

FLORE

Repository istituzionale dell'Università degli Studi di Firenze

Chronic kidney disease

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

Original Citation:

Chronic kidney disease / Romagnani, Paola; Remuzzi, Giuseppe; Glassock, Richard; Levin, Adeera; Jager, Kitty J.; Tonelli, Marcello; Massy, Ziad; Wanner, Christoph; Anders, Hans-Joachim*. - In: NATURE REVIEWS. DISEASE PRIMERS. - ISSN 2056-676X. - ELETTRONICO. - 3:(2017), pp. 17088-17112. [10.1038/nrdp.2017.88]

Availability:

The webpage https://hdl.handle.net/2158/1120344 of the repository was last updated on 2021-03-29T21:41:55Z

Published version: DOI: 10.1038/nrdp.2017.88

Terms of use: Open Access

Open Access

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze (https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Publisher copyright claim:

Conformità alle politiche dell'editore / Compliance to publisher's policies

Questa versione della pubblicazione è conforme a quanto richiesto dalle politiche dell'editore in materia di copyright.

This version of the publication conforms to the publisher's copyright policies.

La data sopra indicata si riferisce all'ultimo aggiornamento della scheda del Repository FloRe - The abovementioned date refers to the last update of the record in the Institutional Repository FloRe

(Article begins on next page)

nature REVIEWS

• ?

1 Chronic kidney disease

- 2 Paola Romagnani¹, Giuseppe Remuzzi², Richard Glassock³, Adeera Levin⁴, Kitty J. Jager⁵, Marcello
- 3 Tonelli⁶, Ziad Massy⁷, Christoph Wanner⁸ and Hans-Joachim Anders⁹
- 4 1 Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, Italy,
- 5 p.romagnani@dfc.unifi.it,
- 6 2 IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy, Department of Medicine,
- 7 Unit of Nephrology and Dialysis, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo,
- 8 Italy, Department of Biomedical and Clinical Science, L. Sacco, University of Milan, Milan, Italy
 9 gremuzzi@marionegri.it
- 3 Department of Medicine, David Geffen School of Medicine at UCLA, 8 Bethany, Laguna Niguel,
 92677 California, USA, riglassock@gmail.com
- 4 Division of Nephrology, University of British Columbia, Vancouver, Canada,
- 13 alevin@providencehealth.bc.ca
- 5 ERA-EDTA Registry, Department of Medical Informatics, Academic Medical Center, Amsterdam, The
 Netherlands, k.j.jager@amc.uva.nl
- 16 6 Cumming School of Medicine, Division of Nephrology, University of Calgary, Calgary, Alberta,
- 17 Canada; Department of Community Health Sciences, University of Calgary, Calgary, Alberta,18 Canada, cello@ucalgary.ca
- 7 Division of Nephrology, Ambroise Paré University Hospital, APHP, University of Versailles-Saint Quentin-en-Yvelines, Boulogne-Billancourt, and Inserm U1018 Team5, CESP, Villejuif, France,
 ziad.massy@aphp.fr
- 8 Department of Medicine, Division of Nephrology, University Hospital of Würzburg, Würzburg,
 Germany, Wanner_C@ukw.de
- 9 Medizinische Klinik and Poliklinik IV, Klinikum der LMU München Innenstadt, Ziemssenstr. 1,
 80336 München, Germany
- 26 80556 Munchen, German

27 Correspondence to: H.-J.A.

- 28 hjanders@med.uni-muenchen.de
- 29

30 Competing interests

- 31 PR, GR, AL, KJJ, MT, CW, and HJA declare no competing financial interest.
- 32 RG declares competing financial interest as follows: Speaker honoraria from Genentech; Consultancy
- 33 honoraria from Bristol Myers Squibb (Abatacept for Lupus or FSGS, Chemocentryx (Avacopan for
- 34 vasculitis), Retrophin (Sparsentan for FSGS); Compensated Editorial Tasks Wolters-Kluwer
- 35 (UpToDate, Editor), Karger (American Journal of Nephrology), American Society of Nephrology
- 36 (NephSAP, Editor); Stock Ownership- Reata.
- 37 ZM declares competing financial interest as follows: Grants for CKD REIN and other research projects
- 38 from Amgen, Baxter, Fresenius Medical Care, GlaxoSmithKline, Merck Sharp and Dohme-Chibret,
- 39 Sanofi-Genzyme, Lilly, Otsuka and the French government, as well as personal fees, and grants to
- 40 charities from Amgen, Bayer, and Sanofi-Genzyme .
- 41
- 42

43

44

45

46

47 Abstract

48 Chronic kidney disease (CKD) is defined by persistent urinary abnormalities or impaired excretory 49 renal function. While progression to end stage kidney disease (ESKD) is a concern, the majority of 50 those with CKD are at risk for accelerated cardiovascular disease and death. For those that do reach 51 ESKD the limited accessibility to kidney replacement therapy is a problem in many locations 52 worldwide.. Risk factors for CKD include low nephron number at birth and nephron loss due to 53 increasing age or acute and chronic kidney injuries. For example, the pandemic of obesity and type 2 54 diabetes largely accounts for the increasing global prevalence of CKD and there is an increasing 55 awareness of genetic causes for CKD and accelerated CKD progression. The management of CKD is 56 focused on early detection or prevention, treatment of the root cause if possible, and attention to 57 secondary processes which contribute to ongoing nephron loss, i.e. remnant nephron hyperfiltration. 58 Blood pressure control and inhibition of the renin-angiotensin system are the corner stones of 59 therapy. CKD complications such as CKD complications such as anemia, metabolic acidosis, and 60 secondary hyperparathyroidism impact cardiovascular health, as well as quality of life, and so require 61 diagnosis and therapy. Primary prevention of CKD, early diagnosis, and secondary prevention of CKD 62 progression are needed to reduce cardiovascular disease, CKD-related morbidity, and to prevent 63 ESKD, whether or not kidney replacement therapies are available.

64

65 [H1] Introduction

66 Chronic kidney disease (CKD) is a syndrome defined as persistent alterations in kidney 67 structure, function or both with implications for health ¹. Examples of structural abnormalities 68 include cysts, tumors, malformations or atrophy, which become evident by imaging. By contrast, 69 kidney dysfunction can become evident as hypertension, edema, growth delay in children, and 70 changes in output or quality of urine; these changes are most often recognized by increased serum 71 levels of creatinine, cystatin C or blood urea nitrogen. The most common pathological manifestation, regardless of the initiating insult or disease, of CKD is some form of renal fibrosis.

73 The Kidney Disease Improving Global Outcomes (KDIGO) initiative classifies an individual as having 74 CKD if abnormalities of kidney structure or function persist for >3 months. KDIGO describes a 75 classification system based on severity, into numerous stages of CKD using a two dimensional matrix 76 based on estimated or measured glomerular filtration rate (eGFR, mGFR) and on extent of 77 albuminuria (FIG. 1)¹. Primary care settings often do not assess albuminuria but proteinuria via dip 78 stick analysis, but dip stick +, ++, and +++ usually approximates with the three albuminuria stages. 79 GFR and albuminuria/proteinuria are used to classify CKD because GFR is a well-established marker 80 of renal excretory function and albuminuria is an indicator of renal barrier dysfunction, i.e. 81 glomerular injury. Both have found to be reliable predictors of long term CKD outcomes

82 As the kidney is formed by many independent functional and anatomical 'units', the nephrons GFR, 83 can be expressed by the equation: $GFR_{(Total)} = GFR_{(single nephron)} \times number of nephrons.$ This implies that 84 when the number of nephrons declines, total GFR will not change as long as single nephrons can 85 increase their individual GFR (known as single-nephron GFR (SNGFR). Vice versa, a decline in total GFR implies a significant loss of nephrons with remnant nephrons probably operating at their 86 87 maximum possible SNGFR. That is, CKD can be thought of generally as a loss of functional nephrons 88 but usually represents loss in nephron number. Furthermore, the KDIGO stages are derived from 89 large databases of general, high risk and nephrology populations. The categories define risk of progression to ESKD that is defined as G5 (GFR <15 mL/min/1.73 m²⁾ and a number of other 90 91 outcomes including risk of cardiovascular disease (CVD), death, AKI, infections, and hospitalizations. 92 The KDIGO staging has proven to be very instrumental in decision making on patient 93 management.

Whether CKD should be diagnosed and staged using absolute thresholds irrespective of age remains controversial ^{2, 3}. The mGFR in healthy adults aged 20-40 years is about 107 ml/min/1.73 m² and declines at a rate of about 0.7 ml/min/1.73 m² per year ^{4, 5}. By age 75 years, many otherwise healthy individuals (without significant co-morbidity) will have lost

50% of their nephrons and their GFR that was present at age 25 years ⁶. A substantial 98 99 number of older healthy individuals have eGFR <60 ml/min/1.73 m² and no abnormal 100 albuminuria (KDIGO CKD G3a A1) meeting the KDIGO criteria for CKD albeit having only a small increase in relative risk of all-cause mortality ^{7, 8}. The threshold of GFR that should be 101 used to detect CKD in younger persons is equally controversial ⁹. The upper and lower limits for 102 103 mGFR in a 25 year old healthy person being considered as a living kidney donor is about 136 to 78 104 ml/min/1.73 m² respectively 5 ; some have suggested that a threshold of <75 ml/min/1.73 m² would 105 be more appropriate for young adults, and values below this threshold are associated with a 106 significantly increased relative risk of all-cause mortality and ESKD¹⁰. 107 The etiology of the impaired kidney function is important, and thus in addition to classifying the 108 severity of CKD by GFR and albumin levels, understanding the risk factors or causes of CKD is 109 essential (Box 1), and recommended by the guidelines ¹. In this Primer, we discuss the global 110 prevalence of CKD, the different diseases underlying poor nephron endowment or nephron loss, the 111 pathophysiology of CKD progression, the diagnosis, screening, and prevention of CKD, and CKD 112 management to improve outcomes and quality of life. Finally, we name several research domains 113113 potentially offering improvements for CKD management in the near future. 114114

115 [H1] Epidemiology

116 Rates of age-standardized death and disability due to most non-communicable diseases have 117 decreased over the past 20 years, but such favourable trends are not present for CKD. The Global Burden of Disease study reports indicate an increase burden of CKD (with substantial worldwide 118 variation) to which diabetes mellitus seems to be the most important contributor ¹¹⁻¹³. CKD as a cause 119 of mortality has increases over the last 25 years from 21st to 13th', and now contributes 1.35% of the 120 121 global burden of disability life years lost, growing at a rate of 1% per annum ^{11, 13, 14}. Note that most 122 prevalence data are based on levels of GFR only, without consideration of albuminuria, based on the 123 first CKD classification system reported in 2002.

124

125 [H2] Prevalence

126	CKD stage G3–5 prevalence in adults varies worldwide, with values reported as 1.7% in China
127	¹⁵ , 3.1% in Canada ¹⁶ , 5.8% in Australia ¹⁷ and 6.7% in the USA ¹⁸ . In Europe the range is slightly
128	narrower: from 2.3% in Germany ¹⁹ , 2.4% in Finland ²⁰ , 4.0% in Spain ²⁰ to 5.2% in England ²¹ . Such
129	numbers should be viewed with caution because they are often based on a single eGFR assessment
130	(that is not considering the actual definition, which includes the factor of time (present for >3 mo;
131	thus it is possible that positive "CKD cases" may overestimate the true prevalence of CKD ²² . The
132	epidemiology of CKD in low and middle-income countries (LMICs) is poorly characterized due to the
133	lack of community-based studies, inconsistent assessment of kidney function and non-standardized
134	or non-calibrated approaches ²³ . Nevertheless, in South-East Asia, some Latin American countries
135	(such as Mexico) and in sub-Saharan Africa, when assessed, the prevalence of CKD appears to be
136	consistent with the estimates of 10-16% ²³⁻²⁵ .

137

138 [H2] Risk factors

139 CKD is more common in people over 65 but the probability of progression to ESKD is higher in 140 younger people with CKD, albeit sometimes over long period of times ²⁶. Interestingly, while the 141 prevalence of CKD is higher in women than in men, men are more likely to progress to ESKD ²⁶. The 142 most common underlying diseases are diabetes mellitus and hypertension, particularly in in high and 143 middle income countries. In those with diabetes, CKD prevalence is estimated in 30- 40%. Whether 144 this is due to diabetes per se or due to microvascular disease is not known. However, in LMICs, CKD 145 is often due to infectious diseases and glomerulonephritis (a group of diseases that lead to 146 inflammation of the glomerulus) ²⁷. Current and future changes in socio-economic circumstances and 147 population age distributions will increase the absolute number of people with CKD in these countries, 148 where numbers of elderly persons are rising, and with increasing diabetes and obesity epidemic, may 149 change the cause of CKD in those populations as well. Furthermore, low birth weight is associated

with CKD later in life; the global risks of preterm birth and low birth weight are around 10% and 15%, respectively. Thus, millions of children are born at risk of CKD later in life and are found at the lower percentile of age-matched GFR ^{28, 29}. Specific populations are at higher risk for CKD, in part due to genetic factors, and others due to interaction of genetic and environmental factors. Those groups at higher risk include, in alphabetical order: Aboriginal Australians, African Americans, Hispanics, indigenous populations in Canada, South Asians, Oriental Asians, and Pacific Islanders.

Endemic forms of CKD suggest regional triggers, which are often difficult to define among potential candidates such as specific infections, toxins, behaviours or climate-related factors ³⁰. Reports of chronic interstitial nephritis or CKD of undetermined origin (CKDu) in sugar cane and other agricultural workers in Latin America, Sri Lanka, India, and more recently in Cameroon, Mexico, and Australia, are examples of this ³⁰⁻³².

161161

162 [H2] Children

163 Little is known about CKD in children because of the absence of registries, and that they are not included in many clinical studies. In Europe, the 2014 incidence of paediatric ESKD was 5.7 per million 164 age-related population (pmarp) in children aged 0-14 years and the prevalence 32.2 pmarp ³³. Earlier 165 166 estimates suggested the incidence and prevalence were 8.3 pmarp and 58 pmarp, respectively, in 167 children aged 0-19 years ³⁴, which is lower than 14.7 pmarp and 103.9 pmarp for the age group 0-21 years in the United States ³⁵. In high income countries, congenital disorders are responsible for the 168 169 majority of cases of paediatric CKD; by contrast, in acquired causes, such as infection and glomerular 170 diseases, predominate in LMICs ³⁶.

171171

172 [H2] Kidney replacement

Understanding the information on kidney replacement therapy in the context of CKD is important for
identifying gaps and focusing on solutions to those gaps ³⁷. Often countries do not know the number
of patients with prevalent CKD but do have information on dialysis numbers. Given that not all

176 people progress to ESKD, estimates of those with CKD can be extrapolated; conversely if CKD rates 177 are known then numbers on dialysis can reveal inequities in availability of dialysis. Data on the 178 incidence of kidney replacement therapy for ESKD can only be obtained from countries with dialysis 179 registries. Data are missing in particular from LMICs, where such registries do not exist. In 2014, 180 incidence of kidney replacement therapy varied from 49 per million population (pmp) in Bangladesh 181 to as high as 455 pmp in Taiwan ³⁸. The majority of patients started kidney replacement therapy on 182 dialysis, because pre-emptive transplantation as an initial modality is not freely available. Kidney 183 transplant rates differed substantially by country from 1 pmp in Bangladesh to 60 pmp in Jalisco 184 (Mexico). There was also huge variation in the prevalence of kidney replacement therapy (FIG. 2): from 113 pmp in Bangladesh to 3,219 pmp in Taiwan ³⁸. 185

186 In many European countries, more than half of all kidney replacement therapy patients are 187 transplant recipients ³⁸. This is in contrast to the situation in some Asian countries like Taiwan, Japan and the Philippines where kidney transplantation is hardly performed ³⁸. There are multiple reasons 188 189 why transplantation is not available despite the availability of expensive dialysis services: cultural, 190 socioeconomic and health care infrastructure deficiencies (lack of biopsy services, lack of surgeons, 191 lack of immunology laboratories) account for many of these. Existence of available dialysis and 192 transplant services has not been systematically documented; however the Global Kidney Health Atlas 193 [³⁸; full report at *www.theisn.org*] describes availability of kidney replacement therapy worldwide. 194 Note that the registry data for dialysis and transplantation described above does not reflect the true 195 need for kidney replacement therapy, which may account for the wide variability in incidence and 196 prevalence. Estimates of unmet need vary from 2 to 7 million people per year ³⁹. Note that 197 availability and accessibility are not the same, and even when services ae available in a country or 198 region, not all individuals may have access to them (depending on cost reimbursement, demand, and 199199 specific policies).

200200

201201

202

203 [H1]Mechanisms/pathophysiology

204 [H2] Nephron loss and compensation

205 In humans, nephrons are generated from the 12th-36th week of gestation with a mean 206 number of 950,000 per kidney in a range from approximately 200,000 to >2.5 million ⁴⁰. No new 207 nephrons can form upon injury and, during growth from childhood to adulthood, the available 208 nephrons increase in size to accommodate increased renal demands. However, as people age, GFR 209 declines (FIG. 3). Although nephrons can deal with transient increases in filtration load (such as upon 210 food and fluid intake) by transient increases in SNGFR ("renal reserve")^{41, 42}, longer or persistent 211 increases in body mass (for example, during pregnancy or obesity) promote nephron hypertrophy as 212 the compensatory mechanism. Any injury- (or kidney donation-)related nephron loss may have the 213 same effect (FIG. 4). Indeed, either severe kidney injury or combinations of injury with ageing-related 214 nephron losses — especially in individuals with poor nephron endowment and/or obesity — 215 accelerates persistent increased SNGFR and loss of remnant nephrons⁴³.

216 Remnant nephron hypertrophy is triggered by persistent elevations of SNGFR and filtration 217 pressure (that is, glomerular hypertension) across the glomerular filtration barrier, which implies 218 glomerular hyperfiltration. Specifically, glomerular hyperfiltration and hypertension together 219 promote the release of tumour growth factor-alpha/epithelial growth factor receptor ^{44, 45}, leading to 220 nephron hypertrophy that reduces glomerular hypertension by increasing filtration surface 46. 221 Indeed, increased SNGFR and remnant nephron hypertrophy allows kidney donors to maintain an 222 apparently "normal" renal function, despite lacking 50% of nephrons. Obviously, kidney donation 223 does not necessarily cause CKD progression when donors are carefully selected for good nephron endowment, the absence of obesity, diabetes, and ongoing nephron injury ^{47, 48}. However, in other 224 225 circumstances, hyperfiltration-driven increases in glomerular dimensions can potentially be harmful ^{42, 46, 49-51}. Beyond a certain threshold of hypertrophy, increasing podocyte (which are key octopus-226 227 shaped cells that maintain the glomerular filtration barrier of the nephron shear stress promotes

podocyte detachment, focal segmental glomerulosclerosis (FSGS, a pathological entity in which renal
 injury results in sclerotic lesions in segments of glomeruli), global glomerulosclerosis and subsequent
 nephron atrophy, a vicious cycle further reducing nephron number and the SNGFR of remnant
 nephrons (FIG. 5) ^{44, 46,52-55}.

232

233 [H2] Impaired glomerular filtration and fibrosis

234 Persistent podocyte hypertrophy and glomerular hyperfiltration, maintained by angiotensin II 235 production, ultimately aggravate podocyte loss and proteinuria, eventually impacting on glomerular 236 filtration Angiotensin-II, a peptide hormone that is part of the renin-angiotensin system (RAS) and 237 drives vasoconstriction and aldosterone secretion (and thus sodium retention and an increase of 238 blood pressure) directly impairs the glomerular barrier sieving function, possibly via inhibiting 239 expression of the podocyte protein nephrin, a structural component of the slit diaphragm necessary 240 for maintaining the glomerular filtration barrierindependently of its hemodynamic effects ⁵⁶. 241 Angiotensin-II possibly also contributes to the dysregulated response of parietal epithelial cell 242 precursors along Bowman's capsule, generating FSGS lesions instead of replacing lost podocytes 57. 243 This structural remodelling of the glomerular tuft barrier presents clinically as proteinuria. Proteinuria not only serves as a marker for nephron damage but also predicts CKD progression ^{44, 58,} 244 245 ⁵⁹. Mechanistically, albuminuria also impairs the capacity of parietal epithelial cells to regenerate podocytes ⁴⁴, instead further promoting the formation of FSGS lesions (FIG. 5) ^{60, 61}. 246

247247

CKD progression also involves non-specific wound healing responses including interstitial fibrosis. Albuminuria and complement, and infiltrating immune cells activate proximal tubular epithelial cells to induce the secretion of and pro-fibrotic mediators followed by interstitial inflammation and fibrosis ⁶². Interstitial fibrosis is frequently considered as an additional factor driving further nephron injury, e.g. via promoting renal ischemia ⁶² but, as in other organs, scar formation may also be essential to mechanically stabilize the remaining nephrons ⁶³. The increased tubular transport 254 workload of remnant nephrons also involves anaerobic metabolism, intracellular acidosis, and

endoplasmic reticulum stress — all promoting secondary tubular cell injury ^{44, 60}.

256256

257 [H2]Risk factors

258 Several factors can contribute to the pathogenesis of CKD, including low birth weight, pregnancy, 259 obesity, diabetes, and ageing. Each of these scenarios contributes different factors that lead to 260 and/or exacerbate nephron loss, promoting the cycles of injury and ultimately resulting in kidney 261261 failure.

262262

263 [H3]Prematurity and low birth weight.

264 Newborns with low birth weight (owing to preterm birth or intrauterine growth restriction) frequently display incomplete kidney development ⁶⁴⁻⁶⁶. Depending on the severity of prematurity, 265 poor nephron endowment can cause either early childhood CKD or CKD later in life 64-70. The 266 267 associated risk was estimated among US adolescents for every 13 individuals born at low birth 268 weight, one had reduced GFR and one had raised systolic blood pressure, and this risk increases with 269 age ²⁹. The risk of low birth weight infants (<2599 g) to experience CKD up to the age of 17 is fourfold increased compared to infants with a birth weight of >2500 g (FIG.3B) ⁶⁹. CKD onset at puberty is 270 271 common in these individuals when rapid body growth exceeds the capacity of nephron number to 272 accommodate the increasing filtration load⁷¹. In milder cases, poor nephron endowment at birth 273 promotes the development of hypertension, CKD later in adults or a faster progression of ^{29, 66, 70, 72, 73}. All of these factors increase the risk of 274 glomerulonephritis to ESKD (FIG.3C)

275 cardiovascular disease.

