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Summary

1. Drought frequency and intensity are predicted to increase in many parts of the Northern

Hemisphere and the effects of such changes on forest growth and tree mortality are already

evident in many regions around the world. Mixed-species forests and increasing tree species

diversity have been put forward as important risk reduction and adaptation strategies in the

face of climate change. However, little is known about whether the species interactions that

occur in diverse forests will reduce drought susceptibility or water stress.

2. In this study, we focused on the effect of drought on individual tree species (n = 16)

within six regions of Europe and assessed whether this response was related to tree species

diversity and stand density, and whether community-level responses resulted from many simi-

lar or contrasting species-level responses. For each species in each plot, we calculated the

increase in carbon isotope composition of latewood from a wet to a dry year (Dd13C) as an

estimate of its drought stress level.

3. When significant community-level relationships occurred (three of six regions), there was

only one species within the given community that showed a significant relationship (three of

25 species–region combinations), showing that information about a single species can be a

poor indicator of the response of other species or the whole community.

4. There were many two-species mixtures in which both species were less water-stressed com-

pared with their monocultures, but also many mixtures where both species were more stressed

compared with their monocultures. Furthermore, a given species combination responded dif-

ferently in different regions.

5. Synthesis and applications. Our study shows that drought stress may sometimes be reduced

in mixed-species forests, but this is not a general pattern, and even varies between sites for a

given combination. The management or prediction of drought stress requires consideration of

the physiological characteristics of the mixed species, and how this complements the water-

related climatic and edaphic features of the site, rather than species richness.
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Introduction

Mixed-species forests are viewed as an important compo-

nent of risk reduction and adaptation strategies for forest

ecosystems in the face of global change (Messier, Puett-

mann & Coates 2013). Many studies have shown that

mixed-species forests can be more productive than mono-

cultures (Paquette & Messier 2011; Zhang, Chen & Reich

2012; Forrester & Bauhus 2016) and some have also shown

that they can be more resistant and resilient to climate

extremes (Lebourgeois et al. 2013; Pretzsch, Sch€utze & Uhl

2013). However, faster growing forests generally have

greater evapotranspiration than slower growing forests

(Law et al. 2002). Similarly, when the growth of a given

species increases in mixtures compared with monocultures,

the transpiration of that species also increases in the mix-

tures (Forrester 2015). If evapotranspiration is greater in

mixtures, it could potentially lead to greater water stress of

some or all species during drought periods (Schume, Jost &

Hager 2004; Grossiord et al. 2014b), which conflicts with

the strategic use of mixtures to reduce forest water stress.

To understand and to use these dynamics, it is necessary to

consider two factors that can be influenced by species inter-

actions and potentially affect the intensity of drought stress.

The first is that, for a given stand density (basal area,

sapwood area, leaf area, etc.), the species interactions may

help reduce water stress, such as via facilitative processes

including hydraulic lift and more favourable canopy

microclimates, or via a reduction in competition due to

temporal or spatial stratification in soil water uptake and

use (Forrester & Bauhus 2016). These can be broadly

referred to as species complementarity. However, a second

factor relates to the fact that these species interactions

could result in an increase in growth and evapotranspira-

tion in mixtures (Kunert et al. 2012; Forrester 2015),

which could potentially result in greater water stress dur-

ing hot or dry periods if soil water is depleted. The water

stress of a given species may then be expected to increase

with stand density (in terms of basal area, biomass, leaf

area index), which is likely to be higher in mixtures if they

are growing faster than monocultures, unless thinning

intensities are also greater in mixtures.

It is noted that many mixtures are not more productive

than the respective monocultures, but when mixtures are

more productive (and with greater evapotranspiration),

this density effect might be expected.

Reducing stand density by thinning can initially increase

the availability of water for the remaining trees and has

been discussed as an option to mitigate drought impacts

(Cescatti & Piutti 1998; Laurent, Antoine & Joel 2003;

Mart�ın-Benito et al. 2010; Sohn et al. 2013). For instance,

many studies have shown that increases in drought-

induced mortality can be related to increases in stand den-

sity (Allen et al. 2010); however, drought-related mortality

was also found to be unrelated to differences in stand den-

sity (van Mantgem & Stephenson 2007). The mitigation

effects of density control by thinning are also not straight

forward and appear to depend on the time since thinning

as well as the resulting stand structure and tree hydraulic

architecture (Sohn et al. 2013). These contrasting effects of

stand density and thinning indicate that stand density in

relation to tree species diversity is important to consider

when examining the drought stress of forests.

Direct measurements of water pools and fluxes are

labour-intensive or require intensive instrumentation,

which restricts the number of sites and species included in

studies comparing these pools and fluxes in mixtures and

monocultures (Forrester 2015; Volkmann et al. 2016).

Therefore, complementary studies have used indirect meth-

ods to estimate the effect of drought on tree water status,

particularly stable carbon isotope composition (d13C). The
variation in d13C of tree rings between a wet and a dry

year (Dd13C) can be used as a proxy for tree water stress

(Saurer, Siegenthaler & Schweingruber 1995) and used to

examine whether water stress increases or decreases along

gradients of tree species diversity and/or on different sites

(Grossiord et al. 2014a,b; Metz et al. 2016). A European-

wide study that included sixteen species showed that water

stress at the community level declined with increasing tree

species diversity in two forest types (temperate beech for-

ests and Thermophilous deciduous forests), increased with

diversity in Boreal forests, while there was no relationship

in three other forests types including hemiboreal, mountai-

nous beech and Mediterranean forests (Grossiord et al.

2014a,b). This study concluded that there does not appear

to be any general relationship between community-level

drought stress and diversity, so drought stress will often

not be reduced by increasing the diversity of forests.

