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BEST RANK K APPROXIMATION FOR BINARY FORMS

GIORGIO OTTAVIANI, ALICIA TOCINO

Abstract. In the tensor space SymdR2 of binary forms we study the best rank k approximation
problem. The critical points of the best rank 1 approximation problem are the eigenvectors and
it is known that they span a hyperplane. We prove that the critical points of the best rank k
approximation problem lie in the same hyperplane. As a consequence, every binary form may be
written as linear combination of its critical rank 1 tensors, which extends the Spectral Theorem
from quadratic forms to binary forms of any degree. In the same vein, also the best rank k
approximation may be written as a linear combination of the critical rank 1 tensors, which extends
the Eckart-Young Theorem from matrices to binary forms.

1. Introduction

The symmetric tensor space SymdV , with V = R2 (resp. V = C2), contains real (resp. complex)
binary forms, which are homogeneous polynomials in two variables. The forms which can be
written as vd, with v ∈ V , correspond to polynomials which are the d-power of a linear form, they
have rank one. We denote by Cd ⊂ SymdV the variety of forms of rank one. The k-secant variety
σk(Cd) is the closure of the set of forms which can be written as

∑k
i=1 λiv

d
i with λi ∈ R (resp.

λi ∈ C).

We say that a nonzero rank 1 tensor is a critical rank one tensor for f ∈ SymdV if it is a critical
point of the distance function from f to the variety of rank 1 tensors. Critical rank one tensors
are important to determine the best rank one approximation of f , in the setting of optimization
[5, 7, 14]. Critical rank one tensors may be written as λvd with λ ∈ C and v ·v = 1, the last scalar
product is the Euclidean scalar product. The corresponding vector v ∈ V has been called tensor
eigenvector, independently by Lim and Qi, [7, 12]. In this paper we concentrate on critical rank
one tensors λvd, which live in SymdV (not in V like the eigenvectors), for a better comparison
with critical rank k tensors, see Definition 3.10 .

There are exactly d critical rank one tensor (counting with multiplicities) for any f different
from c(x2 + y2)d/2 (with d even), while there are infinitely many critical rank one tensors for
f = (x2 + y2)d/2 (see Prop. 3.4).

The critical rank one tensors for f are contained in the hyperplane Hf (called the singular
space, see [9]), which is orthogonal to the vector D(f) = yfx − xfy. We review this statement at
the beginning of §4.

The main result of this paper is the following extension of the previous statement to critical
rank k tensors, for any k ≥ 1.
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2 GIORGIO OTTAVIANI, ALICIA TOCINO

Theorem 1.1. Let f ∈ SymdC2 .

i) All critical rank k tensors for f are contained in the hyperplane Hf , for any k ≥ 1.

ii) Any critical rank k tensor for f may be written as a linear combination of the critical rank
1 tensors for f .

Theorem 1.1 follows after Theorem 4.2 and Proposition 5.1. Note that Theorem 1.1 may applied
to the best rank k approximation of f , which turns out to be contained in Hf and may then be
written as a linear combination of the critical rank 1 tensors for f . This statement may be seen
as a weak extension of the Eckart-Young Theorem to tensors. Indeed, in the case of matrices,
the best rank k approximation is exactly the sum of the first k critical rank one tensors, by the
Eckart-Young Theorem, see [9]. The polynomial f itself may be written as linear combination of its
critical rank 1 tensors, see Corollary 5.2, this statement may be seen as a spectral decomposition
for f . All these statements may be generalized to the larger class of tensors, not necessarily
symmetric, in any dimension, see [4].

In §6 we report about some numerical experiments regarding the number of real critical rank 2
tensors in Sym4R2.

2. Preliminaries

Let V = R2 equipped with the Euclidean scalar product. The associated quadratic form has
the coordinate expression x2 + y2, with respect to the orthonormal basis x, y. The scalar product
can be extended to a scalar product on the tensor space SymdV of binary forms, which is SO(V )-
invariant. For powers ld, md where l,m ∈ V , we set 〈ld,md〉 := 〈l,m〉d and by linearity this defines
the scalar product on the whole SymdV (see Lemma 3.5).

