%)
TP

(25%-50%)
Mean

Accuracy
0.05 0.92 0.98 1.00 0.54
0.10 0.72 0.93 1.00 0.62
0.15 0.53 0.81 1.00 0.70
0.20 0.37 0.67 1.00 0.75
0.25 0.25 0.51 0.99 0.77

(d)

Real Mid Perspective

CT FA
TP

(<25%)
TP

(25%-50%)
Mean

Accuracy
0.05 0.82 0.98 1.00 0.54
0.10 0.53 0.93 1.00 0.62
0.15 0.30 0.81 1.00 0.70
0.20 0.15 0.67 1.00 0.77
0.25 0.03 0.51 0.99 0.77

(e)

Synthetic Strong Perspective

CT FA
TP

(<25%)
TP

(25%-50%)
Mean

Accuracy
0.05 0.90 0.98 1.00 0.55
0.10 0.67 0.91 1.00 0.65
0.15 0.45 0.78 1.00 0.73
0.20 0.30 0.62 1.00 0.77
0.25 0.10 0.45 0.99 0.80

(f)

Real Strong Perspective

CT FA
TP

(<25%)
TP

(25%-50%)
Mean

Accuracy
0.05 0.83 0.99 1.00 0.58
0.10 0.45 0.88 1.00 0.75
0.15 0.22 0.70 1.00 0.83
0.20 0.12 0.50 1.00 0.84
0.25 0.07 0.31 0.97 0.82

with 2 or 5 lines) and on the real data acquired in Section 5.3.4. Firstly, we
compared the results obtained when the VPs are estimated from 5� and 20�

MVAs; the performances are shown through the ROC curves in Fig. 5.19a
and 5.19b. Secondly, we compared the results achieved using 2 or 5 lines to
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Table 5.7: AUC for Characteristic based Test on synthetic and real data

(a)

Synthetic Data
CP 2 lines 5 lines ⇠ 5� MVA ⇠ 20� MVA

<25% 0.87 0.96 0.87 0.99
25%-50% 1.00 1.00 1.00 1.00

(b)

Real Data
CP 2 lines 5 lines ⇠ 5� MVA ⇠ 20� MVA

<25% 0.86 0.89 0.81 1.00
25%-50% 0.99 1.00 0.99 1.00

Table 5.8: Mean Accuracy for Characteristic based Test on synthetic and real data

(a)

Synthetic Data
CT 2 lines 5 lines 5� MVA 20� MVA
0.05 0.77 0.80 0.63 0.91
0.10 0.90 0.91 0.79 0.97
0.15 0.91 0.91 0.86 0.93
0.20 0.89 0.89 0.88 0.89
0.25 0.86 0.86 0.86 0.86

(b)

Real Data
CT 2 lines 5 lines ⇠ 5� MVA ⇠ 20� MVA
0.05 0.59 0.60 0.58 0.63
0.10 0.82 0.85 0.67 0.99
0.15 0.82 0.83 0.72 0.94
0.20 0.83 0.86 0.79 0.92
0.25 0.82 0.87 0.84 0.87

detect each vanishing point; the corresponding ROC curves are reported in
Fig. 5.19c and 5.19d. In Table 5.7 the AUCs for the two experiments have
been reported to compare the overall performances. To be consistent with the
previous test we briefly report in Table 5.8 the mean accuracy at varying CT
for each of the cases. The achieved results show that wider MVAs produce
a significant improvement in the detection rate. For instance, with a CT of
0.10, the mean accuracy passes from 0.79 to 0.97 on the synthetic data. This
behaviour is confirmed by real data: with the same CT the mean accuracy
passes from 0.67 to 0.99. As expected, performances are slightly a↵ected by
increasing line numbers. Indeed mean accuracy improvements are always at
most 5% for all the synthetic and real cases.

In [126] the authors state that a CT of 0.1 and 0.15 can fit di↵erent de-
mands. Anyway this threshold is set regardless of image content. The achieved
results suggest instead that a more fitting threshold could be selected accord-
ing to the available MVA. Synthetic results show that the best performances
are obtained with a CT of 0.20 when a 5� MVA is available on the image.
Conversely, with a 20� MVA, a CT of 0.10 should be preferred to achieve the
best accuracy. Real data confirmed that two di↵erent thresholds should be
considered according to MVA amplitude: 0.25 for a 5� MVA and 0.10 for a
20� MVA.

Robustness test

In this test we assess whether the technique is usable when the image has
been resized and/or compressed. We consider a practical case where the image
(considered in the characteristic-based test) was uploaded on Facebook at low
quality version and then downloaded: the resolution changes from 2592⇥1944
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(a) (b)

(c) (d)

Figure 5.19: ROC curve on synthetic and real data with di↵erent cropping percentage
using (a) narrow vanishing angles and (b) wider vanishing angles, and then using (c)
2 lines and (d) 5 lines to detect each vanishing point.

to 972⇥729, and its size from 1.4 MB to 80 KB. 25 PPs were collected on the
downloaded image (similarly to Section 5.3.4) and the cropping detection was
applied as in the characteristic-based test. In Tables 5.9 and 5.10 we report
the AUC and the mean accuracy at varying CT: by comparison with the
results achieved in the characteristic-based test, we notice that performances
are almost unchanged, with the only exception of slightly cropped images,
when only narrow MVAs are available, in which case performance drops, with
the AUC passes from 0.81 to 0.66. This result once more confirms that the
MVA amplitude is crucial to determine the usability of this technique.
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Table 5.9: AUC for on Facebook Data