276

277 [H3]Genetic factors.

278 Congenital abnormalities of the kidney and the urinary tract (CAKUT) are the most common
 279 congenital abnormalities ⁷⁴. CAKUT present a wide spectrum of causes for kidney hypodysplasia,

imparting low nephron number and risk of CKD later in life^{75, 76}. Genetic testing has revealed that
 ~20% of early-onset CKD (defined as CKD manifesting before 25 years of age) cases can be attributed
 to a monogenic cause ⁷⁷. Beyond CAKUT, these conditions include ciliopathies, cystic kidney diseases,
 tubulopathies, and podocytopathies causing FSGS ⁷⁵⁻⁷⁸.

284 Until recently, monogenic causes of CKD were mostly reported in children or adolescents, but 285 genetic variants also contribute as co-factors to CKD progression in adults (FIG. 4). For example, an 286 UMOD gene variant, present on 17% of the alleles in the general population, is associated with CKD ⁷⁹⁻⁸¹. Another example is gene variants of apolipoprotein L1 (APOL1) in African Americans, which 287 288 confer resistance to *Trypanosoma brucei* infections in sub-Saharan Africa⁸². However, these variants 289 affect endosomal trafficking and autophagic flux, which ultimately leads to podocyte loss, glomerulosclerosis, nephron loss, and CKD progression ^{83, 84}. This may explain faster CKD progression 290 291 in many patients with sub-Saharan ancestry ⁸².

292292

293 [H3]Obesity.

A larger glomerular size on mildly obese (BMI>30 and <35) but otherwise healthy individuals suggests an increased SNGFR ⁸⁵. In general, the association between obesity and poorer renal outcomes persists even after adjustments for higher blood pressure and diabetes mellitus, suggesting that obesity-driven glomerular hyperfiltration directly contributes to nephron loss ^{86, 87}. Severe obesity alone or moderate obesity in combination with other factors such as genetic, low nephron number or aging can lead to development of proteinuria, secondary FSGS, and progressive CKD (FIG. 4) ^{86, 88-91}.

301 [H3]Pregnancy.

The latter trimester of pregnancy involves volume expansion (that is, an increase in blood volume) causing an increase of total GFR by 50% ⁹², implying a respective increase of SNGFR. These physiological adaptations are transient and without consequences in women with normal nephron number. However, in women with low nephron endowment or previous injury-related CKD (such as in women with lupus nephritis), pregnancy-related glomerular hyperfiltration exacerbates remnant
nephron glomerular hyperfiltration and hypertrophy. In some patients, final trimester pregnancyrelated glomerular hyperfiltration then passes the threshold of compensation and triggers rapid CKD
progression presenting with proteinuria and hypertension — a condition known as eclampsia. Preexisting CKD G3A2 or higher, obesity, excessive body weight increase during pregnancy are wellknown risk-factors for eclampsia ⁹³.

312312

313 [H3]Diabetes.

Diabetes is a well-known condition associated with massive glomerular hyperfiltration, evident from increased total GFR and renomegaly ⁵¹. Hyperglycemia promotes the sodium-glucose transporter (SGLT)-2-driven reabsorption of sodium in the proximal tubule, a process that subsequently inactivates tubuloglomerular feedback and activates the RAS at the *macula densa* ^{94, 95}. The result is induction of a permanent dilation of the afferent arteriole and vasoconstriction of the efferent arteriole — permanently increasing SNGFR and total GFR ⁹⁶.

Although diabetes-driven glomerular hyperfiltration can be compensated for many years in younger patients with normal nephron number, it serves as a drastic accelerator single nephron hyperfiltration such as patients with low nephron endowment, injury- or ageing-related nephron loss, obesity or those who are pregnant ⁹⁷. Unfortunately, this is a highly prevalent combination of risk factors in older patients with type 2 diabetes, for which dual SGLT2/RAS inhibition can elicit potent nephroprotective effects ⁹⁸.

326326

327 [H3]Acute kidney injury.

Acute kidney injury (AKI) is a clinical syndrome defined by an acute deterioration of renal function resulting in the accumulation of metabolic waste and toxins, subsequent uremic complications, and potentially failure of other organs ⁹⁹. AKI is highly prevalent in hospitalized patients and can imply irreversible losses in nephron number¹⁰⁰. In Western countries AKI occurs in both outpatient and 332 inpatient settings, the latter of which is simpler to document, and has been the focus of multiple 333 papers describing the phenomenon and aiding in the understanding of the strong association 334 between AKI and CKD. The causes of non hopsital/institutuion-based AKI are diarrhea, infections, 335 dehydration, medications, while in hospital it can be attributed to these same factors and exposures to nephrotoxins (dye) and is mostly observed in patients with multiple morbidities ¹⁰¹. By contrast, in 336 337 LMICs and tropical countries, AKI occurs frequently outside the hospital setting following episodes of diarrhoea, infections and obstetric complications ¹⁰². Nephrotoxins can also cause AKI-related 338 339 nephron loss inside and outside hospitals; for example, neonates treated with aminoglycosides, 340 cancer patients receiving chemotherapy or communities exposed to environmental toxins such as heavy metals or aristolochic acid can experience AKI episodes ³⁰. 341

342342

343 [H3]Ageing.

344 The slope of GFR decline varies among individuals depending upon age (FIG. 3), genetic factors, blood 345 pressure, diseases implying kidney injury and body weight. Histologically, kidney ageing presents as 346 global glomerulosclerosis, the respective atrophy of entire nephrons, and subsequent interstitial fibrosis ^{53, 85}. Whether ageing-related nephron loss is associated with hypertrophy (and glomerular 347 hyperfiltration) of remnant nephrons is not consistently reported in the literature ^{53, 85}, but the 348 349 analytical difficulties on how to precisely assess nephron number, glomerular volume, and how to 350 acknowledge the different functions of juxtamedullary versus cortical nephrons can affect the 351 interpretation of such data ^{53, 85}. Ageing is associated with decreasing podocyte density and total 352 numbers ⁵³. Endomitosis-related mitotic catastrophe and podocyte detachment may contribute to glomerulosclerosis^{53, 103, 104}. 353

354354

355 [H2]Systemic effects

The kidney is involved in multiple complex hormonal processes important in anemia, bone integrity, in regulation of acid base and electrolyte homeostasis, as well as blood pressure control through neuroendocrine and volume sensors. As nephron mass declines, patients will suffer from complications associated with dysregulation of many of these systems. Anemia, vitamin D deficiency, hyperparathyroidism, acidosis, hyperkalemia and hyperphosphatemia, hyperuricemia, as well as hypertension and expansion of effective circulating fluid volume are all clinical manifestations of these derangements. Interestingly, they do not occur in all individuals at the same point in the progressive loss of kidney function, and there are some maintain excellent tubular/ excretory function despite derangements in hormonal function (i.e. severe anemia, and normal electrolytes).

Not all of the derangements are symptomatic, and the severity of the symptoms is variable between individuals. They include: disorders of fluid and electrolytes, mineral and bone disorder, anemia, hypertension, dyslipidemia, endocrine abnormalities, in children growth impairment, decreased clearance of renally excreted substances from the body (eg, hyperuricemia), metabolic acidosis. Related symptoms may be fatigue, anorexia, weight loss, pruritis, nausea, vomiting, muscle cramping, edema, shortness of breath, to name a few. None are specific for CKD.

371371

372 [H3] Fluid and electrolyte abnormalities.

373 Sodium and water balance — Sodium and intravascular volume balance are usually maintained via 374 homeostatic mechanisms until the GFR falls below 10 to 15 mL/min per 1.73 m². However, the 375 patient with mild to moderate CKD, despite being in relative volume balance, is less able to respond 376 to rapid infusions of sodium and is, therefore, prone to fluid overload. In some cases, especially with 377 an acute water load, hyponatremia and hypertension may occur as a consequence of fluid retention. 378 Some patients, such as those with nephronophthisis and some with obstructive uropathy, have an 379 impaired ability to concentrate urine, and have symptoms of polyuria. These children are at risk for 380 hypovolemia, as they will continue to have large urine losses even when they are volume depleted.

Hyperkalemia — In children with CKD, hyperkalemia develops due to reduced GFR causing
 inadequate potassium excretion. Also, potassium excretion is dependent upon an exchange with
 sodium at the distal tubule. A low GFR decreases delivery of sodium to this site where there is

reduction in the exchange rate with potassium into the urinary lumen. Other contributory factors for hyperkalemia include: high dietary potassium intake, catabolic conditions with increased tissue breakdown, metabolic acidosis, secondary type IV renal tubular acidosis (RTA) in some patients with obstructive uropathy, decreased renin production by the juxtaglomerular apparatus, primary or secondary hypoaldosteronism related to RAS inhibitor-related impaired cellular uptake of potassium

389

390 [H3]Metabolic acidosis.

Metabolic acidosis is observed in patients with advanced CKD and is related to the fall in total ammonium excretion that occurs when the GFR decreases to below 40 to 50 mL/min per 1.73 m² (GFR category G3). In addition, there is a reduction in both titratable acid excretion (primarily as phosphate) and bicarbonate reabsorption. As the patient approaches ESKD, the serum bicarbonate concentration tends to stabilize between 12 and 20 mEq/L. A level <10 mEq/L is unusual, as buffering of the retained hydrogen ions by various body buffers prevents a progressive fall in the bicarbonate concentration. In children with CKD, metabolic acidosis has a negative impact on growth.

398398

399 [H3] Anemia.

400 The anemia of CKD is due primarily to reduced renal erythropoietin production. The anemia of CKD is 401 principally normocytic and normochromic. By comparison, the finding of microcytosis may reflect 402 iron deficiency or aluminum excess, while macrocytosis may be associated with vitamin B12 or folate 403 deficiency. If left untreated, the anemia of CKD is associated with fatigue, weakness, decreased 404404 attentiveness, increased somnolence, and poor exercise tolerance.

405405

406 [H3]Mineral bone disease.

407 Chronic kidney disease-mineral and bone disorder (CKD-MBD) presents as a broad clinical spectrum
 408 encompassing abnormalities in mineral metabolism, bone structure, and extraskeletal calcifications

409 that are found with progressive CKD. Patients with mild CKD (G2 KDIGO) may have reduced serum

410 calcidiol and/or calcitriol levels, and an elevated serum parathyroid hormone (PTH) and fibroblast

411 growth factor 23 (FGF-23) level ¹⁰⁵. Patients with more advanced CKD-MBD have bone pain, difficulty

412 in walking, and/or skeletal deformities and a higher risk of fracture ¹⁰⁶.

413413

414 [H3]Hypertension.

Hypertension can be present in the earliest stages of CKD, and its prevalence increases with
progressive declines in GFR. Hypertension is high in children with CKD, ranging from 54 to 70 percent
of patients ¹⁰⁷. Hypertension is due to activation of the RAS and volume expansion. In some cases,
hypertension arises from corticosteroids or calcineurin inhibitors such as cyclosporine or tacrolimus

419419 used to treat the underlying kidney disease.

420420

421 [H3]Dyslipidemia.

422 Abnormal lipid metabolism is common in patients with CKD and is one of the primary factors that

423423 increase the risk for CVD.

424424

425 [H3]Hyperuricemia.

426 Elevated uric acid levels may develop in patients with CKD due to decreased urinary excretion. Serum

427 uric acid greater than 7.5 mg/dL is an independent risk factor for accelerated progression of CKD and

428428 should be treated to have a better outcome.

429429

430 [H3]Cardiovascular disease.

431 CVD is the leading cause of death in patients with CKD worldwide ¹⁴. The increased incidence of CVD
432 is due to the high prevalence of CVD risk factors, such as hypertension, dyslipidemia, hyperuricemia,
433 abnormal glucose metabolism obesity. Young adults (25 to 34 years) with CKD have at least a 100434 fold higher risk for CVD-related mortality compared with the general population ¹⁰⁸. Patients with a

435 glomerular etiology of CKD and proteinuria were more likely to have CVD risk factors. The CKD-

436 related cardiovascular alterations resemble all aspects of an accelerated ageing process associated with a shortening of relative telomere length ¹⁰⁹. The vasculature can be affected by both, 437 438 atherosclerosis and arteriosclerosis, with lipid-rich plaques but also abundant media calcification. The 439 burden of atherosclerotic CVD increases in the early stages of CKD, and the burden of nonatherosclerotic CVD increases in the more advanced stages of CKD. The "two" diseases involve 440 441 different factors that cause distinct changes in the risk factor profile and contribute differently to 442 outcomes during the course of CKD. Adaptive changes of the heart include left ventricular 443 hypertrophy (LVH) but also dilatation with subsequent both, systolic and diastolic dysfunction. There 444 are two different patterns of LVH: concentric LVH, which occurs in the presence of hypertension, and 445 eccentric LVH, which is associated with volume overload and anemia. Early and sustained induction of fibroblast growth factor-23 was recently discovered as a driver of LVH in CKD ¹¹⁰. 446

447 The absolute risk of cardiovascular events in individuals with pre-dialysis CKD is similar to 448 that of patients with established coronary artery disease in the general population ¹¹¹, and the increase in risk multifactorial: a higher prevalence of insulin resistance ¹¹², high blood pressure, 449 vascular calcification ^{113, 114}, inflammation and protein-energy wasting ¹¹⁵. ESKD is associated with a 450 range of metabolic abnormalities, the so-called milieu of uremic toxicity ¹¹⁶, activation of the neuro-451 hormonal axis ¹¹⁷, vitamin D receptors ¹¹³, that may all contribute to accelerated ageing of the 452 453 vasculature and damage to the heart. Hemodialysis itself may have a direct negative effect on the heart, so-called myocardial stunning ¹¹⁸. As a consequence the cardiac and vascular mortality are 454 455 several times higher in patients with low GFR or on dialysis than in the general population. Thus, the 456 risk of CVD in patients who require dialysis depends largely on their cardiovascular health at dialysis 457 initiation. In patients with healthy arteries, the pre-dialysis management strategy should be 458 continued to prevent new cardiovascular lesions. Consequently, risk factors for CVD should be managed intensively in the pre-dialysis period, during transition, and at dialysis initiation. 459459

460460

461 [H3]Endocrine dysfunction.

20

In patients with CKD, the following endocrine systems become dysfunctional as kidney function progressively deteriorates. Each of these is discussed in greater detail separately. There are abnormalities in gonadal hormones in both male and female patients, which can results in reduced fertility and sexual problems. In children, these abnornalities result in delayed puberty in two-thirds of adolescents with ESKD ¹¹⁹. End-organ resistance to GH due to increased levels of insulin growth factor binding proteins appears to play a major role in growth impairment in children with CKD ¹²⁰. Abnormalities in thyroid function can also be observed.

469 [H3]Neurological signs.

Uremia is associated with cognitive alterations ijn adults and lower performance in all neurocognitive
domains development in children. The neurologic findings can range from seizures and severe
intellectual disability to subtle deficits.

473 [H3]Sleep and fatigue.

Daytime sleepiness and fatigue are common and increase with decreasing kidney function. Sleep
disorders (restless leg syndrome/paroxysmal leg movements, sleep-disordered breathing, excessive
daytime sleepiness, and insomnia) are also common

477 [H3]Uremia.

The onset of ESKD (ie, GFR category G5) results in a constellation of signs and symptoms referred to as uremia. Manifestations of the uremic state include anorexia, nausea, vomiting, growth retardation, peripheral neuropathy, and central nervous system abnormalities ranging from loss of concentration and lethargy to seizures, coma, and death. Patients who are uremic also have an increased tendency to bleed secondary to abnormal platelet adhesion and aggregation properties. Pericardial disease (pericarditis and pericardial effusion) is an indication to institute dialysis. The initiation of RRT should be considered

485485

486486

487 [H1] Diagnosis, screening and prevention

The clinical presentation of CKD depends upon the underlying disorder and the severity of renal impairment. Patients with early stages of CKD G1-2 are usually asymptomatic. From CKD G3-5 patients may experience weakness related to anemia and polyuria. Only in late stages and in untreated patients symptoms may include anorexia, vomiting, weakness, and fatigue, which are referred to as symptoms of uremia.

493493

494 [H2]Detection and diagnosis

495 CKD can be detected during a periodic health assessment in an asymptomatic person or during 496 evaluation of individuals at risk for CKD (Box 1); as a consequence of the incidental finding of 497 abnormal laboratory values in connection with an acute or chronic illness; during an investigation of 498 symptoms and/or signs relating to the kidneys or urinary tract (such as haematuria); or during 499 discovery of abnormal laboratory values in a population-based screening program. Importantly, the 500 two biochemical parameters (GFR and proteinuria) used in the aforementioned KDIGO matrix¹ define 501 and classify a "generic" form of CKD, and adding an etiological diagnosis is both highly desirable and 502 recommended by KDIGO (The Cause/GFR/Albuminuria [CGA] classifications system), whenever 503 possible, such that the underlying conditions can be treated first to halt progression of CKD. 504 Progression is defined according to changes in eGFR by KDIGO¹. Several tests can be performed to 505 confirm a CKD diagnosis and identify its cause. It must be stressed that a diagnosis of CKD, according 506 to the KDIGO construct, requires persistence or progression of the defining abnormality for at least 3 507507 months. A single value of GFR or albuminuria is insufficient and if used for diagnosis of CKD will lead 508508

509 [H3] Measuring and estimating GFR.

510 First, the assessment begins with measurement of serum creatinine concentration (under steady-511 state conditions) and applying formulas for estimated GFR (eGFR – creatinine, like CKD-EPI eGFR- 512 creatinine). It must be recognized that the results of these creatinine based tests can be influenced 513 by changes in muscle bulk (atrophy or hypertrophy), dietary intake of cooked red meat (strict vegan 514 diet) and alterations in tubular secretion of creatinine from exposure to drugs (e.g. trimethoprimsulfamethoxazole) ^{121, 122}. Alternative approaches using serum cystatin C concentrations have also 515 516 been proposed. While not influenced by muscled bulk and diet, the cystatin C -based formulas for 517 eGFR can be affected by inflammation, obesity, thyroid disease, diabetes, and steroid administration ¹²³. Second, some eGFR formulashave not been extensively validated in older subjects and may not 518 apply to Asians or Africans ^{124, 125}. Third, the requirements for inclusion of demographic variables of 519 520 age and gender, to correct for differences in creatinine generation, may also create unwanted 521 complications in determining prognostic implications of a calculated GFR . Newer eGFR formulas such 522 as FAS (full age spectrum) or CKD-EPI using serum creatinine, cystatin C or a combination or Cystatin C or a combination of both have improved accuracy to predict mGFR ^{126, 127}. Although cumbersome 523 524 and expensive, mGFR assessments using urinary clearance methodology can sometimes be needed, 525 but applying methods of plasma clearance of lohexol or of radiolabelled lothalamate could avoid some of these issues. In well-defined circumstances, such as stratifying long term risks of uni-526 nephrectomy for potential living kidney donors, such studies can be useful ^{128, 129}. As mentioned in 527 528 the introduction, caution should be exercised in using a fixed and arbitrary threshold of 529 <60ml/min/1.73m2 of GFR alone (in the absence of abnormal proteinuria or imaging) for the 530 diagnosis of CKD in older or elderly adults. A GFR of 45-59ml/min/1.73m2 is fairly common in 531 otherwise healthy seniors, depending on their age, due to the normal physiologic loss of nephrons and GFR with organ senescence ¹³⁰. 532

533533

534 [H3]Measuring proteinuria.

Abnormal rates of urinary excretion of albumin or total protein are essential for detection of CKD when GFR is normal and contribute to the assessment of prognosis ¹³¹. Proteinuria (or albuminuria) can be determined in multiple ways, including simple "dip stick" qualitative methods, point-of-care urinary albumin concentration tests, random un-timed urine samples for calculation of urine protein (or albumin) to creatinine ratios (UPCR or UACR in mg/mg or mg/mmol), or timed 24 hour urine collections and measuring absolute protein or albumin excretion ^{132, 133}. Each of these has advantages and pitfalls. But it is important to recognise that not all patients with CKD have abnormal urinary protein excretion. For example, early in the course of Autosomal Dominant Polycystic Kidney Disease the urinary protein exertion is normal only slightly increased ¹³⁴.

Urinary protein or albumin excretion is more variable than serum creatinine levels, and can be influenced by posture, activity, fever or drugs so multiple specimens must be collected to enhance reliability. UPCR and UACR methods can be influenced by the prevailing urinary creatinine excretion rate; i.e. low creatinine excretion (from sarcopenia) can increase UPCR or UACR values even at normal absolute protein or albumin excretion rates. Hence, adjusting for the effect of urinary creatinine excretion can enhance the accuracy of UPCR and UACR measurements ^{132, 133}.

In the KDIGO schema, UACR values are divided into three categories ¹, namely, normal or low, which is <30 mg/g creatinine (<3.0 mg/mmol, formerly "normo-albuminuria"); moderately increased, which is \geq 30-299 mg/g creatinine (>3.0-29 mg/mmol, formerly "micro-albuminuria"); and severely increased, which is \geq 300 mg/g creatinine (30 mg/mmol, formerly "macro-albuminuria"). Even with a normal eGFR, CKD can be diagnosed with persistent UACR of >30 mg/g creatinine. Each incremental increase in UACR is associated with an increased risk of mortality and ESKD, so sustained albuminuria (or proteinuria) is a powerful prognostic marker.

The corresponding "dipstick" (urinalysis test strip) values (and protein concentration in mg/dL) are negative (<10 mg/dL) to trace (10-15 mg/dL) for normal, 1+ (30 mg/dL) for moderate and 2+ (>100 mg/dL) or greater for severe proteinuria. Persistent proteinuria of >1+ is a good predictor of a tendency for CKD progression, i.e. GFR decline of > 5 ml/min/1.73 m²/year or 7 times the normal rate of loss with ageing ¹³⁵. Thus, albuminuria or proteinuria allow early detection of CKD (see Screening below), but several forms of progressive CKD can present with normal or only slightly increased albumin or protein excretion, especially tubulo-interstitial diseases such as autosomal dominant polycystic kidney disease ¹³⁴. Marked proteinuria (in excess of 3.5 g/d in and adult), especially when accompanied by a reduction in serum albumin concentration (referred to as "nephrotic syndrome") nearly always implies a diagnosis of a primary or secondary glomerulopathy underlying CKD ¹³⁶.

568568

569 [H3]Biopsy and pathology.

