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Abstract. We give an exposition and strengthening of P. Hieronymi’s Theo-
rem: if C is a nonempty closed set definable in a definably complete expansion
of an ordered field, then C satisfies an analogue of Baire’s Category Theorem.

1. Introduction

The real line is Dedekind Complete: every subset of R has a least upper bound
in R ∪ {±∞}. The notion of being Dedekind Complete is clearly not first-order.
People have been studying a weaker, but first-order, version of Dedekind Complete-
ness: a structure K expanding an ordered field is Definably Complete (DC) if
every definable subset of K has a least upper bound in K ∪ {±∞}.

Examples of DC structures are: all expansions of the real field, o-minimal struc-
tures, and ultra-products of DC structures.

DC structure were introduced in [Mil01], where it was further observed that
definable completeness is equivalent to the intermediate value property for definable
functions; it is also shown in [Mil01, Ser08, Fra08,DMS10, FS10, For11] that most
results of elementary real analysis can be generalized to DC structures (see §2
for some examples). Several people have also proved definable versions of more
difficult results: for instance, in [AF11] they transfered a theorem on Lipschitz
functions by Kirszbraun and Helly, in [FS10, FS11] we considered Wilkie’s and
Speissegger’s theorems on o-minimality of Pfaffian functions (see also [FS12] for
a more expository version), while in [FH15] we considered Hieronymi’s dichotomy
theorem and Lebesgue’s differentiation theorem for monotone functions (and some
other results from measure theory).

On the other hand, not every first-order property of structures expanding the
real field can be generalized to DC structures: for instance, [HP07] show that there
exists a first-order sentence which true in any expansion of the real field but false
in some o-minimal structures (see also [Ren14] for a related result).

In this note we will focus on a first-order version of Baire Category Theorem.
Tamara Servi and I conjectured in [FS10] that every DC structure is definably Baire
(see Definition 1.1). In [Hie13], Philipp Hieronymi proved our conjecture. The aim
of this note is to give an alternative proof of Hieronymi’s Theorem, together with a
generalization of Hieronymi’s and Kuratowski-Ulam’s theorems to definable closed
subsets of Kn.

We recall the relevant definitions.

Definition 1.1 ([FS10]). Let A ⊆ B ⊆ Kn be definable sets.
A is nowhere dense in B if the closure of A has interior (inside B); otherwise, A is
somewhere dense in B.
A is definably meager in B if there exists a definable increasing family

(
Yt : t ∈ K

)
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2 A. FORNASIERO

of nowhere dense subsets of B, such that A ⊆
⋃
t Yt).

A is definably residual in B if B \A is definably meager in B.
B is definably Baire if every nonempty open definable subset of B is not definably
meager in B (or, equivalently, in itself).
A is an Fσ subset of B if there exists a definable increasing family

(
Yt : t ∈ K

)
of

closed subsets of B, such that A =
⋃
t Yt; A ⊆ B is a Gδ subset of B if B \A is an

Fσ subset of B; if we don’t specify the ambient space B, we mean that B = Kn.

Fact 1.2 ([FS10, §3]). A finite Boolean combination of closed definable subsets of
Kn is Fσ in Kn. Moreover, for every n ∈ N, the family of Fσ subsets of Kn is closed
under finite union and intersections. Besides, if X ⊆ Kn is Fσ and g : Kn → Km
is a definable continuous function, then g(X) is also Fσ.

The main result of this note is the following.

Theorem 1.3 (Baire Category). Let C ⊆ Kn be a nonempty Gδ subset of Kn.
Then, C is definably Baire.

Notice that the case when C = Kn in Theorem 1.3 is exactly Hieronymi’s The-
orem (see [Hie13]). We will prove Theorem 1.3 in §5.

We denote by Πm+n
m : Kn+m → Km the projection onto the first m coordinates

and, given C ⊆ Kn+m and x̄ ∈ Km, by Cx̄ := { ȳ ∈ Kn : 〈x̄, y〉 ∈ C } the fiber of C
at x̄.

Theorem 1.4 (Kuratowski-Ulam). Let C ⊆ Km+n be definable and E := Πn+m
m (C).

Let F ⊆ C be a definable set. Let

T := TmC (F ) := { x̄ ∈ E : Fx̄ is definably meager in Cx̄ }.
Assume that F is definable meager in C. If either F or C is Fσ in Km+n, then T
contains some T ′ ⊆ C such that T ′ is definable and definably residual in E.

Notice that the case when C = Km+n in Theorem 1.4 is [FS10, Theorem 4.1].
We will prove Theorem 1.4 in §4.

