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Approximate norm descent methods

for constrained nonlinear systems‡

Benedetta Morini∗, Margherita Porcelli∗ and Philippe L. Toint†

December 16, 2016

Abstract

We address the solution of convex-constrained nonlinear systems of equations where
the Jacobian matrix is unavailable or its computation/storage is burdensome. In order to
efficiently solve such problems, we propose a new class of algorithms which are “derivative-
free” both in the computation of the search direction and in the selection of the steplength.
Search directions comprise the residuals and Quasi-Newton directions while the steplength
is determined by using a new linesearch strategy based on a nonmonotone approximate
norm descent property of the merit function. We provide a theoretical analysis of the
proposed algorithm and we discuss several conditions ensuring convergence to a solution
of the constrained nonlinear system. Finally, we illustrate its numerical behaviour also in
comparison with existing approaches.

Keywords: nonlinear systems of equations, bound constraints, numerical algorithms, convergence

theory.

AMS Subject Classification: 65H10, 90C06, 90C56.

1 Introduction

Solving nonlinear systems of equations is an ubiquitous task in applied mathematics, and
has generated considerable interest for a long time. In this paper, we focus on an important
variant of this task: that of solving a nonlinear system subject to convex constraints (such as
bounds). More precisely, let F : X → Rn be a continuous mapping and X ⊆ Rn be an open
set. We address the problem of finding a vector x ∈ Rn satisfying the nonlinear system with
convex-constraints

F (x) = 0, x ∈ Ω, (1)

where Ω ⊂ X is a convex set whose relative interior is non-empty.
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The solution of problem (1) has been intensively investigated in the last years. Most
of the proposed methods require the calculation of the derivatives of F and are Newton-
based methods belonging to the class of affine-scaling procedures, see e.g., [3,4,19,26,29,31].
However, such methods may become computationally expensive for medium and large scale
problems, due to the evaluation cost of the Jacobian J of F , unless this matrix has structure
which can be exploited. Whenever this is not the case, spectral residual methods [21,22] and
Quasi-Newton methods [6, 27] may become competitive, and implementations which do not
involve derivatives at all (derivative-free algorithms) are of special interest, as exemplified
by the algorithms proposed in [1, 17, 21, 23] for unconstrained problems and in [12, 20, 30] for
constrained ones.

Our interest in this paper is in a class of derivative-free methods covering both spectral
residual and quasi-Newton algorithms. As it turns out (and as we demonstrate in the paper),
these methods can be used for relatively large problems and can be surprisingly efficient in
terms of computing a solution of (1), as opposed to the easier task of computing a local
minimizer of the residual

f(x) = ‖F (x)‖22. (2)

However, it is also known that they may fail. Our objective is thus to propose an efficient
algorithm which avoids some of the convergence pitfalls present in similar approaches and
also to investigate conditions under which convergence to a solution of (1) can be ensured.

The algorithm developed in this paper generates feasible iterates xk, where k is the it-
eration index. If F is continuous, then the residuals ±F (xk) are used as search directions.
Alternatively, if F is differentiable, search directions can be computed by using approxima-
tions Bk to the Jacobian matrices J of F at the iterates. In both cases, large savings can
be obtained in the computation of the search directions compared with Newton’s method. A
derivative-free linesearch strategy is proposed so that, for any initial iterate, either ‖F (xk)‖
converges to zero or the iteration fails to do so in a small and characterized number of ways.
Since the solutions of problem (1) are global minimizers of the function f and the search
directions generated may be uphill directions for f , we introduce a nonmonotone approximate
norm descent condition inspired by both the linesearch proposed by Li and Fukushima [23],
and the globalization schemes for Inexact Newton methods due to Eisenstat and Walker [13].

The paper is organized as follows. Section 2 introduces the context and the Psane
method [20]. Our proposal is then developed in Section 3. We next investigate (in Section 4)
some simple convergence properties of the sequences of residuals and iterates. The theoretical
core of the paper is Section 5 where we discuss several conditions ensuring convergence to a
solution of (1). Section 6 then illustrates the numerical properties of the proposed method
and its variants, and compares it with Psane. Some conclusions and perspectives are finally
presented in Section 7.

1.1 Notations

Throughout this paper, (x)i represents the ith component of the vector x, and B(y, δ) rep-
resents the closed ball with center y and radius δ. The symbol ‖ · ‖ denotes the Euclidean
norm. The (orthogonal) projection map onto Ω is denoted with P (·). When discussing iter-
ative methods for (1), the term breakdown refers to the case in which an iterate can not be
determined. Finally, given a sequence of vectors {xk}, for any function f , we let fk = f(xk).

Dec 16 2016 05:29:33 EST

Version 2 - Submitted to MCOM

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



3

2 Preliminaries

In this section we review both linesearch strategies which do not require directional derivatives
of f and the projected derivative-free algorithm Psane for nonlinear equations with convex
constraints given in [20].

A useful contribution in global convergence of Broyden-like methods for unconstrained
nonlinear systems is due to Li and Fukushima [23]. Starting from an earlier contribution by
Griewank [15], they proposed a new derivative-free linesearch which is well-defined and easy
to implement. At k-th iteration, given the iterate xk and a search direction pk, the successive
iterate takes the form xk+1 = xk + λpk, λ > 0, and satisfies

‖F (xk + λpk)‖ ≤ (1 + ηk)‖F (xk)‖ − αλ2‖pk‖2, (3)

for some constant α ∈ (0, 1) and some positive ηk. The sequence {ηk} is supposed to meet
the following requirement.

Assumption 2.1 The positive sequence {ηk} satisfies

∞∑
k=0

ηk ≤ η <∞. (4)

Due to the continuity of F , condition (3) holds for all λ sufficiently small, and it is called an
approximate norm descent linesearch since

‖F (xk + λpk)‖ ≤ (1 + ηk)‖F (xk)‖. (5)

La Cruz, Mart́ınez and Raydan [21] then developed the derivative-free nonmonotone iter-
ative method for unconstrained nonlinear systems named Derivative Free Spectral Algorithm
for Nonlinear Equations (df-sane). The linesearch strategy proposed has the form

φ(xk + λpk) ≤ max
0≤j≤min{k,M}

φ(xk−j) + ηk − αλ2φ(xk), (6)

where φ(x) = ‖F (x)‖τ , τ ∈ {1, 2}, M is a nonnegative integer. The first term on the right-
hand side of (6) is responsible for the nonmonotone behaviour of φ, while the second term
ηk > 0 guarantees that the linesearch strategy is well-defined, and the third term provides
the arguments for proving global convergence. The sequence {ηk} is supposed to satisfy
Assumption 2.1. In [17] condition (6) is combined with a nonmonotone watchdog rule and is
used with ηk = 0 for all k.

A further proposal was made by Birgin, Krejić and Mart́ınez [5] in the context of Inexact
Quasi-Newton methods for unconstrained systems. Restricting to the “exact” solution of the
linear systems, the linesearch is given by

‖F (xk + λpk)‖ ≤ (1− αλ)‖F (xk)‖+ ηk, (7)

and, again, α ∈ (0, 1) and the sequence {ηk} is supposed to satisfy Assumption 2.1. We refer
to previously mentioned papers for the analysis of the resulting procedures.