Rather than simply increasing species diversity, it appears

to be more important to combine species with complemen-

tary characteristics, in terms of their water-related interac-

tions, and that also suit the climatic and edaphic

conditions at the site (Forrester 2014).

In contrast, a study focusing on Fagus sylvatica L. sug-

gested that this species was less stressed when growing in

mixtures than in monocultures (Metz et al. 2016). Most

of the mixtures had lower stand densities (competition

indices) than the monocultures, so it was not clear

whether this was a species mixing effect or a density

effect. Metz et al. (2016) concluded that ‘the systematic

formation of mixed stands tends to be an appropriate sil-

vicultural measure to mitigate the effects of global warm-

ing and droughts on growth patterns of Fagus sylvatica’.

This is a strong and potentially very useful conclusion for

foresters. However, it contrasts with those of other studies

with F. sylvatica in Central Europe that indicated that

F. sylvatica may actually suffer more drought stress when

mixed with species that exhaust water reserves early in the

summer (e.g. Tilia sp. or Quercus sp. Gebauer, Horna &

Leuschner 2012; M€older & Leuschner 2014), or found

that F. sylvatica may cause other species (e.g. P. abies

(L.) Karst.) more water stress during droughts (Schume,

Jost & Hager 2004) thereby reducing the stability and

productivity of the mixtures compared with the
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monocultures. Another study showed that F. sylvatica

trees were more resistant and resilient to drought (in

terms of growth response) in mixtures with Quercus pet-

raea or Picea abies, while the resistance and resilience of

those species were not significantly different in mixtures

with F. sylvatica compared with monocultures (Pretzsch,

Sch€utze & Uhl 2013). These contrasting responses indicate

that to predict the drought susceptibility of forests it is

important to know whether all species are likely to benefit

from the mixture or whether only some benefit (e.g.

F. sylvatica) at the expense of other species. Similarly, it is

important to know whether the whole community (total

or mean of all species) will be less stressed as a mixture or

a monoculture, as opposed to only a single species within

the community (e.g. F. sylvatica).

This requires information about all species within the

mixture, and also the separation of the effects of species

composition from potentially related factors that can

influence drought stress, such as stand density, which is

likely to increase with diversity if productivity increases

with diversity. In this study, we used data of individual

species tree-ring d13C from six regions in Europe and six-

teen species to test whether these forests show any general

relationships between the water stress of a given species,

species composition and stand density.

Specifically, our objectives were to determine (i) whether

significant relationships at the community level between

drought stress and diversity are associated with similar spe-

cies-level relationships by all, several or only a single species

within the community; (ii) when there is no relationship at

the community level, are all species-level relationships also

insignificant or do they contrast and counterbalance each

other to result in a neutral community-level relationship.

Lastly, while stand density (basal area) was only weakly

related to diversity at each region, density did vary between

plots; therefore, we also examined whether (iii) the drought

stress of each species was related to stand density.

Materials and methods

EXPERIMENTAL SITES

The study was done in a European permanent plot network that

was established in 2011 (FunDivEUROPE; Baeten et al. 2013).

The network includes six regions that are representative of major

European forest types (Table 1). Within each region, 21 to 42

plots (30 m 9 30 m) were established, resulting in a total of 184.

A total of 16 different target tree species occurred within the

plots. Some species occurred in more than one region, but none

occurred in all regions (Table 1). The tree species richness of the

plots ranged from 1 to 3 in Finland and Spain, 1 to 4 in Roma-

nia and Germany and 1 to 5 in Italy and Poland. The target spe-

cies were the most common species within the given region.

Within each region, each target tree species was represented at all

richness levels, and when possible, there were two replicates per

species combination per region. There were only weak or no rela-

tionships between tree species richness and stand basal area in

each region (Fig. S7 in Jucker, Bouriaud & Coomes 2015).

Three additional criteria were used when establishing the plots

(FunDivEUROPE; Baeten et al. 2013). First, all plots were in

mature forests that had received minimal management during the

past decade or longer. Second, within a region, all plots were at a

comparable developmental stage and had similar topography, soil

and bedrock properties. Third, the relative abundance of each

target species within a given plot was as similar as possible, while

the presence of non-target species was usually restricted to <5%

of the total plot basal area.

STAND CHARACTERIST ICS

This study focuses on the species-level responses using the same

data that were used to examine community-level responses in two

previous studies (Grossiord et al. 2014a,b), where additional

detail about the methodology is provided. The stem diameter at

1�3 m was measured for all trees with diameter ≥7�5 cm in 2011

and 2012. These were used to calculate the basal area (m2 ha�1)

of each species (i) in each plot (BAi) and hence the total plot

basal area (BAT). Tree species richness was simply the number of

target tree species within a given plot. Tree species diversity was

quantified using Shannon’s index (Shannon 1948) based on the

basal area of each target species within a plot using eqn 1.

Tree species diversity ¼ �
Xn
i¼1

BAi

BAT
ln

BAi

BAT

� �
eqn 1

where n is the number of target tree species in the plot. While the

relative abundance of each target species within a given plot was

as similar as possible, there was still some variability. Therefore,

Shannon’s index was used to account for the evenness of the spe-

cies mixing.

To account for the effects of irradiance, soil nutrient availabil-

ity and soil moisture on d13C, the effects of irradiance were

approximated using plot leaf area index (LAI) and those of soil

nutrient availability were approximated using soil C/N ratio. In

addition, stand basal area was used to approximate competition

for all resources. Stand basal area and LAI were also used to

check that species richness and diversity were not confounded

with stand density, which can influence the productivity (and pos-

sibly related ecosystem functions) more than richness and diver-

sity in European forests (Vil�a et al. 2013). The measurements of

LAI and soil C/N ratio are described in Appendix S1.

