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HIGHLIGHTS GRAPHICAL ABSTRACT

« On Canada's Pacific coast, the effects of
chronic oil pollution are poorly known.

« This study evaluates the spatial risk of
oil exposure to marine birds.
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to marine birds, and the at-sea distribution and density of 12 marine bird species and seven bird groups, including
multiple Species at Risk, we undertook a spatial assessment of risk. Our results identify two main areas important
to marine birds potentially at higher risk of exposure to oil. For individual bird species or species groups, those
predicted to have elevated bird densities near the mainland and the northeast coast of Vancouver Island were
identified as being at higher potential risk of exposure. Our results, however, should be considered preliminary.
As with other anthropogenic stressors, in order to better understand and subsequently mitigate the conse-
quences of chronic oil pollution on marine birds, improved information relating to marine birds and the occur-
rence of oil spills on Canada's Pacific coast is needed.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

* Corresponding author at: Department of Oceanography, Dalhousie University, Halifax,
NS B3H 4R2, Canada.
E-mail address: carolinehfox@gmail.com (C.H. Fox).

The planet's oceans, particularly continental shelf ecosystems, are
increasingly subject to a number of anthropogenic stressors (Halpern
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et al., 2008). Canada's Pacific coast is no exception, with the entire
continental shelf already subjected to a litany of human activities
(e.g., Ban et al., 2010), many of which are anticipated to increase
(e.g., shipping traffic, Nuka Research, 2013). In addition to driving
biodiversity losses (e.g., declines in species richness and population
sizes), these human activities influence whole-ecosystem proper-
ties, including structure, function, and resilience (Chapin III et al.,
2000; Worm et al., 2006).

Although a large number of human activities occur in marine ecosys-
tems, oil pollution is among the more serious threats. Oil enters the
world's marine ecosystems by way of natural processes (i.e., natural
seeps) and through anthropogenic activities, including land-based
run-off, routine marine operations, drilling platforms, and ship and
pipeline spills (NRC, 2003; GESAMP, 2007; Morandin and O’Hara,
2016). Anthropogenic releases may be intentional, the result of negli-
gence, or accidental (Bertazzon et al., 2014). Of these, large volume or
“catastrophic” oil spills typically result in significant attention (e.g.,
Bourne et al., 1967; Vermeer and Vermeer, 1975; Piatt et al., 1990) de-
spite estimates that oil pollution resulting from “day to day” activities
contributes more oil to marine ecosystems than do shipping accidents
(NRC, 2003; GESAMP, 2007). These small-scale oil discharges, also
known as chronic oil pollution, almost never trigger a formal response
in Canada and elsewhere (i.e., in terms of cleanup and other efforts to
mitigate potential impacts), primarily because they are small and
occur frequently over extensive and remote areas.

In addition to contributing more oil to marine environments, the cu-
mulative ecological impacts from small-scale discharges may be greater
than impacts arising from large-scale catastrophic spills (Camphuysen,
1989; NRC, 2003). Although oil in marine environments is broadly del-
eterious to marine organisms, marine birds are among the most prom-
inent and abundant taxa injured or killed (Burger and Fry, 1993). Small-
scale discharges may result in similar or even greater cumulative bird
mortalities than the larger, catastrophic oil spills (e.g., Camphuysen,
1989; Burger 1992, 1993a). And although there is clear evidence that
rates are generally declining worldwide (e.g., GESAMP, 2007;
Serra-Sogas et al., 2008; O’Hara et al., 2009; Camphuysen, 2010;
Lagring et al., 2012), operational oil pollution remains a serious environ-
mental threat (GESAMP, 2007; Vollaard, 2014).