In addition, La Cruz recently proposed a projected derivative-free method for the con-
strained nonlinear system (1), named Psane [20]. Since the Psane algorithm motivated the
definition of our method, we restate its details.
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Algorithm 2.1: The Psane algorithm

Given x0 ∈ Ω, α, σ ∈ (0, 1), λmax ∈ (0, 1], 0 < βmin < βmax < ∞, β0 ∈ [βmin, βmax], a
positive sequence {ηk} that satisfies (4).

For k = 0, 1, 2, . . . do
1. If ‖F (xk)‖ = 0 stop.
2. Set d− = P (xk − βkF (xk))− xk and d+ = P (xk + βkF (xk))− xk.
3. Choose λ ∈ (0, λmax].
4. Repeat

4.1 If

‖F (xk + λd−)‖2 ≤ ‖F (xk)‖2 + ηk − αλ2β2k‖F (xk)‖2, (8)

set λk = λ, dk = d− and go to Step 5.
4.2 If

‖F (xk + λd+)‖2 ≤ ‖F (xk)‖2 + ηk − αλ2β2k‖F (xk)‖2 (9)

set λk = λ, dk = d+ and go to Step 5.
4.3 Set λ = σλ.

5. Set xk+1 = xk + λkdk, sk = xk+1 − xk, yk = F (xk+1)− F (xk).
6. Update βk:

Set bk =
sTk yk
sTk sk

.

If
∣∣∣ 1
bk

∣∣∣ ∈ [βmin, βmax], set βk+1 = 1
bk
,

else βk+1 = min
[
βmax,max

[
βmin,

∣∣∣ 1
bk

∣∣∣]] .
(10)

One distinguishing feature of Psane is that the computation of the search directions d−
and d+ does not involve the solution of linear systems. The spectral coefficient 1/bk formed in
Step 6 is closely related to the Barzilai-Borwein’s steplength [2]; it may be positive or negative,
and the absolute value |1/bk| is constrained to belong to the given interval [βmin, βmax] [21].
The iterate xk+1 is determined through a backtracking strategy and each repetition of Step 4
requires a number of evaluations of F between 1 and 2. It is easy to observe that each iterate
xk+1 is feasible as it is the convex combination of the feasible points xk and P (xk±βkF (xk)).

Convergence properties of both {‖F (xk)‖} and {xk} have been established under Assump-
tion 2.1. In particular, it is shown that the sequence {‖F (xk)‖} converges [20, Proposition
2.4] and that, if an isolated solution of (1) is a limit point of {xk}, then the whole sequence
converges to such a solution [20, Theorem 2.7].

As such, the Psane algorithm is not without drawbacks. We first note that the acceptance
conditions (8) and (9) depend on the spectral coefficient βk such that |βk| ∈ [βmin, βmax] (Step
6). Since in practice 1/βmin and βmax are large values, the term αλ2β2k‖F (xk)‖2 may become
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either negligible for small values of |βk|, or excessively large for big values of |βk|. In the latter
case, a large number of backtracks may be necessary to generate the new iterate xk+1.

Moreover, Psane may breakdown prematurely if an iterate xk lies on the boundary of
Ω, the step d− has zero norm and d− is accepted in Step 4.1. In this case, xk+1 = xk and
therefore bk in Step 6 is not well-defined. This can be observed when solving the nonlinear
system [20, eqn (28)]

F (x) =

 54− 18x1 + 3x3
78− 26x2 + 2x3
x3(18− 3x1 − 2x2)

 = 0 x ∈ Ω, (11)

where Ω is the box {x ∈ Rn s.t. l ≤ x ≤ u}, l = (0, 0, 0)T , u = (4, 6,∞). This system admits
the unique solution x∗ = (3, 3, 0)T . Breakdown occurs at the starting point when running a
Matlab implementation of Psane with the parameters declared in [20], and initial guesses

x
(1)
0 = (0, 0, 0)T and x

(2)
0 = (4, 6, 0)T .

3 The new algorithm

Building on the concepts developed above, we now introduce our new Projected Approximate
Norm Descent algorithm (Pand), which builds a sequence of feasible iterates {xk} satisfying
the approximate norm descent property (5) for all k by using the projection operator onto Ω
and a linesearch strategy,

At k-th iteration, let xk be the current feasible iterate and Bk be a suitable invertible
matrix. First, the linear system

Bkp
qn
k = −F (xk), (12)

is solved and two steps

p+(pqnk , λ)
def
= P (xk + λpqnk )− xk, p−(pqnk , λ)

def
= P (xk − λpqnk )− xk, (13)

λ ∈ (0, 1], are formed, see e.g. [7]. A feasible point of the form

xk+1 = xk + pk = xk + pk(λ),

is then selected by such that, for some α ∈ (0, 1), ηk > 0, and {ηk} satisfying (4),

‖F (xk + pk(λ))‖ ≤ (1− α(1 + λ))‖F (xk)‖, (14)

or
‖F (xk + pk(λ))‖ ≤ (1 + ηk − αλ)‖F (xk)‖. (15)

where pk(λ) = p±(pqnk , λ).

In this procedure, pqnk is a Quasi-Newton step (which explains its superscript). The
matrix Bk can be chosen as a two-point approximation to the secant equation by letting

Bk = β−1k I, |βk| ∈ [βmin, βmax], (16)

with βk given in (10) [2, 21]. Alternatively, Bk can be built by using the Broyden’s update
or any other secant formula, see e.g., [9, 24, 27]. The use of such matrices Bk is intended to

make the computation of pqnk cheap.
The formal description of Pand method is as follows.
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Algorithm 3.1: The Pand algorithm

Given x0 ∈ Ω, B0 ∈ Rn×n nonsingular, α, σ ∈ (0, 1), {ηk} satisfying (4).

For k = 0, 1, 2, . . . do
1. Solve the linear system (12).
2. Set λ = 1.
3. Repeat

3.1 Set p+ = p+(pqnk , λ) and p− = p−(pqnk , λ) as in (13).
3.2 If pk(λ) = p+ satisfies (14), go to Step 4.
3.3 If pk(λ) = p− satisfies (14), go to Step 4.
3.4 If ‖p+‖ 6= 0 and pk(λ) = p+ satisfies (15), go to Step 4.
3.5 If ‖p−‖ 6= 0, and pk(λ) = p− satisfies (15), go to Step 4.
3.6 Otherwise set λ = σ λ.

4. Set pk = pk(λ), λk = λ, xk+1 = xk + pk.
5. If ‖F (xk+1)‖ = 0 stop.

Else form an invertible matrix Bk+1.

Trivially, xk + p±(pqnk , λ) is feasible. If F is continuously differentiable, either p+ or p− is
a descent direction for f in (2), unless ∇f(xk)

T p+ = ∇f(xk)
T p− = 0. Thus, the use of both

p+ and p− promotes a decrease of ‖F‖, cfr. [21, 22].
We also observe that the vector

vqnk = P (xk + pqnk )− xk, (17)

is the first step tested in the Pand algorithm. From the properties of the projection map P ,
we may deduce that

‖vqnk ‖ ≤ ‖pqnk ‖, (18)

‖p±‖ ≤ λ‖pqnk ‖, (19)

and, by Steps 3 and 4 of Pand algorithm, we have that

‖pk‖ ≤ λk‖pqnk ‖. (20)

Acceptance of the trial steps is tested in Step 3, which terminates in a finite number of
steps. Indeed, from the continuity of F and the positivity of ηk, there exists a scalar λ̄ such
that

(F (xk + pk(λ))2i ≤ (1 + ηk − αλ̄)2(F (xk))
2
i ,

with λ ∈ (0, λ̄] and for i = 1, . . . , n. Trivially the above inequalities imply that (15) holds for
λ small enough. The number of F -evaluations performed at each loop within Step 3 is either
1 or 2.

