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a b s t r a c t

Background: Exhaled nitric oxide (eNO) and carbon monoxide (eCO) are markers of pulmonary
inflammation associated with acute graft rejection and lung infections in lung transplant (LTX) re-
cipients. Regarding eNO and eCO levels in LTX patients affected by bronchiolitis obliterans syndrome
(BOS), published data are discordant.
Objectives: We aim to evaluate eNO at multiple flows, alveolar concentration of nitric oxide (CalvNO),
maximum conducting airway wall flux (J'awNO) and eCO levels in LTX patients to assess the potential role
of these parameters in BOS evaluation.
Methods: Fractional exhaled nitric oxide (FeNO), CalvNO and J'awNO were analysed in 30 healthy subjects
and 27 stable LTX patients (12 BOS patients). Pulmonary function tests were performed after eNO and
eCO assessment. Receiver operating characteristic (ROC) curves were conducted to evaluate diagnostic
accuracy for BOS of eNO parameters.
Results: LTX patients reported higher values of FeNO at flow rates of 50 (p < 0.01), 150 (p < 0.05), 350 ml/
s (p < 0.001), and CalvNO (p < 0.0001) than healthy controls. BOS patients showed higher FeNO at flow
rates of 150 (p < 0.05) and 350 ml/s (p < 0.01) and CalvNO (p < 0.001) than non-BOS patients. CalvNO
reported a remarkable diagnostic accuracy for BOS (AUC: 0.82). There were no significant differences of
eCO levels between LTX patients and healthy controls.
Conclusion: LTX patients affected by BOS showed higher levels of FeNO 150 and 350, and CalvNO than
non-BOS LTX patients, probably due to chronic airway inflammation and fibrotic remodelling. CalvNO
may be a potential biomarker of BOS in LTX patients.

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Lung transplant (LTX) is a valid therapeutic option for patients
with life-threatening pulmonary diseases, who are refractory to
conventional therapy and are acceptable candidates. Many ad-
vances in pre- and post-transplant management have led to
improved survival and quality of life outcomes for lung recipients in
the last two decades, especially in the early post-operative period.
However, LTX is still a challenge and long-term survival is mainly
dependent on the development of chronic lung allograph
dysfunction (CLAD). CLAD is an overarching term that embraces all
forms of chronic lung dysfunction after transplant [1]. The most
common phenotype of CLAD is bronchiolitis obliterans syndrome
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(BOS), that affects more than 50% of the recipients at 5 years from
LTX, and it is the leading cause of death beyond 1-year post
transplant [2,3]. BOS is generally equated with the term chronic
rejection of LTX, and both immune and non-immunological factors
have been implicated in its pathogenesis. A persistent inflamma-
tory reaction and fibrotic remodelling of small airways lead to the
typical picture of obliterative bronchiolitis (OB) and a persistent
airflow obstruction. Recent ISHLT/ATS/ERS guidelines propose as
BOS diagnostic criteria the decrease of forced expiratory volume in
1 s (FEV1) and the careful exclusion of other post-transplant
complications that can cause delayed lung allograft dysfunction
[1]. Other biomarkers have not been validated for the management
and the diagnostic work-up of BOS yet, although several non-
invasive potential bioindicators have been proposed in the last
decade.