Facebook Data
CP 2 lines 5 lines ⇠ 5� MVA ⇠ 20� MVA

<25% 0.82 0.82 0.66 1.00
25%-50% 0.99 1.00 0.99 1.00

Table 5.10: Mean Accuracy on Facebook Data

Facebook Data
CT 2 lines 5 lines ⇠ 5� MVA ⇠ 20� MVA
0.05 0.61 0.59 0.51 0.71
0.10 0.76 0.80 0.55 1.00
0.15 0.82 0.81 0.69 0.94
0.20 0.84 0.81 0.73 0.92
0.25 0.82 0.82 0.77 0.87

A practical example of cropping detection

We now show how MVA analysis can practically support the forensic ana-
lyst to assess whether an image has been cropped. Let us consider the images
in Fig. 5.20a and 5.20c, downloaded from the web. The analyst estimates the
PP on both images selecting lines that intersect with the widest possible an-
gles. As a result he/she obtains that in both cases the normalized distance of
the estimated PP from image center is anomalous (0.3875 and 0.2585 respec-
tively). At first glance this fact leads to the conclusion that both images have
been cropped. On the other hand, the analyst notices that the MVAs are 4.83
and 1.21 respectively. This means that he can be much more confident with
the first result while the PP estimation on Fig. 5.20c is subjected to strong
noise. More specifically, with such a small MVA the estimated PP is unreli-
able for the purpose. Then the analyst concludes that Fig. 5.20a is probably
cropped while no evidence can be provided on Fig. 5.20c by this single test.

In figure 5.20b we report the original version of 5.20a that can be found
on the web, confirming the achieved results.

5.3.6 Discussion

In this chapter we presented an in deep assessment of the reliability of
a physical-based feature for forensic image authentication. In particular we
focused on the estimation accuracy of the principal point of an image and its
application to the forensic scenario. By observing the principal point estima-
tion accuracy under di↵erent perspective conditions, we were able to define a
novel feature, the minimum vanishing angle (MVA), strictly related to princi-
pal point uncertainty. Then we further investigated the MVA influence on the
estimation accuracy by comparing it with respect to the number of detected
lines, exploited for the estimation of the PP. Results underlined that the use
of wider vanishing angles leads to higher accuracy, while by employing more
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(a)

(b) (c)

Figure 5.20: (Best viewed in color) Two examples of cropping detection (a,c), with
lines of mutually orthogonal directions in red, green and blue. The purple dot indi-
cates the image center, while the cyan cross shows the estimated position of the PP.
In both images the MVA is the angle related to the vertical direction (blue lines): in
(a) MVA=4.83, in (c) MVA=1.21. In (b) the original version of (a) is presented

lines only slight uncertainty reductions are achieved. As shown in the case
studies presented in the previous Sections, the application of our criteria to
cropping detection allows the analyst to easily exclude an image that is not
suitable for the application of this technique. Moreover we verified that on
resized and compressed images — as for example pictures downloaded in low
quality from Facebook — the performance only slightly decreases, provided
that wide MVAs are available.

In future work the proposed MVA will be exploited to analytically compute
a likelihood score to provide more than a binary decision on the integrity of the
examined image. Moreover, we are planning to deeply investigate the relation
between the MVA and the best cropping threshold to be used, to control the
false alarm rate. For this purpose, automatic techniques for principal point
localization — so as to remove the human-in-the-loop — will be investigated
to perform tests on huge amount of real data.
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CHAPTER 6
Social Media Profile Linking
by means of Hybrid Source

Identification

Digital videos (DVs) are steadily becoming the preferred means for people
to share information in an immediate and convincing way. Recent statistics
showed a 75% increase in the number of DVs posted on Facebook in the
last year [147] and posts containing DVs yields more engagement than their
text-only counterpart [148]. Interestingly, the vast majority of such contents
are captured using smartphones, whose impact on digital photography is dra-
matic: in 2014, compact camera sales dropped by 40% worldwide, mostly
because they are being replaced by smartphone cameras, which are always at
your fingertips and makes sharing much easier [149].

In such a scenario, it is not surprising that digital videos gained importance
also from the security, forensic and intelligence point of view: videos have
been recently used to spread terror over the web, and many critical events like
Boston bombing1 have been filmed and shared by thousands of users. In such
cases, investigating the digital history of DVs is of paramount importance
in order to recover relevant information, such as acquisition time and place,
authenticity, or information about the source device.

In particular, the source identification problem - that is, univocally linking
the digital content to the device that captured it - received great attention in
the last years. Currently, the most promising technology to achieve this task
exploits the detection of the sensor pattern noise (SPN) left by the acquisition
device [150]. This footprint is universal (every sensor introduces one) and
unique (two SPNs are uncorrelated even in case of sensors coming from two

1
https://en.wikipedia.org/wiki/Boston_Marathon_bombing
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cameras of same brand and model). As long as still images are concerned, SPN
has been proven to be robust to common processing operations like JPEG
compression [150], or even uploading to social media platforms (SMP) [151].

Research on source device identification for DVs is not as advanced. This
is probably due to: i) the computational and storage e↵ort required for video
analysis, ii) the di↵erences in video coding standards with respect to images,
and iii) the absence of sizeable datasets available to the community for testing
video source device identification algorithms. Since their origin, DV source
identification methods borrowed both the mathematical background and the
methodology from the still image case [152]: like for images, thus, assessing
the origin of a DV requires the analyst to have either the source device or
some training DVs captured by that device, from which to extract the refer-
ence SPN. In the case of a device that captures both images and videos, no
other method has been proposed in the state of the art than to compute two
reference SPNs, one for still images and one for videos, which contrasts with
the fact that the device has just one sensor. This approach is anachronistic if
we consider that today 85% of shared media are captured using smartphones,
whose camera captures both still images and videos, although at di↵erent res-
olution. If we manage to use the same reference SPN both for images and
videos, several advantages arise: first, only one SPN has to be computed and
stored for each device, which makes more sense and is more computationally
convenient; moreover, new investigative possibilities are enabled: for example,
one could link two di↵erent media sharing accounts (e.g., YouTube and Flickr)
by checking whether the SPN in YouTube videos matches with the SPN in
Flickr images.