The linesearch conditions (14) and (15) are derivative-free. The first is related to globally
convergent Inexact Newton methods [13] where a sufficient decrease in ‖F‖ is imposed at each
iteration. It is tested on both p+ and p− in order to promote a decrease in ‖F‖. The second
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allows for an increase in ‖F‖, possibly for λ small enough. We exclude the use of zero-norm
steps as in this case the inequality (15) is trivially satisfied as long as (ηk − αλ) ≥ 0.

It is important to observe that inequality (14) implies (15), and the latter implies (5).
Thus, the approximate norm descent condition (5) holds for all k.

As in (3), (7) and (8), the scalar ηk in (15) allows a nonmonotone behaviour of ‖F‖.
Conditions (14) and (15) however differ from (3) and (8) in two respects. Firstly, they are
independent from the norm of the step used, which may be convenient whenever this norm
is very large, see §2. Secondly, ηk appears as a multiplicative term for ‖F (xk)‖ in (15), while
the impact of ηk on the value ‖F (xk)‖2 + ηk in (6) is unpredictable as ηk is not adjusted to
reflect the size of ‖F (xk)‖.

Finally, the sufficient decrease condition (14) with p+ and p− is important for establishing
theoretical results on the convergence of {‖F (xk)‖} to zero (see next section). Such results
are valuable as convergence to stationary points of (2) cannot be obtained in our framework,
cfr. [17, 20, 21, 23]. We are aware that (14) may slow the convergence of the method but the
numerical experience presented in §6 shows that it does not either prevent the nonmonotone
behaviour of ‖F‖ or slow convergence down compared with Psane.

Detailed numerical experience with Pand will be presented in §6. We only observe at this
stage that the implementation of Pand (with Bk given by (16), and the Psane parameters

as used in [20]) is successful on problem (11) starting from the initial guesses x
(1)
0 , x

(2)
0 given

in §2: the algorithm converges to a solution in 8 and 10 F -evaluations, respectively.

4 Convergence analysis

This section is devoted to the theoretical study of the Pand algorithm. Summarizing our
main results:

• We show that the sequence {‖Fk‖} is convergent.

• We show that sequence {xk} is convergent and give an upper bound on the distance
between x0 and the limit point x∗.

• We investigate some conditions under which limk→∞ ‖Fk‖ = 0, i.e. F (x∗) = 0.

The following technical result shown in [23, Lemma 2.1] will be useful.

Lemma 4.1 Let {ηk} satisfy Assumption 2.1. Then
∏k
i=0(1 + ηi) ≤ eη with k ≥ 0.

4.1 Analysis of the sequences {‖Fk‖} and {λk}

We start by analyzing the asymptotic behaviour of the sequences {‖Fk‖} and {λk} and make
a first attempt to detect both occurrences where limk→∞ ‖Fk‖ = 0 and where Pand method
fails to solve (1). The following theorem characterizes the behaviour of {‖Fk‖} and is valid
for any continuous function F . The proof relies on inequality (5).

Theorem 4.2 Let Assumption 2.1 hold and {xk} be generated by the Pand algorithm. Then

(i) the sequence {‖Fk‖} is bounded and

‖Fk+1‖ ≤ eη‖F0‖, (21)

for all k ≥ 0.
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(ii) The sequence {‖Fk‖} is convergent.

(iii)
lim
k→∞

λk‖Fk‖ = 0. (22)

(iv)
liminf
k→∞

λk > 0 implies that lim
k→∞

‖Fk‖ = 0. (23)

(v) If (14) is satisfied for infinitely many k, then limk→∞ ‖Fk‖ = 0.

(vi) If ‖Fk‖ ≤ ‖Fk+1‖ for infinitely many iterations, then liminfk→∞ λk = 0.

(vii) If ‖Fk‖ ≤ ‖Fk+1‖ for all k sufficiently large, then {‖Fk‖} does not converge to 0.

Proof. (i) Applying (5) recursively, we obtain that

‖Fk+1‖ ≤
k∏
i=0

(1 + ηi)‖F0‖,

for all k ≥ 0. The proof is then completed by using Lemma 4.1.

(ii) We know that any positive sequence {ak} satisfying

ak+1 ≤ (1 + rk)ak + rk,

with rk > 0 and
∑∞

k=0 rk < ∞, is convergent by [10, Lemma 3.3]. Hence, since {‖Fk‖}
satisfies (5) for all k, it converges.
(iii) By (15), we have that

αλk‖Fk‖ ≤ (1 + ηk)‖Fk‖ − ‖Fk+1‖. (24)

Using limk→∞ ηk = 0 and the convergence of {‖Fk‖} we obtain (22).
(iv) The implication (23) directly follows from (22).
(v) If the norm decrease (14) holds for infinitely many k, there exists a subsequence {‖Fkj‖},
blue 1 ≤ k0 < k1 < · · · , such that

‖Fkj‖ ≤ (1− α− αλkj )‖Fkj−1‖ ≤ (1− α)‖Fkj−1‖,

whereas by (5)

‖Fkj−1‖ ≤ (1 + ηkj−2)‖Fkj−2‖ ≤
kj−2∏
i=kj−1

(1 + ηi)‖Fkj−1
‖.
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Thus,

‖Fkj‖ ≤ (1− α)‖Fkj−1‖

≤ (1− α)

kj−2∏
i=kj−1

(1 + ηi)‖Fkj−1
‖

≤ (1− α)2
kj−2∏
i=kj−1

(1 + ηi)‖Fkj−1−1‖

≤ . . .

≤ (1− α)j+1

kj−2∏
i=k0

(1 + ηi)‖Fk0−1‖

≤ (1− α)j+1

kj−2∏
i=0

(1 + ηi)‖F0‖

≤ (1− α)j+1eη‖F0‖,

where the last inequality follows from Lemma 4.1. Hence, limkj→∞ ‖Fkj‖ = 0 and the con-
vergence of {‖Fk‖} implies limk→∞ ‖Fk‖ = 0.
(vi) If ‖Fk‖ ≤ ‖Fk+1‖ for infinitely many steps then there exists a subsequence of indices {kj}
such that

‖Fkj‖ ≤ ‖Fkj+1‖ ≤ (1 + ηkj − αλkj )‖Fkj‖,

and this gives
αλkj ≤ ηkj .

Since limk→∞ ηk = 0, we get liminfk→∞ λk = 0.
(vii) In case we have that

‖Fk‖ ≤ ‖Fk+1‖ ≤ (1 + ηk − αλk)‖Fk‖,

for all k sufficiently large, we trivially conclude that {‖Fk‖} does not converge to 0. 2

4.2 Analysis of the sequence {xk}

Now we analyze the sequence of iterates generated by the Pand algorithm and make the
following assumption.

Assumption 4.1 Matrices B−1k are uniformly bounded for k ≥ 0, i.e. ‖B−1k ‖ ≤ cB for some
positive scalar cB.