Nitric oxide (NO) and carbon monoxide (CO) have been inves-
tigated as potential biomarkers for several chronic inflammatory
lung disorders such as asthma, chronic obstructive pulmonary
disease (COPD), cystic fibrosis (CF) and pulmonary arterial hyper-
tension [4] and their clinical utility has been largely validated. At
pulmonary level, NO acts as a vasodilator, bronchodilator, neuro-
transmitter and inflammatory mediator. The anatomical origin of
NO production can be identified using a two-compartment model
(2CM) of the lung (airway and alveolar compartments) [5] or a
trumpet model with axial diffusion (TMAD) [6]. These models can
partition NO into alveolar concentration of NO (CalvNO) and
maximum conducting airway wall flux (J'awNO) which expresses
bronchial NO flux. Thanks to the reproducibility and non-
invasiveness of fractional exhaled NO (FeNO), some studies have
investigated its potential role in the management of LTX patients.
Higher levels of exhaled nitric oxide have been reported in LTX
patients with acute rejection [7e9], infection [10,11] and lympho-
cytic bronchiolitis [10]. In CLAD results are contradictory: Gabbay
et al. found increased FeNO at flow of 250 ml/s in LTX patients with
BOS or bacterial infection (with a significative positive correlation
between FeNO 250 and BAL neutrophilia and inducible nitric oxide
synthase (iNOS) expression in the bronchial epithelium) [12]. On
the other side, a raised FeNO at the flow of 50 ml/s has been
described in LTX patients with unstable BOS or with developing
BOS, but not in stable BOS, underlining the possible role of FeNO 50
as negative predictive marker of CLAD [13,14].

Another interesting potential biomarker of inflammation and
oxidative stress in asthma [15,16], COPD [17] or bronchiectasis [18]
is exhaled CO (eCO), the principal product of organic combustion. In
LTX patients, eCO has been reported as a useful tool for the early
detection of CLAD and it can enhance the negative predictive value
of eNO for BOS [19]. Vos et al. reported, analogously to FeNO, a
direct correlation between eCO levels, neutrophilic count and BAL
pro-inflammatory cytokine levels [20].

The present study aimed to evaluate FeNO and eCO concentra-
tions in LTX patients (BOS and non-BOS), compared to a healthy
sex- and age-matched controls, to assess their potential role as BOS
biomarkers. To our knowledge, this is the first study that analyses
the potential role of FeNO at multiple flows in BOS patients, after
the publication of ATS guidelines for FeNO standardization [4] and
interpretation [21]. It also examines in depth eNO kinetics for
evaluation of flow-independent parameters like CalvNO and J'awNO
in LTX patients.

2. Materials and methods

2.1. Study population and study design

Twenty-seven LTX patients were enrolled in the study from
March to December 2014. Eight patients underwent single-lung
transplantation (SLTX) (7 males, mean age 66 ± 3.9 years), and
nineteen patients received sequential-single lung transplantation
(SSLTX) (7 males, mean age 50 ± 12.8 years). The underlying
pulmonary diseases were idiopathic pulmonary fibrosis (n ¼ 12),
cystic fibrosis (n ¼ 5), COPD (n ¼ 4), alveolar microlithiasis (n ¼ 2)
and non-specific interstitial pneumonia (n ¼ 1), chronic hyper-
sensitivity pneumonia (n ¼ 1), systemic sclerosis with interstitial
lung disease (n¼ 1) and rheumatoid arthritis with interstitial lung
disease (n ¼ 1). A single patient underwent pulmonary re-
transplantation because of graft loss for BOS (24 months after
the first transplant). The average time after lung transplantation
was 35 ± 34.9 months. All patients received lung transplantation
between 2004 and 2013 at Siena Lung Transplant Program and
were followed at the Respiratory Diseases and Lung Transplant
Unit, “Le Scotte” Hospital, Siena, Italy. An accurate medical history
was obtained from all patients in order to evaluate risk for lung
diseases from professional exposure, smoking and medication
history. None of the patients was on oxygen therapy at the
moment of the analysis. Thirteen LTX patients were never-
smokers and 14 were ex-smokers (mean 12.5 ± 15.5 packs/year).
None of LTX patients was a current smoker. All LTX patients had no
history of allergy, concomitant asthma or cancer; patients with
respiratory infections and/or acute deterioration in the last 4
weeks were excluded.