This chapter targets exactly this problem: we propose an hybrid approach
allowing to perform video source identification using a reference SPN obtained
from still images. This also allows the use of an image fingerprint for both
image and video source identification, such that the available datasets of image
fingerprints are ready to use for video source identification. There’s no need
to build a video fingerprint dataset that also requires computational e↵ort and
the availability of the devices or reference videos. We show that such method
yields comparable or even better performance than the current strategy of
using a reference SPN calculated from DVs. As a second step, we investigate
the robustness of the proposed approach when the reference SPN is estimated
from images downloaded from Facebook and tested against videos downloaded
from YouTube; this is an extremely interesting scenario from an investigative
point of view.

The chapter is organized as follows: Section 6.1 introduces SPN based
source device identification, and reviews the state of the art for DV source
identification; Section 6.2 formalizes the considered problem and describes
the proposed hybrid approach; Section 6.3 presents the proposed dataset and
discusses some YouTube/Facebook technical details related to SPN; Section
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6.4 is dedicated to the experimental validation of the proposed technique,
including comparison with existing approaches; finally, Section 6.5 draws some
final remarks and outline future works.

From now on, vectors and matrices are denoted in bold as X and their
components as X(i) and X(i, j) respectively. All operations are element-wise,
unless mentioned otherwise. Given two vectors X and Y we denoted as ||X||
the euclidean norm of X, as X ·Y the dot product between X and Y, as X̄ the
mean values of X, as ⇢(s1, s2;X,Y) the normalized cross-correlation between
X and Y calculated as

⇢(s1, s2;X,Y) =

P
i

P
j

(X(i, j)� X̄)(Y(i+ s1, j + s2)� Ȳ)

||X� X̄||||Y � Ȳ||
(6.1)

If X and Y dimensions mismatch a zero down-right padding is applied. Fur-
thermore its maximum, namely the max

s1,s2
⇢(s1, s2;X,Y), is denoted as ⇢

peak

(X,Y) =

⇢(s
peak

;X,Y). The notations are simplified in ⇢(s1, s2) and in ⇢
peak

when the
two vectors cannot be misinterpreted.

6.1 Introduction to Video Source Identification
Based on Sensor Pattern Noise

The task of blind source device identification has gathered great atten-
tion in the multimedia forensics community. Several approaches were pro-
posed to characterize the capturing device by analyzing traces like sensor dust
[153], defective pixels [154], color filter array interpolation [42]. A significant
breakthrough was achieved when Lukas et al. first introduced the idea of us-
ing Photo-Response Non-Uniformity (PRNU) noise to univocally characterize
camera sensor [150]. Being a multiplicative noise, PRNU cannot be e↵ectively
removed even by high-end devices; moreover, it remains in the image even
after JPEG compression at average quality. The suitability of PRNU-based
camera forensics for images retrieved from common SMPs has been investi-
gated in [151], showing that modifications applied either by the user or by
the SMP can make the source identification based on PRNU ine↵ective. The
problem of scalability of SPN-based camera identification has been investi-
gated in several works [155, 156]. Noticeably, in [155] authors showed that
the Peak-to-Correlation Energy (PCE) provides a significantly more robust
feature compared to normalized correlation. The vast interest in this research
field fostered the creation of reference image databases specifically tailored for
the evaluation of source identification [157], allowing a thorough comparison
of di↵erent methods [158]. Recently, authors of [159] addressed the problem of
reducing the computational complexity of fingerprint matching, both in terms
of time and memory: they propose to use random projections to compress the
fingerprints, thus allowing the storage of a large database of fingerprints at
the price of a small reduction in matching accuracy.
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All the methods mentioned so far have been thought for (and tested on)
still images. Although research on video source identification began almost at
the same time (the first attempt dates back to 2007, [152]), the state of the
art is much poorer. In their pioneering work, Chen et al. proposed to extract
the SPN from each frame separately and then merge the information through
a Maximum Likelihood Estimator; as to the fingerprint matching phase, the
PCE was recommended [152]. The experimental results showed that resolu-
tion and compression have an impact on performance, but identification is
still possible if the number of considered frames can be increased (10 minutes
are required for low resolution, strongly compressed videos). Two years later,
Van Houten et al. investigated the feasibility of camcorder identification with
videos downloaded from YouTube [160], yielding encouraging results: even
after YouTube recompression (which will be discussed later), source identifi-
cation was possible. However, results in [160] are outdated, since both the
quality of acquisition devices and the complexity of video coding algorithms
have evolved significantly since then. This study was extended by Scheelen
et al. [161], considering more recent cameras (with resolution up to full-HD)
and coding algorithms (such as H.264 and MPEG-4). Results confirmed that
source identification is possible, however authors clarify that the reference
pattern was extracted from reference and natural videos before re-encoding.
Concerning reference pattern estimation, Chuang et al. [162] firstly proposed
to treat di↵erently the SPN extracted from video frames based on the type of
their encoding; the suggested strategy is to weigh di↵erently intra- and inter-
coded frames, based on the observation that intra-coded frames are more re-
liable for PRNU fingerprint estimation, due to less aggressive compression.
Finally, a recent contribution from Chen et al. [163] considered the problem
of source identification for video surveillance systems where the video is trans-
mitted over an unreliable wireless channel. This scenario can lead to videos
a↵ected by blocking artifacts, which hinder pattern estimation; authors pro-
pose a way to automatically detect such noisy regions in frames and exclude
them from the analysis, thus re-establishing the reliability of source identifi-
cation.