As an application, we prove the following results.

Corollary 1.5. Let C be a nonempty, closed, bounded, and definable subset of
Km+n, and A := Πn+m

m (C). Define f : A→ Kn, f(x̄) := lex min(Cx̄). Let E be the
set of x̄ ∈ A such that either x̄ is an isolated point of A, or f is continuous at x̄.
Then, E is definably residual in A, and therefore it is dense in A.

Proof. By [DMS10, 1.9] (see Fact 2.9), E is definably residual in A. By Theorem 1.3,
A is definably Baire, and every definably residual subset E of a definably Baire set
A is dense in A. �

Corollary 1.6. Let F ⊆ C ⊆ Km+n be nonempty definable, closed subsets of Km+n.
Let E := Πn+m

m (C). Assume that E is closed inside Km, and that the set

T ′ := T ′
m
C (F ) := { x̄ ∈ E : Fx̄ has no interior inside Cx̄ }

is not dense in E. Then, F has interior inside C.

Proof. By Theorem 1.3 (applied to each fiber Cx̄), T ′ = TmC (F ). By Theorem 1.3
again (applied to the set E), T ′ is not definably residual inside E. Thus, by The-
orem 1.4, F is not meager inside C; therefore F is somewhere dense inside C, and
thus it has interior inside C. �

Question 1.7. What is the most general form of Theorem 1.4? For instance, can
we drop the assumption that either F or C are Fσ subsets of Km+n? Can we prove
that the set TmC (F ) is definable?
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Definition 1.8 ([For11, §4]). A pseudo-N set is a set N ⊂ K≥0, such that N is
definable, closed, discrete, and unbounded.

A quasi-order 〈D,E〉 is a forest if, for every a ∈ D, the set { c ∈ D : c E a } is
totally ordered by /.

The following lemma is at the core of the proof: we hope it may be of independent
interest.

Lemma 1.9 (Leftmost Branch). Let N be a pseudo-N set. Let E be a definable
quasi-order of N (i.e., E is a reflexive and transitive binary relation on N , whose
graph is definable). Assume that E is a forest. Then, there exists a definable set
E0 ⊆ N , such that:

(a) the minimum of N is in E0;
(b) for every d ∈ E0, the successor of d in E0 (if it exists) is

n(d) := min{ e ∈ N : d < e & d / e };

conversely, if n(d) exists, then it is the successor of d in E0.

Furthermore, E0 is unique, satisfying the above conditions. Besides, ≤ and E
coincide on E0 (and, in particular, E0 is linearly ordered by E).

If moreover we have
(* ) For every d ∈ N there exists e ∈ N such that d / e,

then E0 is unbounded (and hence cofinal in N ).

We call the set E0 defined in the above lemma the leftmost branch of E (in-
side N ); notice N has a minimum, and every element of N has a successor in N
(see [For11, §4]).

The proof of a particular case of the above lemma is given in [Hie13, Def. 12,
Lemma 14, Def. 15, Lemma 16, Lemma 17], where d / e if “f(e) extends f(d)”
(in [Hie13] terminology). We will give a sketch of the proof in §3. P. Hieronymi
pointed out a mistake in a previous version of these notes, when we did not require
the condition that E is a forest in Lemma 1.9 (see §3.1).

Let N be a pseudo-N set. While it is quite clear how to prove statements about
elements of N by (a kind of) induction (see [For11, Remark 4.15]), a priori it is
not clear how to construct (definable) sets by recursion: Lemma 1.9 gives a way to
produce a definable set E0 whose definition is recursive; this will allow us to prove
that K is definably Baire (see §5.1). However, to prove that a Gδ set C ⊆ Kn is
definably Baire we need to use a different method (since, for technical reason, the
proof in §5.1 requires the assumption that C contains a dense pseudo-enumerable
set, and we do not know if the assumption holds for C), that relies on Theorem 1.4,
used inductively (see §5.2).

In [FH15] we gave a completely different proof of Hieronymi’s Theorem, based
on our Dichotomy Theorem: either K is “unrestrained” (i.e., K is, in a canonical
way, a model of the first-order formulation of second-order arithmetic, and therefore
any of the classical proof of Baire’s Category Theorem generalize to K), or K is
“restrained” (and many “tameness” results from o-minimality hold in K, allowing
a relatively straightforward proof of Hieronymi’s Theorem). When we are in the
unrestrained situation, the same reasoning gives a proof of Theorem 1.3. However,
when K is restrained, it was not clear how to prove Theorem 1.3 for C 6= Kn.