QUANTIF ICATION OF TREE WATER STRESS

The stomatal response of plants to soil water deficit is related to

the molar ratio of the two naturally occurring C isotopes

(13C/12C) in the plant material that was produced during the per-

iod of water deficit (Dupouey et al. 1993; Warren, McGrath &

Adams 2001; Ferrio et al. 2003), expressed as d13C (&). The vari-

ation in d13C of plant material that was produced during a given

wet period (i.e. reference year) and a drought period can there-

fore be used as an index of the physiological response to soil

drought. We used the difference in the d13C of latewood within

growth rings of the tree stems between a year with very wet sum-

mer conditions and a year with extreme drought conditions

(Grossiord et al. 2014a,b). This variation, Dd13C (&), was calcu-

lated for each species in each plot as d13Cdry–d
13Cwet. While d13C

can be influenced by any factors that influence stomatal conduc-

tance, including radiation, soil fertility (Farquhar, Ehleringer &
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Hubick 1989; Warren, McGrath & Adams 2001; Ferrio, Voltas &

Araus 2003) and genetics (Brendel et al. 2002), it was assumed

that the main factor that varies between the wet and dry year is

the water-related stress (see Grossiord et al. 2014a,b for more

details). A higher Dd13C, and hence a greater increase in d13C in

the dry year, indicates a stronger stomatal response and thus a

higher level of drought stress; a Dd13C of zero would indicate

that there was no change in d13C in response to drought and

hence no drought-induced stress. The latewood was sampled

because the d13C of earlywood can be influenced by the remobi-

lization of photosynthates from previous growing seasons (Offer-

mann et al. 2011) or favourable spring weather, whereas the

latewood is more likely to be affected by droughts that occur in

the later part of the growing season. While d13C analyses are

sometimes performed on the cellulose fraction of the wood, cellu-

lose and bulk material produce highly correlated signals (Loader,

Robertson & McCarroll 2003) and the latter was used in this

study.

Table 1. Stand characteristics for each of the six regions (modified from Grossiord et al. 2014a,b)

Stand characteristic Region

Main forest type Boreal Hemiboreal Temperate

beech

Mountainous

beech

Thermophilous

deciduous

Continental–
Mediterranean

Country Finland Poland Germany Romania Italy Spain

Forest name North Karelia Bialowieza Hainich Râsca Colline Metallifere Alto Tajo

Latitude/Longitude 62�60°, 29�76° 52�72°, 23�95° 51�10°, 10�51° 47�32°, 26�03° 43�27°, 11�26° 40�77°, �1�95°
MAT (°C),
MAP (mm)

2�1, 700 6�9, 627 6�8, 775 6�8, 800 13�0, 850 10�2, 499

Soil depth Medium Deep Deep Medium Deep Shallow

Altitude

range (m a.s.l.)

80–200 135–185 500–600 600–1000 260–525 960–1400

Highest tree

species richness

3 5 4 4 5 3

Target species

Abies alba (Aa) x

Acer

pseudoplatanus (Ap)

x x

Betula pendula (Bp) x x

Carpinus betulus (Cb) x

Castanea sativa (Cs) x

Fagus sylvatica (Fs) x x

Fraxinus excelsior (Fe) x

Ostrya carpinifolia (Oc) x

Picea abies (Pa) x x x x

Pinus nigra (Pn) x

Pinus sylvestris (Ps) x x x

Quercus cerris (Qc) x

Quercus faginea (Qf) x

Quercus ilex (Qi) x

Quercus petraea (Qp) x x

Quercus robur (Qr) x

Total number of plots 26 42 35 26 34 21

Number of plots per

species diversity level

(ranked from

monoculture to

highest richness level)

10/12/4 10/9/11/10/2 7/8/15/5 8/10/7/1 10/8/8/7/1 9/9/3

Mean stand density

� SE (tree ha�1)

890 � 51 499 � 39 533 � 51 535 � 31 759 � 53 910 � 95

Mean stand basal

area � SE (m2 ha�1)

20�9 � 0�8 32�5 � 1 32�5 � 1�6 45�9 � 2�2 24�2 � 0�6 24�2 � 2

Mean leaf area

index � SE (m2 m�2)

2�8 � 0�2 5�4 � 0�2 6�4 � 0�2 5�8 � 0�1 3�9 � 0�1 1�9 � 0�1

Mean soil C/N � SE 23�8 � 0�6 16�5 � 0�4 12�3 � 0�2 12�9 � 0�2 18�6 � 0�7 21�3 � 1�6
Mean water stress

index � SE

(1997–2010)*

0�5 � 0�3 9�6 � 3�7 29�5 � 5�3 18�2 � 5�1 35�7 � 3�7 21�2 � 5�4

Water stress index

of wet year (year)*

0 (2004) 0 (2002) 0�9 (2002) 5�2 (2001) 2�4 (2002) 0 (2002)

Water stress index

of dry year (year)*

1�5 (2006) 44�6 (2010) 68�4 (2003) 46�6 (2003) 50�1 (2003) 46�4 (2001)

*The calculation of the water stress index is described in the Materials and Methods and Grossiord et al. (2014b).
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Wood cores for d13C measurements were collected by ran-

domly selecting six trees per species in monocultures and three

trees per species in mixed-species plots from the 10 largest diame-

ter trees to ensure that only dominant and co-dominant trees

were selected. The larger size classes were used to avoid the con-

founding effects of shading on the d13C of suppressed trees (Fer-

rio, Voltas & Araus 2003). A total of 1390 trees were sampled

across the six regions and one 5-mm-diameter core was extracted

from the southern side of each tree at a height of 1�3 m. For each

core, the latewood for the selected years (wet vs. dry) was sepa-

rated from the earlywood using a scalpel. The latewood samples

for a given year (wet or dry), a given species and a given plot,

were bulked to obtain enough material for carbon isotope analy-

sis to ensure sample homogeneity and to reduce the cost of the

analyses. While this is a relatively low sample number, the repli-

cation is adequate due to the strong imprint of environmental sig-

nals on tree-ring carbon isotope composition (Pe~nuelas et al.

