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Abstract

The escalation of multimedia contents exchange, especially of videos be-

longing to mobile devices, and the availability of a great amount of editing

software has raised grave doubts on their digital life-cycle. In this thesis,

we firstly introduce a new dataset for multimedia forensics and then develop

forensic tools that analyse the video-container and the video-signal in order

to evaluate possible tampering that have been introduced in the life-cycle of

a video content.

The first contribution consists on the release of a new Dataset of videos

and images captured from to 35 modern smartphones/tablets belonging to 11

different brands: Apple, Asus, Huawei , Lenovo, LGelectronics, Microsoft ,

OnePlus, Samsung , Sony , Wiko and Xiaomi . Overall, we collected 11732

native images; 7565 of them were shared through Facebook, in both high and

low quality, and through WhatsApp, resulting in a total of 34427 images.

Furthermore we acquired 648 native videos, 622 of which were shared through

YouTube at the maximum available resolution, and 644 through WhatsApp,

resulting in a total of 1914 videos. The uniqueness of the VISION dataset was

tested on well known forensic tool, i.e., the detection of the Sensor Pattern

Noise (SPN) left by the acquisition device for the source identification of

native/social media contents.

The second contribution is based on the analysis of the container struc-

ture of videos acquired by means of mobile devices. We argue that the atoms

belonging to the container, in terms of order and value, are fragile and that it

is more difficult to hide their modifications than the regular metadata. This

characteristic can be exploited to perform Source Identification and Integrity

Verification of videos taken from devices belonging to well known operating

systems and manufactures.

In the third contribution we focus on the video-signal and on its encoding

process. We used codecs that perform a hybrid video coding scheme, and

developed a classification technique able to perform group of picture length

estimation and double compression detection. The proposed technique is

one of the fastest approaches that use videos encoded with B-frames, with

both constant bit rate and variable bit rate.
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Chapter 1

Introduction

In the last decades, the huge technological advancements in the communica-

tion and information fields have allowed the burst of digital contents, such

as images and videos to the point of making them to become the preferred

means to share information. Given their digital nature, these data also con-

vey several information related to their life cycle such as the source device

or processing they have been subjected to, which are studied by multimedia

forensic algorithms.

1.1 The objective

Multimedia Forensics (MF) is a research area aiming to identify traces, left

by the digital history of an image or video, by exploiting well known tools

designed for digital contents analysis and multimedia security. In particular,

this thesis is focused on video forensics, that still has to face several uncharted

matters with respect to the image forensics, mainly due to the wider range

of possible alterations that can be performed on such digital contents, and

to the higher types of encoding standards. As this discipline grows, different

kinds of analysis have become possible; in the following we list those that

gathered more interest and that will be discussed in the thesis:

Source Identification : its objective is to determine from which device

and/or which brand/model of device a specific multimedia content has

been acquired with.

Source Classification : it aims to classify multimedia contents according

1



2 Introduction

to some characteristics of the originating source, such as the operating

system (e.g. Android versus Apple), camera model (e.g. Huawei P9

versus HuaweiP8 ), etc.

Integrity Verification : its objective is to identify the presence of possible

alterations (malignant or not) that a multimedia content has under-

gone, such as double compression or other post processing procedures,

which distinguishes these contents with respect to the pristine one.

1.2 Contributions

This thesis proposes three main contributions to the aforementioned video

forensic issues:

� VISION dataset, a new image and video dataset useful for benchmark-

ing multimedia forensic tools will be presented. We have collected and

made available to the research community a large dataset composed

by thousands of images and videos acquired from portable devices of

most famous brands, including those featuring in-camera digital stabi-

lization. We also provide the social version of most contents, obtained

by uploading and downloading them to/from well known social media

platforms, namely Facebook, YouTube and WhatsApp. In addition,

we will discuss the results of some state-of-the-art forensic applications

such as Image and Video Source Identification obtained by using this

dataset, that will highlight some interesting issues that have not been

noted until now, since there were no sizeable benchmarks available in

the research community.