Acknowledgments. Thanks to Alessandro Berarducci, Philipp Hieronymi, and
Tamara Servi.
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2. Preliminaries

Fact 2.1 ([FS10, Proposition 2.11]). Let U ⊆ Kn be open and definable. U is
definably meager in Kn iff U is definably meager in itself.

Definition 2.2. A d-compact set is a definable, closed, and bounded subset of Kn
(for some n).

The following fact will be used many times without mentioning it explicitly.

Fact 2.3 ([Mil01]). (1) Let X ⊆ Kn be a d-compact set, and f : X → Km be a
definable and continuous function. Then, f(X) is d-compact.
(2) Let

(
X(t) : t ∈ K

)
be a definable decreasing family of nonempty d-compact

subsets of Kn. Then,
⋂
tX(t) is nonempty.

Definition 2.4. Let a ∈ Kn, X ⊆ Kn, and r > 0. Define
B(a; r) := {x ∈ Kn : |x− a| < r };
B(a; r) := {x ∈ Kn : |x− a| ≤ r };

BX(a; r) := X ∩B(a; r);

BX(a; r) := X ∩B(a; r).

Given Y ⊆ X, denote by clX(Y ) (resp., intX(Y )) the topological closure (resp., the
interior) of Y inside X, and denote cl(Y ) := clKn(Y ).

Remark 2.5. Let X be a topological space and A ⊆ X. A is somewhere dense
in X iff there exists V 6= ∅ an open subset of X, such that, for every W 6= ∅ open
subset of W , W ∩A 6= ∅.

Lemma 2.6. (1) Let X be a topological space, U be a dense subset of X, and
A ⊆ X be any subset. T.f.a.e.:

i) A is nowhere dense in X;
ii) A ∩ U is nowhere dense in X;
iii) A ∩ U is nowhere dense in U .

(2) Let X ⊆ Kn be a definable, U be a dense open definable subset of X, and A ⊆ X
be any definable subset. T.f.a.e.:

i) A is definably meager in X;
ii) A ∩ U is definably meager in X;
iii) A ∩ U is definably meager in U .

(3) Let X ⊆ Kn be a definable set and U ⊆ X be a definable dense open subset
of X. Then, X is definably Baire iff U is definably Baire.

Proof. (1) follows from Remark 2.5.
(2) follows from (1).
(3) follows from (2). �

Corollary 2.7. Let A ⊆ X ⊆ Kn be definable nonempty sets. Assume that A is a
dense subset of X.
(1) If A is definably Baire, then X is also definably Baire.
(2) If X is definably Baire and A is a Gδ subset of X, then A is also definably
Baire.

Proof. (1) is clear from Lemma 2.6(1).
(2) Assume, for a contradiction, that A is not definably Baire. We can easily

reduce to the case when A is definably meager in itself. Let F := X \ A. By our
assumption on A, F is an Fσ subset of X with empty interior; thus, F is definably
meager in X. Since X is definably Baire and X = A∪F , A is not definably meager
in X. Since A is definably meager in itself, A =

⋃
t Ct, for some definable increasing
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family
(
Ct : t ∈ K

)
of nowhere dense subsets of A. By Lemma 2.6(1), each Ct is

also nowhere dense in X, contradicting the fact that A is not definably meager
in X. �

Definition 2.8. Let E ⊆ Km and f : E → Kn be definable. Given ε > 0, define

D(f ; ε) := { ā ∈ E : ∀δ > 0 f(BE(ā; δ)) * B(f(ā); ε) }.
Fact 2.9 ([DMS10, 1.9]). Let C ⊂ Km+n be a nonempty d-compact set and E :=
Πm+n
m (C) ⊂ Km. Define f : E → K, f(x) := lex min(Cx̄). Then, for every ε > 0,
D(f ; ε) is nowhere dense in E.

Conjecture 2.10. Let X1, X2 be definable subsets of Kn, and X := X1 ∪X2. If
both X1 and X2 are definably Baire, then X is also definably Baire.