Denote as usual ‖f‖ =
√
〈f, f〉.

For binary forms which split in the product of linear forms we have the formula

(1) 〈l1l2 · · · ld,m1m2 · · ·md〉 =
1

d!

∑
σ

〈l1,mσ(1)〉〈l2,mσ(2)〉 · · · 〈ld,mσ(d)〉

The powers ld are exactly the tensors of rank one in SymdV , they make a cone Cd over the
rational normal curve.

The sums ld1 + . . . + ldk are the tensors of rank ≤ k, and equality holds when the number of
summands is minimal. The closure of the set of tensors of rank ≤ k, both in the Euclidean or in
the Zariski topology, is a cone σkCd, which is the k-secant variety of Cd.

The Euclidean distance function d(f, g) = ‖f − g‖ is our objective function. The optimization
problem we are interested is, given a real f , to minimize d(f, g) with the constraint that g ∈
(σkCd)R. This is equivalent to minimize the square function d2(f, g), which has the advantage to
be algebraic. The number of complex critical points of the square distance function d2 is called
the Euclidean distance degree (EDdegree [3]) of σkCd and has been computed for small values of
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k, d in the rightmost chart in Table 4.1 of [10]. We do not know a closed formula for these values,
although [10, Theorem 3.7] computes them in the case of a general quadratic distance function,
not SO(2)-invariant.

3. Critical points of the distance function

Let us recall the notion of eigenvector for symmetric tensors (see [7, 12],[9, Theorem 4.4]).

Definition 3.1. Let f ∈ SymdV . We say that a nonzero rank 1 tensor is a critical rank one
tensor for f if it is a critical point of the distance function from f to the variety of rank 1 tensors.
It is convenient to write a critical rank one tensor in the form λvd with ‖v‖ = 1, in this way v is
defined up to d-th roots of unity and is called an eigenvector of f with eigenvalue λ.

Remark 3.2. Let d = 2 and let f be a symmetric matrix. All the critical rank one tensors of f
have the form λv2 where v is a classical eigenvector of norm 1 for the symmetric matrix f , with
eigenvalue λ.

Lemma 3.3. Given f ∈ SymdV , the point λvd of rank 1, with ‖v‖ = 1, is a critical rank one
tensor for f if and only if 〈f, vd−1w〉 = λ〈v, w〉 ∀w ∈ V , which can be written (identifying V with
V ∨ according to the Euclidean scalar product) as

f · vd−1 = λv,

with λ = 〈f, vd〉.

Proof. The property of critical point is equivalent to f − λvd being orthogonal to vd−1w ∀w ∈ V ,
which gives 〈f, vd−1w〉 = 〈λvd, vd−1w〉 ∀w ∈ V . The right-hand side is ‖v‖2d−2 λ〈v, w〉 = λ〈v, w〉,
as we wanted. Setting w = v we get 〈f, vd〉 = λ. �

On the other hand, eigenvectors correspond to critical points of the function f(x, y) restricted
on the circle S1 = {(x, y)|x2 + y2 = 1} ([7, 12]). By Lagrange multiplier method, we can compute
the eigenvectors of f as the normalized solutions (x, y) of:

(2) rank

[
fx fy
x y

]
≤ 1

This corresponds with the roots of discriminant polynomial D(f) = yfx− xfy. D is a well known
differential operator which satisfies the Leibniz rule, i.e. D(fg) = D(f)g+ fD(g) ∀f, g ∈ SymdV .
For any l = ax+ by ∈ V denote l⊥ = D(l) = −bx+ ay. Note that 〈l, l⊥〉 = 0.

We have the following:

Proposition 3.4. Consider f(x, y) ∈ SymdV :

• If v is eigenvector of f then D(v) = v⊥ is a linear factor of D(f).
• Assume that D(f) splits as product of distinct linear factors and v⊥|D(f), then v

‖v‖ is an
eigenvector of f .
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We postpone the proof after Prop. 3.11.