570 Percutaneous kidney biopsy is a very valuable tool in assessement of the underlying cause for CKD. 571 The indications for performance of a renal biopsy in a patient with CKD depends upon the benefits to 572 be obtained (precise diagnosis, better prognosis, appropriate therapy) and the risks of a biopsy-573 related complications. Kidney biopsies are commonly recommended for adult patients with 574 nephrotic syndrome (urine protein excretion of >3.5 g/d and serum albumin levels <3.5 g/dL) but 575 may also be indicated for evaluation of unexplained rapidly progressive loss of kidney function, 576 persistent hematuria and low-grade- proteinuria (0.5-3 g/d), of even isolated proteinuria (1-3 g/d) ¹³⁷. 577 Depending on the circumstances leading to the procedure, the pathologic findings can vary widely, 578 but in states of marked proteinuria glomerular diseases are most likely be seen. The degree of 579 tubule-interstitial scarring can provide useful prognostic information. The risks of renal biopsy are 580 minimal in experienced hands, and complications are mostly related to post-biopsy bleeding. Fatal 581 complications are rare (about 1;20,000). Major complications, such as nephrectomy or transfusion requiring bleeding are more common (about 1:250-500)^{138, 139}. 582

583583

584 [H3]Other tests.

585 Continuing advances in the field of serum and urine proteomics, microRNA biology and in serology 586 are providing many new powerful and non-invasive tools to identify specific diseases or groups of 587 diseases that may revolutionize the approach to detecting and diagnosing CKD in the future ¹⁴⁰. 588 These new tools may also expand the horizon of prognosis into new areas beyond GFR and 589 proteinuria estimation — giving rise to exciting new possibilities for "precision" medicine whereby 590 care of CKD is personalized based diagnostic and prognostic characteristics. Unfortunately, many 591 patients with CKD are only recognized in the later stage of the disease (Categories G3B-G5) where 592 CKD complications such anemia, metabolic acidosis, mineral-bone disease provide additional 593593 diagnostic clues.

594594

595 In addition, both detection and diagnosis of CKD, also rely on renal imaging (ultrasonography, CT and 596 MRI), careful examination of the urinary sediment, and specialized biochemical and serologic tests suitable to detect specific disorders causing CKD (Box 2). Imaging tests are particularly valuable as 597 598 they provide information on kidney size, contours, location, and density as well as anatomy of the 599 urinary drainage system (pelvis, ureters and bladder). Specific lesions, such as cysts, dilation of 600 ureters or pelvis, calcification, masses, scars an provide valuable clues to the cause of CKD or even 601 generate a specific diagnosis (such as autosomal dominant polycystic kidney disease or obstructive uropathy) ¹⁴¹. Then urine sediment examination is important for the detection and quantification of 602 603 haematuria, leukocyturia and casts.

604 Genetic testing is also emerging as an important tool for diagnosing CKD, particularly in children or 605 young adults. Autosomal dominant polycystic kidney disease, podocytopathies causing steroid-606 resistant nephrotic syndrome, Fabry's disease, Alport syndrome, are other well-known entities 607 requiring a genetic diagnosis. Using next-generation sequencing displays an unexpected genetic 608 heterogeneity and alterations in numerous different genes in a significant proportion of not only 609 familial or syndromic patients but also in sporadic cases of CKD. These observations imply the need 610 for updating the current management in terms of diagnostic algorithms and therapeutic choices 77, 142 611

612

613 [H2]Screening

614 In the context of CKD, screening can take two forms: population screening, for example, using

615 "dipstick" urinary testing of school children or soldiers; or "opportunistic screening", whereby

616 physician encounters for other medical reasons can be used to screen for CKD. Population-based 617 screening can be further divided into general population screening or "targeted" screening of high-618 risk population groups (such as diabetic or family members related to subjects with diagnosed CKD). 619 Unfortunately, the benefits and harms of both forms of screening for CKD have not been rigorously 620 tested in long-term prospective studies, so the overall benefits and harms of population-based 621 screening for CKD are poorly understood and further trials are needed ^{143, 144}. Population-based 622 screening for CKD is not recommended by the United States Preventive Task Force largely due to insufficient evidence of benefit (or harm) ¹⁴⁵. Evidence in favor of case-finding (i.e., testing for CKD in 623 624 people with recognized risk factors, such as hypertension or diabetes) is slightly better, but still 625 incomplete. Accordingly, the American College of Physicians determined that current evidence was insufficient to evaluate the benefits (or harms) of screening and case-finding for CKD ¹⁴⁶. The position 626 627 on screening for CKD varies widely around the world, with several countries having long-established 628 programs (Japan and Singapore for example) and others that have introduced them as part of universal health care systems systems (The United Kingdom for example) ¹⁴⁷⁻¹⁵¹. 629

630 Both screening and case-finding for CKD are logistically hampered by the need for re-

631 evaluation at a defined interval to fulfil the duration requirement for diagnosis. Therefore, one-off 632 testing using eGFR or proteinuria has a high "false positive" detection/diagnosis rate, and possible 633 misclassification of subjects by use of a fixed (non-age-sensitive) eGFR thresholds, as discussed. The 634 potential harms of general population screening involve excessive follow-up diagnostic procedures, 635 unnecessary referral of subjects erroneously diagnosed as having CKD, the anxiety induced by being 636 labelled as having CKD, and potential impact on insurability. Nevertheless, several national kidney 637 organizations advocate screening for CKD. Monte Carlo simulations support case-finding strategies in 638 diabetic subjects for albuminuria or hypertension ¹⁵², because early treatment may offer significant effects on delaying CKD progression and ESKD ¹⁵³. Some studies have suggested that testing for 639 640 abnormal albuminuria may be an efficient way of stratifying populations for more intensive search 641 for modifiable risk factors for CKD and cardio-vascular events, such as hypertension and diabetes ¹⁵⁴.

642 Indeed, abnormal proteinuria (even only slightly above the upper limit of normal) identifies people at greater risk for ESKD and/or cardiovascular morbidity and mortality ¹⁵⁵. As mentioned before, 643 644 population screening for CKD using eGFR tends to substantially over-diagnose CKD in older subjects 645 with no or minimal proteinuria. Opportunistic testing for CKD has much merit, especially if the subjects have other risk factors such as diabetes, hypertension, or a family history of CKD. In such 646 647 patients an eGFR should be assessed along with an estimate of albuminuria or total protein excretion 648 ("dipstick"), UACR or UPCR- adjusted for creatinine excretion rate). It also must be appreciated that 649 older subjects with CKD G3 (as defined by KDIGO, see above) detected in screening programs or 650 otherwise in primary care practices tend to have a rather benign prognosis, at least over the short 651 term of 5 years or less. Shardlow et al found a very low rate of ESKD (0.2%) and stable or remission 652 of CKD was found in 53% of such subjects (average age 73 years at entry) after 5 years of follow-up 156 653653

Finally, there are a few special circumstances where testing of apparently healthy individuals for CKD may be indicated. For example, first degree relatives of a patient with autosomal-dominant polycystic kidney disease (ADPKD) are eligible for screening with renal ultrasound or MRI regardless of results of eGFR or proteinuria. Siblings of patients with Fabry's disease, Alport syndrome, or thin basement membrane nephropathy might also benefit from genetic analysis as well. African-Americans with hypertension or HIV infection may receive more informed prognosis by assessment of *APOL1* risk alleles, but population-based screening for *APOL1* risk alleles is not yet justifiable ¹⁵⁷

661661

662 [H2]Prevention

From a societal perspective, prevention of CKD is preferable to after- the-fact treatment of kidney
disease at its end-stage by dialysis or transplantation. Both primary prevention (occurring before CKD
is established) and secondary prevention (initiated to slow the rate of CKD progression or to affect
the associated co-morbidities or complications; see below, Management) should be considered.
Primary prevention attacks the root causes of CKD and includes mitigating exposures to

668 nephrotoxic agents and events (Box 1). Reduction of the burden of infectious diseases (such as HIV, 669 Malaria, Streptococcus infection) have already yielded some protection from CKD, but many 670 challenges remain. Preventing obesity and the associated type 2 diabetes mellitus is a global 671 challenge ¹⁵⁸. The discovery of a central role for sugar and fructose intake and metabolism in obesity 672 can be cited as an example of progress with implications for primary prevention. Indeed, better glycemic control may also eventually prevent CKD and its progression ^{153, 159-161}. Improved recognition 673 674 and reduction of the prevalence of AKI may also have dividends on prevention of CKD, especially in 675 counties where AKI is common, under-recognized and under-treated such as equatorial Africa. Given 676 the importance of low nephron endowment, fetal malnutrition and/or dysmaturity and manifested 677 by low birth weight, global efforts to reduce fetal malnutrition and dysmaturity should have 678 enormous "pay-back" in later years and focussed effects are beginning to address this important topic 66. 679

680680

681 [H1] Management

Several aspects need to be considered when managing patients with CKD: controlling nephron injury, normalizing single nephron hyperfiltration, controlling CKD-related complications, and preparing the patient for kidney replacement therapy. At the core of these is the principle of 'the earlier-the better', which is the effort to reduce the progression to ESKD and optimize renal outcomes.

686 The impact of early therapy is well documented for Alport syndrome ¹⁶². Initiating RAS 687 blockade based on the genetic diagnosis before any signs of kidney disease can have dramatic effects 688 on renal outcomes, whereas initiating RAS blockade as late as CKD G3 only somewhat delayed ESKD 689 (FIG. 6) ¹⁶². Further support comes from a posthoc analysis of clinical trials testing RAS blockade in 690 diabetic kidney disease. The effect on gaining ESKD-free years was highest when RAS blockade was 691 initiated at the time of microalbuminuria and lowest when initiated once a diagnosis of CKD G3 or G4 was made ¹⁶³. Therefore, early diagnosis and treatment are essential to prevent nephron loss from as 692 693 early as possible.

694694

695 [H2]Controlling ongoing nephron injury

696 Nephron injury can be driven numerous triggers (Table 1), and abrogating these triggers will slow 697 progression to CKD and ESKD. For example, genetic abnormalities can cause CKD either by fostering nephrocalcinosis ¹⁶⁴, cystic degeneration or by weakening epithelial integrity such as in genetic 698 699 podocytopathies or in abnormal processing or storage of metabolites or glycoproteins ^{78, 165}. Specific 700 cures for genetic kidney diseases exist in some forms and are mostly limited to enzyme replacement 701 therapy or substrate supplementation (Table 1). The genetic basis of immune-mediated nephron 702 injury is not yet fully explored but C3 glomerulonephritis or atypical hemolytic uremic syndrome (aHUS) can be controlled with complement inhibitors, an area of intense and promising research ¹⁶⁶. 703 704 Most acute forms of immune-mediated nephron injury present either as vasculitis, immune complex 705 glomerulonephritis or interstitial nephritis (including allograft rejection). These disorders can often 706 be targeted with immunomodulatory drugs (and sometimes with plasma exchange) to limit nephron 707 loss from attack by the humoral and/or cellular elements of the immune system ¹⁶⁷.

708 In contrast, in smoldering immune injury, such as in chronic IgA nephropathy, it is difficult to 709 dissect CKD progression driven by immune versus non-immune mechanisms and the efficacy of 710 immunosuppression versus RAS blockade and blood pressure control is less evident ¹⁶⁸. Kidney biopsy 711 may establish the diagnosis and can also guide management by assessing the ongoing activity of 712 immune injury versus irreversible damage, e.g. in lupus nephritis, IgA nephropathy or allograft 713 dysfunction. Specific treatments are also available for CKD related to urinary tract obstruction, 714 infections, and some forms of toxic injury (Table 1). However, even upon complete abrogation of the 715715 injurious trigger, recovery of lost nephrons is impossible.

716716

717 [H3]Preventing any avoidable injury of remnant nephrons.

Avoiding further episodes of AKI is crucial to minimize stress on the remnant nephrons in CKD
kidneys. This implies patient education on avoidable nephrotoxins such as radio contrast media,

NSAIDs, certain antibiotics or other endemic or occupational toxins. Hypovolemic states as well as
 urinary outflow obstruction should be avoided. Additionally, not every asymptomatic leukocyturia
 implies bacterial infection and antibiotic treatment should be limited to the presence of dysuria,
 bacteriuria, and leukocyturia. Smoking cessation is essential minimize CVD ¹⁶⁹.

724

725 [H2] Normalizing single nephron hyperfiltration

726 Rigorous RAS inhibition with ACE inhibitors (ACEi) or angiotensin receptor blockers (ARBs) has the 727 capacity to substantially reduce SNGFR and glomerular filtration pressure, which leads to a decline in 728 not only proteinuria but also total GFR — and, hence, moderately increases serum creatinine levels ¹⁷⁰. At first, this serum creatinine increase is worrisome to patients (and physicians) and requires 729 730 clarification that reducing hyperfiltration in remnant nephrons is the central strategy to retard CKD 731 progression in patients with proteinuria. In contrast, ACEi or ARBs do not retard the progression of 732 non-proteinuric forms of CKD such as ADPKD but still may have benefits on the associated cardiovascular complications ¹⁷¹. ACEi or ARBs should be titrated to the maximal possible dose, while 733 hyperkalemia can be corrected using loop diuretics or potassium-binding resins ¹⁷². A moderate 734 735 increase in serum creatinine levels indicates a decline in SNGFR, which is a powerful predictor of the 736 intended nephroprotective effect ¹⁷³. Numerous RCTs have documented the class effect of RAS 737 inhibitors to retard or even halt CKD progression ⁴⁴. Reducing dietary salt and drugs that support 738 control of blood pressure and hyperlipidemia, often referred to as "remission clinic protocol", may 739 further reduce proteinuria and retard CKD progression ^{174, 175}. Such interventions are affordable and 740 are of importance where kidney replacement therapy is not available or affordable.

Avoiding or correcting obesity can also reduce filtration load and glomerular hypertension; hence, a normal BMI is a treatment target to retard CKD progression ¹⁷⁶. Any immunosuppressionrelated benefit of using steroids in CKD may be counterbalanced by steroid-related obesity that drives glomerular hyperfiltration and secondary FSGS, which could explain why steroid treatment falls short in retarding progression of IgA nephropathy-related CKD ¹⁶⁸. Finally, concomitant diabetes has important implications for CKD management ¹⁷⁷. Hyperglycemia maximizes glomerular
hyperfiltration via SGLT2-driven vasodilation of the afferent arteriole of the remnant nephrons,
which cannot be controlled by RAS inhibitors ⁹⁴. Recently, SGLT2 inhibitors have been shown to
reverse this process and elicit profound additive nephroprotective effects on CKD progression ^{98, 178}.
Their capacity to also reduce CVD (in patients with type 2 diabetes) ^{178, 179} provides a strong rationale
for dual RAS/SGLT2 blockade in patients with diabetes and CKD.

752752

753 [H2]Controlling CKD complications

CKD is associated with a number of secondary complications that require management (Box 3), the most relevant of which in terms of overall mortality is CVD ¹⁴. Cardiac and vascular alterations also arise from endocrine failure (e.g. lack of erythropoietin, vitamin D, parathyroid hormone), which causes anemia and secondary hyperparathyroidism ¹⁸⁰. Myocardial fibrosis is the final consequence of the multiple underlying causes.

759 Large randomized controlled trials in patients on hemodialysis have tested a number of 760 different interventions intended to reduce cardiovascular events such as dialysis dose and flux, 761 erythropoietin-stimulating agents, statins, RAS blockade, folic acid, cinacalcet or vitamin D derivatives but have largely been unsuccessful 181-183. For example, statins may prevent 762 cardiovascular events in patients on dialysis, but the magnitude of any relative reduction in risk is 763 764 substantially smaller as compared to what can be achieved in CKD 2-4 ¹⁸³⁻¹⁸⁶. For example, reduction 765 of LDL cholesterol with simvastatin plus ezetimibe reduced the incidence of major atherosclerotic events more efficiently in patients with CKD G2-4 than with CKD G5 or 5D ¹⁸³. Hence, early 766 767 intervention with standard-of-care is essential in patients with CKD 2-4. In parallel, similar concepts 768 for cardiovascular protection are administered for progression of diabetic and non-diabetic kidney 769 disease. For these patients, guideline-directed approaches to achieve target blood pressure through 770 administration of RAS blockers, salt restriction and anemia prevention is the mainstay of therapy ^{187,}

¹⁸⁸. Guidance is also available for the correction of acidosis and mineral and bone metabolism

772 disorders (Box 3) ¹⁸⁹.

773773

774 [H2]Preparing for kidney replacement therapy

775 ESKD typically requires renal replacement therapy, although conservative treatment is a potential 776 alternative option, especially in older adults with limited life span. Counseling on the options (kidney 777 transplant, hemodialysis, peritoneal dialysis or no dialysis) should be coordinated by the nephrologist 778 and involve a multidisciplinary team including the general practitioner. Early counseling is essential 779 because informed patients are better prepared to face kidney failure. Indeed, late referral, i.e. at the 780 time of ESKD, is associated with worse health status at the time of kidney replacement therapy 781 initiation, higher mortality after starting dialysis, and decreased access to transplant ¹⁹⁰. However, 782 one of the biggest challenges nephrologists face is to predict kidney disease progression, which does 783 not follow a steady linear decline. This unpredictability often becomes a barrier to timely shared decision making between patients and physicians and could lead to adverse patient outcomes ¹⁹⁰, 784 785 and may offset the relationship between the early pre-dialysis nephrology care for adults with late 786 stage of CKD and improved outcomes ¹⁹¹ KDIGO suggested that dialysis be initiated when one or 787 more of the following are present: symptoms or signs attributable to kidney failure (serositis, acid-788 base or electrolyte abnormalities, pruritus); inability to control volume status or blood pressure; a 789 progressive deterioration in nutritional status refractory to dietary intervention; or cognitive-790 impairment ¹. This often but not invariably occurs in the GFR range between 5 and 10 791 ml/min/1.73m². Moreover, living donor preemptive renal transplantation in adults should be 792 considered when the GFR is <20 ml/min/1.73m², and there is evidence of progressive and irreversible 793 CKD over the preceding 6-12 months ¹.

794794

795 [H3]Hemodialysis.

796 In 1945 Willem Kolff was the first to successfully treat kidney failure of a patient by performing

797 hemodialys using an artificial kidney able to clear blood from uremic toxins ¹⁹². Since then numerous 798 technical innovations have optimized the procedure that meanwhile has become available (but not everywhere affordable) all over the world ³⁸. Preparing patients for hemodialysis involves referral for 799 800 vascular access placement. The types of access include arteriovenous fistulae, arteriovenous grafts 801 and central venous catheters (which are for short-term use) (FIG. 7A-C); arteriovenous access is the 802 preferred option for hemodialysis, although there is no consensus about the optimal timing for creation, especially for arteriovenous fistulae ¹⁹³. To protect the blood vessels for permanent vascular 803 804 access, attention should be taken to avoid venous puncture or intravenous catheter placement 805 proximal to the wrist, which implies that venous puncture at the back of the hand still being possible. 806 Arteriovenous access (either fistulae or grafts) is associated with better outcomes than central venous catheters ¹⁹⁴ ¹⁹⁵. Patients with a central venous catheter have poorer survival than those who 807 subsequently convert to functional arteriovenous access ¹⁹⁶. Thus, a functional arteriovenous access 808 809809 is preferable for all patients in which the vascular status allows to install a fistula.

810810

811 [H3]Peritoneal dialysis.

812 Peritoneal dialysis is another way to eliminate uremic toxins from the blood using the 813 peritoneal membrane as an exchange interface. For this a transcutaneous catheter is implanted into the peritoneal cavity that allows repetitive daily drainage and refills of dialysate fluid. After some 814 815 hours of reaching equilibrium between uremic blood and fresh dialysate each dwell is expected to 816 drain excess fluid, metabolic waste products including uremic toxins (FIG. 7D). There are published 817 guidelines regarding insertion and perioperative management of peritoneal dialysis catheters. A 818 peritoneal dialysis catheter may be ready for use after 2 to 3 weeks. However, there is marked 819 variability in peritoneal dialysis catheter insertion techniques (open surgery, blind via trocar or blind via Seldinger technique) and perioperative management ¹⁹⁷. Interestingly, patients starting on 820 821 peritoneal dialysis show better initial outcome and preservation of residual renal function, especially 822 in the first 2 years as compared to patients on hemodialysis ¹⁹⁸.

823823

824 [H3]Kidney transplantation.

When available, suitability for kidney transplantation should be evaluated according to age and comorbidities, but it may take months to complete ¹⁹⁹. Co-morbidities such as cancer, chronic infections, cardiac or peripheral vascular disease, and the risk for medical noncomplicance are carefully evaluated in this process. Depending on the regional ratio of donors to recipients and on allocation rules, waiting time for a deceased donor kidney can vary from a few months (e.g. Belgium, Austria) to many years (e.g. Germany). Thus, the option of living kidney donation should be explored.

831 To test for eligibility, potential donors must undergo a comprehensive health assessment 832 including tests for blood group and human leukocyte antigen compatibility with the potential 833 recipient, GFR measures, imaging of the kidneys and the urinary tract, cardiac testing, and other tests 834 depending on the medical history. This is because, the donor's short and long-term well-being after 835 donation remains a first priorityPre-emptive transplantation (kidney transplantation before even 836 initiating dialysis) may offer several benefits to ESKD patients but its impacts remain under evaluation ²⁰⁰. The half-life of a transplanted kidney is <20 years, making these patients also potential 837 candidates for CKD treatments during their life span ²⁰¹. For example, recurrent glomerulonephritis is 838 839 an unpredictable complication that can have a negative impact on graft outcome ²⁰².

840

841 [H2]Conservative treatment/palliative care

Kidney replacement therapy may not be available or affordable but it may also not be advisable for medical reasons. Especially in very old ESKD patients, dialysis may neither increase life span nor improve quality of life (QOL) ²⁰³⁻²⁰⁵: in such cases palliative (trying to control the symptoms of uremia affecting QOL ²⁰⁶) and education starting at CKD G4 (aimed at explaining comorbidity management) may be appropriate. Withdrawal from dialysis is a related issue and is common in very old hemodialysis patients ²⁰⁷.