2008). This procedure is described in detail by Grossiord et al.

(2014a,b).

The growing seasons with non-limiting soil water conditions

and those with severe soil drought were selected using a water

balance model to estimate the daily relative extractable water for

each region between 1997 and 2010. The dry year used for

d13Cdry was randomly selected from the three driest years between

1997 and 2010. The wet year used for d13Cwet was randomly

selected from the years with a low water stress index. This proce-

dure is described in detail in Appendix S1.

STATIST ICAL ANALYSES

The effect of stand variables on Dd13C was examined using lin-

ear regression analyses. Stand variables included tree species

richness, tree species diversity, stand basal area, LAI and soil

C/N ratio. The labour-intensive aspect of the data collection

and the number of regions, species and tree richness levels did

not allow for a high level of replication. While multiple linear

regression could be used to account for all stand variables in a

single model for each given species, we avoided fitting multiple

regressions because this would result in low ratios of sample

sizes to the number of variables (often ratios of less than 10)

(Clarke & Wheaton 2007; Bolker et al. 2009). We therefore

examined the effects of each variable separately. All statistical

analyses were carried out using R software version 3.2.1

(R Core Team 2015).

Results

RELATIONSHIPS BETWEEN RICHNESS OR DIVERSITY

AND Dd 1 3C

Tree species richness and diversity generally had similar

effects on the species-level Dd13C. Dd13C decreased with

increasing diversity or richness for C. sativa in the Ther-

mophilous deciduous forests of Italy (Figs 1 and S1,

Tables S1 and S2 in Supporting information). It also

decreased with increasing diversity (but not richness) for

F. sylvatica in the temperate beech forests of Germany. In

contrast, Dd13C increased for P. abies with richness and

diversity in the Boreal forests of Finland (Figs 1 and S1).

Dd13C also increased with richness for F. sylvatica in the

mountainous beech forests in Romania (Fig. S1d), which

is the opposite pattern for F. sylvatica in Germany

(Fig. 1c). There were no significant relationships between

Dd13C and diversity in the other two forest types,

hemiboreal forests in Poland and Mediterranean forests in

Spain.

To indicate why there were so few significant rela-

tionships with richness and diversity (three of 25

species–region combinations), Fig. 2 compares the Dd13C
of each species in its monoculture with the Dd13C of

the same species when it was in a two-species mixture.

While there is no statistical power to test for the signifi-

cance of the differences, the rankings are used here to

interpret the relationships between Dd13C and diversity

or richness. For many species, the monocultures were

not the most stressed stands, and in the Boreal forests

of Finland, all species were actually less stressed in

monocultures. The variability in the ranking of mono-

cultures and two-species mixtures for different species

within a given region indicates that correlations between

Dd13C and richness or diversity will be reduced because

the positive effects on water stress in some mixtures are

often offset by negative effects on water stress in other

mixtures.

The two species for which drought stress declined with

increasing diversity (F. sylvatica in Germany and C. sativa

in Italy) were also examples where monocultures were

more stressed than all two-species mixtures containing

those species (Fig. 2). However, this situation was not

enough to result in a general positive diversity effect

because there were also other species where monocultures

were more stressed than all two-species mixtures, but

there was no diversity effect (e.g. B. pendula in Poland or

Q. cerris in Italy). Figure 2 also shows that there were no

single species that were consistently more stressful to all

other species within a given site.

RELATIONSHIPS BETWEEN BASAL AREA, LEAF AREA

INDEX OR SOIL C/N AND Dd 13C

The other stand characteristics often varied widely

between plots within a given region, but they were rarely

correlated with Dd13C. Stand basal area was negatively

correlated with Dd13C for B. pendula in the hemiboreal

forests of Poland (Fig. S2, Table S3). In the same forests,

the Dd13C was negatively correlated with LAI for

Q. robur (Fig. S3, Table S4). This indicates that these spe-

cies actually became less stressed as stand basal area or

LAI increased. The C/N of soil was positively correlated

with Dd13C for B. pendula in the Boreal forests of Fin-

land, while it was negatively correlated with the Dd13C of

P. abies in the mountainous beech forests of Romania

(Fig. S4, Table S5). There were no other significant rela-

tionships between stand variables and Dd13C for the other

species in any region.
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Discussion

SPECIES IDENTITY OR SPECIES RICHNESS EFFECTS

This study shows that the community-level diversity pat-

terns, which were significant in three of the six regions

(Grossiord et al. 2014a,b), were mirrored by only one of

the species within each given community, and often the

relationships for those species were not strong. In the tem-

perate beech forests of Germany, water stress declined in

mixtures only because F. sylvatica was less drought-

stressed. In the Thermophilous deciduous forests of Italy,

stress declined in mixtures only because C. sativa was less

stressed, and in the Boreal forests of Finland, stress

increased in mixtures because P. abies was more stressed.

There were no community-level relationships in the hemi-

boreal forests in Poland or the Mediterranean forests in

Spain because there were no significant relationships for

any of the individual tree species within those communities.

There was also no community-level relationship in the

mountainous beech forests of Romania, despite a signifi-

cant relationship for F. sylvatica, because the other species

showed no significant relationships.