Twelve LTX patients (8 males, mean age 61 ± 8.1 years) were
diagnosed with bronchiolitis obliterans syndrome (BOS)
(16.7 ± 12.5 months prior to study procedures). Diagnosis and
grading of BOS were performed according to international guide-
lines [22]. Eight patients were BOS-1, 2 patients BOS-2 and 2 pa-
tients BOS-3.

The control group included 30 healthy volunteers (16 males,
mean age 62 ± 4.73 years), 15 non-smokers and 15 ex-smokers
(mean 5.25 ± 7.2 packs/year). Subjects with a history of allergies
or taking phosphodiesterase-5 inhibitors were excluded. All
healthy volunteers had normal lung function parameters, they had
no respiratory symptoms or infections in the last 4 weeks and they
were not taking any drug that could affect the test. All patients and
controls gave their informed consent to the study, which was
approved by the local ethical committee.

2.2. Study protocol

Exhaled nitric oxide and carbon monoxide measurements were
performed in the morning of the expected follow-up visit for LTX
patients. All participants had fasted for at least 8 h prior to the
moment of the examination. They also had abstained from foods
containing nitrates (lettuce, spinach, cabbage, sausages) for at least
12 h before the examination. Patients on bronchodilators had to
suspend therapy 12 h before the assay. All participants had a
mouthwash with water just before the test. eNO and eCO mea-
surements were taken after 10 min of rest in a comfortable
environment.

2.3. PFTs

Lung function measurements were recorded according to ATS/
ERS standards [23], using a Jaeger Body Plethysmograph with cor-
rections for temperature and barometric pressure. In particular
forced expiratory volume in the first second (FEV1), forced vital
capacity (FVC), FEV1/FVC, total lung capacity (TLC), residual volume
(RV), carbon monoxide lung transfer factor (TLCO) and capacity
carbon monoxide lung transfer factor/alveolar volume (TLCO/VA)
were recorded. All parameters were expressed as percentages of
predicted reference values. In the same day PFTs were performed
after eNO and eCO measurements.
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2.4. eNO measurements

FeNO was measured according to American Thoracic Society
(ATS) and European Respiratory Society (ERS) guidelines for online
measurement of FeNO in adults, using a chemiluminescence
analyzer (model Hypair FeNOMedisoft Cardioline Exp'air, 2010) [4]
with adequate sensitivity to NO from 1 to 500 ppb and a resolution
of 1 ppb. All measurements were undertaken at ambient NO levels
of <10 ppb. Subjects were studied in sitting position. FeNO was
measured during slow exhalation from total lung capacity against a
positive pressure kept constantly between 5 and 20 cm H2O to
generate exhalation flow rates of 50, 100, 150 and 350 ml s�1. The
exhalation flow rate was kept as constant as possible using a
biofeedback visual display. For each flow rate, at least two techni-
cally adequate measurements were performed. The flow-
independent NO parameters, CalvNO and J'awNO were calculated
using both the Tsoukias 2CM of NO exchange [5] and the TMAD by
Condorelli [6]. A linear relationship between the four points (50,
100, 150 and 350 ml/s) of the NO flux against the flow was evalu-
ated for each subject by a linearity test. Each measurement was
considered acceptable with a confidence rate >95% and a flow
stability >90%. All measurements were made by a single investi-
gator, to maximize inter- and intra-observer agreement.

2.5. eCO measurements

CO concentrations were evaluated using a chemiluminescence
analyser (Smokerlyzer). Subjects were studied in sitting position
and were asked about smoking status and passive smoking expo-
sure. eCO was measured following exhaled NO evaluation, after
30 min of rest. Subjects were asked to hold breath to total lung
capacity for 15 s: eCO and COHb% were measured during slow
exhalation and reported on display. At least two technically
adequate measurements were performed.

2.6. Statistical analysis

Data is presented as mean ± standard deviation (SD). Man-
neWhitney U test was performed to compare the LTX patient group
Table 1
Demographic findings, clinical features, current therapy and lung function parameters
function parameters are reported as percentages of predicted values. Results were express
SSLTX: sequential-single lung transplantation, FVC: forced volume capacity; FEV1: forced e
factor of the lung for carbon monoxide; VA: alveolar volume. ns: not significant.