� Video forensics based on Low-Level features. Low-level features, such

as the container structure and content, can be extracted from a digi-

tal video and will be exploited as a mean to video forensics problems.

In particular, these features will be used to determine the integrity

of video content acquired with a mobile device and subsequently up-

loaded and downloaded through social-platforms. Furthermore, these

low-level characteristics will be exploited to distinguish the Brand/-

Model acquisition source, thus achieving Brand/Model identification

and Brand/Model classification.
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� Video forensics based on High-level features. High-level features are

derived from the encoding algorithm prediction types; The Variation of

Prediction Footprint [65] will be extended designing an algorithm based

on Support Vector Machine classification that will allow to evaluate

the footprint introduced by the double compression on B-frames, thus

solving issues of integrity verification also on video using bidirectional

prediction.
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Chapter 2

Literature review

In this Chapter we will give a brief introduction on the main

concepts of video encoding and video container structure, then an

overview on the state of the art related to Video Forensics will

be provided, discussing solutions proposed by the research com-

munity for what concerns problems of video source identification

and classification, and video integrity detection.

2.1 Background on digital videos

A digital video is essentially a set of still images, called frames, displayed

in rapid sequence. The reproduction speed must be high enough to exploit

the vision persistence phenomenon, in this way the human brain is able to

assemble images to perceive the fluid movement of a video content. Since

the storage of a video as a sequence of still image is too onerous, a set of

compression algorithms, such as MPEG-2 [41], MPEG-4 [40], H.264 [42] and

H.265 [43], has been developed. A compression algorithm, also called codec,

is composed of an encoder function that converts the source data into a

compressed form occupying a reduced number of bits, prior to transmission

or storage, and a decoder function that converts the compressed form back

into a representation of the original data.

The video can be exchanged in its native form, as an H.264 stream for

example, or by means of a container, such as MP4 [3] or MOV [10], that

concatenates video metadata information, audio streams, subtitle streams

and even multiple video streams in a single multimedia file.

5



6 Literature review

Figure 2.1: An example of video enconding.

In the following we will describe the main aspects of the video encoding

procedure and the container structure.

2.1.1 Video coding basics

A video content consists of frames of different type depending on their con-

tent; in particular we can distinguish between intra predicted frames (I-

frames) and inter predicted frames (P-frames and B-frames). Each frame

is analysed in non overlapping macroblocks (MBs) such as 16 × 16 pixels,

according to a processing chain as the one depicted in Figure 2.1. A specific

sequence of frames is called a GOP, group of pictures, typically an I-frame

followed by a sequence of P and B frames. The total number of frames in a

GOP is also called GOP size.

The algorithm of a video encoder consists of three main functional units:

a prediction model, a spatial model and an entropy encoder, as depicted in

Figure 2.1.

From an uncompressed video sequence, the prediction model attempts

to reduce redundancy by exploiting the similarities between neighbouring

video frames, typically by constructing a prediction of the current frame. The

output of the prediction model is a residual frame, created by subtracting the

prediction from the current frame, and a set of model parameters indicating

the intra prediction type or describing how motion was compensated.

An I-frame, or intra predicted frame, is a single frame of digital content
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Figure 2.2: H.264 B-frame extracted from Ice.

that the encoder evaluates independently with respect to the neighbouring

frames. A frame is called P, or predicted, if it contains uni-predicted mac-

roblocks; namely the prediction of those blocks are carried out by a single

reference MB. P-frames can be encoded with three types of macroblocks:

I-MBs, or intra macroblocks, that are considered independent MBs; S-MBs

that corresponds to skip macroblocks, also known to be the exact copy of

some previous MB; P-MBs that are uni-predicted macroblocks referencing a

similar macroblock in the past. For what concerns a B-frame, or bi-predicted

frame, it contains MBs that are predicted by means of macroblocks located

in the future, in the past or both. Similarly to the P-frames, in B-frames we

can have the following type of macroblocks which are depicted in Figure 2.21:

I-MBs intra macroblocks in red; S-MBs skip macroblocks, not coloured; FW-

MBs forward predicted macroblocks (also P-MBs), in blue with red arrows;

BW-MBs backward predicted macroblocks, in blue with green arrows, that

are predicted using a reference located in the future; Bdir-MBs bidirectional

predicted macroblocks, in yellow, that combine two predictions, one from

the past and one from the future.