As the reader may have noticed, all the mentioned works discuss source
identification either for still images or videos, and in the vast majority of works
the reference pattern is estimated from native contents, meaning images or
frames as they exit from the device, without any alteration due to re-encoding
or (even worse) upload/download from SMPs. This approach seriously limits
the applicability of source device identification, since it assumes that either the
device or some original content is available to the analyst. In the following
sections we show how to exploit the available mathematical frameworks to
determine the source of a DV basing on a reference derived by still images
and the new opportunities introduced by the proposed strategy.
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Figure 6.1: Geometric transformations from the full frame to the output format.

6.2 Hybrid Sensor Pattern Noise Analysis

Digital videos are commonly captured at a much lower resolution than
images: top-level portable devices reach 4K video resolution at most (which
means, 8 Megapixels per frame), while the same devices easily capture 20
Megapixels images. During video recording, a central crop is carried so to
adapt the sensor size to the desired aspect ratio (commonly 16:9 for videos),
then the resulting pixels are scaled so to match exactly the desired resolution
(Figure 6.1). As a direct consequence, the sensor pattern noise extracted from
images and videos cannot be directly compared and most of the times, because
of cropping, it is not su�cient to just scale them to the same resolution.

The hybrid source identification (HSI) process consists in identifying the
source of a DV basing on a reference derived from still images. The strategy
involves two main steps: i) The PRNU fingerprint is derived from still im-
ages acquired by the source device (reference); ii) the fingerprint is estimated
from the investigated video (query) and then compared with the reference to
determine the video origin.

The camera fingerprint K can be derived from N images I(1), . . . , I(N)

captured by the source device. A denoising filter ([150], [164]) is applied
to each frame and the noise residuals W(1), . . . ,W(N) are obtained as the
di↵erence between each frame and its denoised version. Then the fingerprint
estimation eK is derived by the maximum likelihood estimator [165]

eK =

P
N

i=1W
(i)I(i)

P
N

i=1(I
(i))2

. (6.2)

The fingerprint of the video query is estimated in the same way by the available
video frames.
Denoting by eK

R

and eK
Q

the reference and query fingerprints, the source
identification is formulated as a two-channel hypothesis testing problem [166]

H0 : KR

6= K
Q

H1 : KR

= K
Q

.
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In the considered case, eK
R

and eK
Q

, are derived from still images and video
frames respectively, thus di↵ering in resolution and aspect ratio due to the
cropping and resize operations occurring during the acquisition process (see
Fig. 6.1). Then, the test statistic is built as follows: the two-dimensional nor-
malized cross-correlation ⇢(s1, s2) is calculated for each of the possible spatial
shifts (s1, s2) determined by the feasible cropping parameters [167]. Then,
given the peak ⇢

peak

, its sharpness is measured by the Peak to Correlation
Energy (PCE) ratio [155] as

PCE =
⇢(s

peak

)
1

mn�|N |
P
s/2N

⇢(s)
(6.3)

where N is a small set of peak neighbours.
In order to consider the di↵erent scaling factor of the two fingeprints - videos
are usually resized - Goljan et. al. [167] showed that a brute force search
can be conducted considering the PCE as a function of the plausible scaling
factors r0, . . . , rm. Then its maximum

P = max
ri

PCE(r
i

) (6.4)

is used to determine whether the two fingerprints belong to the same device.
Practically, if this maximum overcomes a threshold ⌧ , H1 is decided and the
corresponding values s

peak

and r
peak

are exploited to determine the cropping
and the scaling factors. The authors showed that a theoretical upper bound
for False Alarm Rate can be obtained as

FAR = 1� (1�Q(
p
⌧))k (6.5)

where Q is the cumulative distribution function of a normal variable N(0,1)
and k is the number of tested scaling and cropping parameters.
This method is expected to be computationally expensive, namely for large
dimension images. Anyway, if the source device is available, or its model is
known, the resize and cropping factors are likely to be determined by the
camera software specifics or by experimental testing. Then, most of the com-
putational e↵ort can be avoided. In Section 6.3 the cropping and scaling
factors of 14 smartphones have been reported.
In the next section we show how the proposed method can be also applied
to link images and videos retrieved on di↵erent SMPs, even when the source
device is not available.

6.2.1 Extension to contents shared on social media platforms

Let us consider a user publishing, with an anonymous profile, videos with
criminal content through a SMP. At the same time this user, say Bob, is lead-
ing his virtual social life on another social network where he publicly shares
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Figure 6.2: Geometric transformations applied to the sensor pattern from the full
frame to the image/video outputs on SMPs.

his everyday’s pictures. Unaware of the traces left by the sensor pattern noise
(and their robustness to several filtering and compression operations), he cap-
tures with the same device the contents he shares on both profiles. Then, the
fingerprints derived from the images and videos on the two social platforms
can be compared with the proposed method to link Bob to the criminal videos.
Noticeably, analyzing multimedia content shared on SMPs is not a trivial task.
Indeed, besides stripping all metadata, SMPs usually re-encode images and
videos during upload. For example, Facebook policy is to down-scale and
re-compress images so to obtain a target bit-per-pixel value [168]; Youtube
also scales and re-encodes digital videos [169]. Needless to say, forensic traces
left in the signal are severely hindered by such processing, which acts as an
unintented counter-forensic step. Sensor pattern noise, however, is one of the
most robust signal-level features, and it can survive down-scaling followed by
compression. Nevertheless, when it comes to link the SPN extracted from,
say, a Youtube video and a Facebook image, a new problem arises: since both
content have been scaled/cropped by an unknown amount, such transforma-
tion must be estimated in order to align the patterns. Interestingly, the hybrid
approach can be applied considering that the image and video fingerprints de-
rived from the SMPs contents can be still matched through the right cropping
and rescaling parameters. In Fig. 6.2 the geometric transformations occurring
on the sensor frame are summarized: the full frame F is scaled and cropped
- with factors s