Parameters BOS

N� 12
Age (yrs) 61 ± 9.1
Male (%) 8 (75%)
Current smokers 0
Tobacco use (p/y) 19.5 ± 16.8
SSLTX (%) 8 (66%)
Time from LTX (months) 45.9 ± 34.7
PFT
FVC % 72.7 ± 12.1
FEV1 % 62.6 ± 14.1
FEV1/FVC 68.7 ± 14.5
RV % 111.8 ± 31.2
TLC % 83.7 ± 15
TLCO % 49.2 ± 11.8
TLCO/VA % 81.6 ± 16.2
Therapy
Prednisone (mg/day) 12 (17.5 ± 21)
Mycophenolate mofetil (mg/day) 4 (875 ± 250)
Tacrolimus (mg/day) 5 (2.2 ± 0.2)
Everolimus (mg/day) 3 (2 ± 1.2)
Cyclosporin A (mg/day) 2 (75)
Azithromycin (mg/day) 7 (125 ± 62.5)
with healthy controls and BOS and non-BOS groups. BOS, non-BOS
and control groups were compared using one-way ANOVA test.
Correlations between CalvNO and PFT parameters were performed
through Spearman's test. A p-value < 0.05 was considered statis-
tically significant. Receiver-operating characteristic (ROC) curves
were made using SPSS Statistics 22.0 while all the other statistical
analyses were performed using Graph Pad Prism 5.
3. Results

3.1. Clinical and functional parameters

Clinical and demographic parameters of LTX patients and con-
trols, together with PFTs, including TLCO percentages, and current
therapy from all transplanted patients were reported in Table 1. No
significant differences were evidenced between SSLTX and SLTX
patients for all these parameters (p > 0.05). Globally, LTX patients
showed mild impairment of FEV1 and TLCO, and BOS group re-
ported significantly lower functional parameters than non-BOS
group (FVC, FEV1, TLC and TLCO, all p < 0.05). No significant dif-
ferences were observed between BOS and non-BOS patients
regarding the use and the dosage of corticosteroid and immuno-
suppressive therapies.
3.2. eNO and eCO between LTX and controls

FeNO values at flow rates of 50, 150 and 350 ml/s were signifi-
cantly higher in LTX patients than in healthy controls (FeNO 50:
22.6 ± 10.5 vs 15.8 ± 4.1 ppb, p < 0.01; FeNO 150: 13.4 ± 6.1 vs
10.8 ± 2.9 ppb, p < 0.05; FeNO 350: 10.5 ± 4.2 vs 7.2 ± 1.9 ppb,
p< 0.001). Differences of FeNO at flow rate of 100ml/s between LTX
patients and healthy controls were not significant. CalvNO was
significantly higher in LTX patients than in healthy controls
(10.4 ± 6.9 vs 4.6 ± 4.5 ppb, p < 0.0001), while J'awNO levels were
not statistically different between the two groups (p > 0.05). These
results were obtained applying both 2CM and TMAD models.

There were significant correlations between CalvNO and TLCO as
well as between CalvNO and TLC (in both cases, r¼�0.44, p¼ 0.01).
in patients with BOS, compared with non-BOS patients and healthy controls. Lung
ed as mean ± SD. BOS: bronchiolitis obliterans syndrome. LTX: lung transplantation;
xpiratory volume in 1 s; RV: residual volume: TLC: total lung capacity; TLCO: transfer

Non-BOS Controls p-value

15 30 Ns
49.5 ± 14.4 57.8 ± 11 Ns
6 (40%) 14 (46%) Ns
0 0
7.1 ± 12.4 6 ± 7.3 Ns
11 (73%) Ns
26.2 ± 32.5 Ns