3. Proof of Lemma 1.9

We will proceed by various reductions. Define

E := { d ∈ N : (∀e ∈ N ) e < d→ d 6E e }.
Let e0 := min(N ). Define

E1 := { d ∈ E : e0 E d }.
Define E2 as the set of elements d ∈ E1, such that d is the minimum of the set
{ d′ ∈ E2 : d′ E d & d E d′ }. Notice that E2 satisfies the following conditions, for
all d, d′ ∈ E2:
(i) e0 ∈ E2;
(ii) e0 ≤ d;
(iii) n(d) ∈ E2;
(iv) d E d′ → d ≤ d′;
(v) E is a partial order on E2;
(vi) 〈E2,E〉 is a forest.
For every a, b ∈ E2, define a ⊥ b if a 6E b and b 6E a. Given a, b ∈ E2 such that
a ⊥ b, define c(a, b) := min{ a′ ∈ E2 : a′ E a & a′ ⊥ b } (where the minimum is
taken w.r.t. ≤). Notice that if a ⊥ b, a′ E a, and a′ ⊥ b, then c(a, b) ≤ a′ and,
by (iv), either c(a, b) E a′, or c(a, b) ⊥ a′; moreover, c(a, b) ≤ a, c(a, b) E a, and
c(a, b) ⊥ b.

Finally, define E0 as the set of a ∈ E2, such that, for every b ∈ E2, if b ⊥ a, then
c(a, b) < b.

We have to show that E2 is the leftmost branch of E inside N . W.l.o.g., we can
assume that N = E2.

Claim 1. For every a ∈ E0, n(a) ∈ E0.

Assume not. Let a ∈ E0 be such that b := n(a) /∈ E0. Thus, by definition, there
exists d ∈ N such that c := c(b, d) ≥ d. If d E a, then d E b, absurd. If a E d, then
d ≥ b because b = n(a), also absurd. If d ⊥ a, then, since a ∈ N , we have that
c′ := c(a, d) < d. Moreover, c′ E a / b and c′ ⊥ d; thus, by definition, c ≤ c′, and
therefore c′ > d, absurd.

The next claim is the only place where we use the fact that N is a forest.

Claim 2. Let b ∈ E0 and a ∈ N with a E b. Then, a ∈ E0.

Assume not. Let d ∈ N such that d ⊥ a and c := c(a, d) ≥ d. Since c ≤ a
and a 6= d, we have d < a, and therefore d < b. If d E b, then, since 〈N ,E〉 is
a forest, we have d E a, absurd. Thus, we have d ⊥ b. Since b ∈ E0, we have
c′ := c(b, d) < d. Moreover, since c ⊥ d and c E b, the definition of c′ implies c′ ≤ c,
and therefore, since 〈N ,E〉 is a forest, c′ E c. Conversely, since c′ E a and c′ ⊥ d,
the definition of c implies c ≤ c′, and therefore c = c′ < d, absurd.
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Claim 3. ≤ and E coincide on E0.

Assume not. By (iv), there exist a, b ∈ E0, such that a ⊥ b; let a ∈ E0 be
minimal such there exists b ∈ E0 with a ⊥ b. Let c := c(b, a). By Claim 2, since
c E b, we have c ∈ E0. Since b ∈ E0, we have c < a, contradicting the minimality
of a. �

3.1. A counterexample: the forest hypothesis is necessary. The follow-
ing counterexample is due to P. Hieronymi.(1) We show that the conclusion of
Lemma 1.9 may fail if we remove the assumption that 〈N ,E〉 is a forest, even
under the assumption that K expands the reals and satisfies strong “tameness”
condition (i.e., d-minimality).

Let P := { 22n

: n ∈ N } and let K := 〈R, P 〉 be the expansion of the real field by
a predicate for P ; by [MT06], K is d-minimal. It is quite clear that P is a pseudo-N
set. We now define a partial ordering on P . For every a ∈ P , denote by s(a) the
successor of a in P , i.e. s(a) = a2. Let a, b ∈ P ; define a E b iff either a = b
or b > s(a) (that is, if b ≥ a4). It is clear that 〈P,E〉 is a partially ordered set,
satisfying (*), and that the leftmost branch Q of 〈P,E〉 is the set of elements with
even index, i.e. Q := { 24n

: n ∈ N }. However, the set Q is not definable in K: see
[For12, Lemma 2.2] and [MT06] for the details.

4. Proof of Theorem 1.4

Lemma 4.1. Let m,n ∈ N≥1. Let π := Πm+n
m . Let C ⊆ Km+n be definable and

E := π(C). Let F ⊆ C be a d-compact definable set. Define

T ′ := T ′
m
C (F ) := { x̄ ∈ E : intCx̄

(Fx̄) = ∅ }.
If intC(F ) = ∅, then T ′ is definably residual in E.