Now let us differentiate some cases in terms of D(f) (see Theorem 2.7 of [2]):

• if d is odd: D(f) = 0 if and only if f = 0, in particular D : SymdV → SymdV is an
isomorphism.
• if d is even: D(f) = 0 if and only if f = c(x2 + y2)d/2 for some c ∈ R. We will show in
Lemma 3.7 which are the eigenvectors in this case. The image of D : SymdV → SymdV is
the space orthogonal to f = (x2 + y2)d/2.

Lemma 3.5. ([6], Section 2) Suppose f =
∑d

i=0

(
d
i

)
aix

iyd−i and g =
∑d

i=0

(
d
i

)
bix

iyd−i. Then we
get:

(3) 〈f, g〉 :=
d∑
i=0

(
d

i

)
aibi

where 〈 , 〉 is the scalar product defined in the introduction.

Proof. By linearity we may assume f = (αx+ βy)d and g = (α′x+ β′y)d. The right-hand side of
(3) gives

〈f, g〉 =
d∑
i=0

(
d

i

)
(αα′)i(ββ′)d−i = (αα′ + ββ′)d

which agrees with 〈αx+ βy, α′x+ β′y〉d. �

Lemma 3.6. Let f = (x2 + y2)d/2 ∈ SymdV with d even, and v = αx + βy ∈ V , v 6= 0, then
〈vd, f〉 = ‖v‖d.

Proof. By applying (1) with a grain of salt (e.g. decomposing x2 + y2 into two conjugates linear
factors) we get

〈vd, f〉 = 〈(x2 + y2), v2〉d/2 = (α2 + β2)d/2 = ‖v‖d .
�

Lemma 3.7. If f = (x2 + y2)d/2 ∈ SymdV then, for every nonzero v ∈ V , 〈f, vd−1w〉 =

‖v‖d−2 〈v, w〉. In particular every vector v of norm 1 is eigenvector of f with eigenvalue 1.

Proof. As in Lemma 3.6 we get

〈f, vd−1w〉 = 〈(x2 + y2), v2〉d/2−1〈(x2 + y2), vw〉 = ‖v‖d−2 〈v, w〉.

The second part follows by putting w = v and equating with Lemma 3.6. We get 〈f, vd−1w〉 =
〈vd, f〉〈v, w〉 just in the case |v| = 1.

�
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Remark 3.8. Lemma 3.7 extends the fact that every vector of norm 1 is eigenvector of the identity
matrix with eigenvalue 1. The geometric interpretation of this lemma is that the 2-dimensional
cone of rank 1 degree d binary forms cuts any sphere centered in (x2 + y2)d/2 in a curve.

Lemma 3.9. The normal space at ld ∈ Cd coincides with
(
l⊥
)2 · Symd−2V

Proof. The tangent space at ld is spanned by ld−1V and has dimension 2. The elements in
(
l⊥
)2 ·

Symd−2V are orthogonal to the tangent space, moreover the dimension of this space is the expected
one d− 1. �

Definition 3.10. We say that g ∈ SymdV is a critical rank k tensor for f if it is a critical point
of the distance function d(f,_) restricted on σkCd.

Proposition 3.11. Let 2k ≤ d. A polynomial g =
∑k

i=1 µil
d
i ∈ σkCd is a critical rank k tensor

for f if and only if there exist h ∈ Symd−2kV such that

(4) f =
k∑
i=1

µil
d
i + h ·

k∏
i=1

(
l⊥i
)2

Proof. By Terracini Lemma, the tangent space of the point g ∈ σkCd is given by the sum of k
tangent spaces at ldi = (aix + biy)

d. By Lemma 3.9 the normal space of each of these tangent
spaces are given by

(
l⊥i
)2 · Symd−2V . Hence, the normal space to g is given by intersection of the

k normal spaces, which is given by polynomials
∏k

i=1

(
l⊥i
)2 · h where h ∈ Symd−2kV .

Now suppose that g is a critical rank k tensor for f . This means that f − g is in the normal
space. Hence, f − g is of the form

∏k
i=1

(
l⊥i
)2 · h for some h ∈ Symd−2kV .