84.5 ± 13.5 <0.05
79.3 ± 16.5 0.01
78 ± 8.4 Ns
129.4 ± 40.2 Ns
97 ± 16.2 <0.05
58 ± 12.5 <0.05
80.1 ± 22.3 Ns

15 (15.7 ± 18.6) Ns
6 (750 ± 273.8) Ns
11 (4.6 ± 5.2) Ns
1 (1.25) Ns
2 (112.5) Ns
8 (156 ± 81) Ns



Fig. 1. Comparison of FeNO at flow rates of 150 and 350 ml/s between BOS, non-BOS patients and healthy controls. BOS patients reported higher FeNO 150 and 350 values than non-
BOS patients and healthy controls (ppb. Pars per billion; FeNO. Fractional exhaled nitric oxide; BOS. Bronchiolitis obliterans syndrome). *p < 0.05; **p < 0.01; ***p < 0.001.
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eCO and COHb% values did not differ significantly between LTX
patients and healthy controls.

No statistically significant differences were observed between
SSLTX and SLTX groups for any parameter.
3.3. eNO and eCO measurements between BOS, non-BOS and
controls

Values of FeNO 50 and 100 were not significantly different be-
tween BOS and non-BOS groups (p > 0.05), while non-BOS patients
reported significantly higher FeNO 50 values than healthy controls
(p < 0.05). BOS patients presented significantly increased FeNO 150
and 350 values compared to non-BOS group (p < 0.05 and p < 0.01,
respectively) and healthy controls (p < 0.01 and p < 0.001,
respectively) (Fig. 1, Table 2).

Regarding flow-independent parameters, CalvNO was signifi-
cantly higher in BOS patients than in non-BOS patients (p < 0.001)
and healthy controls (p < 0.001) (Fig. 2, Table 2), while there were
Table 2
eNO and eCO parameters in LTX patients affected by BOS, compared with LTX pa-
tients free from BOS and healthy controls. BOS: bronchiolitis obliterans syndrome;
FeNO: fraction of exhaled nitric oxide; CalvNO: alveolar concentration of nitric oxide;
J'awNO: maximum conducting airways wall flux; eCO: exhaled carbonmonoxide; ns:
not significant.

Parameters BOS Non-BOS Controls p-valuec

Nitric Oxide
FeNO 50 ml/s (ppb) 20.4 ± 7.8 22.2 ± 9.7 14.9 ± 4.2d <0.05
FeNO 100 ml/s (ppb) 17.7 ± 9 15.1 ± 6.9 13.4 ± 2.9 Ns
FeNO 150 ml/s (ppb) 15.9 ± 8 11.4 ± 3.1e 10.4 ± 2.4f <0.05
FeNO 350 ml/s (ppb) 12.8 ± 5.3 8.7 ± 1.8g 6.2 ± 5.4f <0.001
CalvNO (ppb)a 14.7 ± 9.3 6.9 ± 3.3g 4.9 ± 2.4f <0.0001
J'awNO (nl/min)a 34.6 ± 22.2 48 ± 25.1 40.3 ± 18.6 Ns
CalvNO (ppb)b 13.4 ± 8.9 6 ± 3.7h 4.3 ± 2.6i <0.0001
J'awNO(nl/min)b 37.1 ± 25.7 57.2 ± 19.5 47.5 ± 25.1 Ns
Carbon monoxide
eCO (ppb) 1.2 ± 0.4 1.09 ± 0.5 1 ± 0.3 Ns
COHb % 0.2 ± 0.08 0.2 ± 0.09 0.2 ± 0.04 Ns

a Two-model compartment by Tsoukias and George [5].
b Model of trumpet shape of the airway tree and axial diffusion by Condorelli et al.