I1 and c
I1 respectively - by the image acquisition process to

produce F
I1 . The uploading process over the SMP applies similar transforma-

tions - with factors s
I2 and c

I2 respectively - thus producing F
I2 . In a similar

way, the video F
V1 is generated from the camera and F

V2 is uploaded onto
another SMP - applying cropping and scaling factors of s

V1 , cV1 and s
V2 , cV2

respectively. It can be easily deduced that, for both native and uploaded con-
tents. image and video fingerprints are linked by a geometric transformation
consisting in a cropping and rescaling operation. Then, the hybrid approach
to determine the transformation t

I1,V1 to align the fingerprints of two native
contents can be also applied to determine t

I2,V2 , thus linking F
I2 to F

V2 .
Two main drawbacks are expected for this second application. Firstly the
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compared contents have been probably compressed twice and the SPN traces
are likely deteriorated. Furthermore it may be hard to guess the right scaling
and cropping parameters just from F

I2 and F
V2 . In these cases an exhaustive

search of all plausible scaling and cropping factors is required. In section 6.3
the proposed application is tested to link the images of a Facebook profile to
the videos of a YouTube profile.
This is just one of the possible scenario where the HSI can be applied: the
trace of the same sensor could be seeked in multimedia contents belonging
to di↵erent SMPs to link two profiles. Thus, the proposed approach is very
versatile and one could easily imagine how F

I1 could be linked to F
V2 (as F

I2

to F
V1).

6.3 PoDIS: a new dataset for video source
identification

We considered a brand new dataset (Portable Device Imaging Sensor,
PoDIS) consisting of 4019 flat field and natural images and 265 videos cap-
tured by 14 devices from di↵erent brands (Apple, Samsung, Huawei). For
each device a flat field video was also acquired disabling, when possible, the
digital stabilization. The Facebook and YouTube versions of all contents were
also included. In the following we detail the dataset structure and how we
obtained its Facebook and YouTube version.

Native contents We considered 14 di↵erent modern devices, both smart-
phones and tablets. Pictures and videos have been acquired with the default
phone settings that, for some models, include the automatic digital video sta-
bilization. In Table 6.1 we report the considered models, their standard image
and video resolution and if they’re equipped with digital stabilization. From
now on we’ll refer to these phones with the names C1, . . . , C14 as defined in
the table. For each device we collected at least:

• 100 (reference) images depicting the sky

• 150 (query) images of indoor and outdoor scenes

• 1 (reference) video of the sky captured with slow camera movement for
more than 160 seconds

• 18 (query) videos of flat textures, indoor and outdoor scenes, captured
with both still and moving camera for more than 60 second each.

For each of the video categories (flat textures, indoor and outdoor) at least 6
di↵erent videos have been captured considering various acquiring scenario: i)
still camera, ii) walking operator and iii) panning and rotating camera. We’ll
refer to this types as still, move and panrot videos respectively.
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ID model image video digital
resolution resolution stabilization

C1 Samsung Galaxy S3 3264⇥ 2448 1920⇥ 1080 o↵
C2 Samsung Galaxy S3 Mini 2560⇥ 1920 1280⇥ 720 o↵
C3 Samsung Galaxy S3 Mini 2560⇥ 1920 1280⇥ 720 o↵
C4 Samsung Galaxy S4 Mini 3264⇥ 1836 1920⇥ 1080 o↵
C5 Samsung Galaxy Tab 3 10.1 2048⇥ 1536 1280⇥ 720 o↵
C6 Samsung Galaxy Tab A 10.1 2592⇥ 1944 1280⇥ 720 o↵
C7 Samsung Galaxy Trend Plus 2560⇥ 1920 1280⇥ 720 o↵
C8 Huawei Ascend G6 3264⇥ 2448 1280⇥ 720 o↵
C9 Ipad 2 960⇥ 720 1280⇥ 720 o↵
C10 Ipad Mini 2592⇥ 1936 1920⇥ 1080 on
C11 Iphone 4s 3264⇥ 2448 1920⇥ 1080 on
C12 Iphone 5c 3264⇥ 2448 1920⇥ 1080 on
C13 Iphone 5 3264⇥ 2448 1920⇥ 1080 on
C14 Iphone 6 3264⇥ 2448 1920⇥ 1080 on

Table 6.1: Considered devices with their default resolution settings for image and
video acquisition respectively.

Facebook and YouTube sharing platforms Images have been uploaded
on Facebook in both low and high quality (LQ and HQ respectively). The
upload process eventually downscales the images depending on their resolu-
tions and the selected quality [168]. Videos have been uploaded to YouTube
through its web application and then downloaded through KeepVid [170] se-
lecting the best available resolution (corresponding to the native one). When
possible, videos were downloaded in multiple resolutions. The metadata orien-
tation has been removed from all of the images and videos to avoid unwanted
rotation during the contents upload.