Assumption 4.1 immediately yields that the step pqnk in (12) satisfies

‖pqnk ‖ ≤ cB‖Fk‖. (25)

We observe that Bk of the form (16) is guaranteed to fulfill Assumption 4.1 as ‖B−1k ‖ = |βk| ≤
βmax. We start showing that {xk} is convergent.
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Theorem 4.3 Let Assumptions 2.1 and 4.1 hold and {xk} be the sequence generated by the
Pand algorithm. Then the sequence {xk} is convergent and, if x∗ is the limit point, then

‖x0 − x∗‖ ≤ cB
(

1

α
+
η

α
eη
)
‖F0‖.

Proof. First note that (20) and (25) yield

‖pk‖ ≤ cBλk‖Fk‖. (26)

Consider
∑∞

k=0 λk‖Fk‖. Using (24) and (21), we obtain that

∞∑
k=0

λk‖Fk‖ ≤
∞∑
k=0

(
1 + ηk
α
‖Fk‖ −

1

α
‖Fk+1‖

)

=

∞∑
k=0

1

α
(‖Fk‖ − ‖Fk+1‖) +

∞∑
k=0

ηk
α
‖Fk‖

≤ 1

α
‖F0‖+

∞∑
k=0

ηk
α
eη‖F0‖

≤
(

1

α
+
η

α
eη
)
‖F0‖. (27)

Then
∑∞

k=0 λk‖Fk‖ is convergent since the terms λk‖Fk‖ are nonnegative. Moreover, by (26),
we have that

∞∑
k=0

‖pk‖ <∞. (28)

In order to show that {xk} is convergent, let m ≥ ` and consider

‖xm − x`‖ ≤
m−1∑
k=`

‖pk‖ ≤
∞∑
k=`

‖pk‖.

Now,
∞∑
k=`

‖pk‖ =
∞∑
k=0

‖pk‖ −
`−1∑
k=0

‖pk‖

tends to zero as ` tends to infinity. Consequently, for any ε > 0, there exists ` sufficiently
large such that ‖xm − x`‖ ≤ ε for m ≥ `. This means that {xk} is a Cauchy sequence and
hence it converges. Finally,

‖x0 − x`‖ ≤
`−1∑
k=0

‖pk‖,

and letting ` tend to infinity, we obtain that

‖x0 − x∗‖ ≤
∞∑
k=0

‖pk‖ ≤ cB
∞∑
k=0

λk‖Fk‖.
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The desired conclusion then follows from (27). 2

Assumption 4.1 has an important consequence. The bound on ‖x0 − x∗‖ given above implies
that if a solution x̄ of (1) satisfies

‖x0 − x̄‖ > cB

(
1

α
+
η

α
eη
)
‖F0‖,

then {xk} cannot converge to x̄. Fortunately, α is typically chosen quite small in practice [9],
but this remains a drawback of Pand. An analogous result to the bound (28) was established
by Li and Fukushima on the steps taken in their derivative-free Broyden-like method, see [23,
Theorem 2,2]. This class of methods is therefore best suited to cases where a solution is
known to exist in a reasonable neighbourhood of the initial point.

We conclude our analysis of the convergence of {xk} by considering the case where the
limit point of {xk} solves (1) and lies in the interior of Ω. Part of our results is obtained
under the well-known Dennis-Moré condition [9] and the following assumption.

Assumption 4.2 F is continuously differentiable on Ω and the Jacobian J is Lipschitz con-
tinuous on Ω and satisfies

‖J(x)− J(y)‖ ≤ 2L‖x− y‖, ∀x, y ∈ Ω.

Lemma 4.4 Let Assumptions 2.1, 4.1 hold, and {xk} be the sequence generated by the Pand
algorithm. Suppose that the limit point x∗ of {xk} is such that x∗ ∈ int(Ω) and F (x∗) = 0.
Then the following conclusions hold.

i) For k sufficiently large it holds p+(pqnk , 1) = pqnk and xk + p±(pqnk , λ) ∈ int(Ω) for all
λ ∈ (0, 1].

ii) If Assumption 4.2 holds, J(x∗) is nonsingular, and

lim
k→∞

‖Ekpqnk ‖
‖pqnk ‖

= 0, (29)

with Ek = Bk − J(x∗), then {xk} converges to x∗ superlinearly.

Proof. (i) Since x∗ ∈ int(Ω), there exist ρ∗ > 0 such that B(x∗, ρ) ⊂ int(Ω) for
ρ ∈ (0, ρ∗). Since {xk} converges to x∗, we know that xk ∈ B(x∗, ρ) for all k sufficiently large.

From (25), ‖pqnk ‖ tends to 0, and for k large enough

‖x∗ − (xk + pqnk )‖ ≤ ‖x∗ − xk‖+ ‖pqnk ‖ ≤ ρ+ ‖pqnk ‖ < ρ∗.

Thus, we have that xk + pqnk ∈ int(Ω) and p+(pqnk , 1) = pqnk by (13). Further, (19) yields
that xk + p± ∈ int(Ω) for all λ ∈ (0, 1].

(ii) See [9, Chapter 8]. 2

Dec 16 2016 05:29:33 EST

Version 2 - Submitted to MCOM

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



12

5 Ensuring the convergence of {‖Fk‖} to zero

In Theorem 4.2 we pointed out one case where the Pand algorithm solves problem (1), i.e.,
{‖Fk‖} converges to zero. In this section we complete our theoretical analysis of the Pand
algorithm by detecting further occurrences where {‖Fk‖} converges to zero. We address this
issue considering the use of both spectral residual steps and more general Quasi-Newton steps.
In order to interpret the results given, it is again useful to remember that α is typically quite
small [9].

We start by recalling a simple observation.

Lemma 5.1 Let f defined in (2) be continuously differentiable. For pk = ±λkβkFk, it holds

f(xk+1) = f(xk)± 2λkβk
∫ 1
0 F

T
k J(xk + tpk)Fk dt+

±2λkβk
∫ 1
0 (F (xk + tpk)− Fk)TJ(xk + tpk)Fk dt.

(30)

Proof. Using [9, Lemma 4.1.2], we have that

f(xk+1) = f(xk) +
∫ 1
0 ∇f(xk + tpk)

T pk dt

= f(xk)± 2λkβk
∫ 1
0 F (xk + tpk)

TJ(xk + tpk)Fk dt,

from which (30) follows. 2

Under specific assumptions on the Jacobian J at the limit point x∗ of {xk}, the next
two theorems analyze the acceptance of the spectral residual steps pk = ±λkβkFk, |βk| ∈
(βmin, βmax) for k large enough. Our first result concerns the case when JS(x∗), the symmetric
part∗ of J(x∗), is positive (negative) definite and ensures that limk→∞ ‖Fk‖ = 0 when the
2-norm condition number of JS(x∗) is of order O

(
α−1

)
. The notation Gk is used for the

“average Jacobian” matrix along the step pk, defined by

Gk
def
=

∫ 1

0
J(xk + tpk) dt, (31)

while (GS)k denotes the average matrix associated to JS along the step pk, defined by

(GS)k
def
=

∫ 1

0
JS(xk + tpk) dt. (32)

Theorem 5.2 Let Assumptions 2.1, 4.1, 4.2 hold and {xk} be the sequence generated by the
Pand algorithm with Bk given by (16). Suppose that for k sufficiently large, the steps taken
have the form pk = ±λkβkFk, |βk| ∈ (βmin, βmax). Moreover assume that the symmetric part
JS of J is positive (negative) definite at the limit point x∗ of {xk}, and that the 2-norm
condition number κ(JS(x∗)) satisfies

κ(JS(x∗)) <
γ

α
, (33)

for some γ ∈ (0, 1), and α ∈ (0, 1) as in (14)-(15). Then F (x∗) = 0.