Proof. The proof of the Lemma is similar to [FS10, §4, Case 1]. Fix ε > 0; define
F (ε) := { 〈x̄, ȳ〉 ∈ F : BC(ȳ; ε) ⊆ Fx̄ };
X(ε) := clC(F (ε)) = clF (F (ε));

Y (ε) := π(X(ε)) ⊆ E.
Since E \ T ′ ⊆

⋃
ε>0 Y (ε), we only have to prove the following:

Claim 4. Y (ε) is nowhere dense in E.

Since F is d-compact and X(ε) is closed in F , X(ε) is d-compact. Since Y (ε) =
π(X(ε)), Y (ε) is also d-compact, and therefore it is closed in E. Assume, for a
contradiction, that Y (ε) is somewhere dense in A: thus, U := intE(Y (ε)) 6= ∅.
Define f : U → Kn, x̄ 7→ lex min(X(ε)x̄); notice that Γ(f) ⊆ X(ε). By Fact 2.9,
D(f ; ε/4) is nowhere dense in U . Thus, there exist ā ∈ U and δ > 0 such that
BE(ā, δ) ⊆ U \ clE(D(f ; ε/4)), and δ < ε/4. Let b̄ := f(ā); thus, 〈ā, b̄〉 ∈ Γ(f) ⊆
X(ε) ⊆ F . The following Claim 5 contradicts the fact that F is nowhere dense
in C, and therefore Claim 4 will follow.

Claim 5. BC(〈ā, b̄〉; δ1) ⊆ F , for some δ1 > 0.

Choose δ1 > 0 such that δ1 < δ and f(BE(ā; δ1)) ⊆ B(b̄; δ) (δ1 exists because
ā /∈ D(f ; ε/4)). Let 〈x̄, ȳ〉 ∈ BC(〈ā, b̄〉; δ1). Thus, x̄ ∈ E, |x̄− ā| < δ1, y ∈ Cx̄, and
|ȳ − b̄| < δ1. Therefore, x̄ ∈ BE(ā; δ) ⊆ U \ clA(D(f ; ε/4)). Thus,

|ȳ − f(x̄)| ≤ |ȳ − b̄|+ |b̄− f(x̄)| ≤ δ1 + δ < 2δ < ε,

and therefore ȳ ∈ BCx̄
(f(x̄); ε). Since 〈x̄, f(x̄)〉 ∈ X(ε), we have BCx̄

(f(x̄); ε) ⊆ Fx̄;
thus, Claim 5 is proven.

(1) Private communication.
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Claim 6. E \ T ′ ⊆
⋃
ε0 Y (ε).

Let x̄ ∈ E\T ′. Since Fx̄ is d-compact, we have, intCx̄
(Fx̄) 6= ∅. Let ȳ ∈ intCx̄

(Fx̄)
and ε > 0 such that BCx̄(ȳ; ε) ⊆ Fx̄. Thus, 〈x̄, ȳ〉 ∈ F (ε) ⊆ X(ε), and x̄ ∈ Y (ε).

Thus, by claims 4 and 6, T ′ is definably residual in E. �

Proof of Theorem 1.4. The proof of the Lemma is as in [FS10, §4, Case 2].

Case 1: F is Fσ in Km+n. Then, F =
⋃
s>0 F (s), for some definable increasing

family
(
F (s) : s ∈ K

)
of d-compact sets. By the proof of Lemma 4.1, for each

s ∈ K, E \Tm(F (s)) ⊆
⋃
ε>0 Y (s, ε), where Y (s, ε) is a definable family of nowhere

dense subsets of E, which is increasing in t and decreasing in ε. Thus, Tm(F ) is
definably residual in E.

Case 2: C is Fσ in Km+n. By definition, there exists F ′ ⊆ C, such that F ′ is
a definably meager Fσ subset of C, and F ⊆ F ′; thus, by replacing F with F ′,
w.l.o.g. we can assume that F is Fσ in C. Then, since C is an Fσ set, F is Fσ also
in Km+n, and we can apply Case 1. �

5. Proof of Theorem 1.3

Lemma 5.1. Let m ∈ N and C ⊆ Kn be a definable nonempty set. Assume that,
for every a ∈ C, there exists U ⊆ C, such that U is a definable neighborhood (in C)
of a which is definably Baire. Then, C is definably Baire.