6.4 Experimental validation

The e↵ectiveness of the HSI for C1 � C9 has been tested by performing
the video source identification based on a fingerprint derived from still images.
C10�C14 have been excluded, consisting of videos acquired with active digital
stabilization. Source identification on these kind of video isn’t solved yet.
More details are given in Section 6.6, The results have been compared with
the standard video source identification based on a fingerprint derived by the
frames of a video reference. The same challenge has been also faced when the
contents have been exchanged through YouTube and Facebook respectively.
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6.4.1 Fingerprints matching parameters

We firstly derived the cropping and the scaling parameters to compare
image and video fingerprints of native contents. For each device we estimated
the reference fingerprint eK

I

by means of 60 images randomly chosen from the
flat-field pictures available for that device. Similarly, the reference fingerprint
eK
V

was derived by means of 60 frames randomly chosen from the reference
video available for that device. The P statistic (Eq. 6.4) between the image
and the video fingerprint has been calculated to determine the cropping and
scaling parameters for each device. In Table 6.2 we reported the obtained
scaling factor and the consecutive central crop applied to align the image to
the video fingerprint. In the table we reported only the up-left corner of the
cropping along x and y axes. For instance, C1 image fingerprint should be
downscaled with a factor 1.7 and then cropped of 180 pixels on both sides
along y axis to match the video fingerprint. C9 is a pretty unique case in
which the video is produced by upscaling and then cropping by �160 along
the x axis with respect to the native image size. The proposed procedure can
be applied to any new device to determine the image and video fingerprint
matching parameters.
Given a video query and a reference fingerprint, the matching is performed

ID scaling central crop along
x and y axes

C1 1.7 [0 180]
C2 2 [0 114]
C3 2 [0 114]
C4 1.7 [0 0]
C5 1.6 [408 354]
C6 2.025 [0 122]
C7 2 [0 120]
C8 2.55 [0 120]
C9 0.75 [-161 0]
C10 1.35 [0 179]
C11 1.7 [0 180]
C12 1.7 [0 180]
C13 1.7 [0 180]
C14 1.7 [0 180]

Table 6.2: Rescaling and cropping parameters for the considered devices from image
to video output.

as follow: the query fingerprint is derived by 900 randomly selected frames
(⇠ 30 seconds) of the video query and the test statistic (Eq. 6.4) is evaluated
considering the cropping and scaling parameters of the candidate device. We
refer to the test statistic as P

I

, meaning that the reference fingerprint is derived
from still images. For comparison purposes we also consider the statistic P

V

,
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meaning that the reference fingerprint is derived from a video reference. The
latter is the standard procedure for video source identification and does not
require cropping and rescaling parameters (both fingerprints are obtained from
videos).

6.4.2 HSI Performance

For each device we obtained at least 18 values of the test statistic P
I

by
comparing matching pairs (the reference and the query have the same source
device) and at least 247 values by comparing mismatching pairs (the reference
and the query belong to di↵erent source devices). We refer to these statistics
as mP

I

and mmP
I

respectively. Similarly, the statistics mP
V

and mmP
V

are
obtained basing on a reference fingerprint derived by video frames. In Fig. 6.3
we report for each device: i) the statistics mP

I

and mP
V

of matching pairs; ii)
mmP

I

and mmP
V

, the maximum of the statistics for the mismatching case.
The two statistics are completely separated for all the devices and several

Figure 6.3: (Best viewed in colors) Matching statistics mPV and mPI are represented
by the green and purple boxplot respectively. The tails correspond to the minimum
and maximum of the statistics and the box to the first and third quartile of data. Red
crosses are the maximum of the correspondent statistics in the mismatching case.

thresholds ⌧ produce identical performance. We consider a rational choice
to set ⌧ = 62.9, the mass center between the maximum of mismatching and
the minimum of matching statistics respectively. In this case the cropping
and scaling factors are known, so that the corresponding upper bound of false
alarm rate is approximately 10�15 (obtained by Eq. 6.5 with k = 1). The HSI
method correctly identifies the source in all the considered videos through a
reference derived by still images; furthermore the HSI yields comparable and
sometimes better performance than the current video source identification
strategy. Furthermore, the two compared approaches have comparable com-
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putational cost, excluding the e↵ort to determine the matching parameters.
Anyway this step have to be computed once for each device model as shown
in Section 6.4.1.

6.4.3 Results on contents from SMPs

Images and videos acquired by C1, . . . , C9 have been exchanged through
Facebook and YouTube respectively, as described in section 6.3. Then the
correspondent image and video fingerprints have been estimated as described
in the above section. The Facebook image fingerprint has been estimated

Figure 6.4: (Best viewed in colors) Matching statistics mPI obtained using image
reference from LQ and HQ uploaded contents (green and orange boxplot respectively).
The maximum of the correspondent statistics in the mismatching case are shown by
the red crosses.

from images uploaded in both HQ and LQ. In most cases the resolution of the
uploaded contents has been modified by the SMPs so that the cropping and
scaling factors were estimated by exhaustive search. The statistics mP

I

and
mmP

I

were obtained for both LQ and HQ cases and reported in Fig. 6.4.
By comparison with Figure 6.3 we notice a performance decay that can be at-
tributed to two main facts: i) images and videos are resized and recompressed
by the SMPs thus lowering the quality of both the estimated fingerprint and
the query; ii) the exhaustive research of the scaling an cropping factors in-
creases the PCE values of the mismatching pairs. In Table 6.3 we report, for
each device, the best achievable accuracy and its corresponding PCE thresh-
old. We notice that the technique accuracy varies according to the devices.
For instance, at low quality, the best achievable accuracy is 1 for C9 while
it’s 0.82 for C6. Furthermore, as shown in Table 6.3 a di↵erent threshold
should be considered according to the device. Unfortunately, in most cases,
we cannot take advantage of any a priori information considering that contents
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Table 6.3: Best achievable accuracy and correspondent PCE threshold.