∗We recall here that the symmetric part AS of any matrix A is defined as AS = (A + AT )/2. It holds
vTAv = vTASv for any vector v.
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Proof. Without loss of generality, let us assume that JS(x∗) is positive definite. Then J(x∗)
is nonsingular and by (10) and (31) we get

βk =
‖pk−1‖2

pTk−1(Fk − Fk−1)
=

‖pk−1‖2

pTk−1
∫ 1
0 J(xk−1 + tpk−1)pk−1 dt

=
‖pk−1‖2

pTk−1
∫ 1
0 JS(xk−1 + tpk−1)pk−1 dt

,

i.e., by (32)

βk =
‖pk−1‖2

pTk−1(GS)k−1pk−1
.

Moreover, since F Tk GkFk = F Tk (GS)kFk, using Lemma 5.1, we have that

f(xk+1) = f(xk)± 2λkβk
F Tk (GS)kFk
‖Fk‖2

f(xk)+

±2λkβk

∫ 1

0
(F (xk + tpk)− Fk)TJ(xk + tpk)Fk dt.

(34)

Now, continuity implies that there exists a scalar ρ > 0 sufficiently small such that, for all
y ∈ B(x∗, ρ),

σmin(JS(y)) ≥ (1− ε)σmin(JS(x∗)) and σmax(JS(y)) ≤ (1 + ε)σmax(JS(x∗)), (35)

and
σmax(J(y)) ≤ (1 + ε)σmax(J(x∗)), (36)

with ε ∈ (0, 1) given by

ε
def
=

1− γ
1 + γ

. (37)

Moreover, the convergence of the sequence {xk} implies that xk−1 + tpk−1 and xk + tpk
both belong to B(x∗, ρ) for large enough k and all t ∈ [0, 1]. As a consequence, we deduce
that, for k sufficiently large,

min [σmin((GS)k), σmin((GS)k−1)] ≥ (1− ε)σmin(JS(x∗)), (38)

and
max [σmax((GS)k), σmax((GS)k−1)] ≤ (1 + ε)σmax(JS(x∗)). (39)

This in turn implies that, for k sufficiently large, βk > 0 lies in the interval

βk ∈
[

1

σmax((GS)k−1)
,

1

σmin((GS)k−1)

]
, (40)

and that

βk
F Tk (GS)kFk

‖Fk‖2
∈
[
σmin((GS)k)

σmax((GS)k−1)
,
σmax((GS)k)

σmin((GS)k−1)

]
⊆
[

1− ε
1 + ε

(
σmin(JS(x∗))

σmax(JS(x∗))

)
,
1 + ε

1− ε

(
σmax(JS(x∗))

σmin(JS(x∗))

)]
,

which yields

βk
F Tk (GS)kFk

‖Fk‖2
≥ γ

κ(JS(x∗))
. (41)
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Consider pk = −λkβkFk. The inequality (34) implies that

f(xk+1) ≤ f(xk)− 2λkβk
F Tk (GS)kFk
‖Fk‖2

f(xk)+

+2λkβk

∣∣∣∫ 1
0 (F (xk + tpk)− Fk)TJ(xk + tpk)Fk dt

∣∣∣ , (42)

in which the last absolute value can be written∣∣∣∣∫ 1

0
(F (xk + tpk)− Fk)TJ(xk + tpk)Fk dt

∣∣∣∣ =

∣∣∣∣∫ 1

0

(∫ 1

0
J(xk + ζ tpk)tpk dζ

)
J(xk + tpk)Fk dt

∣∣∣∣ ,
ζ ∈ [0, 1]. Again xk + ζ tpk ∈ B(x∗, ρ) for t, ζ ∈ [0, 1]. Thus, proceeding as above and using
the form pk = −λkβkFk, we deduce that∣∣∣∣∫ 1

0
(F (xk + tpk)− Fk)TJ(xk + tpk)Fk dt

∣∣∣∣ ≤ ∫ 1

0
tλk|βk| max

z∈B(x∗,ρ)
‖J(z)‖2‖Fk‖2 dt

=
1

2
λk|βk| max

z∈B(x∗,ρ)
σmax(J(z))2‖Fk‖2. (43)

Combining this expression with (41), (42), (40), (35), (36) and (37) we obtain that, for k
sufficiently large,

f(xk+1) ≤

(
1− 2λkβk

F Tk (GS)kFk

‖Fk‖2
+ λ2kβ

2
k max
z∈B(x∗,ρ)

σmax(J(z))2

)
f(xk)

≤

(
1− 2

γ

κ(JS(x∗))
λk +

1

γ2

[
σmax(J(x∗))

σmin(JS(x∗))

]2
λ2k

)
f(xk).

Thus, for k sufficiently large, the linesearch condition (15) holds for any λ such that

1− 2γ

κ(J(x∗))
λ+

1

γ2

[
σmax(J(x∗))

σmin(JS(x∗))

]2
λ2 ≤ (1− αλ)2,

i.e., such that

κ2λ
2 + 2κ1λ

def
=

(
1

γ2

[
σmax(J(x∗))

σmin(JS(x∗))

]2
− α2

)
λ2 + 2

(
α− γ

κ(J(x∗))

)
λ ≤ 0. (44)

By definition of JS , ‖JS(x∗)‖ ≤ ‖J(x∗)‖. Then,

σmax(J(x∗))

σmin(JS(x∗))
≥ κ(JS(x∗)),

and κ2 > 0 since α and γ belong to (0, 1). This implies that (44) is satisfied for a sufficiently
small and positive λ, since (33) gives κ1 < 0 and (15) is satisfied (for k large enough) if

λ ≤ λ∗
def
= −2κ1/κ2. The mechanism of Step 3.6 of the Pand algorithm then guarantees

that, for k sufficiently large, the loop in Step 3 terminates with λk ≥ min{1, σλ∗}, and λ∗
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independent of k. As a consequence, liminfk→∞ λk > 0 and (23) allows us to conclude the
proof. 2

Convergence of {‖Fk‖} to zero was also obtained in [22] by assuming the positive (negative)
definiteness of JS for all x in the lower level set {x : 0 ≤ f(x) ≤ f(x0)}.

In the next theorem, we analyze the acceptance of the spectral residual step under the
assumption that J is strongly diagonally dominant and the diagonal entries have constant
sign. We use the following notation:

ζi(x)
def
=

1

|(J(x))ii|

n∑
j = 1
j 6= i

|(J(x))ij | i = 1, . . . , n, (45)

m(x)
def
= min

1≤i≤n
(J(x))ii, M(x)

def
= max

1≤i≤n
(J(x))ii, (46)

m̃(x)
def
= min

1≤i≤n
|(J(x))ii|, M̃(x)

def
= max

1≤i≤n
|(J(x))ii|. (47)

Observe that all this quantities only depend on the Jacobian matrix at x. The value of ζi(x)
measure the degree of diagonal dominance of the i-th row of J(x), m(x) and M(x) measure the

signed range of its diagonal elements while m̃(x) and M̃(x) measure the diagonals’ absolute

values’ range. If J(x) has positive diagonal entries, then m̃(x) = m(x) = |m(x)| and M̃(x) =
M(x) = |M(x)|. If the diagonal elements are negative, then m̃(x) = −M(x) = |M(x)| and

M̃(x) = −m(x) = |m(x)|. The conditions used are

max

[
M̃(x∗)

|m(x∗)|
,
M̃(x∗)

|M(x∗)|

]
n∑
i=1

ζi(x
∗) ≤ 1− ν

1 + ν
, (48)

and
M̃(x∗)

m̃(x∗) <
(

ν
2−ν

)(
1−ν
1+ν

)
1
α ,

(49)

where ν ∈ (0, 1) and α ∈ (0, 1) is the constant in (14)-(15). Such conditions are satisfied by
matrices which are close to being diagonal and have a condition number of order α−1. In fact,
for decreasing values of max1≤i≤n ζi, the ratio M̃/m̃ approaches κ(J(x∗)) and (49) implies a
bound on such a condition number in terms of α−1. For example, if ν = 1/2, the right-hand
side of (48) is 1/3 and that of (49) is 1/9α.