1Ice raw video sequence downloaded from https://media.xiph.org/video/derf/ on

October 2017.

https://media.xiph.org/video/derf/


8 Literature review

Figure 2.3: ISO Base Media File Format structure.

In the spatial model the residual frame is transformed and quantized,

using for example the DCT - Discrete Cosine Transform, in order to reduce

spatial redundancy. The transform converts the samples into another domain

in which they are represented by transform coefficients. The coefficients are

quantized to remove meaningless values, leaving a small number of signifi-

cant coefficients that provide a more compact representation of the residual

frame. Thus, the output of the spatial model is a set of quantized transform

coefficients. The parameters of the prediction and spatial model, i.e. intra

prediction mode(s)/ inter prediction mode(s), motion vectors and quantized

transformed coefficients, are compressed by the entropy encoder. This re-

moves statistical redundancy in the data, representing commonly occurring

vectors and coefficients by short binary codes. As a result, the entropy en-

coder produces a compressed bit stream to be transmitted and/or stored.

On the other hand, the decoder reconstructs a video frame starting from

the compressed bit stream. The coefficients and prediction parameters are

decoded by an entropy decoder after which the spatial model is decoded to

reconstruct a version of the residual frame. Then the prediction parameters,

together with previously decoded image pixels, are used to create a prediction

of the current frame and the frame itself is reconstructed by adding the

residual frame to this prediction.

2.1.2 Video container

The MP4-like file formats, such as MP4, MOV and 3GP, are derived from

the ISO Base Media File Format [4] (iso base), that is designed to contain

time-based media contents, such as audio streams or video streams.

The iso base files can be characterized by three structures, namely a

logical, a time and a physical structure. The logical structure of a video file

consists of its time-parallel tracks; the time one is composed by the sample
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Atom name and depth Atom description description

Depth-1 Depth-2 Depth-3 Depth-4 Depth-5 Depth-6

ftyp* file type and compatibility

moov* container for all the metadata

mvhd* movie header

trak* container for an individual trak

tkhd* track header

mdia* container for the media information

mdhd* media header

hdlr* handler

minf* media information container

vmhd video media header

smhd sound media header

hmhd hint media header

dinf* data information box

dref* data reference box

stbl* sample table box

stsd* sample descriptions

stts* time-to-sample

stcs* sample-to-chunk

stcz sample sizes (framing)

stco* chuck offset

co64 64-bit chunk offset

stss sync sample table

sdtp independent and disposable samples

udta user-data

udta user-data

moof movie fragment

mdat media data container

free free space

meta metadata

Table 2.1: MP4-like Container structure.
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sequences contained in each track, that are mapped to the overall video

timeline by optional lists. The physical structure of the file separates the

data needed for logical, time, and structural de-composition, from the media

data (mdat) samples themselves. This structural information is concentrated

in a movie box (moov), possibly extended in time by movie fragment boxes

(moof ). The movie box links the logical and timing relationships of the

samples, and also contains pointers to where they are located.

A video file container describes its contents by means of a sequence of

objects. All the data is contained in atoms, also called boxes, that are iden-

tified by a unique 4 bytes characters, as in Table 2.1, where we describe the

meaning of each atom and the corresponding container depth.2 In Figure 2.3

a possible MP4-like container structure at depth-1, is depicted; in particular:

ftyp atom: it is semi-mandatory and must be present and explicit as soon

as possible in the file container because it defines the best use and

compatibility of the content itself.

moov atom: it is the most complex atom of the container, It contains all

the metadata needed for the decoding of the data stream.

mdat atom: it contains all elements of the data stream.