Based on spatial patterns detected in Beached Bird Surveys (BBS -
systematic surveys of beaches for documenting rates of oil fouled
beach-cast bird carcasses; O’Hara et al.,, 2009; Camphuysen, 2010) and
in aerial surveillance (aircraft borne surveillance for oil pollution; O’
Hara et al,, 2013), there is evidence that declining rates occur in coastal
areas where enforcement activities are concentrated. Furthermore, op-
erational discharges may be displaced to areas or times where enforce-
ment activities are less concentrated (Vollaard, 2014; for a general
reference on criminal displacement theory see Weisburd et al., 2006).
Indeed, Gullo (2011) detected no change in non-compliance with feder-
al and international oil pollution regulations (i.e., MARPOL 73/78 is the
International Convention for the Prevention of Pollution from Ships,
1973 as modified by the Protocol of 1978) in port-state inspections, de-
spite increased enforcement efforts by US federal agencies, although
these rates should be interpreted with caution as it appears the author
did not correct for number of inspections each year. The potential dis-
placement of illegal discharges is particularly troubling for much of
the isolated coastal regions of Canada and the rest of the world where
enforcement efforts are generally low to non-existent.

On Canada's Pacific coast, there is a documented history of marine
birds being oiled (e.g., Vermeer and Vermeer, 1975; Burger 1993b;
Stephen and Burger, 1994; O’Hara et al., 2009). The ecological conse-
quences, however, have not been quantified, primarily due to limita-
tions associated with interpreting information from BBS (O’Hara and
Morgan, 2006). Given the presence of globally significant populations
of marine birds on Canada's Pacific coast, including Species at Risk, the
co-occurrence of chronic oil pollution with marine bird species warrants
investigation.

In general, efforts to understand and mitigate the socio-ecological
consequences of human activities typically require knowledge relating
to a given human activity and a given ecosystem component. Spatially
explicit quantitative risk assessments, by definition, are composed of
two core components (often expressed as probabilities): (1) the likeli-
hood of a stressor (e.g., oil spills) occurring in an area; and (2) the
socio-ecological consequences or costs, should the specific stressor
occur. Where information regarding both components is available, spa-
tial risk assessments are a key approach to examining potential conse-
quences of anthropogenic activities in marine ecosystems.

A spatially-explicit approach that focuses on the consequence com-
ponent of risk assessment involves the overlay of spatial probability of
occurrence of potential stressors with the spatial distributions of re-
sponse organisms considered sensitive to those stressors (often referred
to as “receptors”; see US EPA, 1998 for example). This approach essen-
tially addresses vulnerability of organisms, which is defined here as
the likelihood of exposure to the stressor, and assumes that these organ-
isms are negatively affected or sensitive when exposed (sensu Zacharias
and Gregr, 2005). Examples include the spatial assessment of ship strike
risk to whales using both whale species and marine vessel densities
(e.g., Vanderlaans et al,, 2008; Williams and O’Hara, 2010), and seabird
bycatch in fisheries using information on seabird species distributions
and fishing effort (e.g., Fischer et al., 2009). Notably, however, this ap-
proach is considered a first step in estimating the potential conse-
quences of exposure, in large part because understanding of the
interaction and the potential outcomes of the interaction between or-
ganisms and stressors is necessary to fully assess risk on a spatial basis.

In this study, we assess the risk of exposure for marine birds to
chronic oil pollution in coastal British Columbia (BC) using a spatially
explicit semi-quantitative approach. Our objectives: (1) identify vulner-
able areas predicted to experience elevated probabilities of small-scale
oil spills co-occurring with elevated marine bird densities for 19 species
or species groups and for marine birds on a cumulative or overall basis;
and (2) rank marine birds or groups based on their risk of exposure to
chronic oil pollution. Here, the probability of marine birds being oiled
is the variable of interest although we note that the proximity of
small-scale oil discharges to a given marine bird is only one determinant
of risk. In this study, risk is therefore approximated by multiplying the
predicted probability of a small-scale oil discharge with the predicted
probability of occurrence of marine birds in a given area. Herein, we
rely on oil spill predictions from a spatial model developed by
Bertazzon et al. (2014) based on oil spill data collected by the National
Aerial Surveillance Program (Transport Canada) in Canada's Pacific Ex-
clusive Economic Zone (EEZ). Marine bird spatial predictions for 12 ma-
rine bird species and seven groups (representing 24 species) were
modified from Fox et al. (in review).