[6].
c p-value between BOS, non-BOS and controls groups.
d p < 0.05 between non-BOS group and healthy controls.
e p < 0.05 between BOS and non-BOS groups.
f p < 0.01 between BOS group and healthy controls.
g p < 0.01 between BOS and non-BOS groups.
h p < 0.001 between BOS and non-BOS groups.
i p < 0.001 between BOS group and healthy controls.
no statistically significant differences in J'awNO levels among the
three groups (p > 0.05).

Patients with BOS treated with azithromycin showed no signifi-
cant differences of eNO levelswith untreated BOS patients. (p> 0.05).

By applying a cut-off value of 7.9 ppb, CalvNO presented a high
predictive diagnostic BOS accuracy (area under the curve (AUC) of
0.82), with a sensitivity of 83% and a specificity of 80%, while FeNO
150 (AUC ¼ 0.67) and 350 (AUC ¼ 0.75) demonstrated a lower but
acceptable accuracy (Fig. 3). The positive and negative predictive
values of CalvNO were 77% and 86%, respectively.

BOS, non-BOS and healthy control groups showed comparable
values of eCO and COHb%.
4. Discussion

This study aimed at evaluating exhaled NO and CO parameters
in LTX patients, compared with a group of healthy subjects. The
results document a statistically significant increase of FeNO values
at flow rates of 50, 150 and 350 ml/s and CalvNO levels in LTX pa-
tients than controls. LTX patients not affected by BOS showed
higher levels of FeNO 50ml/s, while BOS patients had higher values
Fig. 2. Comparison of CalvNO between BOS, non-BOS patients and healthy controls.
BOS patients showed higher CalvNO levels than non-BOS patients and healthy controls
(ppb. Pars per billion; CalvNO. Alveolar concentration of nitric oxide; BOS. Bronchiolitis
obliterans syndrome) ***p < 0.001.
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of FeNO at 150 and 350 ml/s. Regarding flow-independent pa-
rameters, BOS patients showedmore elevated CalvNO than non-BOS
patients, while J'awNO levels were comparable in all populations.
No differences were found in carbon monoxide concentrations
between LTX patients (BOS and non-BOS) and healthy controls.

In the literature, very few studies have analysed the potential
role of FeNO and eCO as biomarkers of LTX complications. More-
over, results are discordant: some authors reported that FeNO and
eCO could be used to identify LTX patients affected by bacterial
infection or acute rejection [8], others sustained a potential pre-
dictive value of these parameters for early detection of BOS [13,19].
These discordances are probably due to the non-uniformity of the
applied methods to analyse FeNO and eCO. The present study car-
ried out measurements of FeNO and eCO in BOS, non-BOS and
healthy control groups following the recently proposed standard
guidelines for measurement of FeNO [4]. Furthermore, an analyser
capable of discriminating between alveolar and major airways
production of NO was used to investigate the role of these potential
biomarkers in BOS and non-BOS LTX patients.

4.1. SLTX vs SSLTX

To our knowledge, only one study has focused on the possible
impact of native lung diseases on eNO and eCO production in a
population of SLTX patients [24]. An irrelevant role of the native
lung was suggested and, in agreement with those results, our study
shows no statistically significant differences in these biomarkers
between SSLTX and SLTX patients. In our population, only eight
patients underwent SLTX, and although SLTX patients affected by
IPF and NSIP showed higher values of CalvNO (in line with previous
findings in these diseases [25,26]), the difference was not
significant.