2.2 Multimedia Forensics applied to videos

In the following we will review the possible solutions given by the forensics

community to the problems Source Identification, Source Classification and

Integrity Verification. First of all, we will start in Subsection 2.2.1 with

the description of the Datasets used for the source identification problem; in

Subsection 2.2.2 we will take into consideration low level features belonging

to video contents to solve both source identification and classification, in

addition the integrity verification; finally in Subsection 2.2.3 we will have

a look at solutions for the integrity verification that uses high-level video

features.

2In Table 2.1 the asterisk (*) is used to identify atoms that are considered mandatory

by the ISO, moreover an extended version can be found in [4].
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2.2.1 MF Datasets

One of the first datasets adopted in the multimedia forensic community is the

UCID database [56], originally designed for the evaluation of image retrieval

techniques. Such dataset includes 1338 uncompressed images stored in the

TIFF format, but their size is very small, either 512×384 or 384×512 pixels.

The first sufficiently large and publicly available image database specifi-

cally designed for forensic applications is the Dresden Image Database [31,

32]. This dataset includes images of various indoor and outdoor scenes ac-

quired from 73 devices, selected from 25 camera models spanning most im-

portant manufacturers and quality ranges. All cameras were configured to

the highest available JPEG quality setting and maximum available resolu-

tion, and, when supported by the device, also lossless compressed images

were stored. The image resolution ranges from 3072 × 2304 to 4352 × 3264

pixels, for a total of 16961 JPEG images, 1491 RAW (unprocessed) images,

1491 RAW images processed in Lightroom 2.5 and 1491 RAW images pro-

cessed in DCRaw 9.3. Since 2010, this dataset has been used by most of the

works dealing with benchmarking of source identification methods.

More recently, RAISE (RAw ImageS datasEt) was presented [25]: it is

a collection of 8156 raw images including a wide variety of both semantic

contents and technical parameters. Three different devices (a Nikon D40,

a Nikon D90, and a Nikon D7000) are employed, and the images are taken

at very high resolution (3008×2000, 4288×2848 and 4928×3264 pixels) and

saved in an uncompressed format (Compress Raw 12-bit and Lossless Com-

press Raw 14-bit) as natively provided by the employed cameras. Each image

is also assigned one of seven possible categories, namely, ”outdoor”, ”indoor”,

”landscape”, ”nature”, ”people”, ”objects” and ”buildings”. In the frame-

work of the European project REWIND3, a set of 200 uncompressed images

acquired with a Nikon D60 camera were also made available [66,67] (among

other sets for splicing detection, copy-move forgeries and recapture videos,

all including a few number of samples). There are also other datasets, not

cited here, that have been designed more for image tampering detection than

for source identification, and thus no or little information is provided about

the device generating the images.

As to digital videos, in the literature there are very few datasets designed

to be used in forensic scenarios; one of them is the SULFA [55], created by

3All related materials on the REWIND project can be found online at https://sites.

google.com/site/rewindpolimi/home.

https://sites.google.com/site/rewindpolimi/home
https://sites.google.com/site/rewindpolimi/home
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the University of Surrey. It collects 150 videos, each 10 seconds long, at

30 fps with a resolution of 320 × 240 pixels. The native videos are given

compressed in H.264/AVC and MJPEG, for each camera: a Canon SX220,

a Nikon S3000 and a Fujifilm S2800HD. Authors designed the dataset to be

used for cloning detection, performed by means of Adobe Photoshop CS3

and Adobe After Effect CS5 [55]. The SULFA dataset was also extended

by the REWIND dataset [14]; anyway these datasets are less interesting for

video source identification, since they contain few digital cameras only and no

smartphone, while we know smartphones are the most representative kind of

device today, especially for applications on social media platforms. Recently

the Video Tampering Dataset (VTD) was provided by Al-Sanjary et al. [8].

The VTD, focused on video tampering detection on videos collected from

the YouTube platform, is composed by 33 downloaded videos, 16 seconds

long, at 30 fps with a HD resolution. The original dataset is subdivided into

four subsets: one containing unaltered videos; one with videos created by

splicing; one with videos manipulated by copy-move, and one with videos

tampered by swapping frames. Although they use a social media platform

to acquire videos and provide interesting tampering techniques, there are

not useful information related to the camera or device used.