2. Methods

The study area, referred to here as the Queen Charlotte Basin, com-
prises approximately 36,000 km? of BC's coastal region. The boundaries
were chosen to match mutually shared spatial extents of predicted
small oil discharges (modified from Bertazzon et al., 2014) and predict-
ed marine bird densities (Fox et al., in review). The Queen Charlotte
Basin includes four major bodies of water: Dixon Entrance, Hecate
Strait, Queen Charlotte Sound, and Queen Charlotte Strait (Fig. 1a).
The Queen Charlotte Basin and surrounding region hosts numerous sea-
bird colonies, including Triangle Island within the Scott Islands, which is
Canada's largest Pacific coast seabird colony (Fig. 1a).

2.1. Marine bird information

Marine bird predictive surfaces were generated from systematic line
transect survey information collected in the Queen Charlotte Basin. Ma-
rine bird surveys took place in spring (April and May 2007; June 2008),
summer (August 2005, 2006, 2008), and fall (October and November
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Fig. 1. (a). Locations of seabird colonies (source: Environment and Climate Change Canada), towns and water bodies in study area and adjacent areas and (b) probability of small-scale oil
discharges (modified from Bertazzon et al. 2014), ranked from high, medium, and low using quantile breaks in coastal British Columbia, Canada.

2007). Within the marine bird study area, 4729 km of planned transect
and 824 km of ‘on passage’ transect were realized. Density along 1 km
transect segments were estimated using Multiple Covariate Distance
Sampling (MCDS) in the software program Distance 6.0 release 2
(Thomas et al., 2010), the package MRDS v2.1.4 (Laake et al., 2013)
and the software program R v3.0.2 (R Core Team, 2013). Using estimat-
ed density per transect segment as the response variable and 27 static,
dynamic, and climatological environmental variables, model ensembles
for 12 marine bird species and seven groups (representing 24 species;
Table 1) were derived using four machine learning algorithms
(RandomForests, TreeNet, Multivariate Adaptive Regression Splines,
and Classification and Regression Trees) in Salford Systems Predictive
Modeler v7.0 (San Diego, CA, USA).

For this study, predicted marine bird density surfaces were re-
duced to the mutually shared spatial extent of the predicted small
oily discharge surface (Bertazzon et al., 2014) using ArcGIS10
(ESRI, Redlands, CA, USA). For marine bird species or groups and
for the overall importance prediction, a hexagonal grid (13.9 km?)
was used. The estimated density (birds per km?) of individual ma-
rine bird species or groups were transformed into three categories
using quantile breaks (terciles valued 1-3). Predictive estimated
density models were used to generate an estimate of combined over-
all importance based on marine bird species or group richness and
density. The overall importance of marine birds was estimated by
(1) normalizing estimated density (density values per hexagonal
grid cell range from 0 to 1 for all species) and subsequently adding
all marine bird species or group modified densities; and (2) modify-
ing the overall normalized density values into the three quantile
breaks. For full details on marine bird model predictive model en-
sembles and the overall predicted density of marine birds, used
here as a proxy to identify potential areas important to marine
birds, see Fox et al. (in review). For survey design details, see

Williams and Thomas (2007), Thomas et al. (2007) and Best et al.
(2015).

2.2. Oil information

A prediction layer for oil discharges in BC was created based on glob-
al and regional spatial regression models developed by Bertazzon et al.
(2014), who associated small oily discharges detected and documented
by NASP with human marine activities (e.g., recreational activities, com-
mercial traffic, fisheries etc.). In their study, Bertazzon et al. (2014)
grouped predictor variables into two alternative global models to re-
duce multicollinearity among variables within each model. Model 1,
whose predictors included vessel type (vs. vessel age in model 2), was
found to perform the best, based on AIC, log-likelihood, and McFadden
pseudo-R? (Bertazzon et al. 2014).