Proof. Let V ⊆ C be a definable open nonempty subset of C. Assume, for a
contradiction, that V is definably meager in itself. Let a ∈ V and let U be a
definable neighborhood (in C) of a which is definably Baire. LetW := intC(U ∩V ).
Notice that W is a nonempty open subset of C. Since V is definably meager in
itself and W is an open subset of V , W is also definably meager in itself. Since W
is open in U , W is meager in U . Since W is a nonempty open subset of U and U
is definably Baire, W is not definably meager in U , absurd. �

Lemma 5.2. Let C ⊆ Kn be definable, closed (in Kn), and nonempty. If C is
not definably Baire, then there exists E ⊆ C, such that E is definable, nonempty,
d-compact, and definably meager in itself.

Proof. By Lemma 5.1, there exists a d-compact B such that C ′ := B ∩ C is not
definably Baire; thus, by replacing C with C ′, w.l.o.g. we can assume that C is
d-compact. Let U ⊆ C be definable, nonempty, and open in C, such that U is
definably meager in itself. Let E := cl(U) = clC(U). By assumption, U is an open
and dense subset of E; thus, by Lemma 2.6(2) (applied to A = X = E), E is
definably meager in itself. �

5.1. The case n = 1. The first step in the proof of Theorem 1.3 is the case when
m = 1 and C is closed. Thus, we have to prove the following lemma.

Lemma 5.3. Let C ⊆ K be definable, nonempty, and closed. Then, C is definably
Baire.

The remainder of this subsection is the proof of the above lemma.

Definition 5.4 ([For11, §4]). Let C ⊆ Kn be a definable set. C is at most pseu-
do-enumerable if there exists a pseudo-N set N and a definable surjective function
f : N → C. C is pseudo-finite if it is closed, discrete, and bounded. C is pseu-
do-enumerable if it is at most pseudo-enumerable but not pseudo-finite. A family of
sets

(
C(t) : t ∈ T

)
is pseudo-enumerable (resp. pseudo-finite, resp. at most pseu-

do-enumerable) if it is a definable family and its index set T is pseudo-enumerable
(resp. pseudo-finite, resp. at most pseudo-enumerable).
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We need a few results on pseudo-enumerable sets and families.

Fact 5.5 ([For11,For13]). (1) The union of two pseudo-enumerable (resp. pseudo-
finite, resp. at most pseudo-enumerable) sets is pseudo-enumerable (resp. pseudo-
finite, resp. at most pseudo-enumerable).
(2) Every definable discrete subset of Kn is at most pseudo-enumerable.
(3) The image of a pseudo-finite set under a definable function is also pseudo-finite.
(4) If

(
C(t) : t ∈ T

)
is an pseudo-finite family of nowhere dense sets, then⋃

t∈T C(t) is also nowhere dense.

Lemma 5.6. Let C ⊆ K be definable, nonempty, and closed. If C is definably
meager in itself, then there exists a pseudo-enumerable set P ⊆ C, such that P is
dense in C.

Proof. Assume that C is definably meager in itself. Let U := intK(C) and E :=
C\U . Notice that E is definable, closed, and nowhere dense in K. If U is nonempty,
then, since U is open in C and definably meager in itself, then, by [For11, Proposi-
tion 6.4], there is a pseudo-enumerable set P0 ⊆ U , such that P0 is dense in U . Let
P1 be the set of endpoints of K \ E; notice that P1 is at most pseudo-enumerable.
Since E is nowhere dense in K, P1 is dense in E. Define P := P0 ∪ P1. Since P
is the union of two at most pseudo-enumerable sets, P is also pseudo-enumerable
pseudo-enumerable, and it is dense in C. �

Lemma 5.7. Let C ⊆ Kn be definable, nonempty, and definably meager in itself.
Then, C has no isolated points.

Let U ⊆ C be a nonempty definable open subset of C. Then, U is not pseudo-
finite: that is, there is no discrete and d-compact subset D of K, such that there is
a definable surjective function f : D → U .

Proof. Clear. �

Definition 5.8. Let C ⊆ Kn be a nonempty definable set. Let A :=
(
Ai : i ∈ I

)
be a definable family of subsets of C. We say that A is a weak basis for C if:
(1) for every i ∈ I, intC(Ai) 6= ∅;
(2) if U ⊆ C is a nonempty open subset of C, then there exists i ∈ I such that
Ai ⊆ U .

Lemma 5.9. Let C ⊆ K be definable, nonempty, and closed. Assume that C is de-
finably meager in itself. Then, C has a pseudo-enumerable weak basis of d-compact
sets.

Proof. By Lemma 5.6, there exists P ⊆ C which is pseudo-enumerable and dense
in C; thus, we can write P := { pi : i ∈ N }, for some pseudo-N set N ⊂ K≥1 and
some definable function i 7→ pi. For every i ∈ N , define Ai := BC(pi; 1/i). Let
A :=

(
Ai : i ∈ N

)
. The lemma follows from the following claim.