4.2. eNO and BOS

We found a significant increase of CalvNO and FeNO at flows of
150 and 350 ml/s in LTX patients affected by BOS. In particular,
CalvNO demonstrated a higher sensibility and specificity than
FeNO 150 and 350 in identifying BOS in LTX patients. In order to
avoid possible bias due to excessive rigidity of the 2CMmodel, we
have also calculated CalvNO and J'awNO levels with the TMAD
Fig. 3. Receiving operating characteristic (ROC) curves for CalvNO, FeNO at flow rate of 150
syndrome (BOS) in stable LTX patients. CalvNO showed the best diagnostic accuracy for BOS
exhaled nitric oxide; AUC. Area under the curve).
model. However, neither CalvNO nor J'awNO values were signifi-
cantly different between the two models. Elevated alveolar con-
centrations and FeNO 150e350 ml/s levels, associated with not
increased J'awNO e FeNO 50e100 values reported in this study in
BOS patients, may be consequent to the specific pathogenetic
involvement of the peripheral small airways. The production of
NO by inducible NO synthase (iNOS) is commonly increased in
chronic inflammatory processes, in particular when lymphocytes
are involved [27,28], and BOS is traditionally considered the
outcome of chronic alloimmune T-cell reactivity [29,30]. These
assumptions can justify elevated concentrations of NO in little
airways of LTX patients affected by BOS. In agreement with pre-
vious studies demonstrating an increase of iNOS expression in
bronchial epithelium, especially in LTX patients in the early stage
of chronic rejection [12], our BOS population was mainly
composed by stage 1 BOS patients. Thus, our results support the
evidence that in BOS patients, especially in the early phase (stage
1), the increase of NO production was related with the airway
inflammation that leads to an abnormal iNOS activation. Although
in BOS stages 2e3, patients reported FeNO150 and 350 and CalvNO
values higher than non-BOS patients, they do not show different
values with respect to BOS stage 1 patients. As expected, our BOS
patients had lower FEV1 values than non-BOS patients, but no
significant correlations were found between eNO parameters and
FEV1 percentages in BOS patients. Although the sample size was
insufficient to apply statistical tests, the CalvNO values did not
change at different stages of BOS and no datawas found to support
CalvNO as a severity marker of disease. Analogously Fisher et al.
found higher FeNO 200 values in patients affected by BOS than in
healthy controls [10], they considered that the most elevated
levels were expressed by BOS stage 1 patients and justified the
results by suggesting a reduced iNOS expression in BOS stages 2
and 3, due to replacement of inflammatory status by fibrosis.
Although our results are preliminary, the lack of a correlation
between functional parameters and CalvNO values is in line with
the findings by Fisher et al. [10] and suggests that CalvNO did not
represent a potential biomarker of BOS severity.

However, in LTX population, we found an inverse correlation
between CalvNO levels and TLCO percentages. According to the ki-
netics of NO, probably, a TLCO impairment compromises the NO
removal from alveoli, because of a increased thickness of alveolar-
ml/s (FeNO 150) and 350 ml/s (FeNO 350) for the detection of bronchiolitis obliterans
in stable LTX recipients (CalvNO. Alveolar concentration of nitric oxide; FeNO. Fractional
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capillary membrane. The elevated CalvNO levels in LTX patients may
be consequent both to the increased expression of iNOS in bron-
chial epithelium [12] and to an imbalance in the elimination rate of
alveolar NO.

4.3. eCO in LTX patients

Regarding eCO measurements, no differences were found be-
tween LTX patients and healthy controls, nor between BOS and
non-BOS patients. Two previous studies indicated a potential role
of eCO as a risk predictor of BOS development, suggesting that
higher eCO levels in BOS patients, especially at stage 0p and 1,
ensued from an abnormal expression of heme oxygenase-1 activity
in response to oxidative stress [19,20]. However, different devices
were used to measure eCO and possible factors affecting eCO levels
(such as current therapy and active-passive smoking exposure)
were not considered. It is known that different methodologies of
eCO assessment can lead to significantly different results [31] and,
tomake reliable comparisons among studies on eCO, there is a need
to use standardized instruments and methods [4].

In conclusion, our study shows elevated levels of peripheral eNO
and CalvNO in LTX patients affected by BOS, probably due to chronic
inflammation and remodeling of small airways. In particular, CalvNO
showed the best performance in the detection of BOS, and it may be
proposed as a potential non-invasive biomarker in the long-term
management of stable LTX patients because of its high reproduc-
ibility and accessibility.
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