The Bertazzon et al. (2014) study area was divided into three regions
based on results from the global model and expert opinion, and model 1
(henceforth “oil model”) was rerun, resulting in better performance
within each region, based on adjusted McFadden pseudo-R®
(Bertazzon et al. 2014). For this study, region 1 is most representative
of the study area. The oil model was subsequently modified by using in-
verse distance weighting (IDW) to (1) interpolate predictions within
the hexagonal grid (13.9 km?); and to (2) extrapolate 25 km westward;
before (3) reducing the study area to match the overlapping spatial ex-
tent of the modified oil model's oil discharge study area and the bird
study area used by Fox et al. (in review). Lastly, the oil model was mod-
ified by altering the predicted occurrence of small oily discharges (0-1)
into three quantile break categories representing low (1), medium (2),
and high (3) probability of small oil discharges (Fig. 1b). We note that
this model predicted incidence rate (i.e., accounting for surveillance ef-
fort as an offset), accounting for approximately 17% of the spatial vari-
ability in incidence rate. Nevertheless, categorization of predicted
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Associated taxonomic and conservation status for marine bird species in this study. Information was derived from line transect surveys in coastal British Columba, Canada (2005-2008).
Abbreviations: breeding population (Br), non-breeding population (Nb), migrant (M; species occurring regularly on migration at particular staging areas or concentration spots), Inter-
national Union for the Conservation of Nature (IUCN), Committee on the Status of Endangered Wildlife in Canada (COSEWIC), British Columbia (BC) and not assessed (NA). For the pro-
vincial conservation status (BC), where there were a range of conservation ranks provided for a given species, the lower conservative status is reported.

Taxonomic order, family & common name

Scientific name

Global - IUCN

National - COSEWIC

Provincial - BC

Anseriformes Anatidae
Black Scoter
Surf Scoter

White-winged Scoter

Charadriiformes Alcidae
Ancient Murrelet

Cassin's Auklet

Common Murre
Marbled Murrelet

Pigeon Guillemot
Rhinoceros Auklet
Tufted Puffin

Charadriiformes Laridae
California Gull
Glaucous-winged Gull
American Herring Gull
Thayer's Gull
Black-legged Kittiwake
Bonaparte's Gull

Mew Gull

Sabine's Gull

Charadriiformes Scolopacidae
Red-necked Phalarope

Gaviiformes Gaviidae
Common Loon
Pacific Loon

Red-throated Loon
Yellow-billed Loon

Pelecaniformes Phalacrocoracidae
Brandt's Cormorant

Double-crested Cormorant
Pelagic Cormorant

Podicipediformes Podicipedidae
Horned Grebe

Red-necked Grebe

Western Grebe

Procellariiformes Diomedeidae
Black-footed Albatross

Procellariiformes Hydrobatidae
Fork-tailed Storm-petrel
Leach's Storm-petrel

Procellariiformes Procellariidae
Northern Fulmar

Pink-footed Shearwater
Flesh-footed Shearwater
Short-tailed Shearwater
Sooty Shearwater

Melanitta americana
Melanitta perspicillata

Melanitta deglandi

Synthliboramphus antiquus
Ptychoramphus aleuticus

Uria aalge
Brachyramphus marmoratus

Cepphus columba
Cerorhinca monocerata
Fratercula cirrhata

Larus californicus
Larus glaucescens
Larus smithsonianus
Larus thayeri

Rissa tridactyla
Larus philadelphia
Larus canus

Xema sabini

Phalaropus lobatus

Gavia immer
Gavia pacifica

Gavia stellata
Gavia adamsii

Phalacrocorax penicillatus

Phalacrocorax auritus
Phalacrocorax pelagicus

Podiceps auritus
Podiceps grisegena
Aechmophorus occidentalis

Phoebastria nigripes

Hydrobates furcatus
Hydrobates leucorhous

Fulmarus glacialis

Ardenna creatopus
Ardenna carneipes
Ardenna tenuirostris
Ardenna grisea

Near threatened (2013)
Least concern (2012)

Least concern (2013)

Least concern (2012)
Near threatened (2015)

Least concern (2015)
Endangered (2012)

Least concern (2012)
Least concern (2012)
Least concern (2012)

Least concern (2012)
Least concern (2015)
Least concern (2014)
Least concern (2015)
Least concern (2012)
Least concern (2012)
Least concern (2015)
Least concern (2015)

Least concern (2012)

Least concern (2012)
Least concern (2012)

Least concern (2012)
Near threatened (2015)

least concern (2012)

least concern (2012)
Least concern (2012)

Vulnerable (2015)
Least concern (2015)
Least concern (2012)

Near threatened (2014)

Least concern (2012)
Least concern (2012)

Least concern (2015)