This variability in species responses within a given

stand is consistent with most previous studies that directly

measured water pools and fluxes in mixtures; the commu-

nity-level response is the average of different responses by

each species within the community. For example, in some

stands there is no clear mixing effect for any species

(Moore, Bond & Jones 2011; Grossiord et al. 2013), in

others each species may have greater transpiration per

tree (Forrester et al. 2010; Kunert et al. 2012), and in

others some species may have greater transpiration or

interception of precipitation at the expense of other spe-

cies (Schume, Jost & Hager 2004; Gebauer, Horna &

Leuschner 2012). Even for a given species, the mixing

effect on water fluxes is the average response of different

cohorts or size classes within the stand, such that only

some of the trees of that species may be responsible for

its response (Forrester 2015).
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Fig. 1. Increase in the species-specific car-

bon isotope composition in a dry year,

compared with a wet year (Dd13C, &), in

relation to tree species diversity, for each

region. Diversity is quantified using Shan-

non’s index. Species codes are the same as

in Table 1. The fitted lines show the statis-

tically significant relationships (P < 0�05).
The grey lines in (a), (c) and (e) are fitted

for all species combined. The correspond-

ing R2 and P values are provided using the

same colour as the lines. There were no

significant relationships in (b), (d) or (f).
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One of the most general findings was that there is no

common relationship between diversity and Dd13C and

that the majority of species were not most water-stressed

in their monocultures. This reduced the probability of

negative correlations between diversity and drought stress

(Dd13C) within a given region because the response in

mixtures, where there was a positive effect, was offset by

the response in other mixtures where there was a negative

effect. The two cases where water stress decreased with

increasing diversity (i.e. F. sylvatica in Germany and

C. sativa in Italy) were also examples of species–region
combinations for which a given species was more stressed

in monoculture than all two-species mixtures. It is also

important to note that even within a given region there

was no single species that was consistently more stressful

to all others in that region.

With regard to management implications, while there

were few significant relationships between Dd13C and

diversity, there were many two-species mixtures where

both species were less water-stressed in mixture than in

monoculture (e.g. mixtures of C. betulus or P. abies

with P. sylvestris in Poland; Q. petraea or C. sativa with

Q. cerris in Italy; Fig. 2). Thus, for most species, drought

stress changed with neighbour identity rather than with

diversity. There are no data from this study to provide a

process-based explanation for why these combinations

worked for each species within the mixture, and it is likely

that a combination of processes was responsible, some of

which improved water availability and others that may

have simultaneously had the opposite effect (Forrester &

Bauhus 2016). For example, a conifer such as P. abies

might reduce water availability by having higher intercep-

tion rates than neighbouring broad-leaved species, such as

F. sylvatica, but P. abies might also increase water avail-

ability by having a lower transpiration rate than F. sylvat-

ica (Schume, Jost & Hager 2004).
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Fig. 2. Increase in carbon isotope compo-

sition from dry years to wet years in the

monocultures and two-species mixtures

(Dd13C, &) in Finland (a), Poland (b),

Germany (c), Romania (d), Italy (e) and

Spain (f). The x-axes show the competing

species and the data points show the

Dd13C of each target species. Filled circles

show when the target species was growing

in monoculture, while open circles indicate

mixtures. The lines connect points for a

given species. Each point represents a

bulked sample taken from six (monocul-

tures) or three (mixtures) trees per species

combination. Within a given country, the

species ranking, in terms of Dd13C, varies
between competing species indicating that

no species was consistently more stressed

than the other species in the given country,

with the exception of Q. petraea in Ger-

many (c) and P. sylvestris in Spain (f),

which always exhibited more water stress

than all other species in the stands where

they occurred.
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SITE AND REGION EFFECTS

The design of this study allows an analysis of the relation-

ship between diversity and species response to drought

across major forest types in Europe and an indication of

the generality of such relationships. Our results show that

a given species combination can respond differently in dif-

ferent regions. For example, in Germany, F. sylvatica was

less stressed in mixtures with all other species examined in

that region, which is the same result that was found in

another study in the same region (Metz et al. 2016). How-

ever, this was not the case in Romania, where F. sylvatica

was more stressed in mixture with A. alba than in mono-

cultures. Also, in Romania F. sylvatica was least water-

stressed with Acer pseudoplatanus, which was actually the

most stressful species towards F. sylvatica in Germany.

Spatial changes in the interactions between a given combi-

nation of species in terms of growth have been found in

many forests (Forrester 2014). This shows the risk of

using data from a small part of a species distribution to

generalize about a given species combination (Forrester

2014). For example, the mixing effect on growth of

P. sylvestris and F. sylvatica was found to decrease from

78% at a single site in Germany, to 17% when averaged

across seven sites in Germany and Poland, to 9% when

averaged for 32 sites spread across a large proportion of

the natural distribution of this species combination in

Europe (Forrester & Pretzsch 2015). Furthermore, differ-

ent provenances of a given species can vary in their

hydraulic architecture (Poyatos et al. 2007) or other

water-related traits (Ponton et al. 2002) and thus in their

response to droughts (Taeger et al. 2013), thereby influ-

encing the way a given species interacts with others.

STAND DENSITY

With few exceptions, Dd13C was not correlated with stand

density (basal area or LAI) for any species in any of the

six regions. As shown in previous studies at these sites,

density was also only weakly correlated with tree species

richness in each region (Jucker, Bouriaud & Coomes

2015). The weak or absent correlation between stand den-

sity (basal area or LAI) and species-level Dd13C may be

due to unmeasured variables, such as differences in the

hydraulic architecture of a given species in different plots.

For example, a stand that was thinned several decades

ago (via management or a natural disturbance) may now

have a similar community basal area and LAI to stands

that were less intensively thinned, but the trees of a given

species within that stand could now have larger mean tree

leaf areas and hence different hydraulic architectures.