Conversely, if (4) holds, we need that f − g belongs to the normal space at g which is also true
by the construction of the normal space. �

Proof of Prop. 3.4. If v is eigenvector of f then 〈f, vd〉vd is critical rank 1 tensor for f (by Lemma
3.3). By Prop. 3.11 f = 〈f, vd〉vd + h

(
v⊥
)2 where h ∈ Symd−2V . Applying the operator D to f

we get by Leibniz rule, since D(v) = v⊥ and D(v⊥) = −v:

D(f) = 〈f, vd〉dvd−1v⊥ +D(h)
(
v⊥
)2 − 2vv⊥h =⇒ v⊥|D(f)

Conversely, since we assume there are d distinct eigenvectors, then we find all the linear factors
of D(f). �

This proposition is connected with Theorem 2.5 of [6].

4. The singular space

In [9] it was considered the singular space Hf as the hyperplane orthogonal to D(f) = yfx−xfy.
It follows from Prop. 3.4 that the critical rank 1 tensor for f belong to Hf (since the eigenvectors
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of f can be computed as the solutions of (2) that coincides with D(f) for binary forms), see [9,
Def. 5.3]. It is worth to give a direct proof that the critical rank 1 tensors for f belong to Hf , the
hyperplane orthogonal to D(f), based on Prop. 3.11.

Let µld be a critical rank 1 tensors for f , then by Prop. 3.11 there exist h ∈ Symd−2V such
that f = µld + h

(
l⊥
)2.

We have to prove 〈D(f), ld〉 = 0 which follows immediately from (1) since l⊥ divides D(f) by
Prop. 3.4.

Lemma 4.1. Let l,m ∈ V , Then 〈l⊥,m〉+ 〈m⊥, l〉 = 0.

Proof. Straightforward. �

Our main result is

Theorem 4.2. The critical points of the form
∑k

i=1 µil
d
i of the distance function d(f,−) restricted

on σkCd belong to Hf .

Proof. Given a decomposition f =
∑k

i=1 µil
d
i + h ·

∏k
i=1

(
l⊥i
)2, with h ∈ Symd−2kV , we compute

(5) D(f) = d
k∑
i=1

µil
⊥
i l

d−1
i −

k∑
i=1

2lil
⊥
i

k∏
j 6=i

(
l⊥j
)2
h+D(h)

k∏
i=1

(
l⊥i
)2

and we have to prove

(6) 〈D(f),
k∑
j=1

ldj 〉 = 0.

We compute separately the contribution of the three summands in (5) to the scalar product with
ldj .

We have for the first summand

〈

(
k∑
i=1

l⊥i l
d−1
i

)
, ldj 〉 =

k∑
i=1

〈l⊥i , lj〉〈li · lj〉d−1

Summing over j we get zero by Lemma 4.1.

We have for the second summand

〈

(
k∑
i=1

li, l
⊥
i

k∏
p 6=i

(
l⊥p
)2
h

)
, ldj 〉 = 〈

(
ljl
⊥
j

k∏
p 6=j

(
l⊥p
)2
h

)
, ldj 〉 = 0

We have for the third summand

〈

(
D(h)

k∏
i=1

(
l⊥i
)2)

, ldj 〉 = 0
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Summing up, this proves (6) and then the thesis.

�

Example 4.3. If f = x3y + 2y4 then there are 6 critical points of the form l41 + l42 and x3y which
lies on the tangent line at x4. It cannot be written as l41 + l42 and indeed it has rank 4.

5. The scheme of eigenvectors for binary forms

Suppose f ∈ SymdV a symmetric tensor and dimV = 2. We denote by Z the scheme defined
by the polynomial D(f), embedded in P(SymdV ) by the d-Veronese embedding in PV (see [1] for
the case of matrices).

Proposition 5.1. 〈Z〉 = Hf .

Proof. (i) If D(f) has d distinct roots then it is known that 〈Z〉 ⊆ Hf , since Hf is the hyperplane
orthogonal to D(f) (Theorem 4.2 with k = 1). Hence 〈Z〉 ⊆ Hf .