Vulnerable (2012)
Least concern (2012)
Least concern (2012)
Near threatened (2015)

NA
NA

NA

Special concern (2014)
Special concern (2014)

NA
Threatened (2012)

NA
NA
NA

NA
NA
NA
NA
NA
NA
NA
NA

Special concern (2014)

Not at risk (1997)
NA

NA
Not at risk (1997)

NA

Not at risk (1978)
NA

Special concern (2009)
Not at risk (1982)
Special concern (2014)

Special concern (2007)

NA
NA

NA

Threatened (2004)
NA
NA
NA

Nb: Vulnerable (2015)

Br: Vulnerable,

Nb: Apparently secure (2015)
Br: Apparently secure (2015)

Br: Imperiled,

Nb: Apparently secure (2015)
Br: Vulnerable,

Nb: Apparently secure (2015)
Br: Imperiled, Nb: Vulnerable (2015)
Br: Vulnerable,

Nb: Vulnerable (2015)

Br: Apparently secure (2015)
Br: Apparently secure (2016)
Br: Imperiled,

Nb: Apparently secure (2014)

Br: Imperiled (2015)

Br: Apparently secure (2015)
Br: Secure (2015)

M: Secure (2015)

Nb: Critically imperiled (2015)
Nb/Br: Secure (2015)

Br: Apparently secure (2015)
M: unranked (2009)

Br: Vulnerable (2015)

Br: Secure (2015)

Br: Apparently secure,

Nb: Vulnerable (2015)

Br: Apparently secure (2015)
Nb: Imperiled (2015)

Br: Critically imperiled,

Nb: Apparently secure (2015)
Br: Vulnerable (2015)

Br: Apparently secure (2015)

Br: Apparently secure (2015)
Br: Secure (2015)

Br: Critically imperiled,

Nb: Imperiled (2015)

Nb: Vulnerable (2015)

Br: Apparently secure (2015)
Br: Apparently secure (2015)

Br: Critically imperiled,

Nb: Apparently secure (2015)
Nb: Vulnerable (2015)

Nb: Vulnerable (2015)

M: Unranked (2015)

M: Unranked (2015)

rates into quantiles is useful as an index for relative probability of

occurrence.

2.3. Spatial assessment of risk

In order to identify areas predicted to experience elevated probabil-
ities of chronic oil pollution and elevated marine bird densities, the

spatial overlap between marine birds and small oily discharges were

mapped overall and on a species- or group-specific basis. We used a
semi-quantitative risk assessment tool to assess risk of exposure to
chronic oil pollution for marine birds in our study area, as simple quan-
titative approaches are considered an improvement over standard qual-

itative approaches (Cox et al., 2005; but see Cox, 2008 and Levine,
2012). In our risk matrix (Fig. 2), the likelihood of an oil spill (the
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stressor) occurring interacts with the predicted marine bird density
(the socio-ecological consequence).

Vulnerability was determined by the product of predicted marine
bird species or group density (quantile breaks; valued 1-3) and the pre-
dicted occurrence of small oily discharges (quantile breaks; valued 1-
3). Overall vulnerability was similarly determined using the same pre-
dicted occurrence of small oily discharges, but multiplied by the overall
importance of marine birds (quantile breaks; valued 1-3). Both proba-
bilities were scaled and categorized so that they impact the overall
risk function with equal weight. Using this approach, the extent of spa-
tial overlap was then mapped for individual species and groups, in addi-
tion to the overall vulnerability of marine birds.

For each bird species or group, risk of exposure was estimated using
the following equation, where P;_3 represents the percent of the popu-
lation (based on quantile breaks; valued 1-3) in the study area that
overlap spatially with areas where the predicted occurrence of chronic
oil pollution is low (1), medium (2), and high (3) in the study area:

Risk of exposure = (1% Py) + (2% Py) + (3% P3) (1)