Low Quality High Quality
Device Threshold Best Accuracy HQ Threshold Best Accuracy LQ

C1 71.82 0.98 49.63 0.98
C2 78.51 0.97 49.87 0.96
C3 54.54 0.96 47.02 0.92
C4 69.95 0.97 47.75 0.97
C5 76.68 1.00 55.04 0.92
C6 46.19 0.94 52.18 0.82
C7 60.53 0.96 44.92 0.88
C8 106.43 0.99 49.49 1.00
C9 109.34 1.00 102.71 1.00

Overall 60.22 0.97 98.89 0.95

Figure 6.5: Performance of profile linking between Facebook and Youtube considering
both LQ and HQ Facebook image reference.

are usually resized by Facebook/YouTube and most of metadata are deleted.
Therefore, we report in the last column of Table 6.3 the best achievable accu-
racy and its correspondent PCE threshold determined by considering all the
devices together. The method yields similar performance on both HQ and
LQ images. Such a similarity is explained by the fact that Facebook upload-
ing system tries to maintain a constant bit-per-pixel; thus, when an image is
uploaded using HQ mode (more pixels), more aggressive quantization is em-
ployed to keep BPP at the desired value. In Figure 6.5 we also reported the
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overall Receiver Operating Characteristic (ROC) curve where true positive
and true negative are compared on varying threshold. These results confirm
that the performances are similar both in case of high and low quality image
reference: the Area Under the Curve (AUC) slightly improves from 0.88 (LQ)
to 0.93 (HQ).

6.5 Discussion

In this chapter we proposed an hybrid approach to video source identifi-
cation using a reference fingerprint derived from still images. Such a method
yields comparable or even better performance than the current strategy of us-
ing a video reference. Applying the proposed method, the available datasets of
image fingerprints are ready to use for video source identification. Furthermore
a single fingerprint is needed for both image and video source identification,
saving the computational e↵ort to build a video fingerprint dataset. We also
showed that the trace of the same sensor could be found in image and video
contents belonging to di↵erent social media platforms, even when the source
device is not available. This application allows the linking of two profiles
and opens new investigation opportunities on the web. This last application
requires a higher computational e↵ort, since rescaling and cropping parame-
ters have to be determined to match the query and the reference fingerprints;
however its e↵ectiveness has been proved to link Facebook images to YouTube
videos.

6.6 Future Works: Investigating Stabilised Videos

The problem of source identification based on SPN has not been solved
on devices with digital stabilization. Most recent camera softwares include
this technology to reduce the impact of shaky hands on captured videos. By
estimating the impact of the user movement the software adjusts which pixels
on the camcorder’s image sensor are being used. Image stabilization can be
usually turned on and o↵ by the user on devices based on Android OS while
in iOS devices this option cannot be modified by the camera software. The
source identification of videos captured with active digital stabilization cannot
be accomplished by direct comparison of the PRNU fingerprint: in fact the
process disturbs the fingerprints alignment that is a sine qua non condition
for the identification process. HSI solves the problem on the reference side
(it’s estimated from still images) but the issue still exists on the query side.
Preliminary results proved that digital stabilization can be possibly approxi-
mated with with a time-varying cropping and resize of the sensor thus opening
the chance to extend the HSI to identify the source of digital stabilised videos.
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CHAPTER 7
Discussion and Open Issues

This thesis, starting from the available technologies, focused on the appli-
cability of image forensic techniques in the wild. Firstly, after summarising
the most relevant available techniques, a new general forensic scale was de-
fined to classify tools capability in terms of the kind of evidence they are able
to provide. Furthermore, basing on the best practices and standards avail-
able, a new methodology for digital image investigation was defined. This is
aimed to support forensic experts to properly apply several tools to an image
and to provide results to be presented in court. We also started to consider
how forensic tools can be a↵ected by emerging composition technologies, able
to produce realistic forgeries. After surveying the most relevant composition
tools, qualitative and quantitative tests were performed. Specifically, quanti-
tative tests provided indicators on how some tools performance are a↵ected
by the application of advanced techniques.
Moreover, new forensic applications have been proposed. Focusing on geometric-
based features, two contributions were provided: i) a generalisation of a
perspective-based technique for tampering detection and ii) the reliability as-
sessment of a cropping detection technique based on principal point estima-
tion. The former proved to be strongly e↵ective to identify subjects spliced
without respecting the perspective rules. Its e↵ectiveness was also proved on
images exchanged through Facebook and Twitter. In the latter, we started
from a known cropping detection technique, subjected to strong false alarm
rate. We defined a new feature, namely the minimum vanishing angle, and we
proved that its amplitude can be exploited to predict the tool reliability.
A new application was also provided basing on the promising trace of the sen-
sor pattern noise: we introduced a method to link social media profiles where
images and/or videos are captured with the same device. Basing on a dataset
on recent smartphone we proved how the proposed technique may strongly
help in linking Facebook and YouTube profiles which contents were acquired
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with the same sensor.
However, given the achieved results, there are some open issues and unsolved
problems in the considered research areas:

• new composition techniques should be considered to further evaluate
the e↵ectiveness of available forensic tools. This could be challenging
considering that these techniques can be hard to find, they may require
high computational cost and usually have several tuning parameters,
making hard to accurately evaluate the performance.

• the cropping detection tool is not automatic yet, it still requires an
user identifying and selecting parallel lines in the scene. Automatic
principal point estimation from automatic line detection is a challenging
task considering that no a priori information can be supposed on the
image.

• the source identification is still unsolved on digital stabilised videos.
This is a critical issue considering that a big portion of sold smartphones
automatically applies it.