848848

849 [H1] Quality of life

850 CKD-related symptoms increase along CKD progresses and are key drivers of poor QOL in patients with CKD and ESRKD ²⁰⁸⁻²¹⁰. In contrast, symptoms rapidly improve upon kidney transplantation. 851 852 Symptoms are most severe in dialysis patients, who frequently report fatigue, nausea, dyspnea, anorexia, pruritus, restless legs, and cramps ²¹¹. Pain is especially common: in a survey of 205 853 854 prevalent patients on hemodialysis, approximately 25% had "severe" pain during the 24h preceding the interview, and an additional 12% had "moderate pain" ²¹². Mental illness including depression 855 and anxiety are also common ²¹³, but are understudied among people with CKD. Unfortunately, 856 857 clinical and epidemiological characteristics associated with the presence, severity, onset and 858 remission of uremic symptoms are incompletely described; their pathophysiology is poorly 859 understood; and few drugs have been approved by regulatory authorities for their treatment ²¹⁴.

860 Comorbidity and complications of CKD also substantially contribute to the reduced QOL in 861 CKD patients. In some cases (e.g. anemia), effective treatments are available. In others, treatment is 862 technically possible but has significant limitations, and treatment itself frequently causes additional 863 symptoms and morbidity (e.g. dialytic management of hypervolemia). Despite the best efforts of 864 clinicians, interactions between complications and their treatments can further compromise QOL for 865 patients (e.g. volume overload resulting from sodium bicarbonate treatment of acidosis). 866 Management of multiple comorbid conditions is already complex in patients with normal kidney function ²¹⁵; the situation is even more challenging in people with CKD, where the pathophysiology 867 868 and optimal treatment of common coexisting conditions may differ from the general population (e.g. 869 statins for coronary disease in dialysis patients). Lack of knowledge about how to prioritize and 870 manage comorbid conditions undoubtedly contributes to the lower QOL in CKD patients through 871 multiple mechanisms – including drug-drug and drug-condition interactions; pill burden; and 872 decisional conflict for patients.

Biolysis is an effective life-support treatment but has many limitations in addition to those
mentioned above. Key challenges for hemodialysis that specifically compromise QOL include poor

875 functional status (driven in part by procedure-related immobilisation, uremia-related malnutrition, 876 and muscle wasting), the intrusive and time-consuming nature of the treatment, and vascular access infection and dysfunction ²¹⁶. Instruction for some home-based, low intensity physicial exercise can 877 improve physical performance and QOL in patients on hemodialysis ²¹⁷. Peritoneal dialysis also poses 878 879 significant challenges for QOL including gastrointestinal distension, hernias, and chronic volume 880 overload. Both forms of dialysis make employment difficult and both are associated with a high 881 prevalence of infectious complications and undue pill burden. Some studies suggest that peritoneal dialysis is associated with slightly better QOL than hemodialysis ²¹⁸, but it is possible that this 882 883 observation is confounded by patient characteristics ²¹⁹. Home dialysis strategies are constantly improving and are becoming possible tools to improve QOL ²²⁰. Kidney transplantation is associated 884 with substantially better QOL than either form of dialysis ²²¹, but even recipients with good graft 885 886 function must face CKD-related symptoms as well as complications of immunosuppression and other 887 treatments.

Recent emphasis on patient-centred research should help to improve QOL for people with CKD by increasing the likelihood that important but understudied issues such as symptom control are studied and new solutions are identified. In addition, findings from patient-centred research should help to drive uptake of patient-centred care at the bedside, especially if supported by patientreported outcomes ²²². Such paradigm shifts should help to prioritize the management of patientimportant issues such as reduced QOL.

894894

895 [H1] Outlook

There are many unmet medical needs in nephrology as a specialty and improving and refining our understanding of disease mechanisms in common and rarer conditions is lacking, as are novel therapies to treat rarer and common causes of kidney disease progression and a culture of curiosity and clinical trials that advance the field ³⁷. Key areas are to improve the identification of CKD and to reduce CKD risk factors, to improve the understanding of causes and consequences of CKD, to 901 improve outcomes with current knowledge, and finally to develop and test new therapeutic
902 strategies ³⁷. Here, we highlight eight promising domains expected to produce significant impact on
903 CKD management and outcomes.

904904

905 [H2]How genetic kidney disease contributes to CKD

906 Genetic abnormalities were identified in 20% of CKD cases in children, adolescents, and young adults. 907 Next generation sequencing have unveiled the extreme genetic heterogeneity of kidney disease. For 908 example more than 40 different genes were discovered as possible causes of steroid-resistant 909 nephrotic syndrome ¹⁴². This requires implementation of current diagnostic strategies that go beyond 910 th renal biopsy and open to personalized diagnosis and treatments ¹⁴². In addition, first genetic 911 modifiers of CKD progression such as APOL1 or UMOD have been identified in older adults. CKD in 912 adults may also relate to (genetically- or environmentally-defined) low nephron endowment or AKI 913 episodes early in life, e.g. as early as during neonatal (intensive) care. Thus, CKD in adults, often 914 classified by a single diagnosis, may often be the consequence of several components accumulating 915 with time, a conclusion having important implications for the design of CKD trials, e.g. in prevalent 916 entities such as "diabetic nephropathy". Progress will require identifying the cause(s) of CKD and 917 dissecting modifiable from non-modifiable drivers of CKD progression as well as specific 918 pathophysiological mechanisms that might help to define more homogeneous patient subgroups. 919 The identification of such subgroups is a prerequisite to conducting more targeted clinical trials, 920 which require fewer participants and increase the possibility to identify appropriate drugs for 921 different subtypes of patients. Patient heterogeneity is considered one of the main reasons why clinical trials in nephrology commonly fail ²²³. Genetic investigations might therefore not only hold 922 923 promise for individual patients, for example by facilitating the diagnosis of a monogenic disease with 924 potential implications for individualized treatment, but might also improve classification and ultimately treatment and/or prevention in groups of patients ²²⁴. The study of the genetic 925 926 predisposition to kidney diseases has made major progress over the past decade. For the first time,

927 researchers have been able to carry out genome-wide screens to study complex kidney diseases, to 928 which genetic susceptibility variants in many genes, as well as environmental factors, contribute. 929 Genome-wide association studies (GWAS) have emerged as an important method to map risk loci for 930 complex dis- eases by investigating the association of genetic markers across the genome with the 931 disease of interest. We can predict that the list of genetic forms of CKD will exponentially increase 932 together with our understanding of the genetic component of kidney function in health and disease 933933

934934

935 [H2]Biomarkers for CKD management

936 As discussed, using serum creatinine-based diagnosis implies diagnosis as late as CKD G3, leaving a 937 small window of opportunity for modulating CKD progression. Earlier identification CKD with 938 biomarkers that can also predict CKD progression would help to initiate nephroprotective 939 interventions ³⁷. Most attractive would be a marker of nephron number. Defining nephron number at 940 birth would display low nephron endowment and help to dissect it from injury- or ageing-related 941 nephron loss later in life. A marker of nephron number would detect CKD G2 and could serve as an 942 end point parameter for clinical trials to quantify nephro-protective effects or drug toxicity. However, 943 identifying a clinically applicable biomarker of nephron number in serum or urine has been 944 unsuccessful so far. Biomarkers do not clearly discriminate nephron number from the compensatory 945 increase in mass of remnant nephrons upon injury (remnant nephron hypertrophy). Imaging studies 946 with tracers or the combination of imaging with kidney biopsy indicating the number of glomeruli and even SNGFR are promising as a proof-of-concept ^{85, 225}. 947

948

949 [H2]Separating triggers of nephron loss from CKD progression

950 Congenital low nephron endowment, obesity, and AKI/CKD-related nephron loss imply 951 hyperfiltration and hypertrophy of the remnant nephrons, which in turn promote secondary FSGS 952 and further nephron loss. Interstitial fibrosis most likely represents matrix replacement of lost 953 nephrons, thereby stabilizing the remnant nephrons. Whether fibrosis itself contributes to nephron
954 loss remains under debate and several antifibrotic drugs are under study to test this concept ^{226, 227}.
955 Dissecting the relative contribution of nephron injury, wound healing, and compensatory
956 hyperfiltration remains notoriously difficult in clinical practice. Finding ways to define their relative
957 contribution and selectively target these mechanisms in a personalized manner remains a challenge
958958 for the following years.

959959

960 [H2] Modifying CKD progression

Among the many ideas on how to potentially modulate CKD progression some accumulated a large 961 962 fundament of experimental evidence but still await successful validation in human RCTs (e.g. protecting nephron loss by modulating kidney fibrosis) ²²⁸. In contrast, the idea to retard CKD 963 964 progression with urate-lowering therapies already showed promising results in smaller trials and the results of ongoing multicenter RCT are eagerly awaited ²²⁹. In contrast, the nuclear factor (erythroid-965 966 derived 2)-like (NRF)-2 agonist bardoxolone or folic acid supplementation have shown 967 nephroprotective effects in RCTs in some populations but their mechanisms-of-action are not yet fully understood ^{182, 230,231}. 968

969969

970 [H2]Nephrogenesis and regeneration

Given the significant hurdles preventing widespread use of renal transplantation, Current work is exploring whether the transfer of autologous stem (progenitor) cells, stromal cells or other cell types can support the regeneration of injured nephrons (FIG. 8). For this to be a viable option, a growing research field is trying to unravel the physiology and pathophysiology of the nephron's intrinsic capacity to regenerate.

976 Several studies have identified possible drugable targets to specifically enhance nephron 977 regeneration with pharmacologic intervention to prevent nephron loss in AKI and CKD ²³². In 978 particular, targeting parietal epithelial cells that can act as progenitor for podocytes, to promote 979 their differentiation into fully functional podocytes and/or to block their excessive proliferation and matrix production can promote remission of glomerular disorders ²³³⁻²³⁵. In addition, enhancing 980 tubular regeneration by promoting tubular epithelial cell proliferation can reduce the occurrence of 981 CKD after AKI ^{234, 236}. Although in vivo experimental studies appear promising, no clinical trials are 982 983 available yet ²³³⁻²³⁵. Finally, numerous Inhibitors of maladaptive repair induced improved tissue 984 structure and even function in experimental models of CKD. Several phase 1-2 clinical trials were started but up to now, but none progressed beyond phase 2 ²³⁷. However, other new antifibrotic 985 drugs display are currently being tested in clinical trials ^{234, 237, 238}. 986

Regenerative medicine is also being explored for treatment of kidney disorders. Therapeutic 987 988 properties mesenchymal stroma cells (MSC), a population of well-characterized, easily obtainable cells with effective in numerous but not all experimental models of CKD ^{239, 240}. The underlying 989 990 mechanisms of action of the MSC have been extensively described and consist essentially in 991 immunomodulatory and paracrine effects. Similarly, numerous experimental studies reported improvement of kidney function and/or structure by using injection of human renal progenitors ²³²⁻ 992 ²³⁶. However, the translation of preclinical studies into robust, effective, and safe patient therapies 993 remains limited ^{233, 234, 237}. 994

Finally, the generation of 3D organ-buds termed 'organoids' from human induced pluripotent stem cells and embryonic stem cells was achieved also for the kidney; these organoids consist of a variety of renal cell types in vitro that mimic organs in vivo ^{241, 242}. The organoid bears great potential in the study of human diseases in vitro, especially when combined with CRISPR/Cas9-based genome-editing ^{243, 244}. However, the complexity of kidney structure and function is yet far from being reproduced for the purpose of clinical use for renal replacement therapy and the question if and when this will be eventually possible is still open.

1002

1003 [H2]Animal models and RCT design

1004 Innovative approaches to better link translational research to clinical trial findings will need to start 1005 with well-defined human genotypes and phenotypes to identify molecular targets, which may (or 1006 may not) subsequently be validated in animal models. Selecting such animal models for validation 1007 should be based on models that recapitulate CKD progression in humans and applying identical end 1008 points in subsequent clinical trials. This may include mice with identical pathogenic mutations as in 1009 human genetic kidney disease as being available for Alport syndrome, mouse models with a partial 1010 human immune system, or eventually experimentation in pigs or primates to close gaps between preclinical and clinical trials ^{245, 246}. 1011

1012 In addition, trial design may be improved upon reconsidering disease definitions, avoiding 1013 add-on designs using drugs with redundant mechanisms-of-action, preselecting patients with drug 1014 mechanisms-related biomarkers, and of study end points that better predict CKD progression to 1015 ESKD. For example, in order to test efficacy of the C5a receptor inhibitor avacopan in ANCA vasculitis 1016 the CLEAR trial at first avoided the usual add-on standard of care approach and compared instead 1017 avacopan plus low-dose steroids versus placebo plus high dose steroids on top of either cyclophosphamide or rituximab²⁴⁷. This way it was proven that avacopan is effective in replacing 1018 1019 high-dose glucocorticoids in treating vasculitis.

1020

1021 [H2]Limiting cardiovascular morbidity and mortality

1022Targeting the association of CKD with cardiovascular morbidity and mortality will require more1023functional studies in animals and humans to identify molecular targets potentially suitable for1024therapeutic interventions ³⁷. Controlling hyperlipidemia with PCSK9 inhibitors, suppressing systemic1025inflammation with innovative anti-inflammatory drugs, modulating the intestinal microbiota, or1026directly modulating vascular calcificaton and cardiac fibrosis may offer new solutions for this eminent1027problem in the future.

1028

1029 [H2]Translation of advances into daily practice

1030 The ever growing complexity of kidney biopsy reading, lab diagnostics, and the increasing need for 1031 genetic testing will require centers of excellence with sufficient resources to meet the diagnostic 1032 demands. The same may apply to upcoming costly therapies, where patient selection is of particular 1033 importance. Educational efforts are also needed to alert patients and general physicians to the increasing number of more affordable therapeutic options for CKD patients with diabetes, such as 1034 1035 SGLT2 inhibitors. Finally, national CKD registries and treatment guidelines advocate awareness in the 1036 public, among health care providers, and decision takers, which can generate important support for implementation of standards ³⁷. Global guidelines created by the KDIGO initiative have become 1037

instrumental in this process starting from a global definition of CKD stages up to defining standards
for the management of CKD complications (Box 3). In addition, global initiatives on CKD launched by
the International Society of Nephrology define knowledge gaps in CKD and propose how to address
them in the future ³⁷.

1042

Acknowledgement. P.R. was supported by the European Research Council under the Consolidator Grant RENOIR (ERC-2014-CoG), grant number 648274. H.J.A. received support by the Deutsche Forschungsgemeinschaft (AN372/24-1). H.J.A and G.R. received support from the European Union's research and innovation program (under grant agreement Horizon 2020, NEPHSTROM No. 634086). The views expressed here are the responsibility of the authors only. The EU Commission takes no responsibility for any use made of the information set out.

1049

1050 Contributions. P.R., G.R., R.G., A.L., K.J.J., M.T., Z.M., C.W., and H.J.A. all wrote parts of the
1051 manuscript.

1053 Box 1. Risk factors for chronic kidney disease

1054	Diabetes mellitus (type 1 or 2)	
1055	Poorly controlled arterial hypertension	
1056	• Obesity	
1057	• Monogenetic kidney disease (for example, autosomal dominant polycystic kidney disease,	
1058	podocytopathies causing steroid-resistant nephrotic syndrome, Fabry's disease and Alport	
1059	syndrome, complementopathies such as atypical haemolytic-uremic syndrome (aHUS)	
1060	• Prolonged exposure to nephrotoxins (e.g., chemotherapy for cancer treatment, proton pump	
1061	inhibitors, non-steroidal anti-inflammatory drugs, and anti-microbial agents), contaminated	
1062	herbs, agricultural chemicals, heavy metals, irradiation)	
1063	Climate (excessive heat exposure and dehydration)	
1064	• Infections and chronic inflammation (HIV, HCV, HBV, malaria, bacterial infections urinary	
1065		1076
1066		
1067		
1068		
1069		
1070		
1071		
1072		
1073		
1074		
1075		

tract infecti	•	Low nephron endowment at birth (low birth weight, fetal dysmaturity)
ons, rheu	•	Obstructive uropathy
matic disord	•	Systemic vasculitis
ers and autoi mmu ne diseas es)	•	Hyperhomocysteinemia
Malig nancy (espe		
cially lymph ocyte		
and plasm		
a cell disord ers such		
as multi ple		
myelo ma)		
Conge nital		
renal abnor maliti		
es (CAKU		
T, vesico		
- ureter ic		
reflux)		
Episo des of acute kidne Y		
injury		

•

•

•

1077 Box 2. Biochemical and serologic tests useful for defining causes of CKD

1078 [H1]Auto-imr	nune disease
---------------	-------------	--------------

1079	•	Fluorescent anti-nuclear antibody, anti-dsDNA antibody, anti-phospholipaseA2 receptor
1080		antibody, anti-GBM antibody, anti-neutrophil cytoplasmic antibody, anti-phospholipid
1081		antibody
1082	•	Serum hemolytic complement activity (C'H50), serum C3 and C4 levels, cryoimmunoglobulins
1083	[H1] <i>M</i>	alignancy
1084	•	Serum free light chains, serum or urinary immunofixation (multiple myeloma)
1085	•	Serum albumin, phosphorous, total proteins and albumin/globulin ratio
1086	[H1] <i>ln</i> j	fections
1087	•	Human Immunodeficiency Virus, hepatitis B virus, hepatitis C virus serology, CD4+ T cell
1088		counts, urine, blood cultures, anti-streptococcal antibody tests
1089	[H1] <i>M</i>	onogenetic kidney disease
1090	•	Serum or urinary enzymes, glycolipids
1091	•	Genetic testing using next generation and Sanger sequencing
1092		

1093 Box 3. Key strategies to managing CKD complications

[H1]Renal anemia ¹⁸⁷

1095	• Erythropoeiesis stimulating agents (ESAs) are only given once all correctable causes of
1096	anemia (e.g. iron deficiency and inflammatory states) have been addressed
1097	• Adults received Iron supplementation when transferrin saturation is <30% and ferritin <500
1098	ng/ml; children (<18 years) receive Iron supplementation when transferrin saturation is
1099	<20% and ferritin <100 ng/ml
1100	• ESAs may be used to avoid hemoglobin <9.0 g/l with a target of max.11.5 g/dl
1101	• Avoid blood transfusion whenever possible, especially in potential transplant recipients.
1102	Caution in giving ESAs in people at risk of stroke or who have malignancy
1103	[H1]Arterial hypertension ¹⁸⁸
1104	• Individualize blood pressure (BP) targets are based on age and co-morbidities, with special
1105	recommendations for diabetes
1106	• Targets include normalizing body weight (BMI 20-25), NaCl intake (<5g/d), achieving regular
1107	physical exercise, limiting alcohol intake to 2 drinks/d (men), 1 drink/day (women)
1108	[H1]Mineral and bone disorder ^{189, 248}
1109	• Monitor calcium, phosphorus, parathyroid hormone, and alkaline phosphatase activityin
1110	adults beginning in CKD G3a and in children beginning in with CKD G2 ; 25(OH)D levels
1111	might also be measured and corrected by vitamin D supplementation as for the general
1112	population
1113	In CKD G3a-G5D lower elevated phosphate levels toward the normal range but avoid
1114	hypercalcemia by restricting the dose of calcium-based phosphate binders
1115	Avoid long-term exposure to aluminium in phosphate binders or dialysate
1116	• Measure bone mass density in patients with CKD G3a-G5D with evidence of bone disease to
1117	assess fracture risk if results will impact treatmentIn adults calcitriol and vitamin D

1118	analogues are no longer recommended for routine use unless secondary	
1119	hyperparathyroidism in CKD G4-G5 is severe and progressive	
1120	• For patients with CKD G5D PTH-lowering therapy calcimimetics, calcitriol, or vitamin D	
1121	analogs are recommended	
1122	• Consider patients with vascular calcifications at high risk for cardiovascular disease; avoid	
1123	calcium-based phosphate binders in these patients, limit dietary phosphate intake.	
1124	[H1]Hyperlipidemia ²⁴⁹	
1125	 Adults >50y with CKD should receive a statin; when eGFR <60ml/min, statin or 	
1125		
1126	statin/ezetimibe combination should be given	
1127	• Adults <50y with CKD and other cardiovascular risk factors should receive a statin	
1128	[H1]Metabolic acidosis	
1129	Oral bicarbonate can be used to correct mild metabolic acidosis	
1130	[H1]Chronic hyperkalemia	
1131	Dietary restriction, loop diuretics, potassium-binding resins such as patiromer or dose	
1132		1138
1133		1139
1134		1140
1135		1141
1136		
1137		

adjust ments of RAS inhibit ors and aldost erone antag onists ²⁵⁰ 1142 Figure legends

1143

1144 Figure 1. Kidney Disease Improving Global Outcomes (KDIGO) classification of chronic kidney 1145 disease (CKD). The 2D matrix illustrates the predictive value of different levels of albuminuria and estimated glomerular filtration rate (eGFR). The color code indicates the risk for CKD progression to 1146 1147 end-stage kidney disease (ESKD) and overall mortality. This matrix defines different stages of CKD 1148 referred as, for example, CKD G2A2 whereby the eGFR is 60-89 ml/min/1.73m² albuminuria is 1149 moderately increased; such a patient would have a moderately increased risk of progressing to ESKD. 1150 This staging system for CKD G2-G4 may underestimate the extent of irreversible nephron loss ²⁵¹. 1151 That is, if total GFR relies on the single nephron GFR (SNGFR) and the number of nephrons, SNGFR 1152 has to increase to compensate for reduced (or declining) number of nephrons to maintain total GFR. However, such a compensation may not occur with physiological ageing ⁸⁵. Additionally, total GFR 1153 1154 drops if remnant nephrons are not able to increase SNGFR. Finally, increases in serum creatinine 1155 levels (representing a GFR of \leq 40%) may imply remnant nephrons of \leq 30% of a "normal" nephron number. Furthermore, the prognosis facet of CKD classification has been developed by large-scale 1156 population-based epidemiological studies, which suffer from a "false positive" rate of- approximately 1157 1158 30-35% as in such studies repeat analysis after 3 months was often not available ⁴³. Reprinted with 1159 permission from Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. 1160 KDIGO clinical practice guideline for the evaluation and management of chronic kidney disease. 1161 Kidney Int Suppl. 2013;3:1-150. 1162 1163 Figure 2. Global prevalence of treated end-stage kidney disease per 1 million population. The map

1164 depicts the prevalence of renal replacement therapy represented by kidney replacement therapy

1165 (kidney replacement therapy: hemodialysis, peritoneal dialysis, and kidney transplantation), for

1166 [Au:OK?ok] ESKD per 1 million population based on individual country data. Data not available

1167 indicates that data were either not known or not provided on the questionnaire for countries that

1168 received the survey. Reprinted with permission from Bello, A. K. et al. Assessment of

1169 Global Kidney Health Care Status. JAMA 317, 1864-1881 (2017

1170

1171 Figure 3. Glomerular filtration rate (GFR) over time and impact of low birth weight on progression 1172 of CKD. A. Population studies assessing estimated GFR document a decline in eGFR with age; here the data in men from Marocco are shown ⁴³. P values from P03-P97 represent the percentiles of the 1173 1174 entire population with P50 representing mean values. This decline is a consequence of loss of 1175 functioning nephrons via glomerulosclerosis-related nephron atrophy and is not accompanied by a 1176 compensatory increase in SNGFR in the remaining intact nephrons, unlike what occurs when nephrons are lost by injury or surgery ^{42, 52, 85}. At age 70, nephron number is around 50% of that at 1177 1178 age 25. Whether or not this implies increased SNGFR (single nephron hyperfiltration) of remnant 1179 nephrons or mirrors the declining demand for filtering metabolic waste is under debate but will 1180 strongly depend on co-morbidities such as obesity and the life time history of acute kidney injury 1181 episodes. In such cases, SNGFR should correlate with the total number of nephrons per body mass. B: Low birth weight (LBW) increases four-fold the relative risk to develop CKD by the age 17 as shown 1182 by population studies ⁶⁹. C: LBW status also significantly shortens the time span of when patients 1183 with IgA nephropathy reach end stage kidney disease ⁷⁰. 1184

1185

1186 Figure 4. Contributing factors to nephron loss. In addition to ageing, acute and chronic forms of 1187 kidney injuries further may contribute to nephron loss along life time. Environmental, genetic causes 1188 and systemic disease-related reasons for low nephron endowment or causes of nephron injury are 1189 shown during the different phases in life, when they are most commonly (but not exclusively) 1190 encountered. Combinations of such causes determine the individual risk for CKD throughout life. For 1191 example, congenital abnormalities of the urinary tract (CAKUT) can lead to end stage kidney disease (ESKD) early in life, or to secondary focal segmental glomerulosclerosis (FSGS)-related ESKD later in 1192 1193 life. Nephrotoxic drugs such as antibiotics, pain killers, contrast media for imaging or chemotherapy

can also influence risk, as can infections (bacterial, parasitic, viral). Severe genetic defects that lead to
FSGS, Alport syndrome, cysts and atypical hemolytic uremic syndrome typically become evident early
in life, whereas moderate genetic defects (such as mutation in *UMOD*) can become evident in
adulthood. Genetic variants in genes such as *APOL1* can modify the course of diseases such as lupus
nephritis.