3. Results

Areas of predicted high overall marine bird importance are unevenly
distributed across the study area, and include a large area of northern
Hecate Strait and Dixon Entrance, with smaller areas of high importance
concentrated around the Scott Islands, much of Queen Charlotte Strait,
and along the margins adjacent to land, particularly on the North and
Central Coasts (Fig. 3a). Similarly, the modified prediction of oil occur-
rence from Bertazzon et al. (2014) indicates that the highest probability
areas for oil occurrence are adjacent to the land, including all of the
Queen Charlotte Strait and areas directly adjacent to the Scott Islands
(Fig. 1b). Although probability of oil occurrence is predicted to decline
with distance from the coast, bands of medium probability of occur-
rence extend through the northern section of Hecate Strait and Queen
Charlotte Sound, near the Scott Islands (Fig. 1b). The interaction be-
tween overall marine bird importance and predicted oil occurrence
identifies two specific areas of highest potential risk: (1) northern Hec-
ate Strait and eastern Dixon Entrance, particularly adjacent to the main-
land; and (2) adjacent to the Scott Islands and extending south into

Likelihood of Stressor

1 2 3
Socio-ecological Consequences

Fig. 2. Spatial risk assessment framework (Risk = Likelihood x Socio-ecological
Consequence) that establishes the relative degree of risk from low to high based on the
likelihood of a stressor occurring and the estimated socio-ecological consequences
should the stressor occur.

Queen Charlotte Strait (Fig. 3b). An additional, although smaller area
identified as high risk is directly adjacent to the mainland Central
Coast (Fig. 3b).

For individual marine bird species or groups, quantile rank density is
reported in panels for 12 species and seven groups (Fig. 4). Adjacent
panels display predicted “risk”, where areas of spatial overlap between
marine birds and oil occurrence are predicted to occur, with shading
reflecting the multiplicative output of quantile rank marine bird density
(low, medium, high) and probability of oil occurrence (low, medium,
high; Fig. 4). Those with highest potential exposure varied across guilds,
with the top five highest ranked species or groups being large gulls, cor-
morants, Pigeon Guillemot, grebes, and small gulls (ranked 1-5; Table
2). Species or groups with lowest potential exposure also varied across
guilds and included more pelagic species: Ancient Murrelet, Pink-footed
Shearwater, dark shearwaters, Tufted Puffin, and Fork-tailed Storm-pe-
trel (ranked 15-19; Table 2).

In terms of the comparison between exposure risk rankings and the
Qil Vulnerability Index (OVI) developed by King and Sanger (1979) for
marine birds in the Northeast Pacific Ocean, of the top five identified
as having the highest exposure risk, only Pigeon Guillemot was similarly
ranked in terms of OVI value (Table 2). For the remaining top four expo-
sure risk ranked species or groups, OVI rankings were low (Table 2).

4. Discussion

In this study, we identify two areas of highest potential risk of expo-
sure to marine birds: (1) northern Hecate Strait and eastern Dixon En-
trance, particularly adjacent to the mainland; and (2) Queen Charlotte
Strait and waters adjacent to the Scott Islands, which are off northern
Vancouver Island. However, we note that the assessment of areas of
overall importance to marine birds (developed by Fox et al. (in
review) was not inclusive of all species present in the region and, fur-
ther, that the areas identified as important should be anticipated to be
dynamic (e.g., seasonal and interannual change). In terms of individual
species and groups identified as most at risk, grebe and cormorant
groups, large and small gull groups, and the alcid Pigeon Guillemot
were ranked as the most at risk of exposure to small-scale oil discharges.
There appeared to be no taxonomic trend in terms of rank exposure.
However, species or groups that are more pelagic (e.g., Tufted Puffin
and shearwaters) were assessed as being at the lowest risk of exposure,
whereas species and groups with elevated densities near the mainland
coast and the northeast coast of Vancouver Island were ranked among
the highest risk of exposure. We emphasize that these estimates are rel-
ative (i.e., within species or group) rankings of exposure for species or
groups estimated to occur within the spatial extent of the oil spill
model. These estimates do not represent the full spatial extent of expo-
sure, and this is particularly the case for species whose distribution is
largely offshore.