Starting from the achieved results, all these topics will be addressed in the
future to further improve the credibility and reliability of forensic techniques
in the wild.
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APPENDIX A
Complete Results for
Asymmetric Cropping

Detection

In section 5.3.5 we investigated the reliability of image (asymmetric) crop-
ping detection basing on a new proposed feature, namely the Minimum Van-
ishing Angle (MVA). Hereafter, for sake of completeness, we reported the
achieved results on all twelve possible asymmetric cropping. We considered
both synthetic and real data collected in Section 5.3.3, clustered in three
groups according to their correspondent MVAs: Weak Perspective (MVA <
1.5�), Mid Perspective (1.5�  MVA < 4�), and Strong Perspective (MVA �
4�). We report the ROC curves and correspondent AUC for slightly (5%�20%
of images size) and strongly (25%� 50% of images size) cropped images.

The AUCs increase between Weak and Mid perspective in all the cases
confirms that the proposed feature allow the analyst to decide whether the
cropping detection can be possibly applied to a query image. More specifi-
cally, if we limit the comparison to crop size wider than 25%, the AUC on
synthetic data always increase of at least 0.13 when passing from Weak to
Mid perspective. Real data always confirm this prediction with even greater
improvements (AUC increases of even 0.30 in some cases).

Notice that results with real data have in same cases slight discrepancies
with respect to the their synthetic counterparts. This is due, on the one hand,
to the obvious limitations of generating synthetic data that perfectly model
the user behaviour. On the other hand, this is due to the impossibility of
performing real tests on huge amount of data, as done with synthetic data.
Anyway we expect to overcome this limit in our future works by investigating
automatic way to blindly localize an image PP.
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Table A.1: AUC values for Synthetic and Real Tests combining three di↵erent per-
spective conditions, slightly and strongly cropped images along di↵erent single crop-
ping directions

LEFT TOP RIGHT BOTTOM
5%-20% 25%-50% 5%-20% 25%-50% 5%-20% 25%-50% 5%-20% 25%-50%

SYNTH
Weak 0.57 0.80 0.54 0.71 0.53 0.77 0.53 0.70
Mid 0.66 0.96 0.59 0.86 0.58 0.94 0.56 0.84
Strong 0.67 0.98 0.60 0.89 0.61 0.97 0.57 0.88

REAL
Weak 0.54 0.66 0.54 0.69 0.52 0.63 0.52 0.68
Mid 0.65 0.98 0.69 0.99 0.55 0.90 0.74 0.99
Strong 0.80 0.99 0.63 0.98 0.50 0.92 0.79 0.99

Table A.2: AUC values for Synthetic and Real Tests combining three di↵erent per-
spective conditions, slightly and strongly cropped images along two cropping direc-
tions

TOP-LEFT TOP-RIGHT BOTTOM-LEFT BOTTOM-RIGHT
5%-20% 25%-50% 5%-20% 25%-50% 5%-20% 25%-50% 5%-20% 25%-50%

SYNTH
Weak 0.60 0.82 0.57 0.81 0.59 0.82 0.56 0.80
Mid 0.70 0.97 0.65 0.97 0.68 0.97 0.63 0.96
Strong 0.72 0.99 0.68 0.98 0.71 0.99 0.66 0.98

REAL
Weak 0.56 0.73 0.55 0.71 0.55 0.72 0.54 0.71
Mid 0.77 1.00 0.70 0.99 0.80 1.00 0.76 1.00
Strong 0.81 1.00 0.63 0.99 0.88 1.00 0.77 1.00

Table A.3: AUC values for Synthetic and Real Tests combining three di↵erent per-
spective conditions, sslightly and strongly cropped images along three cropping di-
rections

LEFT-TOP-RIGHT TOP-RIGHT-BOTTOM RIGHT-BOTTOM-LEFT BOTTOM-LEFT-TOP
5%-20% 25%-50% 5%-20% 25%-50% 5%-20% 25%-50% 5%-20% 25%-50%

SYNTH
Weak 0.56 0.75 0.57 0.80 0.55 0.75 0.61 0.82
Mid 0.60 0.90 0.64 0.96 0.58 0.88 0.70 0.97
Strong 0.61 0.92 0.66 0.98 0.59 0.91 0.72 0.99

REAL
Weak 0.56 0.72 0.53 0.66 0.55 0.70 0.54 0.69
Mid 0.73 1.00 0.57 0.92 0.78 1.00 0.76 0.98
Strong 0.67 0.99 0.54 0.94 0.81 1.00 0.77 1.00
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Figure A.1: (Best viewed in color) ROC curves for Synthetic and Real Tests combining
three di↵erent perspective conditions, slightly and strongly cropped images along
di↵erent single cropping directions. In columns Low, Mid and Strong perspective
respectively; in rows left, top, right and bottom cuts. Red and blue are used for
slightly and strongly cropped images respectively. Continuous and dashed lines are
used for synthetic and real data respectively.
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Figure A.2: (Best viewed in color) ROC curves for Synthetic and Real Tests combining
three di↵erent perspective conditions, slightly and strongly cropped images along two
cropping directions. In columns Low, Mid and Strong perspective respectively; in
rows left-top, right-top, left-bottom and right-bottom cuts. Red and blue are used
for slightly and strongly cropped images respectively. Continuous and dashed lines
are used for synthetic and real data respectively.
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Figure A.3: (Best viewed in color) ROC curves for Synthetic and Real Tests combining
three di↵erent perspective conditions, slightly and strongly cropped images along
three cropping directions. In columns Low, Mid and Strong perspective respectively;
in rows left-top-right, top-right-bottom, right-bottom-left, bottom-left-top cuts. Red
and blue are used for slightly and strongly cropped images respectively. Continuous
and dashed lines are used for synthetic and real data respectively.
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