Claim 7. Let U ⊆ C be a definable open nonempty subset of C. Then, there exists
i ∈ N such that Ci ⊆ U .

Choose i0 ∈ N such that q := pi0 ∈ U . Choose r > 0 such that BC(q; 3r) ⊆ U .

Claim 8. There exists i ∈ N such that pi ∈ BC(q; r) and i > 1/r

We know that C has no isolated points. Let F := {q} ∪ { j ∈ N : j ≤ r }; notice
that F is d-compact and discrete; thus, V := BC(q; r) \ F is open in C, and, since
C is not pseudo-finite, V is nonempty. Thus, by density, there exists i ∈ N such
that pi ∈ V , proving the claim.

Then,
BC(pi; 1/i) ⊆ BC(pi; 2r) ⊆ BC(q; 3r) ⊆ U. �
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We also need a choice function for open sets.

Lemma 5.10. (1) Let b̄ be a set of parameters and let X ⊆ Kn be a b̄-definable
set. Assume that X is nonempty and open. Then, there exists a ∈ X which is
b̄-definable.
(2) Let

(
X(t) : t ∈ T

)
be a definable family of subsets of Kn. Assume that each

X(t) is nonempty and open. Then, there is a definable function f : T → K such
that, for every t ∈ T , f(t) ∈ C(t).

The above lemma remains true if we weaken the hypothesis from “X open”
(or each X(t) open) to “X constructible” (or each X(t) constructible, i.e., a finite
Boolean combination of open sets), see [For15]; however, the proof is more involved
and we won’t use the more general version.

Proof. (2) follows from (1) and standard compactness arguments. Thus, we only
have to show (1). It is trivial to see that it suffices to do the case when n = 1, and
therefore we will assume that n = 1.

W.l.o.g., we may assume that X is bounded. For every r > 0, let U(r) :=
{x ∈ X : B(x; r) ⊆ X }; since X is open, X =

⋃
r>0 U(r). Define r0 := inf{ r > 0 :

U(r) 6= ∅ }. Notice that U( 1
2r0) is b̄-definable, d-compact, nonempty, and contained

in X; thus, it has a minimum element a, which is therefore b̄-definable and in X. �

We now turn to the proof of Lemma 5.3 proper. Assume, for a contradiction,
that C ⊆ K is nonempty, definable, closed, but it is not definably Baire. Let E ⊆ C
be as in Lemma 5.2. By replacing C with E, w.l.o.g. we can also assume that C is
also d-compact and definably meager in itself.

By Lemma 5.9, there exists a pseudo-N set N ⊂ K≥1 and a definable family
A :=

(
Ai : i ∈ N

)
, such that A is a weak basis for C of d-compact sets. Moreover,

since C is definably meager in itself, there exists a definable decreasing family(
Uj : j ∈ N

)
, such that each Uj is a dense open subset of C, and

⋂
j Uj = ∅.

Since each Ud is open and dense, and Ad has nonempty interiors, Ad ∩ Ud has
nonempty interior. Since A is a weak basis, there exists e ∈ N such that Ae ⊆
Ud ∩Ad; since moreover C has no isolated points, we can find e as above such that
e ≥ d. For every d ∈ N , let g(d) be the minimum element of N , such that g(d) ≥ d
and Ag(d) ⊆ Ud ∩Ad. Notice that A′ :=

(
Ag(d) : d ∈ N

)
is also a weak basis; thus,

by replacing A with A′ (and each Ad with Ag(d)), we can assume that Ad ⊆ Ud for
every d ∈ N .

For every d ∈ N , notice that Ed :=
⋃
e≤d,e∈N bd(Ad) is a pseudo-finite union

of closed nowhere dense subsets of C; thus, Ad \ Ed is non-empty and open, and
therefore, by Lemma 5.10, there is a definable function f : N → K such that
f(d) ∈ Ad \ Ed for every d ∈ N .

For every a ∈ N , define

T (a) := { d ∈ N : d ≤ a & f(a) ∈ Ad }.
Notice that each T (a) is a pseudo-finite set, and that a = max(T (a)).

We now define the following partial order on N : a E b if T (a) is an initial
segment of T (b), that is:

∀c ≤ a c ∈ T (a)↔ c ∈ T (b).

Lemma 5.11.
(
N ,E

)
is a partially ordered set, which is a forest and satisfies

condition (* ) in Lemma 1.9.