In coastal BC - and similarly in other coastal waters around the
world - oil spill probability can be readily estimated in a given area
due to the existence of information relating to oil discharges from com-
mercial vessels. Further, because these vessels may be tracked using the
Automatic Identification System, vessel density in an area can be used as
a predictor for oil spill occurrence (e.g., Bertazzon et al., 2014). However,
estimating the potential consequences stemming from these oil dis-
charges is far more difficult due to a number of uncertainties including
density of organisms at risk of being oiled in a given area at a specific
time. For example, areas of concentrations for marine organisms at
risk of being oiled were not included in the Pacific Region for the Cana-
dian nationwide risk assessment for oil spills conducted by Transport
Canada (WSP, 2014).

Logically, the two components of a spatial risk assessment should be
integrated with similar weighting; otherwise risk assessments will be
biased towards the component with higher values. However, combining
these components without biases can be problematic, particularly when
the components vary temporally and spatially, in addition to being
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Fig. 3. (a). Overall importance (normalized density) of 12 marine bird species and seven bird species groups ranked from high, medium and low using quantile breaks and (b) interaction
between marine bird overall importance and probability of small-scale oil discharges in coastal British Columbia, Canada.

subject to uncertainty. Further, understanding the effects (or responses)
of exposure can be very complex, ranging from inference at the organ-
ism-level using simple assumptions or models, to the population-
level, with much more complicated extrapolations across varying levels
of organization (Suter, 2007). Here we present a spatially explicit semi-
quantitative approach that combines exposure (likelihood of a small
scale oil spill occurring) and potential consequences (as proxied by ma-
rine bird densities). By reducing estimated oil spill occurrence probabil-
ities and marine bird densities to quantiles (i.e., probability functions for
low, medium, and high probabilities or densities), we reduce our uncer-
tainty and weight equally exposure and consequence components of
our risk analyses. This approach provides new insights, including the
identification of areas and marine bird species or groups of potentially
elevated concern.

We chose a semi-quantitative approach to assess risk because it is
intuitive and easy to interpret. However, although we standardized
both input variables to ensure equal weighting (i.e., similar ranges and
distributions), we acknowledge that concerns have been raised about
likelihood-consequence matrix approaches to risk assessment and
their interpretation, including range compression, low resolution, and
lack of integration of uncertainty (e.g., Cox 2008; Levine 2012). To ad-
dress these concerns to some degree, we intentionally maintained a
low resolution in our variables and final product categorizations to as-
sess risk of exposure to chronic oil pollution for marine birds. However,
we emphasize that care must be taken when interpreting our results,
particularly because we do not include uncertainty in our risk
assessments.

Our study departs from standard approaches for assessing risk of ex-
posure to small-scale oil discharges for marine birds, which typically re-
lies on evidence of oiling found on beach-cast carcasses and stricken live
birds, and oil found in nearby coastal substrates (e.g., Bourne 1976a,
1976b; Camphuysen, 1989; Camphuysen and Heubeck, 2001; Wiese
and Robertson, 2004; Wilhelm et al., 2009). Although BBS are a useful
and cost-effective way to monitor oil pollution, data collected may be

biased towards species that tend to occur relatively close to the survey
beaches as bird carcasses stay afloat for a short period of time only
(Weise 2003; see Weise and Robertson (2004) as an example of a ma-
rine area represented by BBS data collected in Newfoundland, Canada).
Stricken individuals can also fly or swim to shore, but we believe that
this would be a relatively small component contributing to the estimat-
ed impacts from oil pollution based on BBS data. In BC, there are large
coastal regions that are too remote or too difficult to access to be includ-
ed in a BBS. Considerable numbers of marine birds and a wide variety of
other marine taxa also occur offshore of those areas of BC (e.g., Kenyon
et al., 2009). Consequently, the numbers of marine birds and the num-
ber of species impacted are likely underestimated in BC BBS records,
an issue which is acknowledged by BBS organizers and researchers bas-
ing studies on BBS data (e.g., Wiese and Robertson, 2004; O’Hara and
Morgan, 2006).