While the forests used in this study have not been recently

managed, they are mature forests and all previous man-

agement during the first decades of stand development

will have influenced the current stand structures and

hydraulic architectures, which can influence the response

of trees to droughts (McDowell et al. 2006; Sohn et al.

2013). Confounding effects of stand structure or hydraulic

architecture may have caused the variable (and usually

absent) effects of stand density on Dd13C. It should also

be noted that while there were not enough data to test for

interactions between diversity and stand density, this may

be important to examine in future studies.

MANAGEMENT CONSIDERATIONS AND CONCLUSIONS

Diversity was often a poor predictor of the water stress

response of individual species and all significant relation-

ships at the community level were mirrored by the

response of only one species within the community. This

indicates that information about only a single species

within a mixture provides very little information about

the potential mixing effect on that community or all other

species within the community. However, while species

diversity does not appear to be a good predictor of com-

munity- or species-level water stress response, species

identity is clearly important and there were many two-spe-

cies mixtures in which both species were less water-

stressed compared with their monocultures. It is also

important to note that there were also two-species mix-

tures where one or both species were more water-stressed

than in their monocultures (e.g. all mixtures in Finland).

Therefore, while mixed-species forests may sometimes

result in reduced water stress, this will certainly not

always be the case. Furthermore, the mixing effect on

water stress also varied between regions, and a species

that benefited from mixing in one region (e.g. F. sylvatica

with P. abies in Germany) did not always benefit, even

when mixed with the same species, in another region (e.g.

in Romania). These mixing effects are likely to result in

several simultaneously occurring water-related interac-

tions, some of which may have positive effects and others

negative effects (Forrester & Bauhus 2016). Further inves-

tigation of these processes and how they can be influenced

by species interactions and forest management will be nec-

essary to improve the process-based understanding of

these dynamics. This will be required in order to more

confidently predict which combinations of species, sites,

climatic conditions, stand ages and stand structures will

be most beneficial for reducing water stress of forests.
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Appendix 1. Quantification of soil water availability, leaf area index and soil C/N 

 

Soil water availability 

 

The growing seasons with non-limiting soil water conditions and those with severe soil 

drought were selected using a water balance model, BILJOU (Granier et al. 1999), to estimate 

the daily relative extractable water (REW, unitless) for each region between 1997 and 2010. 

The year of 1997 was the longest backwards projection used because the stand characteristics 

measured in 2012-2013 will become less representative as the length of the backwards 

projection is increased; an arbitrary maximum of 15 years was considered to be reasonable in 

these mature forests. REW is the ratio between available soil water and the maximum 

extractable water (water holding capacity) and varies between one (field capacity) and zero 

(permanent wilting point). A REW > 0.4 indicates non-limiting soil water conditions for 

transpiration such that stomatal conductance will depend more on vapour pressure deficit and 

irradiance (Granier et al. 1999). A REW <0.4 indicates a soil water shortage that can induce a 

reduction in stomatal conductance and thus in leaf gas exchange, causing many tree species to 

cease radial growth (Granier et al. 1999). 

 

The BILJOU model has a daily time step and the required input variables are daily 

precipitation, global radiation, air temperature, humidity and wind speed, as well as soil water 

holding capacity and leaf area index (LAI). Meteorological data for each of the six regions 

were obtained from the CGMS database of interpolated meteorological data (AGRI4CAST, 

http://mars.jrc.ec.europa.eu/mars). For each year in each region, the annual water stress was 

quantified using an index (unitless) (Granier et al. 1999) that cumulates the difference 

between daily REW and 0.4 when REW is < 0.4 according to Equation 2. 
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Water Stress Index = ∑ . . ,        (2) 

 

where j corresponds to each day when REW<0.4. 

 

For each region, the dry year used for δ13Cdry was randomly selected from the three driest 

years between 1997 and 2010. The wet year used for δ13Cwet was randomly selected from the 

years with a water stress index of < 6.0 (arbitrary threshold). More detail is provided in 

Grossiord et al. (2014a); Grossiord et al. (2014b). 

 

Leaf area index and soil C/N 

 

The LAI was measured at five locations within each plot during the summers of 2012 and 

2013 using a LAI-2000 Plant Canopy Analyzer (LI-COR Inc., Lincoln, Nebraska). Soil C/N 

ratio was measured from nine forest floor (O-horizon) samples and mineral soil cores from 

each plot. The soil cores were divided into depth classes (0-10 cm, 10-20 cm, and depending 

on soil depth and stoniness, 20-30 and 30-40 cm). All nine forest floor and mineral soil 

samples per plot were bulked into a single sample per plot. The O-horizon and mineral soil 

samples were dried at 55°C to constant weight. The O-horizon samples were ground with a 

Heavy-duty Retsch Model SM 2000 cutting mill before subsamples were ground into finer 

particles using a ball mill. Mineral soil samples were sieved (2-mm-diameter) and then 

ground using a Planetary PM 400 Retsch ball mill. Subsamples from the forest floor and 

mineral soils were taken and dried at 105°C to determine the moisture content. Thus, the C 

concentrations are reported at dry weight basis.  The soil C and total N concentrations were 
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analysed using an elemental analyzer (Thermo Scientific FLASH 2000 organic elemental 

analyzer) following the dry combustion method (Matejovic 1993). A mean C/N ratio was 

calculated for each plot. 
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Figure S1. Increase in the species-specific carbon isotope composition in a dry year, 

compared with a wet year (Δδ13C, ‰), in relation to tree species richness, for each region. 

Richness is quantified as the number of species in the stand. Species codes are the same as in 

Table 1. The fitted lines show the statistically significant relationships (P < 0.05). The grey 

lines are fitted for all species combined. The corresponding R2 and P values are provided 

using the same colour as the lines. 
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Figure S2. Increase in the species-specific carbon isotope composition in a dry year, 

compared with a wet year (Δδ13C, ‰), in relation to total stand basal area, for each region. 