1199

1200 Figure 5. Injury, hyperfiltration and hypertrophy of the nephron. A | In response to nephron loss, 1201 single nephron hyperfiltration induces an increase in nephron size as a compensatory mechanism to 1202 maintain overall renal function. Accordingly, podocytes need to undergo hypertrophy to maintain the 1203 filtration barrier of the increasing dimensions of the filtration surface. However, podocyte 1204 hypertrophy is limited; beyond a certain threshold, barrier dysfunction first manifests as mild to 1205 moderate proteinuria. At later stages the increasing podocyte shear stress promotes podocyte 1206 detachment. Parietal epithelial cells (PEC) host putative podocyte progenitors but proteinuria and 1207 potentially other factors inhibit their potential to replace lost podocytes and rather promote scar 1208 formation, i.e. focal segmental glomerulosclerosis (FSGS). B | Hyperfiltration and proteinuria both 1209 imply an increased reabsorption work load for proximal tubules. Activated tubular cells secrete pro-1210 inflammatory mediators that promote interstitial inflammation. Together with the progression from 1211 FSGS to global glomerulosclerosis the inflammatory microenvironment of the tubulointerstitium 1212 promotes tubular atrophy and interstitial fibrosis. Scar formation is associated with vascular 1213 rarefication and ischemia. The remnant nephrons have to further increase in size to meet the 1214 filtration demands, which accelerates the aforementioned mechanisms of CKD progression in a 1215 vicious circle. 1216 Figure 6. The earlier-the-better: renal outcome depending on when starting renin-angiotensin 1217 system (RAS) blockade in Alport Syndrome. As shown, the time to renal replacement therapy was longest for those who started RAS inhibition early, at onset of microhematuria (usually at birth) or 1218 1219 microalbuminuria (30-300 mg protein per day or per gram creatinine). Delaying until

- macroproteinuria (>0.3g/day or per gram creatinine (green curve)) or CKD G3/4 has been established
 considerably shortens the time to renal replacement. Untreated patients (red curve) are relatives to
- 1222 Reprinted with permission from Gross, O. et al. Early angiotensin-converting enzyme inhibition in Alport syndrome delays renal failure and improves life expectancy. Kidney Int 81, 494-501 (2012).
- 1223

1224

1225

1226 Figure 7. Access for hemodialysis or peritoneal dialysis. A | Arteriovenous fistulae are created by 1227 surgical anastomosis of a peripheral artery with a larger subcutaneous vein, e.g. at the forearm. The 1228 increased flow and perfusion pressure leads to structural modifications in the draining vein allowing 1229 repetitive venous puncture for hemodialysis. Sometimes declining blood flow to the hand and fingers 1230 (steal phenomonen), compensatory increases in cardiac output or aneurysm formation cause 1231 problems and require surgical correction. B | Arteriovenous grafts may become necessary when the 1232 patient's vascular status does not allow to build a fistula. Polytetrafluoroethylene grafts are mostly 1233 used and can be repetitively punctured for hemodialysis. Common problems are sterile inflammatory 1234 postimplantation syndromes or prosthetic graft infections causing bacterial sepsis. C | Central venous catheters become necessary when immediate initiation of renal replacement therapy is 1235 1236 needed up to when a fistula or graft implant becomes ready for use. Such catheters may remain the 1237 last vascular access option for patients in which the vascular or cardiac status does not allow fistula 1238 or graft placement. Catheter infections or thrombotic complications remain constant concerns. 1239 Peritoneal dialysis requires placement of a transcutaneous catheter into the peritoneal cavity. This 1240 catheter allows fills, drains and refills of dialysate while the peritoneum serves as exchange membrane with the uremic blood. Fluid drains and refills with fresh dialysate are needed in regular 1241 1242 intervals, usually 4 times a day. 1243 1244 Figure 8. Targeting kidney regeneration. In the future, it may be possible to target kidney 1245 regeneration and maladaptive repair to minimize the loss of injured nephrons and to protect the

remnant nephrons. Here, the most promising arenas of research include: 1. Enhancing podocyte regeneration. This aim may be achieved by drugs that promote differentiation into podocyte of parietal epithelial cell (PEC) progenitors of the Bowman's capsule and/or blocking their excessive proliferation. 2. Blocking fibrosis and/or maladaptive repair by inhibiting fibroblast expansion. 3. Enhancing tubular regeneration by blocking maladaptive repair and/or enhancing tubular cell proliferation ²³³⁻²³⁸.

1252

1253 Figure 9. Cell therapy and organoids as potential tools in CKD research and therapy. (A) Injection of 1254 two cell types, mesenchymal stromal cells and renal progenitors, were reported as possible tools for 1255 cell therapy of CKD, improving kidney function and structure in animal models. Numerous phase 1-2 1256 clinical trials are ongoing. Several mechanisms were proposed to explain the beneficial effects 1257 observed, mostly based on secretion of paracrine factors and/or microvesicles. For renal progenitors 1258 also direct engraftment in the injured tissue was reported. (B) Kidney organoids were generated in vitro starting from induced pluripotent stem cells (iPSC) and embryonic stem cells (ESC) and used for 1259 1260 testing of drug toxicity and modeling of kidney diseases, with or without manipulation using 1261 Crispr/Cas and other genome editing strategies.

- 1262
- 1263
- 1264
- 1265
- 1266
- 1267
- 1268

1269

- 1270
- 1271

1272 Table 1. Therapeutic interventions for selected conditions associated with CKD risk

Disease entity	Diagnostic test	Therapeutic interventions
Genetic injury		
Polycystic kidney disease	Echography or MRI to detect cysts	Tolvaptan (vasopressin receptor 2
		antagonist of benefit in selected
		patients)
Alport syndrome	Genetic testing for collagen	ACE inhbitors to reduce filtration
	mutations	pressure in remnant nephrons
Fabry disease	Serum alpha-galactosidase activity	Alpha-galactosidase replacement
		therapy
Primary hyperoxaluria	Echography to detect	Increase fluid intake,
	nephrocalcinosis, urinary oxalate	supplementation with potassium
	levels, genetic testing for serine—	citrate, magnesium oxide,
	pyruvate aminotransferase,	pyridoxine , and orthophosphate,
	glyoxylate	oxalate-reduced diet, liver
	reductase/hydroxypyruvate	transplantation
	reductase, and dihydrodipicolinate	
	synthase-like	
Cystinosis	Leukocyte cystine levels, slit lamp	Cysteamine substitution
	exam of the eyes, genetic testing	
	for the cystinosin gene	
Coenzyme Q10-related	Genetic testing for AarF Domain	Coenzyme Q10 replacement
gene mutations causing	Containing Kinase-4, coenzyme Q2,	therapy
FSGS	coenzyme Q6, and decaprenyl	
	diphosphate synthase subunit 2	
C3 glomerulonephritis	Kidney biopsy, specific	Plasma exchange or blood
	complement test, genetic testing	transfusion, rituximab, eculizumab
	for complement-related genes	(depending on specific cause)
Immune injury		
Acute or subacute immune	Autoantibodies against nuclear	Immunosuppressive drugs, plasma
complex	autoantigens or neutrophil	exchange (in certain settings)
glomerulonephritis	cytoplasmic antigens such as	
	proteinase 3 or myeloperoxidase,	

	C3/C4 serum levels urinary	
	sediment, kidney biopsy	
Renal vasculitis	ANCAs, urinary sediment, kidney	Immunosuppressive drugs, plasma
	biopsy	exchange (in certain settings)
Vascular injury		
Recent onset renal artery	Angiogram of the renal arteries	Surgical revascularization or
stenosis (fibromuscular or		catheter-based angioplasty
vasculitic)		
Metabolic injury		
Diabetic kidney disease	Blood glucose level, albuminuria,	Antidiabetic drugs, SGLT2
	kidney biopsy	blockade, RAS inhibitors
Chronic urate nephropathy	Tophaceous gout, serum uric acid	Purine-reduced diet, uricosuric
	levels, kidney biopsy	drugs, xanthine oxidase inhibitors,
		rasburicase
Toxic injury		
Toxic nephropathies (lead,	History, specific toxin levels, kidney	Abandon toxin exposure
aristolochic acid,	biopsy	
phenacetin,)		
Multiple myeloma	Serum or urinary free light chain	Myeloma-directed chemotherapy
	test, bone marrow aspirate, kidney	
	biopsy	
Kidney infections		
Bacterial pyelonephritis	Urine culture	Increased fluid intake, antibiotics
Viral nephropathies	Viral testing, kidney biopsy	Antiviral therapy
Mechanical injury		
Obstructive nephropathy	Renal ultrasound	Relieve obstruction

1281 References

- 1282 Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO clinical 1. 1283 practice guideline for the evaluation and management of chronic kidney disease. Kidney Int 1284 Suppl 3, 1-150 (2013). 1285 2. Glassock, R., Delanaye, P. & El Nahas, M. An Age-Calibrated Classification of Chronic Kidney Disease. JAMA 314, 559-60 (2015). 1286 1287 3. Levey, A.S., Inker, L.A. & Coresh, J. Chronic Kidney Disease in Older People. JAMA 314, 557-8 1288 (2015). 1289 4. Poggio, E.D. et al. Demographic and clinical characteristics associated with glomerular 1290 filtration rates in living kidney donors. Kidney Int 75, 1079-87 (2009). 1291 5. Pottel, H., Hoste, L., Yayo, E. & Delanaye, P. Glomerular Filtration Rate in Healthy Living 1292 Potential Kidney Donors: A Meta-Analysis Supporting the Construction of the Full Age 1293 Spectrum Equation. Nephron 135, 105-119 (2017). 6. Glassock, R.J. & Rule, A.D. The implications of anatomical and functional changes of the aging 1294 1295 kidney: with an emphasis on the glomeruli. Kidney Int 82, 270-7 (2012). 1296 7. Hallan, S.I. et al. Age and association of kidney measures with mortality and end-stage renal disease. JAMA 308, 2349-60 (2012). 1297 1298 Warnock, D.G., Delanaye, P. & Glassock, R.J. Risks for All-Cause Mortality: Stratified by Age, 8. 1299 Estimated Glomerular Filtration Rate and Albuminuria. Nephron (2017). 1300 9. De Broe, M.E., Gharbi, M.B., Zamd, M. & Elseviers, M. Why overestimate or underestimate 1301 chronic kidney disease when correct estimation is possible? Nephrol Dial Transplant 32, ii136-ii141 (2017). 1302 1303 10. Denic, A., Glassock, R.J. & Rule, A.D. Structural and Functional Changes With the Aging 1304 Kidney. Adv Chronic Kidney Dis 23, 19-28 (2016). 11. DALYs, G.B.D. & Collaborators, H. Global, regional, and national disability-adjusted life-years 1305 1306 (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990-2015: a 1307 systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1603-1658 1308 (2016). 1309 12. Jager, K.J. & Fraser, S.D.S. The ascending rank of chronic kidney disease in the global burden 1310 of disease study. Nephrol Dial Transplant 32, ii121-ii128 (2017). 1311 13. Mortality, G.B.D. & Causes of Death, C. Global, regional, and national age-sex specific all-1312 cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis 1313 for the Global Burden of Disease Study 2013. Lancet 385, 117-71 (2015). 1314 Thomas, B. et al. Global Cardiovascular and Renal Outcomes of Reduced GFR. J Am Soc 14. 1315 Nephrol 28, 2167-2179 (2017). 15. Zhang, L. et al. Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet 1316 1317 379, 815-22 (2012). 1318 Arora, P. et al. Prevalence estimates of chronic kidney disease in Canada: results of a 16. 1319 nationally representative survey. CMAJ 185, E417-23 (2013). 1320 17. White, S.L., Polkinghorne, K.R., Atkins, R.C. & Chadban, S.J. Comparison of the prevalence 1321 and mortality risk of CKD in Australia using the CKD Epidemiology Collaboration (CKD-EPI) 1322 and Modification of Diet in Renal Disease (MDRD) Study GFR estimating equations: the 1323 AusDiab (Australian Diabetes, Obesity and Lifestyle) Study. Am J Kidney Dis 55, 660-70 1324 (2010). 18. Levey, A.S. & Coresh, J. Chronic kidney disease. Lancet 379, 165-80 (2012). 1325 Girndt, M., Trocchi, P., Scheidt-Nave, C., Markau, S. & Stang, A. The Prevalence of Renal 1326 19.
- 132619.Girndt, M., Trocchi, P., Scheidt-Nave, C., Markau, S. & Stang, A. The Prevalence of Renal1327Failure. Results from the German Health Interview and Examination Survey for Adults, 2008-13282011 (DEGS1). Dtsch Arztebl Int 113, 85-91 (2016).
- Bruck, K. et al. CKD Prevalence Varies across the European General Population. J Am Soc
 Nephrol 27, 2135-47 (2016).

1331		21. Fraser, S.D. et al. Exploration of chronic kidney disease prevalence estimates using new
1332		measures of kidney function in the health survey for England. <i>PLoS One</i> 10 , e0118676 (2015).
1333	22.	Glassock, R.J., Warnock, D.G. & Delanaye, P. The global burden of chronic kidney disease:
1334		estimates, variability and pitfalls. <i>Nat Rev Nephrol</i> 13 , 104-114 (2017).
1335	23.	Stanifer, J.W., Muiru, A., Jafar, T.H. & Patel, U.D. Chronic kidney disease in low- and middle-
1336		income countries. <i>Nephrol Dial Transplant</i> 31 , 868-74 (2016).
1337		24. Stanifer, J.W. et al. The epidemiology of chronic kidney disease in sub-Saharan Africa: a
1338		systematic review and meta-analysis. <i>Lancet Glob Health</i> 2 , e174-81 (2014).
1339	25.	Ene-lordache, B. et al. Chronic kidney disease and cardiovascular risk in six regions of the
1340		world (ISN-KDDC): a cross-sectional study. <i>Lancet Glob Health</i> 4 , e307-19 (2016).
1341	26.	Hill, N.R. et al. Global Prevalence of Chronic Kidney Disease - A Systematic Review and Meta-
1342	~ 7	Analysis. <i>PLoS One</i> 11 , e0158765 (2016).
1343	27.	Jha, V. et al. Chronic kidney disease: global dimension and perspectives. <i>Lancet</i> 382 , 260-72
1344		(2013).
1345	28.	Charlton, J.R., Springsteen, C.H. & Carmody, J.B. Nephron number and its determinants in
1346		early life: a primer. <i>Pediatr Nephrol</i> 29 , 2299-308 (2014).
1347	29.	Khalsa, D.D., Beydoun, H.A. & Carmody, J.B. Prevalence of chronic kidney disease risk factors
1348		among low birth weight adolescents. <i>Pediatr Nephrol</i> 31 , 1509-16 (2016).
1349		30. Gifford, F.J., Gifford, R.M., Eddleston, M. & Dhaun, N. Endemic Nephropathy Around the
1350	21	World. <i>Kidney Int Rep</i> 2 , 282-292 (2017).
1351	31.	Glaser, J. et al. Climate Change and the Emergent Epidemic of CKD from Heat Stress in Rural
1352		Communities: The Case for Heat Stress Nephropathy. <i>Clin J Am Soc Nephrol</i> 11 , 1472-83
1353 1254	32.	(2016). Jayasumana, C. et al. Chronic interstitial nephritis in agricultural communities: a worldwide
1354 1355	52.	epidemic with social, occupational and environmental determinants. <i>Nephrol Dial Transplant</i>
1355		32 , 234-241 (2017).
	2	
1357	3	3. ESPN/ERA-EDTA Registry. Annual Report. <u>www.espn-reg.org/index.jsp</u> (last accessed April 2017) (2014)
1358 1359	21	2017). (2014). Chesnaye, N. et al. Demographics of paediatric renal replacement therapy in Europe: a report
1359	34.	of the ESPN/ERA-EDTA registry. <i>Pediatr Nephrol</i> 29 , 2403-10 (2014).
1360	35.	Saran, R. et al. US Renal Data System 2016 Annual Data Report: Epidemiology of Kidney
1361	JJ.	Disease in the United States. <i>Am J Kidney Dis</i> 69 , A7-A8 (2017).
1363	36.	Harambat, J., van Stralen, K.J., Kim, J.J. & Tizard, E.J. Epidemiology of chronic kidney disease
1364	50.	in children. <i>Pediatr Nephrol</i> 27 , 363-73 (2012).
1365	37.	Levin, A. et al. Global kidney health 2017 and beyond: a roadmap for closing gaps in care,
1366	57.	research, and policy. Lancet (2017).
1367	38.	Bello, A.K. et al. Assessment of Global Kidney Health Care Status. JAMA 317 , 1864-1881
1368	50.	(2017).
1369	39.	Liyanage, T. et al. Worldwide access to treatment for end-stage kidney disease: a systematic
1370	55.	review. Lancet 385 , 1975-82 (2015).
1371	40.	Bertram, J.F., Douglas-Denton, R.N., Diouf, B., Hughson, M.D. & Hoy, W.E. Human nephron
1372		number: implications for health and disease. <i>Pediatr Nephrol</i> 26 , 1529-33 (2011).
1373		41. Brenner, B.M., Meyer, T.W. & Hostetter, T.H. Dietary protein intake and the progressive
1374		nature of kidney disease: the role of hemodynamically mediated glomerular injury in the
1375		pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal
1376		disease. N Engl J Med 307 , 652-9 (1982).
1377		42. Hostetter, T.H., Olson, J.L., Rennke, H.G., Venkatachalam, M.A. & Brenner, B.M.
1378		Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. <i>Am J</i>
1379		<i>Physiol</i> 241 , F85-93 (1981).
1380	43.	
1381	.51	the adult population of Morocco: how to avoid "over"- and "under"-diagnosis of CKD. <i>Kidney</i>
1382		Int 89 , 1363-71 (2016).