Theorem 5.3 Let Assumptions 2.1, 4.1, 4.2 hold and {xk} be the sequence generated by the
Pand algorithm with Bk given by (16). Suppose that for k sufficiently large, the steps taken
have the form pk = ±λkβkFk, |βk| ∈ (βmin, βmax), and that J(x∗) is nonsingular, where x∗ is
the limit point of {xk}. Suppose in addition that J(x∗) has diagonal entries of constant sign
and satisfies (48) and (49), for some ν ∈ (0, 1) and α ∈ (0, 1) being the constant in (14)-(15).
Then F (x∗) = 0.

Proof. Because J(x) is continuous, there exists a ρ > 0 such that

max

[
M̃(x)

|m(x)|
,
M̃(x)

|M(x)|

]
n∑
i=1

ζi(x) < 1− ν, (50)
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and
M̃(x) ≤ (1 + ν)M̃(x∗) and m̃(x) ≥ (1− ν)m̃(x∗),

for all x ∈ B(x∗, ρ). Moreover, for k sufficiently large xk−1 and xk belong to B(x∗, ρ) and the
same holds for xk + tpk, xk−1 + tpk−1, t ∈ [0, 1]. Hence (50) holds for J(xk) and J(xk + tpk)
for all k sufficiently large and all t ∈ [0, 1]. As a consequence, we obtain that, for sufficiently
large k,

max

[
M̃k

|mk|
,
M̃k

|Mk|

]
n∑
i=1

ζi,k ≤ 1− ν, (51)

and
M̃k ≤ (1 + ν)M̃(x∗) and m̃k ≥ (1− ν)m̃(x∗),

where ζi,k, Mk, mk, m̃k and M̃k are defined as in (45)-(47) using the average Jacobian Gk
instead of J(x).
As in the previous theorem, the steps used have the form pk = ±λkβkFk and we analyze (30).
As for F Tk GkFk, t ∈ [0, 1], with Gk as in (31), we have that

F Tk GkFk =
n∑
i=1

(Fk)i

(Gk)ii(Fk)i +
n∑

j = 1
j 6= i

(Gk)ij(Fk)j

 .
Then, for i fixed,

(Gk)ii(Fk)
2
i +

n∑
j = 1
j 6= i

(Gk)ij(Fk)i(Fk)j ≥ (Gk)ii(Fk)
2
i −

n∑
j = 1
j 6= i

|(Gk)ij | |(Fk)i| |(Fk)j |

≥ (Gk)ii(Fk)
2
i −

n∑
j = 1
j 6= i

|(Gk)ij | ‖Fk‖2∞

≥ (Gk)ii(Fk)
2
i − ζi,k|(Gk)ii| ‖Fk‖2.

The entries of (Gk)ii are of constant sign. If they are positive, by using (51) we obtain that,
for k large enough,

F Tk GkFk ≥ mk

(
1−

n∑
i=1

ζi,k
M̃k

|mk|

)
‖Fk‖2 ≥ mkν‖Fk‖2.

Similarly, for k large enough,

(Gk)ii(Fk)
2
i +

n∑
j = 1
j 6= i

(Gk)ij(Fk)i(Fk)j ≤ (Gk)ii(Fk)
2
i +

n∑
j = 1
j 6= i

|(Gk)ij | |(Fk)i| |(Fk)j |

≤ (Gk)ii(Fk)
2
i + ζi,k|(Gk)ii| ‖Fk‖2,

and

F Tk GkFk ≤Mk

(
1 +

n∑
i=1

ζi,k
M̃k

|Mk|

)
≤Mk(2− ν)‖Fk‖2,
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where the last inequality again follows from (51). Proceeding analogously when the entries
of (Gk)ii are negative, we have

mk(2− ν)‖Fk‖2 ≤ F Tk GkFk ≤Mkν‖Fk‖2.

Hence, for sufficiently large k the scalars F Tk GkFk have constant sign and

|F Tk GkFk| ≥ ν m̃k‖Fk‖2 ≥ (1− ν)ν m̃(x∗)‖Fk‖2. (52)

Moreover,

βk =
‖pk−1‖2

pTk−1(Fk − Fk−1)
=

‖pk−1‖2

pTk−1
∫ 1
0 J(xk−1 + tpk−1)pk−1 dt

=
‖pk−1‖2

pTk−1Gk−1pk−1
.

Thus, using similar arguments, for k large enough the scalars βk have the same sign as
F Tk GkFk, and

|βk| ∈

[
1

(2− ν)M̃k−1
,

1

νm̃k−1

]
⊆

[
1

(1 + ν)(2− ν)M̃(x∗)
,

1

(1− ν)νm̃(x∗)

]
. (53)

Consequently,

βkF
T
k GkFk = |βkF Tk GkFk| ≥

(
ν

2− ν

)
(1− ν)m̃(x∗)

(1 + ν)M̃(x∗)
‖Fk‖2, (54)

for k large enough. Now, without loss of generality, consider pk = −λkβkFk. Lemma 5.1 then
gives that

f(xk+1) ≤ fk − 2λkβkF
T
k GkFk + 2λk|βk|

∣∣∣∣∫ 1

0
(F (xk + tpk)− Fk)TJ(xk + tpk)Fk dt

∣∣∣∣ , (55)

and the last absolute value above satisfies (43). Denoting the diagonal and off diagonal part
of a matrix as diag(·) and off(·) respectively, and using ‖J(z)‖ ≤ ‖diag(J(z))‖+ ‖off(J(z))‖
we obtain that

‖J(z)‖ ≤ M̃(z) +
√
n‖off(J(z))‖∞ ≤ M̃(z)

(
1 +
√
n max

1≤i≤n
ζi(z)

)
.

Using this bound, (43), (53) and the fact that (50) implies that ζi(z) ≤ 1 in B(x∗, ρ), we
deduce that, for k large enough,∣∣∣∣∫ 1

0
(F (xk + tpk)− Fk)

TJ(xk + tpk)Fk dt
∣∣

≤ 1

2
λk|βk| max

z∈B(x∗,ρ)
‖J(z)‖2‖Fk‖2

≤ 1

2
λk|βk|‖Fk‖2 max

z∈B(x∗,ρ)

[
M̃(z)

(
1 +
√
n max

1≤i≤n
ζi(z)

)]2
≤ (1 +

√
n)2

2ν

((1 + ν)M̃(x∗))2

(1− ν)m̃(x∗)
λk‖Fk‖2.
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This bound, (55) and (53) then imply that

f(xk+1) ≤

[
1−

(
2ν

2− ν

)
(1− ν)m̃(x∗)

(1 + ν)M̃(x∗)
λk +

(1 +
√
n)2

ν2
((1 + ν)M̃(x∗))2

(1− ν)2m̃(x∗)2
λ2k

]
f(xk).