The previous review shows that all currently available datasets consider

mainly images, and the ones containing videos are not significant for video

source identification; moreover, it is not possible to investigate relationships

between images and videos acquired with the same sensor: this fact is a

strong limitation, since 85% of shared media are captured using smartphones,

which use the same sensor to capture both images and videos. Finally, an-

other limit in the state-of-the-art is represented by the lack of a collection

of controlled content coming from social media platforms, like Facebook,

YouTube and WhatsApp; indeed, recent multimedia forensic applications

would take advantage in having a large dataset containing such kind of con-

tents: for instance, in [64] the authors address the performance of identifying

the source of YouTube videos, but limiting to a scenario with videos belong-

ing to 8 webcams of the same model (Logitech Quickcam STX). Similarly,

Bertini et al. [12] propose to extract the Sensor Pattern Noise from images

to identify fake social media accounts, but the technique was tested on 5

mobile devices only, with 200 images each.
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2.2.2 Container features

When it comes to investigate the credibility of a digital video, two main cat-

egories of analysis exist: integrity verification and authenticity verification.

The terms integrity and authenticity have been often treated like synonyms

in the multimedia forensics research community, until recent time [48]; nev-

ertheless, they have a strongly different meaning. According to the Best

Practices for Image Content Authentication [61] of the Scientific Working

Group on Digital Evidences4, indeed, “content authentication is used to de-

termine whether the visual content depicted in imagery is a true and accurate

representation of subjects and events”, while “integrity ensures that the in-

formation presented is complete and unaltered from the time of acquisition

until its final disposition”. There are cases where authenticity of a video is

more important than its integrity (think to a video found on YouTube show-

ing the preparation of a terrorist attack: the integrity is surely compromised

by YouTube re-encoding process, yet the content could be authentic and

worth of attention); there could be cases instead where integrity is more im-

portant than authenticity itself (for example, if previously mentioned video

is found on a suspect’s smartphone, it is of prominent importance to under-

stand whether it is compatible, at least in terms of format and metadata,

with the hypothesis of being captured by that smartphone or not). Notice-

ably, while it is possible to conduct authenticity analysis in a totally blind

fashion (that is, without any background knowledge on the originating de-

vice), it is very difficult to reliably assess the integrity of a digital content

without any information about its source: there is need for reference ma-

terial to compare with, unless some obvious traces of file manipulation are

present (e.g., the name of an editing software in the metadata).

Common techniques developed for the forensic analysis of digital videos

mainly focus on the analysis of the data stream, i.e. the audio-visual signal,

based on the detection of artifacts and inconsistencies in the (statistics of the)

content. For example, identification of the source device is possible through

sensor noise analysis [18], while detection of double encoding or manipulation

can be done by analyzing prediction residuals [57] or macroblock types [29,

65].

4Formed in 1998, the Scientific Working Group on Digital Evidence brings together

law enforcement, academic, and commercial organizations actively engaged in the field of

digital forensics to develop cross-disciplinary guidelines and standards for the recovery,

preservation, and examination of digital evidence.
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A less explored approach is the analysis of the file format and metadata,

to determine their compatibility, completeness, and consistency with respect

to the context in which it is assumed the resource has been created. The

techniques belonging to this class have been mainly borrowed from the anal-

ysis carried out on digital images. In particular, JPEG [2] and EXIF [27]

metadata have been studied in several works: since each acquisition device

and processing software usually adopts customized quantization tables, it is

possible to exploit these differences to address the source origin problem [28].

By considering the number of EXIF entries as well as image and thumbnail

compression parameters and sizes, Kee et al. [46] associate images whose

origin is not known to a certain class of source devices. These studies have

been limited by the fact that information contained in the metadata can be

easily edited by a user in order to hide possible modifications, thus limiting

the trustworthiness of such approaches.

Following studies revealed that also the file structures contain a lot of

information about the history of a content, while being much more difficult

to extract and modify from a user than metadata, since available editing

software and metadata editors do not have a functionality to modify such a

low-level information, like the internal order of the core file structures.