1383		44. Ruggenenti, P., Cravedi, P. & Remuzzi, G. Mechanisms and treatment of CKD. J Am Soc
1384		Nephrol 23 , 1917-28 (2012).
1385	45.	Laouari, D. et al. TGF-alpha mediates genetic susceptibility to chronic kidney disease. J Am
1386	40	Soc Nephrol 22 , 327-35 (2011).
1387	46.	Helal, I., Fick-Brosnahan, G.M., Reed-Gitomer, B. & Schrier, R.W. Glomerular hyperfiltration:
1388	47	definitions, mechanisms and clinical implications. <i>Nat Rev Nephrol</i> 8 , 293-300 (2012).
1389	47.	Grams, M.E. et al. Kidney-Failure Risk Projection for the Living Kidney-Donor Candidate. <i>N</i> Engl J Med 374 , 411-21 (2016).
1390 1391		48. Mueller, T.F. & Luyckx, V.A. The natural history of residual renal function in transplant
1391		donors. J Am Soc Nephrol 23, 1462-6 (2012).
1392	49.	D'Agati, V.D. et al. Obesity-related glomerulopathy: clinical and pathologic characteristics and
1394	45.	pathogenesis. Nat Rev Nephrol 12 , 453-71 (2016).
1395	50.	Park, S. et al. Midterm eGFR and Adverse Pregnancy Outcomes: The Clinical Significance of
1396		Gestational Hyperfiltration. <i>Clin J Am Soc Nephrol</i> (2017).
1397	51.	Tonneijck, L. et al. Glomerular Hyperfiltration in Diabetes: Mechanisms, Clinical Significance,
1398		and Treatment. J Am Soc Nephrol 28, 1023-1039 (2017).
1399	52.	Denic, A. et al. The Substantial Loss of Nephrons in Healthy Human Kidneys with Aging. J Am
1400		Soc Nephrol 28 , 313-320 (2017).
1401		53. Hodgin, J.B. et al. Glomerular Aging and Focal Global Glomerulosclerosis: A Podometric
1402		Perspective. <i>J Am Soc Nephrol</i> 26 , 3162-78 (2015).
1403	54.	Kriz, W. & Lemley, K.V. The role of the podocyte in glomerulosclerosis. Curr Opin Nephrol
1404		Hypertens 8 , 489-97 (1999).
1405	55.	Kriz, W. & Lemley, K.V. A potential role for mechanical forces in the detachment of podocytes
1406		and the progression of CKD. J Am Soc Nephrol 26, 258-69 (2015).
1407	56.	Benigni, A., Gagliardini, E. & Remuzzi, G. Changes in glomerular perm-selectivity induced by
1408		angiotensin II imply podocyte dysfunction and slit diaphragm protein rearrangement. Semin
1409		Nephrol 24 , 131-40 (2004).
1410		57. Rizzo, P. et al. Nature and mediators of parietal epithelial cell activation in
1411	го	glomerulonephritides of human and rat. <i>Am J Pathol</i> 183 , 1769-78 (2013).
1412 1413	58.	Abbate, M. et al. Transforming growth factor-beta1 is up-regulated by podocytes in response to excess intraglomerular passage of proteins: a central pathway in progressive
1415		glomerulosclerosis. Am J Pathol 161 , 2179-93 (2002).
1415	59.	Abbate, M., Zoja, C. & Remuzzi, G. How does proteinuria cause progressive renal damage? J
1416	55.	Am Soc Nephrol 17 , 2974-84 (2006).
1417	60.	Peired, A. et al. Proteinuria impairs podocyte regeneration by sequestering retinoic acid. J
1418		Am Soc Nephrol 24 , 1756-68 (2013).
1419	61.	Smeets, B. et al. Parietal epithelial cells participate in the formation of sclerotic lesions in
1420		focal segmental glomerulosclerosis. J Am Soc Nephrol 22, 1262-74 (2011).
1421	62.	Schnaper, H.W. The Tubulointerstitial Pathophysiology of Progressive Kidney Disease. Adv
1422		Chronic Kidney Dis 24 , 107-116 (2017).
1423	63.	Kaissling, B., Lehir, M. & Kriz, W. Renal epithelial injury and fibrosis. Biochim Biophys Acta
1424		1832 , 931-9 (2013).
1425	64.	Brenner, B.M., Garcia, D.L. & Anderson, S. Glomeruli and blood pressure. Less of one, more
1426		the other? Am J Hypertens 1, 335-47 (1988).
1427	65.	de Jong, F., Monuteaux, M.C., van Elburg, R.M., Gillman, M.W. & Belfort, M.B. Systematic
1428		review and meta-analysis of preterm birth and later systolic blood pressure. Hypertension 59,
1429		226-34 (2012).
1430	66.	Low Birth, W. & Nephron Number Working, G. The Impact of Kidney Development on the Life
1431		Course: A Consensus Document for Action. <i>Nephron</i> 136 , 3-49 (2017).
1432	67.	
1433		global concern. <i>Nat Rev Nephrol</i> 11 , 135-49 (2015).

1434 1435	68.	White, S.L. et al. Is low birth weight an antecedent of CKD in later life? A systematic review of observational studies. <i>Am J Kidney Dis</i> 54 , 248-61 (2009).
1435	69.	· · ·
	69.	Hirano, D. et al. Association between low birth weight and childhood-onset chronic kidney
1437		disease in Japan: a combined analysis of a nationwide survey for paediatric chronic kidney
1438		disease and the National Vital Statistics Report. <i>Nephrol Dial Transplant</i> 31 , 1895-1900
1439	70	(2016).
1440	70.	Ruggajo, P. et al. Low Birth Weight and Risk of Progression to End Stage Renal Disease in IgA
1441		NephropathyA Retrospective Registry-Based Cohort Study. <i>PLoS One</i> 11 , e0153819 (2016).
1442		71. Becherucci, F., Roperto, R.M., Materassi, M. & Romagnani, P. Chronic kidney disease in
1443		children. <i>Clin Kidney J</i> 9 , 583-91 (2016).
1444	72.	Luyckx, V.A. et al. A developmental approach to the prevention of hypertension and kidney
1445		disease: a report from the Low Birth Weight and Nephron Number Working Group. Lancet
1446		(2017).
1447		73. Keller, G., Zimmer, G., Mall, G., Ritz, E. & Amann, K. Nephron number in patients with
1448		primary hypertension. N Engl J Med 348 , 101-8 (2003).
1449		74. Nicolaou, N., Renkema, K.Y., Bongers, E.M., Giles, R.H. & Knoers, N.V. Genetic,
1450		environmental, and epigenetic factors involved in CAKUT. Nat Rev Nephrol 11, 720-31 (2015).
1451		75. Cain, J.E., Di Giovanni, V., Smeeton, J. & Rosenblum, N.D. Genetics of renal hypoplasia:
1452		insights into the mechanisms controlling nephron endowment. <i>Pediatr Res</i> 68, 91-8 (2010).
1453		76. Uy, N. & Reidy, K. Developmental Genetics and Congenital Anomalies of the Kidney and
1454		Urinary Tract. J Pediatr Genet 5, 51-60 (2016).
1455		77. Vivante, A. & Hildebrandt, F. Exploring the genetic basis of early-onset chronic kidney
1456		disease. <i>Nat Rev Nephrol</i> 12 , 133-46 (2016).
1457		78. Eckardt, K.U. et al. Autosomal dominant tubulointerstitial kidney disease: diagnosis,
1458		classification, and managementA KDIGO consensus report. Kidney Int 88, 676-83 (2015).
1459	79	
1460		disease. Nat Genet 41 , 712-7 (2009).
1461	80.	
1462		Genet 13 , 78 (2012).
1463	81.	Trudu, M. et al. Common noncoding UMOD gene variants induce salt-sensitive hypertension
1464		and kidney damage by increasing uromodulin expression. Nat Med 19 , 1655-60 (2013).
1465		82. Dummer, P.D. et al. APOL1 Kidney Disease Risk Variants: An Evolving Landscape. Semin
1466		Nephrol 35 , 222-36 (2015).
1467		83. Kruzel-Davila, E. et al. APOL1-Mediated Cell Injury Involves Disruption of Conserved
1468		Trafficking Processes. J Am Soc Nephrol 28, 1117-1130 (2017).
1469		84. Beckerman, P. et al. Transgenic expression of human APOL1 risk variants in podocytes
1470		induces kidney disease in mice. Nat Med 23, 429-438 (2017).
1471	85.	Denic, A. et al. Single-Nephron Glomerular Filtration Rate in Healthy Adults. N Engl J Med
1472		376 , 2349-2357 (2017).
1473	86.	Lu, J.L. et al. Association of age and BMI with kidney function and mortality: a cohort study.
1474		Lancet Diabetes Endocrinol 3 , 704-14 (2015).
1475	87.	Kramer, H. et al. Waist Circumference, Body Mass Index, and ESRD in the REGARDS (Reasons
1476		for Geographic and Racial Differences in Stroke) Study. Am J Kidney Dis 67, 62-9 (2016).
1477	88.	Chang, A. et al. Lifestyle-related factors, obesity, and incident microalbuminuria: the CARDIA
1478		(Coronary Artery Risk Development in Young Adults) study. Am J Kidney Dis 62, 267-75
1479		(2013).
1480	89.	Ejerblad, E. et al. Obesity and risk for chronic renal failure. J Am Soc Nephrol 17, 1695-702
1481		(2006).
1482		90. Foster, M.C. et al. Overweight, obesity, and the development of stage 3 CKD: the
1483		Framingham Heart Study. Am J Kidney Dis 52, 39-48 (2008).
1484	91.	Vivante, A. et al. Body mass index in 1.2 million adolescents and risk for end-stage renal
1485		disease. Arch Intern Med 172, 1644-50 (2012).

1486 92. Dunlop, W. Serial changes in renal haemodynamics during normal human pregnancy. Br J 1487 *Obstet Gynaecol* **88**, 1-9 (1981). Moran, P., Baylis, P.H., Lindheimer, M.D. & Davison, J.M. Glomerular ultrafiltration in normal 1488 93. and preeclamptic pregnancy. J Am Soc Nephrol 14, 648-52 (2003). 1489 1490 94. Anders, H.J., Davis, J.M. & Thurau, K. Nephron Protection in Diabetic Kidney Disease. N Engl J 1491 Med 375, 2096-2098 (2016). 95. 1492 Vallon, V. The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus. 1493 Annu Rev Med 66, 255-70 (2015). 1494 96. van Bommel, E.J. et al. SGLT2 Inhibition in the Diabetic Kidney-From Mechanisms to Clinical Outcome. Clin J Am Soc Nephrol 12, 700-710 (2017). 1495 1496 97. Anguiano Gomez, L., Lei, Y., Devarapu, S.K. & Anders, H.J. The diabetes pandemic suggests 1497 unmet needs for 'CKD with diabetes' in addition to 'diabetic nephropathy'. Implications for 1498 pre-clinical research and drug testing. *Nephrol Dial Transplant* in press (2017). 1499 98. Wanner, C. et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N Engl J 1500 Med 375, 323-34 (2016). 1501 99. Bellomo, R., Kellum, J.A. & Ronco, C. Acute kidney injury. Lancet 380, 756-66 (2012). 1502 100. Venkatachalam, M.A., Weinberg, J.M., Kriz, W. & Bidani, A.K. Failed Tubule Recovery, AKI-1503 CKD Transition, and Kidney Disease Progression. J Am Soc Nephrol 26, 1765-76 (2015). 1504 101. Barton, A.L., Mallard, A.S. & Parry, R.G. One Year's Observational Study of Acute Kidney 1505 Injury Incidence in Primary Care; Frequency of Follow-Up Serum Creatinine and Mortality 1506 Risk. Nephron 130, 175-81 (2015). 1507 102. Eckardt, K.U. et al. Evolving importance of kidney disease: from subspecialty to global health burden. Lancet 382, 158-69 (2013). 1508 1509 103. Lasagni, L., Lazzeri, E., Shankland, S.J., Anders, H.J. & Romagnani, P. Podocyte mitosis - a 1510 catastrophe. Curr Mol Med 13, 13-23 (2013). 104. 1511 Liapis, H., Romagnani, P. & Anders, H.J. New insights into the pathology of podocyte loss: 1512 mitotic catastrophe. Am J Pathol 183, 1364-74 (2013). 1513 105. Portale, A.A. et al. Disordered FGF23 and mineral metabolism in children with CKD. Clin J Am 1514 Soc Nephrol 9, 344-53 (2014). Denburg, M.R. et al. Fracture Burden and Risk Factors in Childhood CKD: Results from the 1515 106. 1516 CKiD Cohort Study. J Am Soc Nephrol 27, 543-50 (2016). 1517 107. Flynn, J.T. et al. Blood pressure in children with chronic kidney disease: a report from the 1518 Chronic Kidney Disease in Children study. *Hypertension* 52, 631-7 (2008). 1519 Foley, R.N., Parfrey, P.S. & Sarnak, M.J. Clinical epidemiology of cardiovascular disease in 108. 1520 chronic renal disease. Am J Kidney Dis 32, S112-9 (1998). 1521 109. Raschenberger, J. et al. Association of relative telomere length with cardiovascular disease in 1522 a large chronic kidney disease cohort: the GCKD study. Atherosclerosis 242, 529-34 (2015). 1523 110. Grabner, A. et al. Activation of Cardiac Fibroblast Growth Factor Receptor 4 Causes Left 1524 Ventricular Hypertrophy. Cell Metab 22, 1020-32 (2015). 1525 111. de Jager, D.J. et al. Cardiovascular and noncardiovascular mortality among patients starting 1526 dialysis. JAMA 302, 1782-9 (2009). 1527 112. De Cosmo, S., Menzaghi, C., Prudente, S. & Trischitta, V. Role of insulin resistance in kidney 1528 dysfunction: insights into the mechanism and epidemiological evidence. Nephrol Dial 1529 Transplant 28, 29-36 (2013). 113. 1530 Cozzolino, M., Ketteler, M. & Zehnder, D. The vitamin D system: a crosstalk between the 1531 heart and kidney. Eur J Heart Fail 12, 1031-41 (2010). Vervloet, M. & Cozzolino, M. Vascular calcification in chronic kidney disease: different bricks 1532 114. 1533 in the wall? *Kidney Int* **91**, 808-817 (2017). 1534 Carrero, J.J. et al. Etiology of the protein-energy wasting syndrome in chronic kidney disease: 115. 1535 a consensus statement from the International Society of Renal Nutrition and Metabolism 1536 (ISRNM). J Ren Nutr 23, 77-90 (2013).

1537	116.	Massy, Z.A., Metzinger-Le Meuth, V. & Metzinger, L. MicroRNAs Are Associated with Uremic
1538		Toxicity, Cardiovascular Calcification, and Disease. Contrib Nephrol 189, 160-168 (2017).
1539		117. Buglioni, A. & Burnett, J.C., Jr. Pathophysiology and the cardiorenal connection in heart
1540		failure. Circulating hormones: biomarkers or mediators. Clin Chim Acta 443, 3-8 (2015).
1541		118. Buchanan, C. et al. Intradialytic Cardiac Magnetic Resonance Imaging to Assess
1542		Cardiovascular Responses in a Short-Term Trial of Hemodiafiltration and Hemodialysis. J Am
1543		Soc Nephrol 28 , 1269-1277 (2017).
1544		119. van der Heijden, B.J., van Dijk, P.C., Verrier-Jones, K., Jager, K.J. & Briggs, J.D. Renal
1545		replacement therapy in children: data from 12 registries in Europe. Pediatr Nephrol 19, 213-
1546		21 (2004).
1547	120.	Tonshoff, B., Kiepe, D. & Ciarmatori, S. Growth hormone/insulin-like growth factor system in
1548		children with chronic renal failure. <i>Pediatr Nephrol</i> 20 , 279-89 (2005).
1549	121.	Rule, A.D. et al. For estimating creatinine clearance measuring muscle mass gives better
1550		results than those based on demographics. <i>Kidney Int</i> 75 , 1071-8 (2009).
1551	122.	Rule, A.D. & Glassock, R.J. GFR estimating equations: getting closer to the truth? Clin J Am
1552		Soc Nephrol 8 , 1414-20 (2013).
1553	123.	Stevens, L.A. et al. Factors other than glomerular filtration rate affect serum cystatin C levels.
1554		Kidney Int 75 , 652-60 (2009).
1555		124. Inker, L.A. et al. Performance of glomerular filtration rate estimating equations in a
1556		community-based sample of Blacks and Whites: the multiethnic study of atherosclerosis.
1557		Nephrol Dial Transplant (2017).
1558	125.	Praditpornsilpa, K. et al. The need for robust validation for MDRD-based glomerular filtration
1559		rate estimation in various CKD populations. Nephrol Dial Transplant 26, 2780-5 (2011).
1560	126.	Inker, L.A. et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N
1561		Engl J Med 367 , 20-9 (2012).
1562	127.	Pottel, H. et al. An estimated glomerular filtration rate equation for the full age spectrum.
1563		Nephrol Dial Transplant 31 , 798-806 (2016).
1564	128.	Delanaye, P. et al. Iohexol plasma clearance for measuring glomerular filtration rate in clinical
1565		practice and research: a review. Part 1: How to measure glomerular filtration rate with
1566		iohexol? <i>Clin Kidney J</i> 9 , 682-99 (2016).
1567	129.	Delanaye, P. et al. Iohexol plasma clearance for measuring glomerular filtration rate in clinical
1568		practice and research: a review. Part 2: Why to measure glomerular filtration rate with
1569		iohexol? <i>Clin Kidney J</i> 9 , 700-4 (2016).
1570		130. Hommos, M.S., GLassock, R.J. & Rule, A.D. Structrual and functional changes in human
1571		kidneys with healthy aging. J Am Soc Nephrol (2017).
1572	1	31. Matsushita, K. et al. Estimated glomerular filtration rate and albuminuria for prediction of
1573		cardiovascular outcomes: a collaborative meta-analysis of individual participant data. Lancet
1574		Diabetes Endocrinol 3 , 514-25 (2015).
1575	132.	Fotheringham, J., Campbell, M.J., Fogarty, D.G., El Nahas, M. & Ellam, T. Estimated albumin
1576		excretion rate versus urine albumin-creatinine ratio for the estimation of measured albumin
1577		excretion rate: derivation and validation of an estimated albumin excretion rate equation.
1578		Am J Kidney Dis 63 , 405-14 (2014).
1579	133.	Glassock, R.J. Evaluation of proteinuria redux. <i>Kidney Int</i> 90 , 938-940 (2016).
1580	134.	Azurmendi, P.J. et al. Early renal and vascular changes in ADPKD patients with low-grade
1581	104.	albumin excretion and normal renal function. <i>Nephrol Dial Transplant</i> 24 , 2458-63 (2009).
1582	135.	Clark, W.F. et al. Dipstick proteinuria as a screening strategy to identify rapid renal decline. J
1583	155.	Am Soc Nephrol 22, 1729-36 (2011).
1584	136.	Glassock, R.J., Fervenza, F.C., Hebert, L. & Cameron, J.S. Nephrotic syndrome redux. <i>Nephrol</i>
1585	150.	Dial Transplant 30 , 12-7 (2015).
1586		137. Glassock, R.J. Con: kidney biopsy: an irreplaceable tool for patient management in
1587		nephrology. Nephrol Dial Transplant 30 , 528-31 (2015).

1588		138. Jin, B. et al. The spectrum of biopsy-proven kidney diseases in elderly Chinese patients.
1589		Nephrol Dial Transplant 29 , 2251-9 (2014).
1590	139.	Xu, D.M., Chen, M., Zhou, F.D. & Zhao, M.H. Risk Factors for Severe Bleeding Complications in
1591		Percutaneous Renal Biopsy. <i>Am J Med Sci</i> 353 , 230-235 (2017).
1592		140. Siwy, J. et al. Noninvasive diagnosis of chronic kidney diseases using urinary proteome analysis. <i>Nephrol Dial Transplant</i> (2016).
1593		
1594		141. Li, J., An, C., Kang, L., Mitch, W.E. & Wang, Y. Recent Advances in Magnetic Resonance
1595	140	Imaging Assessment of Renal Fibrosis. <i>Adv Chronic Kidney Dis</i> 24 , 150-153 (2017).
1596	142.	Becherucci, F. et al. Lessons from genetics: is it time to revise the therapeutic approach to
1597	1.4	children with steroid-resistant nephrotic syndrome? <i>J Nephrol</i> 29 , 543-50 (2016). I3. Peralta, C.A. & Estrella, M.M. Preventive nephrology in the era of "I" evidence: should we
1598	14	
1599	1.4	screen for chronic kidney disease? <i>Kidney Int</i> 92 , 19-21 (2017).
1600	14	
1601	1 4 5	PLoS Med 9, e1001345 (2012).
1602	145.	Moyer, V.A. & Force, U.S.P.S.T. Screening for chronic kidney disease: U.S. Preventive Services
1603	140	Task Force recommendation statement. <i>Ann Intern Med</i> 157 , 567-70 (2012).
1604	146.	Fink, H.A. et al. Screening for, monitoring, and treatment of chronic kidney disease stages 1
1605		to 3: a systematic review for the U.S. Preventive Services Task Force and for an American
1606	4 4 7	College of Physicians Clinical Practice Guideline. <i>Ann Intern Med</i> 156 , 570-81 (2012).
1607	147.	Caley, M., Chohan, P., Hooper, J. & Wright, N. The impact of NHS Health Checks on the
1608		prevalence of disease in general practices: a controlled study. Br J Gen Pract 64, e516-21
1609	4.40	(2014).
1610	148.	Imai, E. et al. Kidney disease screening program in Japan: history, outcome, and perspectives.
1611		Clin J Am Soc Nephrol 2 , 1360-6 (2007).
1612		149. Khwaja, A. & Throssell, D. A critique of the UK NICE guidance for the detection and
1613		management of individuals with chronic kidney disease. <i>Nephron Clin Pract</i> 113 , c207-13
1614	150	(2009).
1615	150.	Smith, J.M., Mott, S.A., Hoy, W.E. & International Federation of Kidney, F. Status of chronic
1616		kidney disease prevention programs: International Federation of Kidney Foundation
1617	4.5	Members 2005/2007. <i>Kidney Int</i> 74 , 1516-25 (2008).
1618 1619	15	 Tonelli, M. et al. How to advocate for the inclusion of chronic kidney disease in a national noncommunicable chronic disease program. <i>Kidney Int</i> 85, 1269-74 (2014).
1619		
1620		152. Hoerger, T.J. et al. A health policy model of CKD: 2. The cost-effectiveness of microalbuminuria screening. <i>Am J Kidney Dis</i> 55 , 463-73 (2010).
1622		153. Perkovic, V. et al. Management of patients with diabetes and CKD: conclusions from a
1622		"Kidney Disease: Improving Global Outcomes" (KDIGO) Controversies Conference. <i>Kidney Int</i>
1625		90 , 1175-1183 (2016).
1625	15/	Ozyilmaz, A. et al. Screening for albuminuria with subsequent screening for hypertension and
1625	154.	hypercholesterolaemia identifies subjects in whom treatment is warranted to prevent
1627		cardiovascular events. <i>Nephrol Dial Transplant</i> 28 , 2805-15 (2013).
1628	155.	Tanaka, F. et al. Low-grade albuminuria and incidence of cardiovascular disease and all-cause
1628	155.	mortality in nondiabetic and normotensive individuals. J Hypertens 34 , 506-12; discussion
1630		512 (2016).
	156	
1631	156.	Shardlow, A., McIntyre, N.J., Fluck, R.J., McIntyre, C.W. & Taal, M.W. Chronic Kidney Disease
1632		in Primary Care: Outcomes after Five Years in a Prospective Cohort Study. <i>PLoS Med</i> 13 ,
1633	157	e1002128 (2016).
1634 1635	157.	Grams, M.E. et al. Race, APOL1 Risk, and eGFR Decline in the General Population. J Am Soc Nanhrol 27, 2842-50 (2016)
1635	158.	Nephrol 27, 2842-50 (2016). Kovesdy, C.P., Furth, S.L., Zoccali, C. & World Kidney Day Steering, C. Obesity and Kidney
1630	130.	Disease: Hidden Consequences of the Epidemic. Can J Kidney Health Dis 4,
1638		2054358117698669 (2017).