The Oil Vulnerability Index (OVI), as defined by King and Sanger
(1979) and others, is a useful metric for ranking vulnerability to oil pol-
lution among marine bird species. Our ranking approach fundamentally
differs from the OVI in that the OVI incorporates factors reflecting both
vulnerability and sensitivity to oil exposure as we have defined them
here. These include range and distribution, population dynamics, be-
haviour, and seasonal exposure to oil pollution (King and Sanger,
1979). Scores are based on these factors with total scores being used
to rank vulnerability among species. In our view, a key drawback of
the OVl is that rankings are undoubtedly influenced by species that typ-
ically show up in BBS, and subsequently influence the selection of focal
species based on their prevalence in BBS records (e.g., Camphuysen,
1989). Our approach, which focuses on the likelihood of exposure
based on spatial coincidence or co-occurrence, identifies species or
groups at high risk of exposure that may not have large OVIs (e.g.,
large and small gulls, grebes, and cormorants). Not mutually exclusive,
our approach could be complementary to assessments and analyses
based on the OVI or its extension, the Area Vulnerability Score (see
Williams et al., 1995; Begg et al., 1997). As an example, future analyses
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could integrate the OVI factors reflecting sensitivity to oil exposure with
our estimates of likelihood of exposure based on spatial coincidence.
We note that our estimates of vulnerability do not reflect important
variability among and within species. Among species, for example, ex-
posure to oil pollution likely varies with foraging behaviour, with
species that spend time diving or on the water's surface considered to

be at greater risk of exposure than species that forage while flying
(e.g., Camphuysen, 1998). Within species, vulnerability can also
vary with phenology; for example, post-breeding moult can result in
flightlessness, making individuals more vulnerable to exposure to oil
pollution during this period (Stone et al., 1995). Lastly, we assume all
birds are equally sensitive once exposed to oil, although evidence
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Fig. 4. Predicted marine bird species or species group density (number of birds per km?) and marine bird-oil interaction, based on oil spill probability ranked as low, medium, and high in

coastal British Columbia, Canada.
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suggests that the response of individual species varies (e.g.,
Camphuysen, 1998; Wiese and Ryan, 2003; Robertson et al., 2014).
Some of this variability may be captured by one or more OVI factors,
which could also be integrated into our approach.

Canada's Pacific coast is already subject to significant anthropogenic
pressures (Ban and Alder 2008), several of which are projected to

increase (e.g., climate change; IPCC, 2014, shipping traffic; Nuka
Research, 2013). With a number of Pacific coast marine bird species
already considered to be at elevated risk of extinction under Canada'’s
Species at Risk Act (SARA) and other legislation (e.g., the US Endangered
Species Act), an additional number listed as priority species for assess-
ment, and future predictions of population declines and extinctions
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(Sekercioglu et al., 2004), efforts to improve and continuously update information is needed, including an expansion of research to other
our understanding of the ecological consequences of these various coastal regions.
anthropogenic pressures are crucial. Although our findings should
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Rhinoceros Auklet 52.7 + 2.7 23.6 313 45.1 2215 6 74 4
Common Murre 141.8 + 5.5 244 309 44.8 2204 7 70 8
Scoter (White-winged, Surf, and Black) 9.6 £ 0.7 25.7 28.6 45.7 220.0 8 72 6
Loon (Common, Pacific, Red-throated, and Yellow-billed) 736 £ 0.1 25.6 304 44.0 2184 9 54.8 13
Marbled Murrelet 40402 264 29.1 445 218.0 10 84 1
Red-necked Phalarope* 820+ 9.6 273 31.2 415 214.2 11 62 11
Leach's Storm-petrel* 6.8 +£0.2 30.9 34.0 35.1 204.1 12 63 10
Black-footed Albatross* 0.5+ 0.0 35.5 31.6 329 1974 13 50 14
Cassin's Auklet 150403 35.2 324 324 197.2 14 84 2
Fork-tailed Storm-petrel* 69.4 + 4.8 36.9 31.7 314 194.6 15 67 9
Ancient Murrelet 29.0 £ 0.5 39.8 31.7 284 1883 16 74 5
Pink-footed Shearwater* 0.8 £ 0.0 39.1 343 26.6 187.5 17 47 16
Dark Shearwater (Flesh-footed, Short-tailed, Sooty Shearwater)* 68.1+ 1.3 40.0 34.0 26.1 186.1 18 35° 19
Tufted Puffin 0.5+ 0.0 429 343 22.8 179.9 19 72 7

? Eared Grebe was not included.
" Flesh-footed Shearwater was given an OVI of 1.
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