The linesearch condition (15) thus holds for k large enough and for any λ such that

1−
(

2ν

2− ν

)
(1− ν)m̃(x∗)

(1 + ν)M̃(x∗)
λ+

(1 +
√
n)2

ν2
(1 + ν)2M̃(x∗)2

(1− ν)2m̃(x∗)2
λ2 ≤ (1− αλ)2,

that is such that(
(1 +

√
n)2

ν2
(1 + ν)2M̃(x∗)2

(1− ν)2m̃(x∗)2
− α2

)
λ2 + 2

(
α−

(
ν

2− ν

)
(1− ν)m̃(x∗)

(1 + ν)M̃(x∗)

)
λ ≤ 0. (56)

Again,

κ2
def
=

(1 +
√
n)2

ν2
(1 + ν)2M̃(x∗)2

(1− ν)2m̃(x∗)2
− α2 > 0,

by (47) and the fact that α and ν belong to (0, 1), and

κ1
def
= α−

(
ν

2− ν

)
(1− ν)m̃(x∗)

(1 + ν)M̃(x∗)
< 0

by (49). Thus (15) holds for λ ≤ λ∗
def
= −2κ1/κ2 and all k sufficiently large, liminfk→∞ λk ≥

min[1, σλ∗] > 0 and (23) finally allows us to deduce that F (x∗) = 0. 2

We conclude our investigation of some cases where the Pand algorithm can be proved to
converge to a solution by showing that {‖Fk‖} converges to zero if the limit point x∗ lies in

the interior of Ω and the step pqnk in (12) is, eventually, an Inexact Newton step.

Theorem 5.4 Let Assumptions 2.1, 4.1 and 4.2 hold and {xk} be generated by the Pand

algorithm. If the limit point x∗ of {xk} is such that x∗ ∈ int(Ω) and the step pqnk in (12)
satisfies

‖Jkpqnk + Fk‖ = τk‖Fk‖, τk ≤ τmax < 1− α, (57)

for all k sufficiently large, then limk→∞ ‖Fk‖ = 0.

Proof. Let ρ∗ > 0 and ρ ∈ (0, ρ∗) such that B(x∗, ρ) ⊂ int(Ω). Since {xk} converges
to x∗, we have xk ∈ B

(
x∗, ρ2

)
for all k sufficiently large. Suppose k is large enough so that

xk ∈ B
(
x∗, ρ2

)
. Then, possibly for λ small enough, P (xk+λpqnk )−xk = λpqnk , i.e., xk+λpqnk

belongs to the interior of Ω. In particular, if ‖λpqnk ‖ = ρ
2 , then xk + λpqnk ∈ B(x∗, ρ). By

using (21) and (25), and setting λ =
ρ

2cBeη‖F0‖
, independent of k, we get that equation

‖λpqnk ‖ = ρ
2 is satisfied for some λ ≥ λ, namely xk + λpqnk belongs to the interior of Ω for

some λ uniformly bounded away from zero.
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Now we show that λpqnk satisfies (15) for some λ uniformly bounded away from zero ,
which implies our claim. Since Assumption 4.2 holds, we know that

F (xk + λpqnk ) = F (xk) +

∫ 1

0
J(xk + tλpqnk )λpqnk dt

= (1− λ)F (xk) + λ(J(xk)p
qn
k + F (xk)) +∫ 1

0
(J(xk + tλpqnk )− J(xk))λp

qn
k dt,

see [9, Lemma 4.1.9]. Hence, using (57), the bounds (25) and (21) we obtain

‖F (xk + λpqnk )‖ ≤ (1− λ)‖Fk‖+ λτk‖Fk‖+ Lλ2‖pqnk ‖
2

≤ (1− λ+ λτmax)‖Fk‖+ Lλ2c2B‖Fk‖2

≤ (1− λ+ λτmax + Lλ2 c2B e
η‖F0‖)‖Fk‖.

Now observe that if
1− λ+ λτmax + Lλ2 c2B e

η‖F0‖ ≤ 1− αλ,

then (15) is satisfied and the step is accepted. In particular, if

λ ≤ λ∗
def
=

1− α− τmax

Lc2B e
η‖F0‖

,

then (15) is fulfilled for all k sufficiently large. Now, considering Step 3.6 of Pand algorithm,
we conclude that the repeat-loop at Step 3 terminates with λ ≥ min{1, σλ∗}, λ∗ indepen-
dent of k. Combining this bound with λ ≥ λ, we get liminfk→∞ λk > 0 and (23) implies
limk→∞ ‖Fk‖ = 0. 2

6 Numerical experiments

In this section we present the results of some numerical experiments conducted with differ-
ent implementations of the Pand algorithm. Our goal is to test its behaviour in terms of
robustness and computational cost and to compare it with Psane [20].

6.1 The problem sets

We considered two sets of problems: the first comprises small and medium-size smooth non-
linear systems with box constraints from a variety of applications; the second is made of
semismooth systems with nonnegative constraints which reformulate well-known nonlinear
complementarity problems from the literature.

6.1.1 Bound-constrained nonlinear systems

We selected 14 constrained nonlinear systems listed in Table 1 along with their description and
dimension. The convex set Ω in (1) is the n-dimensional box {x ∈ Rn s.t. l ≤ x ≤ u}, where
l ∈ (R ∪ −∞)n, u ∈ (R ∪ ∞)n, and the inequalities are meant component-wise. Therefore,
the projection map is given by P (x) = max[l,min[x, u]].
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Pb# Name and Source n

1 Himmelblau function [14, 14.1.1] 2
2 Equilibrium Combustion [14, 14.1.2] 5
3 Bullard-Biegler system [14, 14.1.3] 2
4 Ferraris-Tronconi system [14, 14.1.4] 2
5 Brown’s almost linear system [14, 14.1.5] 5
6 Robot kinematics problem [14, 14.1.6] 8
7 Series of CSTRs, R = .945 [14, 14.1.8] 2
8 Series of CSTRs, R = .990 [14, 14.1.8] 2
9 Chandrasekar’s H-equation, c = 0.9999 [23, Problem 6] 1000
10 Problem 74 [25] 1000
11 Problem 77 [25] 2000
12 Trigonometric function [22, Test 8] 2000
13 Function 15 [22, Problem 15] 2000
14 Zero Jacobian function [22, Problem 19] 2000

Table 1: Bound-constrained nonlinear system.

The first 8 problems have been frequently used as a test set and are fully described in [14];
their dimension is small. The remaining problems have variable dimension and their Jacobian
matrices cannot be formed at a low computational cost by finite difference procedures for
sparse matrices such as [8]. Hence, computing Bk = J(xk) by finite differences is expensive
and solving (12) with such Bk’s cannot take advantage of sparse/structured linear algebra
solvers. As for the definition of Ω, it is the positive orthant for problem 9; l = (0, . . . , 0)T ,
u = (10, . . . , 10)T in problems 10, 11 and 14; l = (5, . . . , 5)T , u = (15, . . . , 15)T in problem
12, l = (−10, . . . ,−10)T , u = (0, . . . , 0)T in problem 13.

All problems were run starting from three different initial guesses x0 given by

(x0)i =

{
li + γ(ui − li)/2 if li > −∞ and ui <∞, γ = 1, 2, 3,
li + γ 10γ if li > −∞ and ui =∞, γ = 0, 1, 2.