Proof. a E a by definition.
Notice that a E b implies a ≤ b, by definition. Moreover, if a E b, then a ∈ T (b),

since a ∈ T (a).
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Claim 9. If a E b and b E c, then a E c.

In fact, let d ≤ a. Then, d ∈ T (a) iff d ∈ T (b) iff d ∈ T (c).
Thus, E is a partial order.
The fact that 〈N ,E〉 is a forest is clear.
We now prove that E satisfies (*). Let a ∈ N and b ≤ a. For every a ∈ N , let

J(a) :=
⋂

b∈T (a)

intAb \
⋃

b≤a & b/∈T (a)

Ab.

Since each Ab is closed, and the set { b ∈ N : b ≤ a & b /∈ T (a) } is pseudo-finite,
we have that J(a) is an open set. We claim that J(a) is nonempty. It suffices to
prove the following claim.

Claim 10. f(a) ∈ J(a).

In fact, by our choice of f , we have that, for every b ≤ a, b ∈ T (a) iff f(a) ∈ Ab
iff f(a) ∈ intAb; the claim is then obvious from the definition of J(a).

Since C has no isolated points, the set { f(b) : b ≤ a } is pseudo-finite, and J(a)
is open and nonempty, the set J ′(a) := J(a) \ { f(b) : b ≤ a } is also open and
nonempty; thus, there exists b ∈ N such that Ab ⊆ J ′(a). The lemma then follows
from the following claim.

Claim 11. a / b.

The fact that b > a is clear from the fact that f(c) /∈ Ab for every c ≤ a.
Let c ≤ a. We have to show that c ∈ T (b) iff c ∈ T (a). If c ∈ T (a), then

J(a) ⊆ intAc, therefore f(b) ∈ int(Ac), and thus c ∈ T (b). Conversely, if c ∈ T (b),
then f(b) ∈ intAc ∩ J(a); thus, J(a) ∩ intAc 6= ∅, and therefore, by definition of
J(a), we have c ∈ T (a). �

We now continue the proof of Lemma 5.3. By Lemma 5.11, we can apply
Lemma 1.9 to the partial order E: denote by E0 the leftmost branch of E inside N .

For every a ∈ E0, let Fa :=
⋂
d∈E0 & d≤aAd. Then, f(a) ∈ Fs, the family

(
Fa :

a ∈ E0

)
is a definable decreasing family of d-compact nonempty sets. Therefore,

by Fact 2.3
∅ 6=

⋂
a∈E0

Fa =
⋂
d∈E0

Ad ⊆
⋂
d∈E0

Ud =
⋂
d∈N

Ud = ∅,

absurd. �

5.2. The inductive step.

Lemma 5.12. Let m ∈ N. Let C ⊆ Km be nonempty and d-compact. Then, C is
definably Baire.

Proof. We will prove the lemma by induction on m.
Let 1 ≤ m ∈ N. We denote by (5.12)m the instantiation of Lemma 5.12 at m.

Notice that (5.12)1 follows from Lemma 5.3. Thus, we assume that we have already
proven (5.12)m and (5.12)1; we need to prove (5.12)m+1.

Let C ⊆ Km+1 be d-compact and nonempty. We have to show that C is definably
Baire. Assume not. Let F be a definable nonempty open subset of C, such that
F is definably meager in C. Define π := Πm+1

m , and E := π(C). By Theorem 1.4,
the set S := { x̄ ∈ E : Fx̄ is not definably meager in Cx̄ } is definably meager in E.
Since F is open in C, Fx̄ is open in Cx̄ for every x̄ ∈ E; thus, by (5.12)1, S = π(F ).
Notice that E is also d-compact and nonempty; thus, by (5.13)m, E is definably
Baire. Since moreover S is open in E, the fact that S is definably meager in E
imply that S is empty, contradicting the fact that F is nonempty. �
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Lemma 5.13. Let m ∈ N. Let C ⊆ Km be closed, nonempty, and definable. Then,
C is definably Baire.

Proof. We want to apply Lemma 5.1; thus, given a ∈ C; it suffices to find A ⊆ C,
such that A is a definable neighborhood of a inside C, and A is definably Baire.
Fix r > 0 (e.g., r = 1); Let A := BC(a; r). It is clear that A is a definable
neighborhood of a inside C. Moreover, A is d-compact; thus, by Lemma 5.12, A is
definably Baire. �

Proof of Theorem 1.3. Let Y := cl(C). By Lemma 5.13, Y is definably Baire. Since
C is dense in Y , the conclusion follows from Corollary 2.7. �
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