Species codes are the same as in Table 1. The fitted line shows the only statistically 

significant relationship (P < 0.05). 
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Figure S3. Increase in the species-specific carbon isotope composition in a dry year, 

compared with a wet year (Δδ13C, ‰), in relation to leaf area index, for each region. Species 

codes are the same as in Table 1. The fitted line shows the only statistically significant 

relationship (P < 0.05). 
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Figure S4. Increase in the species-specific carbon isotope composition in a dry year, 

compared with a wet year (Δδ13C, ‰), in relation to soil C to soil N ratio (C/N), for each 

region. Species codes are the same as in Table 1. The fitted lines show the only statistically 

significant relationship (P < 0.05). 
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Table S1. Summary statistics for the relationships between Δδ13C (‰) and tree species 
diversity (i.e. Shannon’s index) for each species and for all data combined. When the 
relationships were significant (P < 0.05) the intercept and slope parameters are also provided 
with standard errors of the parameters estimates in parentheses. 
  
Region and species n F-value P-value R2 Intercept (se) Slope (se) 
Boreal - Finland 

Betula pendula 14 0.041 0.843 
Picea abies 16 5.938 0.029 0.30 0.77 (0.34) 0.88 (0.36) 

Pinus sylvestris 16 4.313 0.057 
All combined 46 7.997 0.007 0.15 1.11 (0.22) 0.65 (0.23) 

Hemiboreal - Poland 
Betula pendula 21 1.481 0.239 

Carpinus betulus 22 0.037 0.849 
Picea abies 22 1.282 0.271 

Pinus sylvestris 22 1.920 0.181 
Quercus robur 23 0.209 0.652 
All combined 110 1.658 0.201 

Temperate Beech - Germany 
Acer pseudoplatanus 18 0.287 0.599 

Fagus sylvatica 25 7.759 0.011 0.25 1.88 (0.36) -0.72 (0.26) 
Fraxinus excelsior 19 0.527 0.478 

Picea abies 9 0.198 0.670 
Quercus petraea 16 1.116 0.309 

All combined 87 6.571 0.012 0.07 1.56 (0.25) -0.44 (0.17) 
Mountainous Beech - Romania 

Abies alba 13 0.002 0.964 
Acer pseudoplatanus 10 0.022 0.886 

Fagus sylvatica 17 3.481 0.082 
Picea abies 12 1.166 0.306 

All combined 52 2.508 0.120 
Thermophilous deciduous - Italy 

Castanea sativa 15 6.251 0.027 0.32 2.43 (0.40) -0.66 (0.27) 
Ostrya carpinifolia 15 1.011 0.333 

Quercus cerris 18 3.674 0.073 
Quercus ilex 19 0.148 0.705 

Quercus petraea 16 1.862 0.194 
All combined 83 9.581 0.003 0.11 1.61 (0.22) -0.44 (0.14) 

Continental–Mediterranean - Spain 
Pinus nigra 12 0.072 0.794 

Pinus sylvestris 12 0.384 0.549 
Quercus faginea 12 0.161 0.697 

All combined 36 0.097 0.757 
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Table S2. Summary statistics for the relationships between Δδ13C (‰) and tree species 
richness for each species and all data combined. When the relationships were significant (P < 
0.05) the intercept and slope parameters are also provided with standard errors of the 
parameters estimates in parentheses. 
Region and species n F P R2 Intercept (se) Slope (se) 
Boreal - Finland 

Betula pendula 14 0.149 0.706
Picea abies 16 7.257 0.017 0.34 0.26 (0.48) 0.61 (0.23) 

Pinus sylvestris 16 2.163 0.164
All combined 46 7.684 0.008 0.15 0.84 (0.32) 0.41 (0.15) 

Hemiboreal - Poland 
Betula pendula 21 2.050 0.169

Carpinus betulus 22 0.005 0.947
Picea abies 22 1.760 0.20 

Pinus sylvestris 22 1.796 0.195
Quercus robur 23 0.401 0.534
All combined 110 1.377 0.243

Temperate Beech - Germany 
Acer pseudoplatanus 18 0.328 0.575

Fagus sylvatica 25 0.935 0.344
Fraxinus excelsior 19 0.000 0.991

Picea abies 9 0.440 0.529
Quercus petraea 16 3.467 0.084

All combined 87 4.970 0.028 0.06 1.48 (0.25) -0.18 (0.08) 
Mountainous Beech - Romania 

Abies alba 13 0.008 0.933
Acer pseudoplatanus 10 0.011 0.918

Fagus sylvatica 17 5.364 0.035 0.26 -0.07 (0.43) 0.39 (0.17) 
Picea abies 12 0.770 0.401

All combined 52 3.183 0.080
Thermophilous deciduous - Italy 

Castanea sativa 15 6.877 0.021 0.35 2.62 (0.45) -0.37 (0.14) 
Ostrya carpinifolia 15 0.642 0.438

Quercus cerris 18 1.540 0.233
Quercus ilex 19 0.043 0.839

Quercus petraea 16 1.034 0.327
All combined 83 5.640 0.020 0.07 1.51 (0.24) -0.18 (0.07) 

Continental–Mediterranean - Spain 
Pinus nigra 12 0.397 0.543

Pinus sylvestris 12 0.407 0.538
Quercus faginea 12 0.122 0.734

All combined 36 0.014 0.908
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Table S3. Summary statistics for the relationships between Δδ13C (‰) and basal area (m2 ha-

1) for each species and all data combined. When the relationships were significant (P < 0.05) 
the intercept and slope parameters are also provided with standard errors of the parameters 
estimates in parentheses. 
Region and species n F P R2 Intercept (se) Slope (se) 
Boreal - Finland 