6.1.2 Nonlinear complementarity problems

We consider the nonlinear complementarity problems listed in Table 4 and defined as

G(x)Tx = 0, x ≥ 0, G(x) ≥ 0,

where G : IRn → IRn is continuous differentiable. Following [20], we solved the following
nonlinear systems with nonnegative constraints

F (x) = min[x,G(x)] = 0, x ∈ Ω,

where is the positive orthant and the function F is continuous but not everywhere differen-
tiable. All run were started using x0 = 10γ with γ = 0, 1, 2.

6.2 Implementation issues and numerical results

All the tested algorithms have been implemented in Matlab and run using Matlab R2015a
version on a Intel(R) Core(TM) i5-6600K CPU @3.50 GHz x 4, 16.0 GB RAM.
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Pb# Name and Source n

15 Kojima-Shindo’s problem [11] 3
16 Josephy’s problem [11] 4
17 Mathiensen’s problem [11] 4
18 Harker’s Nash-Cournot-5 problem [18] 5
19 Harker’s Nash-Cournot-10 problem [18] 10
20 Pang and Murphy’s Nash-Cournot-5 problem [28] 5
21 Pang and Murphy’s Nash-Cournot-10 problem [28] 10

Table 2: Nonlinear complementarity problems.

The main implementation issues are as follows. Two rules for choosing matrices Bk were
implemented. The former corresponds to the choice made in Psane, i.e. Bk = β−1k I with
βk given in (10), and the resulting implementation is named Pand-SR (Pand algorithm
with Spectral Residual step). The latter consists in starting from a given B0 and generating
matrices Bk by using the Broyden’s formula

Bk+1 = Bk +
(yk −Bkpk)pTk

pTk pk
, (58)

where yk = F (xk+1) − F (xk), see [6]. The resulting implementation is named Pand-BR
(Pand algorithm with BRoyden step).

In order to perform a fully derivative-free implementation of Pand-BR, our default choice
for B0 was the identity matrix. The current matrix Bk was refreshed and set equal to the
identity matrix every 30 iterations and whenever ‖vqnk ‖ = 0.

The linear systems (12) arising in Pand-BR were solved via QR factorizations. Specifi-
cally, given the QR factorization of Bk, the QR factorization of Bk+1 was formed by the rank
one update (58) using the Matlab function qrupdate.

The parameters used in Pand-SR and Pand-BR were set equal to those declared in
Psane, i.e. βmin = 10−30, βmax = 1030, β0 = 1, α = 10−4, σ = 0.5, ηk = 0.99k(100 +
‖F (x0)‖2), k ≥ 0. This allows comparing Pand-SR , Pand-BR and Psane in terms of their
distinctive features, i.e. definition of the search directions and linesearch strategy. Following
[20], Psane was tested using λmax = 1, and λ = λmax in Step 3 of Algorithm 2.1.

Tables 3 and 4 collect the results obtained with Psane, Pand-SR and Pand-BR. The
problem number refers to Tables 1 and 2 and the scalar γ is associated to the starting point.We
report the number of iterations (It) and F -evaluations (Fe) performed on successful runs,
i.e., runs where the criterion

‖Fk‖ ≤ 10−6, (59)

was met within a maximum number of iterations (maxIt) and function evaluation (maxFe)
equal to 105 as in [20]. For the remaining runs, we eventually stopped the iterations on the
base of the behaviour of λk and ‖Fk‖: the symbol Fλ indicates that λ has been reduced 40
times by a factor σ in the linesearch strategy; the symbol Fi indicates that

‖Fk+1‖ > (1− α)‖Fk‖,

occurred for 50 iterations consecutively, i.e., repeatedly ‖Fk‖ either increased or slightly de-
creased. We remark that the occurrences Fλ and Fi are suggested by the convergence

Dec 16 2016 05:29:33 EST

Version 2 - Submitted to MCOM

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



22

properties of the Pand algorithm presented in Theorem 4.2. For large values of k, the first
occurrence may indicate that {λk} is converging to zero while the second occurrence may
indicate that {‖Fk‖} does not converge to zero. Breakdowns in Psane, described in §2, are
denoted as Fb.

The reported results show that on a total of 63 tests, Psane and Pand-SR fail 22 and 9
times respectively, while Pand-BR solves all the tests. Most of the failures in Psane are due
to a breakdown (Fb); on successful runs the performance of Psane is quite similar to that of
Pand-SR algorithm. In several runs where Pand-SR is successful, its computational cost is
comparable to that of Pand-BR procedure in terms of F -evaluations, but the former is more
efficient as it does not require forming and solving linear systems. This fact is shown in Table
5 where we report the CPU times of the methods under analysis on problems with dimension
larger than or equal to 1000. On the other hand, the version of Pand based on Broyden
matrices is more robust as it allows to avoid failures of the spectral residual procedures on
Problems 2, 6 and 17.

Finally, Figure 1 shows the nonmonotone behaviour of ‖Fk‖ observed in two runs per-
formed and is representative of the tests presented.

7 Conclusion

We have proposed a new class of derivative-free methods for the solution of constrained
nonlinear systems which combines the use of simple search directions with a new suitable
approximate norm linesearch. The methods are suitable for both continuous and/or differ-
entiable nonlinear systems and their convergence properties have been studied in both cases.
In particular, we have focused on methods based on spectral residual steps (Pand-SR) and
Quasi-Newton directions (Pand-BR). These methods exhibit good numerical performance on
relatively large problems. Pand-SR has turned out to be very efficient and competitive with
Pand-BR; on the other hand Pand-BR has solved a larger set of problems than Pand-SR.
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Table 3: Computational results obtained with Psane, Pand-SR and Pand-BR algorithms
on bound-constrained nonlinear systems
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Psane Pand-SR Pand-BR

Pb# γ It Fe It Fe It Fe

15 0 181 371 75 108 15 20
1 110 111 110 167 22 32
2 29 30 29 39 30 40

16 0 24 25 24 33 14 18
1 22 23 22 28 19 24
2 21 22 21 26 15 18
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18 0 6 11 1 3 1 3
1 20 30 24 39 26 35
2 1 2 1 2 1 2
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21 0 24 25 24 27 46 52
1 27 28 27 34 40 43
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Table 4: Computational results obtained with Psane, Pand-SR and Pand-BR algorithms
on nonlinear complementarity problems.
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Execution time

Pb# γ Psane Pand-SR Pand-BR

9 0 0.20 0.26 0.27
1 0.38 1.23 0.36
2 0.24 0.32 0.32

10 1 0.09 0.09 0.31
2 0.15 0.14 1.00
3 0.18 0.11 0.42

11 1 Fb 0.01 2.24
2 Fb 0.01 1.04
3 Fb 0.01 0.96

12 1 0.08 0.02 182.80
2 0.04 0.02 170.73
3 0.50 0.02 108.98

13 1 0.06 0.20 25.73
2 0.28 0.40 30.26
3 0.04 0.16 25.23

14 1 Fb 0.01 0.08
2 Fb 0.01 0.08
3 Fb 0.01 0.08

Table 5: CPU time (in seconds) obtained with Psane, Pand-SR and Pand-BR algorithms
on bound-constrained nonlinear systems.
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Figure 1: Norm of F on a log scale against the number of iterations. Top: problem 13 solved
by Pand-SR, γ = 1. Bottom: problem 2 solved by Pand-BR, γ = 3
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