1639 159. de Galan, B.E. et al. Lowering blood pressure reduces renal events in type 2 diabetes. J Am 1640 Soc Nephrol 20, 883-92 (2009). Oellgaard, J. et al. Intensified multifactorial intervention in type 2 diabetics with 1641 160. microalbuminuria leads to long-term renal benefits. Kidney Int 91, 982-988 (2017). 1642 1643 161. Perkovic, V. et al. Intensive glucose control improves kidney outcomes in patients with type 2 1644 diabetes. Kidney Int 83, 517-23 (2013). 162. 1645 Gross, O. et al. Early angiotensin-converting enzyme inhibition in Alport syndrome delays 1646 renal failure and improves life expectancy. Kidney Int 81, 494-501 (2012). 1647 163. Schievink, B. et al. Early renin-angiotensin system intervention is more beneficial than late 1648 intervention in delaying end-stage renal disease in patients with type 2 diabetes. *Diabetes* 1649 Obes Metab 18, 64-71 (2016). 1650 164. Oliveira, B., Kleta, R., Bockenhauer, D. & Walsh, S.B. Genetic, pathophysiological, and clinical 1651 aspects of nephrocalcinosis. Am J Physiol Renal Physiol 311, F1243-F1252 (2016). 1652 165. Trautmann, A. et al. Spectrum of steroid-resistant and congenital nephrotic syndrome in 1653 children: the PodoNet registry cohort. Clin J Am Soc Nephrol 10, 592-600 (2015). 1654 166. Noris, M. & Remuzzi, G. Glomerular Diseases Dependent on Complement Activation, 1655 Including Atypical Hemolytic Uremic Syndrome, Membranoproliferative Glomerulonephritis, and C3 Glomerulopathy: Core Curriculum 2015. Am J Kidney Dis 66, 359-75 (2015). 1656 167. Hildebrand, A.M., Huang, S.H. & Clark, W.F. Plasma exchange for kidney disease: what is the 1657 1658 best evidence? Adv Chronic Kidney Dis 21, 217-27 (2014). 168. Rauen, T. et al. Intensive Supportive Care plus Immunosuppression in IgA Nephropathy. N 1659 1660 Engl J Med 373, 2225-36 (2015). Staplin, N. et al. Smoking and Adverse Outcomes in Patients With CKD: The Study of Heart 1661 169. 1662 and Renal Protection (SHARP). Am J Kidney Dis 68, 371-80 (2016). 1663 170. Cravedi, P., Ruggenenti, P. & Remuzzi, G. Intensified inhibition of renin-angiotensin system: a 1664 way to improve renal protection? Curr Hypertens Rep 9, 430-6 (2007). 1665 171. Schrier, R.W. et al. Blood pressure in early autosomal dominant polycystic kidney disease. N 1666 Engl J Med 371, 2255-66 (2014). Weir, M.R. et al. Effectiveness of patiromer in the treatment of hyperkalemia in chronic 1667 172. 1668 kidney disease patients with hypertension on diuretics. J Hypertens 35 Suppl 1, S57-S63 1669 (2017). 1670 173. Holtkamp, F.A. et al. An acute fall in estimated glomerular filtration rate during treatment 1671 with losartan predicts a slower decrease in long-term renal function. Kidney Int 80, 282-7 1672 (2011). 1673 174. Ruggenenti, P. et al. Role of remission clinics in the longitudinal treatment of CKD. J Am Soc Nephrol 19, 1213-24 (2008). 1674 175. 1675 Daina, E. et al. A multidrug, antiproteinuric approach to alport syndrome: a ten-year cohort 1676 study. Nephron 130, 13-20 (2015). 1677 176. Li, K. et al. Effects of Bariatric Surgery on Renal Function in Obese Patients: A Systematic 1678 Review and Meta Analysis. PLoS One 11, e0163907 (2016). 1679 Guideline development, g. Clinical Practice Guideline on management of patients with 177. diabetes and chronic kidney disease stage 3b or higher (eGFR <45 mL/min). Nephrol Dial 1680 1681 *Transplant* **30** Suppl **2**, ii1-142 (2015). 1682 178. Neal, B. et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J 1683 Med (2017). 179. Zinman, B. et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N 1684 1685 Engl J Med 373, 2117-28 (2015). 180. Wanner, C., Amann, K. & Shoji, T. The heart and vascular system in dialysis. Lancet 388, 276-1686 1687 84 (2016). 1688 181. Rossignol, P. et al. Cardiovascular outcome trials in patients with chronic kidney disease: 1689 challenges associated with selection of patients and endpoints. Eur Heart J (2017).

- 1690 182. Xu, X. et al. Efficacy of Folic Acid Therapy on the Progression of Chronic Kidney Disease: The
 1691 Renal Substudy of the China Stroke Primary Prevention Trial. JAMA Intern Med 176, 1443 1692 1450 (2016).
- 1693 183. Baigent, C. et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. *Lancet* **377**, 2181-92 (2011).
- 1696
 184. Cholesterol Treatment Trialists, C. et al. Impact of renal function on the effects of LDL cholesterol lowering with statin-based regimens: a meta-analysis of individual participant data from 28 randomised trials. *Lancet Diabetes Endocrinol* 4, 829-39 (2016).
- 1699 185. Fellstrom, B.C. et al. Rosuvastatin and cardiovascular events in patients undergoing 1700 hemodialysis. *N Engl J Med* **360**, 1395-407 (2009).
- 1701 186. Wanner, C. et al. Atorvastatin in patients with type 2 diabetes mellitus undergoing 1702 hemodialysis. *N Engl J Med* **353**, 238-48 (2005).
- 1703 187. Kidney Disease: Improving Global Outcomes (KDIGO) Anemia Work Group. KDIGO Clinical
 1704 Practice Guideline for Anemia in Chronic Kidney Disease. . *Kidney inter., Suppl.* 2, 279-335
 1705 (2012).
- 1706 188. Kidney Disease: Improving Global Outcomes (KDIGO) Blood Pressure Work Group. KDIGO
 1707 Clinical Practice Guideline for the Management of Blood Pressure in Chronic Kidney Disease. .
 1708 *Kidney inter., Suppl.* 2, 337-414 (2012).
- 1709 189. KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and 1710 Treatment of Chronic Kidney Disease–Mineral and Bone Disorder (CKD-MBD) *Kidney Int* 1711 Suppl 7, 1-59 (2017).
- 1712 190. Sumida, K. & Kovesdy, C.P. Disease Trajectories Before ESRD: Implications for Clinical
 1713 Management. Semin Nephrol **37**, 132-143 (2017).
- 1714 191. Ricardo, A.C. et al. Influence of Nephrologist Care on Management and Outcomes in Adults
 1715 with Chronic Kidney Disease. *J Gen Intern Med* **31**, 22-9 (2016).
- 1716 192. Kolff, W.J. The artificial kidney. *J Mt Sinai Hosp N Y* **14**, 71-9 (1947).

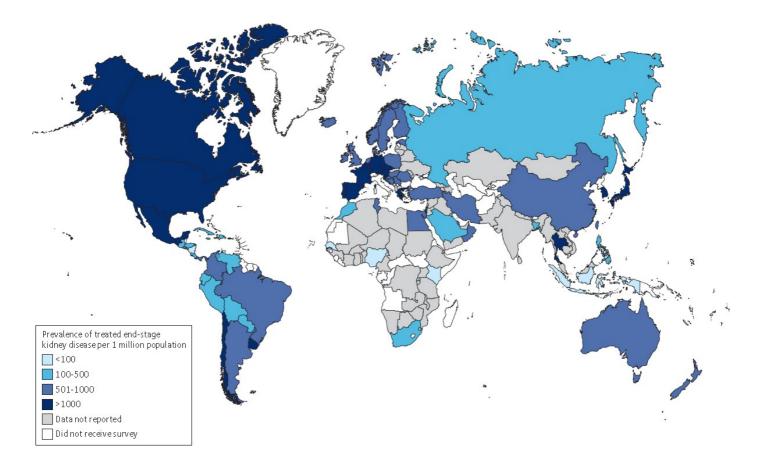
1724

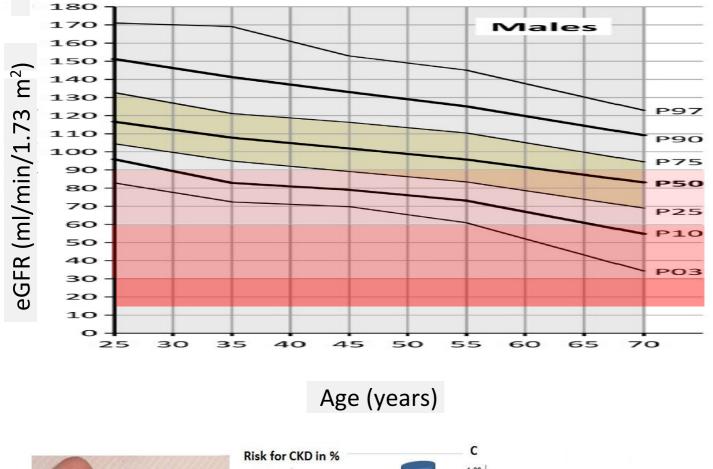
- 1717
 193. Tordoir, J. et al. EBPG on Vascular Access. Nephrol Dial Transplant 22 Suppl 2, ii88-117

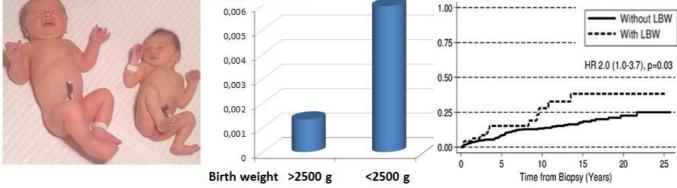
 1718
 (2007).
- 1719194. Ravani, P. et al. Associations between hemodialysis access type and clinical outcomes: a1720systematic review. J Am Soc Nephrol 24, 465-73 (2013).
- 1721 195. Xue, H. et al. Hemodialysis access usage patterns in the incident dialysis year and associated catheter-related complications. *Am J Kidney Dis* 61, 123-30 (2013).
 1723 196. Alencar de Pinho, N. et al. Vascular access conversion and patient outcome after
 - 196. Alencar de Pinho, N. et al. Vascular access conversion and patient outcome after hemodialysis initiation with a nonfunctional arteriovenous access: a prospective registry-based study. *BMC Nephrol* **18**, 74 (2017).
- 1726197. Wallace, E.L. et al. Catheter Insertion and Perioperative Practices Within the ISPD North1727American Research Consortium. Perit Dial Int **36**, 382-6 (2016).
- 1728198.Leurs, P., Machowska, A. & Lindholm, B. Timing of dialysis initiation: when to start? Which1729treatment? J Ren Nutr 25, 238-41 (2015).
- 1730 199. Abramowicz, D. et al. European Renal Best Practice Guideline on kidney donor and recipient
 1731 evaluation and perioperative care. *Nephrol Dial Transplant* **30**, 1790-7 (2015).
- Sebille, V. et al. Prospective, multicenter, controlled study of quality of life, psychological adjustment process and medical outcomes of patients receiving a preemptive kidney transplant compared to a similar population of recipients after a dialysis period of less than three years--The PreKit-QoL study protocol. *BMC Nephrol* **17**, 11 (2016).
- 1736201. Chang, P. et al. Living donor age and kidney allograft half-life: implications for living donor1737paired exchange programs. Clin J Am Soc Nephrol 7, 835-41 (2012).
- 1738202.Allen, P.J. et al. Recurrent glomerulonephritis after kidney transplantation: risk factors and1739allograft outcomes. *Kidney Int* (2017).

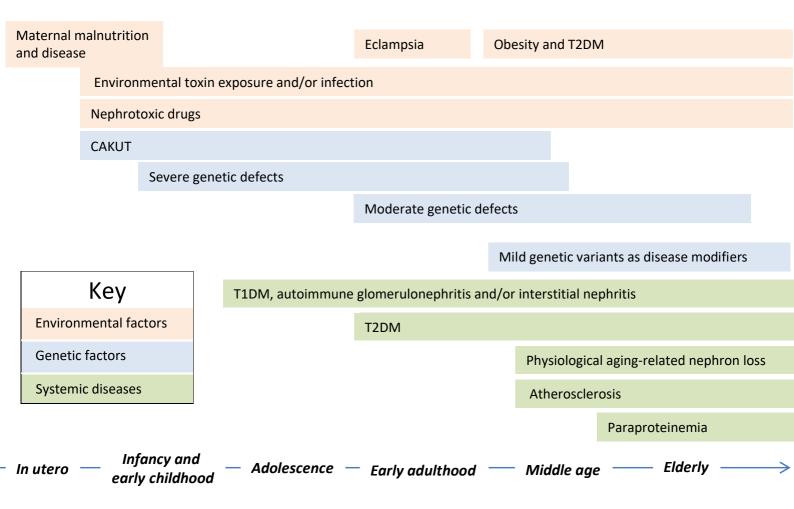
- 1740 203. Carson, R.C., Juszczak, M., Davenport, A. & Burns, A. Is maximum conservative management 1741 an equivalent treatment option to dialysis for elderly patients with significant comorbid 1742 disease? *Clin J Am Soc Nephrol* **4**, 1611-9 (2009).
- 1743 204. Morton, R.L. et al. Conservative Management and End-of-Life Care in an Australian Cohort 1744 with ESRD. *Clin J Am Soc Nephrol* **11**, 2195-2203 (2016).
- Verberne, W.R. et al. Comparative Survival among Older Adults with Advanced Kidney
 Disease Managed Conservatively Versus with Dialysis. *Clin J Am Soc Nephrol* 11, 633-40
 (2016).
- 1748206.Crail, S., Walker, R., Brown, M. & Renal Supportive Care working, g. Renal supportive and1749palliative care: position statement. Nephrology (Carlton) 18, 393-400 (2013).
- Birmele, B. et al. Death after withdrawal from dialysis: the most common cause of death in a
 French dialysis population. *Nephrol Dial Transplant* **19**, 686-91 (2004).
- 1752208.Cox, K.J., Parshall, M.B., Hernandez, S.H., Parvez, S.Z. & Unruh, M.L. Symptoms among1753patients receiving in-center hemodialysis: A qualitative study. *Hemodial Int* (2016).
- 1754 209. Jesky, M.D. et al. Health-Related Quality of Life Impacts Mortality but Not Progression to
 1755 End-Stage Renal Disease in Pre-Dialysis Chronic Kidney Disease: A Prospective Observational
 1756 Study. *PLoS One* **11**, e0165675 (2016).
- 1757 210. Rebollo Rubio, A., Morales Asencio, J.M. & Eugenia Pons Raventos, M. Depression, anxiety
 1758 and health-related quality of life amongst patients who are starting dialysis treatment. *J Ren*1759 *Care* (2017).
- 1760 211. Davison, S.N., Jhangri, G.S. & Johnson, J.A. Cross-sectional validity of a modified Edmonton
 1761 symptom assessment system in dialysis patients: a simple assessment of symptom burden.
 1762 *Kidney Int* 69, 1621-5 (2006).
- 1763 212. Davison, S.N. Pain in hemodialysis patients: prevalence, cause, severity, and management.
 1764 Am J Kidney Dis 42, 1239-47 (2003).
- Pereira, B.D.S. et al. Beyond quality of life: a cross sectional study on the mental health of patients with chronic kidney disease undergoing dialysis and their caregivers. *Health Qual Life Outcomes* 15, 74 (2017).
- 1768214. Tonelli, M. The roads less traveled? Diverging research and clinical priorities for dialysis1769patients and those with less severe CKD. Am J Kidney Dis 63, 124-32 (2014).
- 1770 215. Tinetti, M.E., Fried, T.R. & Boyd, C.M. Designing health care for the most common chronic condition--multimorbidity. *JAMA* 307, 2493-4 (2012).
- 1772 216. Cabrera, V.J., Hansson, J., Kliger, A.S. & Finkelstein, F.O. Symptom Management of the
 1773 Patient with CKD: The Role of Dialysis. *Clin J Am Soc Nephrol* **12**, 687-693 (2017).
- 1774 217. Manfredini, F. et al. Exercise in Patients on Dialysis: A Multicenter, Randomized Clinical Trial.
 1775 J Am Soc Nephrol 28, 1259-1268 (2017).
- 1776 218. Cameron, J.I., Whiteside, C., Katz, J. & Devins, G.M. Differences in quality of life across renal
 1777 replacement therapies: a meta-analytic comparison. *Am J Kidney Dis* **35**, 629-37 (2000).
- 1778 219. Iyasere, O.U. et al. Quality of Life and Physical Function in Older Patients on Dialysis: A
 1779 Comparison of Assisted Peritoneal Dialysis with Hemodialysis. *Clin J Am Soc Nephrol* 11, 4231780 30 (2016).
- 1781 220. Vanholder, R. et al. Reducing the costs of chronic kidney disease while delivering quality
 1782 health care: a call to action. *Nat Rev Nephrol* 13, 393-409 (2017).
- 1783 221. Dew, M.A. et al. Does transplantation produce quality of life benefits? A quantitative analysis
 1784 of the literature. *Transplantation* 64, 1261-73 (1997).
- 1785 222. Rhee, C.M., Brunelli, S.M., Subramanian, L. & Tentori, F. Measuring patient experience in dialysis: a new paradigm of quality assessment. *J Nephrol* (2017).
- 1787 223. Levin, A., Lancashire, W. & Fassett, R.G. Targets, trends, excesses, and deficiencies:
 1788 refocusing clinical investigation to improve patient outcomes. *Kidney Int* 83, 1001-9 (2013).
- Wuttke, M. & Kottgen, A. Insights into kidney diseases from genome-wide association
 studies. *Nat Rev Nephrol* 12, 549-62 (2016).

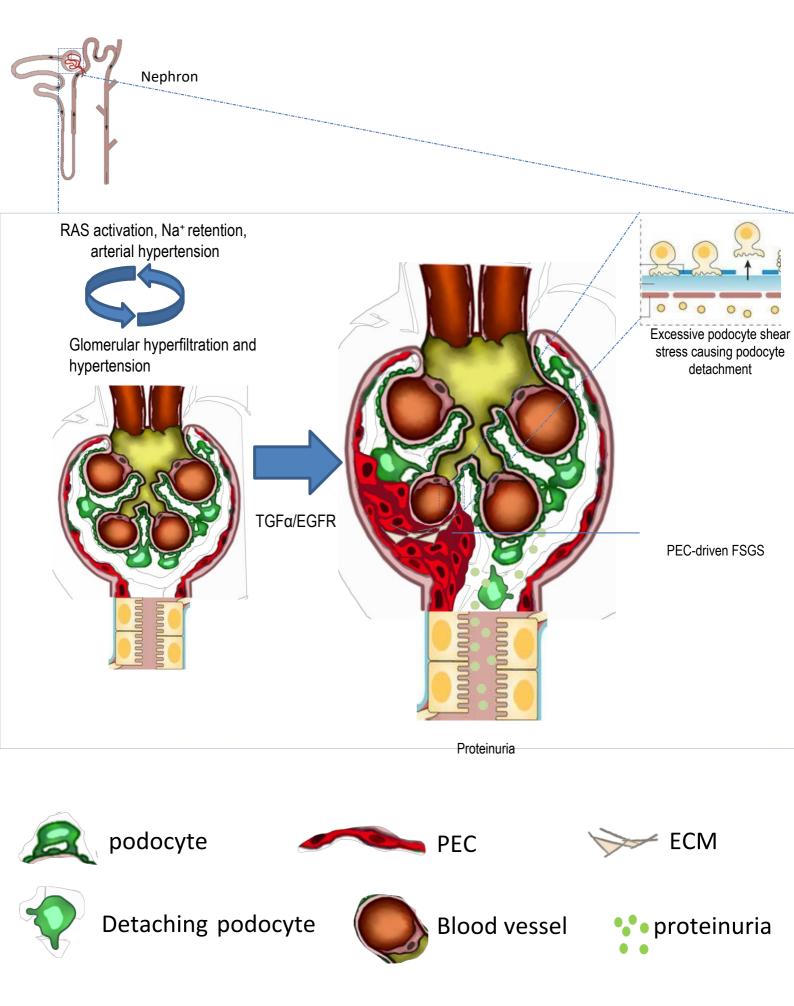
1791 225. Beeman, S.C. et al. MRI-based glomerular morphology and pathology in whole human 1792 kidneys. Am J Physiol Renal Physiol **306**, F1381-90 (2014). 1793 226. Boor, P., Ostendorf, T. & Floege, J. Renal fibrosis: novel insights into mechanisms and therapeutic targets. Nat Rev Nephrol 6, 643-56 (2010). 1794 1795 227. Tampe, D. & Zeisberg, M. Potential approaches to reverse or repair renal fibrosis. Nat Rev 1796 Nephrol 10, 226-37 (2014). 228. Voelker, J. et al. Anti-TGF-beta1 Antibody Therapy in Patients with Diabetic Nephropathy. J 1797 1798 Am Soc Nephrol 28, 953-962 (2017). 1799 229. Goicoechea, M. et al. Allopurinol and progression of CKD and cardiovascular events: long-1800 term follow-up of a randomized clinical trial. Am J Kidney Dis 65, 543-9 (2015). 1801 de Zeeuw, D. et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney 230. 1802 disease. N Engl J Med 369, 2492-503 (2013). 1803 231. Pergola, P.E. et al. Bardoxolone methyl and kidney function in CKD with type 2 diabetes. N 1804 Engl J Med 365, 327-36 (2011). 1805 232. Lazzeri, E., Romagnani, P. & Lasagni, L. Stem cell therapy for kidney disease. Expert Opin Biol 1806 Ther 15, 1455-68 (2015). 1807 233. Lasagni, L. et al. Podocyte Regeneration Driven by Renal Progenitors Determines Glomerular 1808 Disease Remission and Can Be Pharmacologically Enhanced. Stem Cell Reports 5, 248-63 1809 (2015). 234. Mazzinghi, B., Romagnani, P. & Lazzeri, E. Biologic modulation in renal regeneration. Expert 1810 1811 Opin Biol Ther 16, 1403-1415 (2016). Pichaiwong, W. et al. Reversibility of structural and functional damage in a model of 1812 235. 1813 advanced diabetic nephropathy. J Am Soc Nephrol 24, 1088-102 (2013). 1814 236. Cianciolo Cosentino, C. et al. Histone deacetylase inhibitor enhances recovery after AKI. J Am 1815 Soc Nephrol 24, 943-53 (2013). 1816 237. Klinkhammer, B.M., Goldschmeding, R., Floege, J. & Boor, P. Treatment of Renal Fibrosis-1817 Turning Challenges into Opportunities. Adv Chronic Kidney Dis 24, 117-129 (2017). 1818 Kramann, R. et al. Pharmacological GLI2 inhibition prevents myofibroblast cell-cycle 238. progression and reduces kidney fibrosis. J Clin Invest 125, 2935-51 (2015). 1819 1820 239. Peired, A.J., Sisti, A. & Romagnani, P. Mesenchymal Stem Cell-Based Therapy for Kidney 1821 Disease: A Review of Clinical Evidence. Stem Cells Int 2016, 4798639 (2016). 1822 240. Ninichuk, V. et al. Multipotent mesenchymal stem cells reduce interstitial fibrosis but do not 1823 delay progression of chronic kidney disease in collagen4A3-deficient mice. Kidney Int 70, 121-1824 9 (2006). 1825 241. Xinaris, C. et al. Functional Human Podocytes Generated in Organoids from Amniotic Fluid 1826 Stem Cells. J Am Soc Nephrol 27, 1400-11 (2016). 242. Takasato, M. et al. Kidney organoids from human iPS cells contain multiple lineages and 1827 1828 model human nephrogenesis. Nature 536, 238 (2016). 1829 243. Takasato, M. & Little, M.H. Making a Kidney Organoid Using the Directed Differentiation of 1830 Human Pluripotent Stem Cells. Methods Mol Biol 1597, 195-206 (2017). Xinaris, C., Brizi, V. & Remuzzi, G. Organoid Models and Applications in Biomedical Research. 1831 244. 1832 Nephron 130, 191-9 (2015). 1833 245. Anders, H.J., Jayne, D.R. & Rovin, B.H. Hurdles to the introduction of new therapies for 1834 immune-mediated kidney diseases. Nat Rev Nephrol 12, 205-16 (2016). 1835 246. Holderied, A. & Anders, H.J. Animal models of kidney inflammation in translational medicine. 1836 Drug Discovery TOday: Disease Models 11, 19-27 (2014). Jayne, D.R. et al. Randomized Trial of C5a Receptor Inhibitor Avacopan in ANCA-Associated 1837 247. 1838 Vasculitis. J Am Soc Nephrol (2017). 248. Ketteler, M. et al. Executive summary of the 2017 KDIGO Chronic Kidney Disease-Mineral and 1839 1840 Bone Disorder (CKD-MBD) Guideline Update: what's changed and why it matters. Kidney Int 1841 **92**, 26-36 (2017).