Indeed, both the acquisition phase and the subsequent post-processing

steps modify the content and the structure of the file, such that these pecu-

liarities can be exploited both for source identification and integrity verifi-

cation. In particular, Gloe [30] demonstrated that the specific internal order

within JPEG and EXIF structures represent a discriminating information

for the authentication of a digital image.

These studies have been recently extended to digital videos too. In [33],

Gloe et al. analyse the video files by exploring the low-level characteristics

represented by metadata and low-level file format information such as the

structure of the video file container. In particular, the authors noticed that

the video standards prescribe only a limited number of characteristics for the

data container formats, thus leaving a lot of freedom to the manufacturer.

The authors, after analysing 19 digital camera models, 14 mobile phone

models, and 6 video editing toolboxes, report considerable differences in

the choice of container formats, audio and video compression algorithms,

acquisition parameters, and internal file structure. These statistics could

then be exploited for several forensic tasks, e.g., for the authentication of

digital video files, or the identification of post-processed videos. However,
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while providing a pioneering exploration of video container formats from a

forensic viewpoint, the work in [33] does not introduce any formal approach

to the analysis of file format information, leaving it to visual examination by

the analyst.

2.2.3 CODEC features

One of the first steps in video forensics is the analysis of double compression

detection, as a mean to integrity verification. The earliest work was carried

out by Wang and Farid [68] who used the residuals Discrete Fourier Trans-

form (DFT) to uncover trances of MPEG double compression. The double

compression problem can be analysed taking into account equal or different

GOP sizes between the compressions. In the second category, many methods

proposed in literature relay on the prediction residual family, as in [68], or

the macroblock prediction types family as Vázquez-Pad́ın’s et al. [65].

A large family of methods has been developed relying on the analysis of

DCT coefficients, indeed Milani et al. [51] proposed to analyse the distri-

bution of the First Significant Digits (FSD) of DCT coefficients designing a

feature based on the Benford’s law [11]. Milani et al. use the Benford’s fea-

tures to build a set of Support Vector Machine (SVM) classifiers in order to

distinguish up to three compression stages in case of H.264 encoded videos.

The experiments carried out by the authors in [51] show that the method

results in a perfect identification of original compressed videos, whereas a

73% accuracy is obtained for multiple-compression detection, probably due

to motion estimation that scrambles the coefficients statistics.

Many recent state-of-the-art contributions [37, 45] focus on peculiarities

obtained from macroblock’s motion vectors. He et al. compute the mo-

tion vector field of videos with static backgrounds designing a feature that

take into consideration the motion strength of foreground and background

regions, which, according to the authors, retains robust footprints of double

compression. Furthermore, the authors of [37] study the periodicity of the

modified average prediction residual sequence upon to post-processing per-

formed by means of the VPF condition [65] and some statistical operators to

determine the GOP estimation. The proposed method was evaluated with 6

raw videos in CIF resolution, 352×288 pixels, that are captured with a fixed

camera. In these tests, are evaluated double compression performed with

MPEG− 4, and transcoding with AV C, while taking into account Variable

Bit Rate (VBR) and Constant Bit Rate (CBR). The results showed in [37]
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outperform many state-of-art approaches especially Vázquez-Pad́ın’s [65],

even though the initial assumption on static backgrounds is quite strong,

making the technique not applicable in broad spectrum acquisitions scenar-

ios.

Recently, Bestagini et al. [15] faced the double compression problem by

exploiting the idempotency characteristic of the scalar quantization param-

eter, extending their work in [13]. The authors argue that the quantization

factor is by construction an idempotent operator, and it follows that re-

compression by the same scalar value will result as the one obtained by

applying quantization only once. Thus, the quantization footprint can be

used to determine in a recompress-and-observe framework the original codec

and GOP. The authors in [15] validated the proposed approach by means of

several encoding algorithms such as MPEG-2, MPEG-4 and AVC, using 6

raw videos, 11 GOP sizes in the first compression and just one in the second,

and 6 quantization parameters (QP) in the second compression. The results

show optimum GOP estimations in particular in case of low QP2 since the

second codec does not hide the footprint introduced by the first one. Similar

results are obtained for the codec identification, where the best performances

are gained when using the AVC codec with low QP2, and the worst in case

of the MPEG-4 codec. One of the main issues that affects Bestagini et al.,

is the computational cost of such technique, it is clear that in case of up-

to-date video resolutions the computational cost of multiple re-encoding is

substantial.