(ii) Now let us suppose that D(f) has multiple roots but f 6= (x2 + y2)d/2. We show that
〈Z〉 ⊆ Hf by a limit argument. For every tensor f such that f 6= 0 and f 6= (x2 + y2)d/2 there
exists a sequence (fn) such that fn → f and D(fn) has distinct roots for all n. Then, Hfn → Hf

because the differential operator is continuous. Moreover H(fn) is a hyperplane for all n. On the
other hand, by definition we have that 〈Zfn〉 is the spanned of the roots of D(fn). When fn goes
to the limit we get that 〈Zfn〉 → 〈Z〉. Hence, 〈Z〉 ⊆ Hf .

(iii) In the case that f = (x2 + y2)d/2 with d even, then by Lemma 3.7 we know that every
unitary vector is an eigenvector and Hf is the ambient space. Hence, 〈Z〉 = Hf .

We prove now that dim〈Z〉 = dimHf for (i) and (ii). Since IZ,P1 = OP1(−d),

codim〈Z〉 = h0(IZ,P1(d)) = h0(OP1(−d+ d)) = h0(OP1) = 1

which coincides with the codimension of Hf .

�

As a consequence we obtain the following corollary, which may be seen as a Spectral Decompo-
sition of any binary form f .

Corollary 5.2. Any binary form f ∈ SymdV with dimV = 2 can be written as a linear combina-
tion of the critical rank one tensors for f .

The previous statement holds even in the special case d even and f = (x2 + y2)d/2, since from
[11, Theorem 9.5] there exists cd ∈ R such that the following decomposition holds ∀φ ∈ R

(x2 + y2)d/2 = cd

d/2∑
k=0

[
cos(

2kπ

d+ 2
+ φ)x+ sin(

2kπ

d+ 2
+ φ)y

]d
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In this decomposition the summands on the right-hand side correspond to (d+2)/2 consecutive
vertices of a regular (d+ 2)-gon.

In the d = 2 case, the Spectral Theorem asserts any binary quadratic form f ∈ Sym2R2 can be
written as sum of its rank one critical tensors. This statement fails for d ≥ 3, as it can be checked
already on the examples f = xd + yd for d ≥ 3, where only two among the d rank one critical
tensors are used, namely xd and yd, and the coefficients of the remaining d − 2 rank one critical
tensors in the Spectral Decomposition of f are zero.

6. Real critical rank 2 tensors for binary quartics

We recall the following result by M. Maccioni.

Theorem 6.1. (Maccioni, [8, Theorem 1]) Let f be a binary form.

# real roots of f ≤ # real critical rank 1 tensors for f

The inequality is sharp, moreover it is the only constraint between the number of real roots and
the number of real critical rank 1 tensors, beyond parity mod 2.

As a consequence, as it was first proved in [2], hyperbolic binary forms (i.e. with only real roots)
have all real critical rank 1 tensors.

We attempted to extend Theorem 6.1 to rank 2 critical tensors. Our description is not yet
complete and we report about some numerical experiments in the space Sym4R2. From these
experiments it seems that the constraints about the number of real rank 2 critical tensors are
weaker than for rank 1 critical tensors.

For quartic binary forms the computation of the critical rank 2 tensors is easier since the dual
variety of the secant variety σ2(C4) is given by quartics which are squares, which make a smooth
variety.

The number of complex critical rank 2 tensors for a general binary form of degree d was guessed
in [10] to be 3/2d2 − 9d/2 + 1. For d = 4 this number is 7, which can be confirmed by a symbolic
computation on a rational random binary quartic.

In conclusion, for a general binary quartic there are 4 complex critical rank 1 tensors and 7
complex rank 2 critical tensors.

The following table reports some computation done for the case of binary quartic forms, by
testing several different quartics. The appearance of “yes” in the last column means that we have
found an example of a binary quartic with the prescribed number of distinct and simple real
roots, real rank 1 critical tensors and real critical rank 2 tensors. Note that we have not found any
quartic with the maximum number of seven real rank 2 critical tensors, we wonder if they exist.
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#real roots #real critical rank 1 tensors #real critical rank 2 tensors
0 2 3 yes
2 2 3 yes
0 2 5 yes
2 2 5 yes
0 4 3 yes
2 4 3 yes
4 4 3 yes
0 4 5 yes
2 4 5 yes
4 4 5 ?
* * 7 ?
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