Betula pendula 14 0.068 0.799
Picea abies 16 2.387 0.145

Pinus sylvestris 16 1.322 0.270
All combined 46 0.830 0.367

Hemiboreal - Poland 
Betula pendula 21 5.002 0.038 0.21 1.71 (0.53) -0.04 (0.02) 

Carpinus betulus 22 0.007 0.933
Picea abies 22 0.051 0.824

Pinus sylvestris 22 0.128 0.724
Quercus robur 23 2.254 0.148
All combined 110 0.504 0.479

Temperate Beech - Germany 
Acer pseudoplatanus 18 0.060 0.810

Fagus sylvatica 25 0.250 0.622
Fraxinus excelsior 19 0.265 0.613

Picea abies 9 0.047 0.835
Quercus petraea 16 0.747 0.402

All combined 87 0.124 0.725
Mountainous Beech - Romania 

Abies alba 13 1.575 0.236
Acer pseudoplatanus 10 0.019 0.895

Fagus sylvatica 17 2.271 0.153
Picea abies 12 1.674 0.225

All combined 52 2.054 0.158
Thermophilous deciduous - Italy 

Castanea sativa 15 2.370 0.148
Ostrya carpinifolia 15 0.071 0.794

Quercus cerris 18 0.241 0.630
Quercus ilex 19 0.837 0.373

Quercus petraea 16 0.531 0.478
All combined 83 0.280 0.598

Continental–Mediterranean - Spain 
Pinus nigra 12 1.299 0.281

Pinus sylvestris 12 0.682 0.428
Quercus faginea 12 0.285 0.605

All combined 36 0.609 0.441
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Table S4. Summary statistics for the relationships between Δδ13C (‰) and leaf area index 
(m2 m-2) for each species and all data combined. When the relationships were significant (P < 
0.05) the intercept and slope parameters are also provided with standard errors of the 
parameters estimates in parentheses. 
Region and species n F P R2 Intercept (se) Slope (se) 
Boreal - Finland 

Betula pendula 14 2.607 0.132
Picea abies 16 0.634 0.439

Pinus sylvestris 16 1.773 0.204
All combined 46 0.001 0.972

Hemiboreal - Poland 
Betula pendula 21 0.060 0.809

Carpinus betulus 22 1.523 0.232
Picea abies 22 0.103 0.752

Pinus sylvestris 22 0.183 0.674
Quercus robur 23 7.249 0.014 0.26 3.19 (0.90) -0.44 (0.17) 
All combined 110 0.622 0.432

Temperate Beech - Germany 
Acer pseudoplatanus 18 0.278 0.606

Fagus sylvatica 25 0.017 0.897
Fraxinus excelsior 19 0.019 0.891

Picea abies 9 0.138 0.721
Quercus petraea 16 2.265 0.156

All combined 87 0.021 0.885
Mountainous Beech - Romania 

Abies alba 13 0.942 0.353
Acer pseudoplatanus 10 0.291 0.604

Fagus sylvatica 17 1.280 0.276
Picea abies 12 2.116 0.176

All combined 52 3.613 0.063
Thermophilous deciduous - Italy 

Castanea sativa 15 0.181 0.677
Ostrya carpinifolia 15 0.066 0.801

Quercus cerris 18 3.125 0.096
Quercus ilex 19 0.104 0.751

Quercus petraea 16 2.623 0.128
All combined 83 1.071 0.304

Continental–Mediterranean - Spain 
Pinus nigra 12 1.299 0.281

Pinus sylvestris 12 0.684 0.427
Quercus faginea 12 0.196 0.667

All combined 36 0.098 0.756
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Table S5. Summary statistics for the relationships between Δδ13C (‰) and soil C/N for each 
species and all data combined. When the relationships were significant (P < 0.05) the 
intercept and slope parameters are also provided with standard errors of the parameters 
estimates in parentheses. 
Region and species n F P R2 Intercept (se) Slope (se) 
Boreal - Finland 

Betula pendula 14 5.251 0.041 0.30 -0.80 (1.19) 0.12 (0.05) 
Picea abies 16 0.104 0.752

Pinus sylvestris 16 1.223 0.287
All combined 46 0.112 0.740

Hemiboreal - Poland 
Betula pendula 21 0.129 0.724

Carpinus betulus 22 0.122 0.730
Picea abies 22 2.156 0.158

Pinus sylvestris 22 2.551 0.126
Quercus robur 23 0.122 0.730
All combined 110 0.089 0.766

Temperate Beech - Germany 
Acer pseudoplatanus 18 0.295 0.595

Fagus sylvatica 25 0.754 0.394
Fraxinus excelsior 19 3.039 0.099

Picea abies 9 0.481 0.510
Quercus petraea 16 0.377 0.377

All combined 87 0.417 0.520
Mountainous Beech - Romania 

Abies alba 13 0.520 0.486
Acer pseudoplatanus 10 0.511 0.495

Fagus sylvatica 17 3.893 0.067
Picea abies 12 5.227 0.045 0.34 3.91 (1.51) -0.27 (0.12) 

All combined 52 1.417 0.240
Thermophilous deciduous - Italy 

Castanea sativa 15 0.024 0.880
Ostrya carpinifolia 15 0.258 0.620

Quercus cerris 18 1.675 0.214
Quercus ilex 19 0.082 0.779

Quercus petraea 16 0.000 0.984
All combined 83 2.158 0.146

Continental–Mediterranean - Spain 
Pinus nigra 12 0.592 0.459

Pinus sylvestris 12 0.010 0.921
Quercus faginea 12 0.292 0.601

All combined 36 0.005 0.944
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