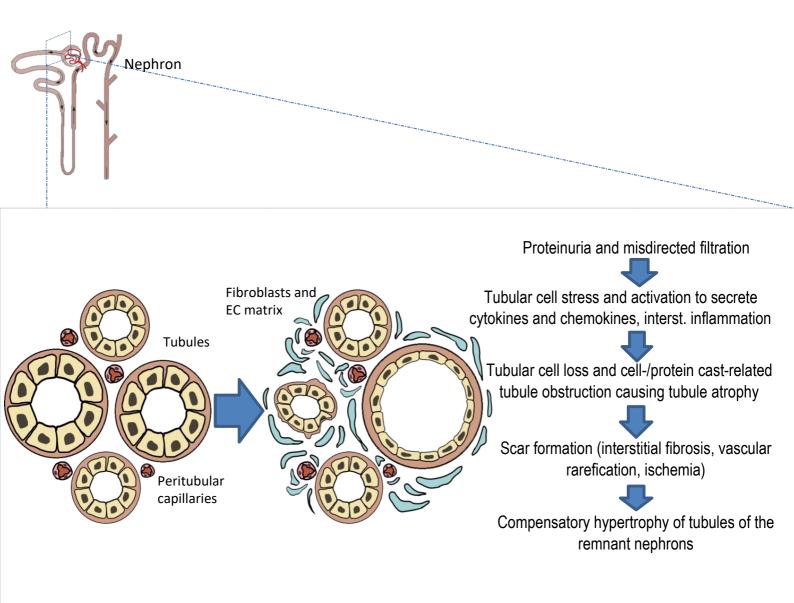

1842 1843	249.	Kidney Disease: Improving Global Outcomes (KDIGO) Lipid Work Group. KDIGO Clinical Practice Guideline for Lipid Management in Chronic Kidney Disease. <i>Kidney inter., Suppl.</i> 3 , 259–305
1844		(2013).
1845	250.	Farrington, K. et al. Clinical Practice Guideline on management of older patients with chronic
1846		kidney disease stage 3b or higher (eGFR<45 mL/min/1.73 m2): a summary document from the
1847		European Renal Best Practice Group. Nephrol Dial Transplant 32 , 9-16 (2017).
1848	251.	Klessens, C.Q. et al. An autopsy study suggests that diabetic nephropathy is underdiagnosed.
1849		Kidney Int 90 , 149-56 (2016).
1850		
1051		
1851		
1852	Refere	nces to highlight
1853	Introd	uction:
1854		
1855	Kidnev	Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO clinical practice guideline
1856		for the evaluation and management of chronic kidney disease. <i>Kidney Int Suppl</i> 3 , 1-150 (2013).
1857	Latest	classification of CKD now implementing also albuminuria in a 2D matrix for stratification of the
1858		r CKD progression and complications.
1859		
1860		
1861	Epiden	niology:
1862	Bello, /	A.K. et al. Assessment of Global Kidney Health Care Status. JAMA 317 , 1864-1881 (2017).
1863	Latest	overview about kidney health care in all regions of the world displaying wide variation of
1864	access	to nephrology specialists, quality of diagnostic workup, and preferences for kidney
1865	replace	ement therapy.
1866		
1867	Bengha	anem Gharbi, M. et al. Chronic kidney disease, hypertension, diabetes, and obesity in the adult
1868	popula	tion of Morocco: how to avoid "over"- and "under"-diagnosis of CKD. Kidney Int 89, 1363-71
1869	(2016)	
1870	CKD p	opulation study performed in Marocco presenting percentiles for repeated eGFR. Such GFR
1871	percen	tiles of the respective local population would be extremely useful for patient care.
1872		
1873		
1874	Pathop	physiology
1875		
1876		i, D. et al. TGF-alpha mediates genetic susceptibility to chronic kidney disease. J Am Soc Nephrol
1877		7-35 (2011).
1878		lescription of the TGF-alpha/EGFR axis as a driver of compensatory growth of remnant
1879	-	ons. Targeting this pathway can limit the the adaptive response turning into a maladaptive
1880	pathor	nechanism of CKD progression.
1881		
1882		, A. et al. Proteinuria impairs podocyte regeneration by sequestering retinoic acid. J Am Soc
1883		ol 24 , 1756-68 (2013).
1884	-	ption of how proteinuria suppresses podocyte regeneration from local podocyte precursors
1885	inside	the glomerulus.
1886		
1887		man, P. et al. Transgenic expression of human APOL1 risk variants in podocytes induces kidney
1888	disease	e in mice. <i>Nat Med</i> 23 , 429-438 (2017)
1889		
		68

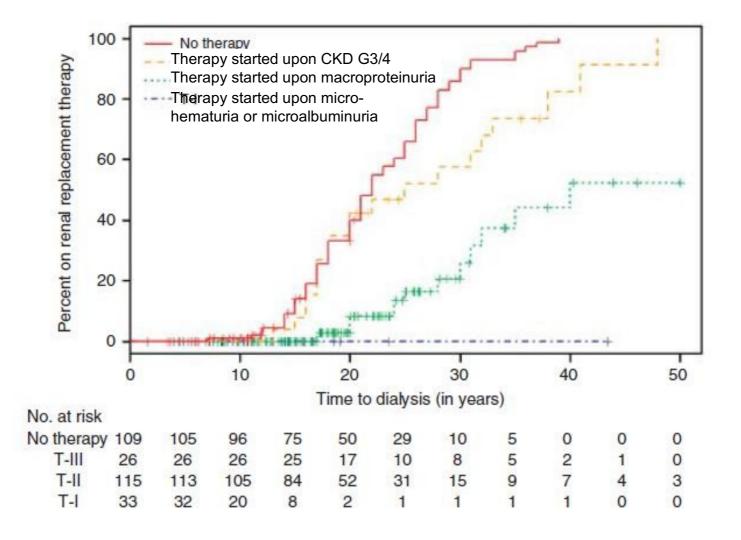

1890	Mechanistic mouse studies how APOL1 risk variants destabilize stressed podocytes and promote
1891	CKD progression.
1892	
1893	Vallon, V. The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus. Annu
1894	Rev Med 66 , 255-70 (2015)
1895	Comprehensive overview on the mechanism of action of SGLT2 inhibitors in diabetic kidney
1896	disease.
1897	
1898	
1899	Diagnosis, screening, and prevention
1900	Diagnosis, sereening, and prevention
1901	Chronic Kidney Disease Prognosis, C. et al. Association of estimated glomerular filtration rate and
1901	albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative
1903	meta-analysis. Lancet 375 , 2073-81 (2010).
1904	Meta-analysis providing the rationale for all-cause mortality risk prediction using eGFR and
1905	albuminuria levels as implemented in the KDIGO CKD stages.
1906	for all-cause mortality
1907	
1908	Fink, H.A. et al. Screening for, monitoring, and treatment of chronic kidney disease stages 1 to 3: a
1909	systematic review for the U.S. Preventive Services Task Force and for an American College of
1910	Physicians Clinical Practice Guideline. Ann Intern Med 156 , 570-81 (2012).
1911	A critical discussion of the benefits and risks of CKD screening
1912	
1913	Lazarus, B. et al. Proton Pump Inhibitor Use and the Risk of Chronic Kidney Disease. JAMA Intern Med
1914	176 , 238-46 (2016).
1915	Study raising concerns about a causal link between the common use of proton pump inhibitors and
4046	
1916	CKD.
1916 1917	CKD.
1917	
1917 1918	
1917 1918 1919	
1917 1918 1919 1920	Management
1917 1918 1919 1920 1921	Management
1917 1918 1919 1920 1921 1922	Management Wanner, C. et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. <i>N Engl J Med</i>
1917 1918 1919 1920 1921 1922 1923	Management Wanner, C. et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. <i>N Engl J Med</i> 375 , 323-34 (2016).
1917 1918 1919 1920 1921 1922 1923 1923	Management Wanner, C. et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. <i>N Engl J Med</i> 375 , 323-34 (2016). First study to prove profound nephroprotective effects of an SGLT2 inhibitor in patients with CKD
1917 1918 1919 1920 1921 1922 1923 1924 1925	Management Wanner, C. et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. <i>N Engl J Med</i> 375 , 323-34 (2016).
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926	Management Wanner, C. et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. <i>N Engl J Med</i> 375 , 323-34 (2016). First study to prove profound nephroprotective effects of an SGLT2 inhibitor in patients with CKD and diabetes
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927	Management Wanner, C. et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. <i>N Engl J Med</i> 375 , 323-34 (2016). First study to prove profound nephroprotective effects of an SGLT2 inhibitor in patients with CKD and diabetes Rauen, T. et al. Intensive Supportive Care plus Immunosuppression in IgA Nephropathy. <i>N Engl J Med</i>
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928	Management Wanner, C. et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. <i>N Engl J Med</i> 375 , 323-34 (2016). First study to prove profound nephroprotective effects of an SGLT2 inhibitor in patients with CKD and diabetes Rauen, T. et al. Intensive Supportive Care plus Immunosuppression in IgA Nephropathy. <i>N Engl J Med</i> 373 , 2225-36 (2015)
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929	Management Wanner, C. et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. <i>N Engl J Med</i> 375 , 323-34 (2016). First study to prove profound nephroprotective effects of an SGLT2 inhibitor in patients with CKD and diabetes Rauen, T. et al. Intensive Supportive Care plus Immunosuppression in IgA Nephropathy. <i>N Engl J Med</i> 373 , 2225-36 (2015) If well done conservative treatment is very potent in preventing CKD progression in IgA
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930	Management Wanner, C. et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. <i>N Engl J Med</i> 375 , 323-34 (2016). First study to prove profound nephroprotective effects of an SGLT2 inhibitor in patients with CKD and diabetes Rauen, T. et al. Intensive Supportive Care plus Immunosuppression in IgA Nephropathy. <i>N Engl J Med</i> 373 , 2225-36 (2015)
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931	Management Wanner, C. et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. <i>N Engl J Med</i> 375 , 323-34 (2016). First study to prove profound nephroprotective effects of an SGLT2 inhibitor in patients with CKD and diabetes Rauen, T. et al. Intensive Supportive Care plus Immunosuppression in IgA Nephropathy. <i>N Engl J Med</i> 373 , 2225-36 (2015) If well done conservative treatment is very potent in preventing CKD progression in IgA nephropathy.
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932	Management Wanner, C. et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N Engl J Med 375, 323-34 (2016). First study to prove profound nephroprotective effects of an SGLT2 inhibitor in patients with CKD and diabetes Rauen, T. et al. Intensive Supportive Care plus Immunosuppression in IgA Nephropathy. N Engl J Med 373, 2225-36 (2015) If well done conservative treatment is very potent in preventing CKD progression in IgA nephropathy. Ruggenenti, P. et al. Role of remission clinics in the longitudinal treatment of CKD. J Am Soc Nephrol
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933	Management Wanner, C. et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N Engl J Med 375 , 323-34 (2016). First study to prove profound nephroprotective effects of an SGLT2 inhibitor in patients with CKD and diabetes Rauen, T. et al. Intensive Supportive Care plus Immunosuppression in IgA Nephropathy. N Engl J Med 373 , 2225-36 (2015) If well done conservative treatment is very potent in preventing CKD progression in IgA nephropathy. Ruggenenti, P. et al. Role of remission clinics in the longitudinal treatment of CKD. J Am Soc Nephrol 19 , 1213-24 (2008). If rigorously done conservative treatment can be very potent in preventing CKD
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1927 1928 1929 1930 1931 1932 1933 1934	Management Wanner, C. et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N Engl J Med 375, 323-34 (2016). First study to prove profound nephroprotective effects of an SGLT2 inhibitor in patients with CKD and diabetes Rauen, T. et al. Intensive Supportive Care plus Immunosuppression in IgA Nephropathy. N Engl J Med 373, 2225-36 (2015) If well done conservative treatment is very potent in preventing CKD progression in IgA nephropathy. Ruggenenti, P. et al. Role of remission clinics in the longitudinal treatment of CKD. J Am Soc Nephrol
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935	Management Wanner, C. et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N Engl J Med 375 , 323-34 (2016). First study to prove profound nephroprotective effects of an SGLT2 inhibitor in patients with CKD and diabetes Rauen, T. et al. Intensive Supportive Care plus Immunosuppression in IgA Nephropathy. N Engl J Med 373 , 2225-36 (2015) If well done conservative treatment is very potent in preventing CKD progression in IgA nephropathy. Ruggenenti, P. et al. Role of remission clinics in the longitudinal treatment of CKD. J Am Soc Nephrol 19 , 1213-24 (2008). If rigorously done conservative treatment can be very potent in preventing CKD
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1927 1928 1929 1930 1931 1932 1933 1934	Management Wanner, C. et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N Engl J Med 375 , 323-34 (2016). First study to prove profound nephroprotective effects of an SGLT2 inhibitor in patients with CKD and diabetes Rauen, T. et al. Intensive Supportive Care plus Immunosuppression in IgA Nephropathy. N Engl J Med 373 , 2225-36 (2015) If well done conservative treatment is very potent in preventing CKD progression in IgA nephropathy. Ruggenenti, P. et al. Role of remission clinics in the longitudinal treatment of CKD. J Am Soc Nephrol 19 , 1213-24 (2008). If rigorously done conservative treatment can be very potent in preventing CKD
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935	Management Wanner, C. et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N Engl J Med 375 , 323-34 (2016). First study to prove profound nephroprotective effects of an SGLT2 inhibitor in patients with CKD and diabetes Rauen, T. et al. Intensive Supportive Care plus Immunosuppression in IgA Nephropathy. N Engl J Med 373 , 2225-36 (2015) If well done conservative treatment is very potent in preventing CKD progression in IgA nephropathy. Ruggenenti, P. et al. Role of remission clinics in the longitudinal treatment of CKD. J Am Soc Nephrol 19 , 1213-24 (2008). If rigorously done conservative treatment can be very potent in preventing CKD
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936	Management Wanner, C. et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N Engl J Med 375 , 323-34 (2016). First study to prove profound nephroprotective effects of an SGLT2 inhibitor in patients with CKD and diabetes Rauen, T. et al. Intensive Supportive Care plus Immunosuppression in IgA Nephropathy. N Engl J Med 373 , 2225-36 (2015) If well done conservative treatment is very potent in preventing CKD progression in IgA nephropathy. Ruggenenti, P. et al. Role of remission clinics in the longitudinal treatment of CKD. J Am Soc Nephrol 19 , 1213-24 (2008). If rigorously done conservative treatment can be very potent in preventing CKD
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937	Management Wanner, C. et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. <i>N Engl J Med</i> 375 , 323-34 (2016). First study to prove profound nephroprotective effects of an SGLT2 inhibitor in patients with CKD and diabetes Rauen, T. et al. Intensive Supportive Care plus Immunosuppression in IgA Nephropathy. <i>N Engl J Med</i> 373 , 2225-36 (2015) If well done conservative treatment is very potent in preventing CKD progression in IgA nephropathy Ruggenenti, P. et al. Role of remission clinics in the longitudinal treatment of CKD. <i>J Am Soc Nephrol</i> 19 , 1213-24 (2008). If rigorously done conservative treatment can be very potent in preventing CKD progression in many forms of kidney disease
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938	Management Wanner, C. et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. <i>N Engl J Med</i> 375 , 323-34 (2016). First study to prove profound nephroprotective effects of an SGLT2 inhibitor in patients with CKD and diabetes Rauen, T. et al. Intensive Supportive Care plus Immunosuppression in IgA Nephropathy. <i>N Engl J Med</i> 373 , 2225-36 (2015) If well done conservative treatment is very potent in preventing CKD progression in IgA nephropathy Ruggenenti, P. et al. Role of remission clinics in the longitudinal treatment of CKD. <i>J Am Soc Nephrol</i> 19 , 1213-24 (2008). If rigorously done conservative treatment can be very potent in preventing CKD progression in many forms of kidney disease

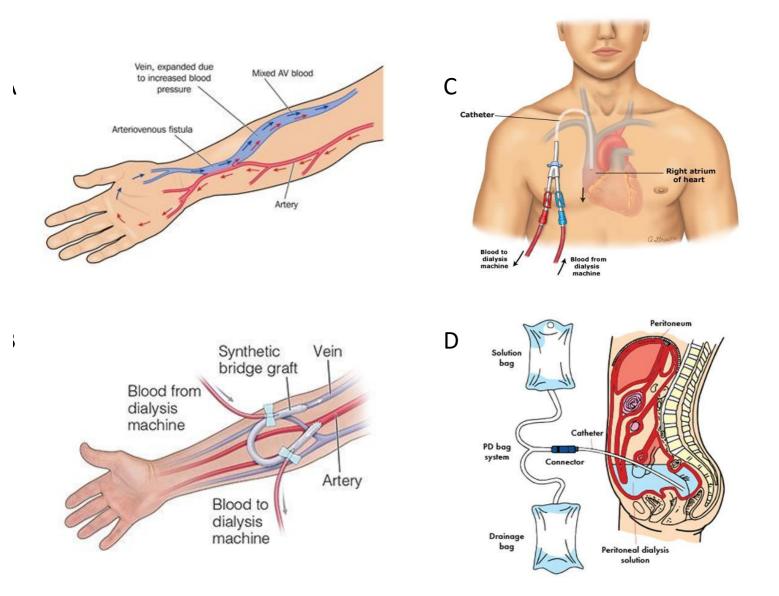

1942	Improving quality of life starts with its proper assessment.
1943	
1944	lyasere, O.U. et al. Quality of Life and Physical Function in Older Patients on Dialysis: A Comparison of
1945	Assisted Peritoneal Dialysis with Hemodialysis. Clin J Am Soc Nephrol 11, 423-30 (2016).
1946	Evaluating alternative options to hemodialysis for older ESKD patients.
1947	
1948	
1949	
1950	Outlook
1951	
1952	Levin, A. et al. Global kidney health 2017 and beyond: a roadmap for closing gaps in care, research,
1953	and policy. <i>Lancet</i> (2017).
1954	Roadmap on how to close gaps in global kidney health
1955	
1956	
1957	
1958	
1959	
1960	
1961	
1962	
1963	
1964	
1965	
1966	
1967	
1968	
1969	
1970	

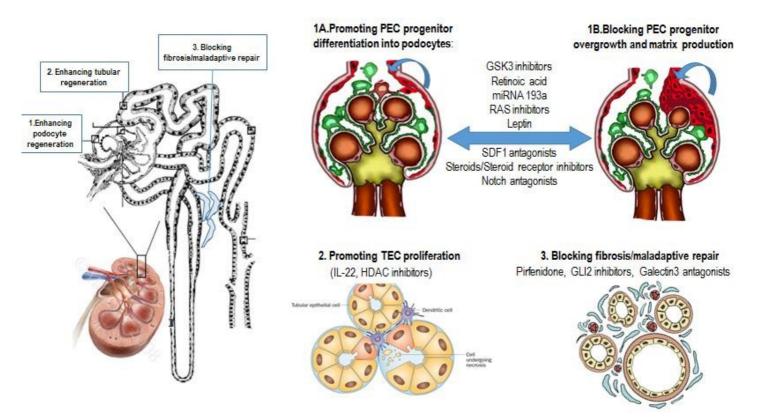

				Persistent albuminuria categories Description and range		
	d Albu	sis of CKD by GFR uminuria Categories: KDIGO 2012	A1 Normal to mildly increased	A2 Moderately increased	A3 Severely increased	
				<30 mg/g <3 mg/mmol	30-300 mg/g 3-30 mg/mmoi	>300 mg/g >30 mg/mmol
m²)	G1	Normal or high	≥90			
V 1.73 ange	G2	Mildly decreased	60-89			
ml/mir and r	G3a	Mildly to moderately decreased	45-59			
GFR categories (ml/min/ 1.73 m ²) Description and range	G3b	Moderately to severely decreased	30-44			
categ	G4	Severely decreased	15-29			
GFR	G5	Kidney failure	<15			

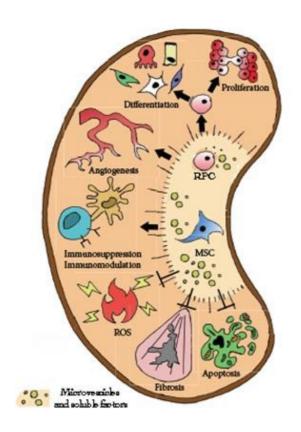

Green: low risk (if no other markers of kidney disease, no CKD); Yellow: moderately increased risk; Orange: high risk; Red, very high risk.











iPSC, ESC Cell monolayer Early renal clusters replated in 3D culture Kidney organoid Kidney organoid Functional testing, Disease modeling

В