Aghamaleki et al. [5, 6] address problems of inter-frame insertion local-

ization, inter-frame deletion localization and double compression detection.

They propose an algorithm for forgery detection based on the temporal anal-

ysis of residual errors and areas of dominant quantization errors, correspond-

ing to high-textured regions with low motion. The tests are performed on 22

video sequences in CIF and QCIF resolutions encoded in VBR with MPEG-

2, using the IPPPPPPPPPP GOP structure, obtaining an average detection

rate of 92.7%, though if both QPs are small, QP < 8, the method proposed

by Aghamaleki et al. reach an accuracy of 68.18%.

Another interesting contribution to the double compression identifica-

tion has been published recently by Chen et al. [20]. Their work focus on

the H.264 codec, uses the distribution of the prediction residual and is ap-

plicable to non-aligned GOP structures, meaning that the GOP in the first

compression is different than the one in the second compression. Chen et
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al. argue that the effect on an I-frame encoded as a P-frame increase the

prediction residual of the P-frame, thus they determine the PRED feature

by averaging the prediction residual for non-overlapping 4 × 4 blocks for

each frame, then stating the ability to distinguish between I-frame encoded

as a P-frame and a P-frame encoded as a P-frame. In addition they im-

prove the PRED feature by evaluating the difference of adjacent frames by

means of the Jensen-Shannon divergence and after post-processing a peri-

odic analysis is carried out to determine the first GOP size. The authors

in [20] evalute the PRED feature using the same dataset of Vázquez-Pad́ın et

al. [65] but the second compression is performed just with the H.264 codec.

The results show comparable results on the compression detection problem,

whereas in the GOP estimation they improve [65] with an increment in the

range [2, 10]% depending on video content and bit rate. Moreover Chen et al.

research was extended in a recent publication by Zheng et al. [71], where the

innovative element consists of extracting H.264 double compression features

from videos with a static background.

It is important mentioning some preliminary works that study the in-

tegrity verification problem by means of the recent ITU-T/ISO-IEC coding

algorithm, namely HEVC [43]. Costanzo and Barni [24] evaluated the dou-

ble compression detection in case of AVC/HEVC transcoding, being able

to determine the value of the quantization parameter used in the first AVC

compression by taking into account the idempotency property of the quan-

tization as in [13]. Huang et al. [38] evaluates HEVC double compression by

means of a co-occurrence matrix based on DCT coefficients, thus building an

interesting feature able to reveal alterations carried by double quantization

errors. Whereas Xu et al. [70] addressed the double compression problem by

means of the SN-PUPM feature that takes into account the number of pre-

diction units that belong to INTRA, INTER and SKIP modes in I-P frames.

Finally, an SVM classifier is trained to label I-P frames and determine the

sequence for double compression detection and GOP analysis.
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Chapter 3

VISION

In this Chapter we describe the VISION dataset a new contribu-

tion to the development of Multimedia Forensics, as benchmark

for the exhaustive evaluation of several image and video forensic

tools. It is currently composed of 34427 images and 1914 videos,

both in the native format and in their social version (Facebook,

YouTube and WhatsApp are considered), from 35 portable devices

of 11 major brands.

3.1 Introduction

In the last decades, visual data gained a key role in providing information.

Images and videos are used to convey persuasive messages to be used under

several different environments, from propaganda to child pornography. The

wild world of web also allows users to easily share visual contents through

social media platforms. Statistics [39] show that a relevant portion of the

world’s population owns a digital camera and can capture pictures. Further-

more, one-third of the people can go online [36] and upload their pictures

on websites and social networks. Given their digital nature, these data also

convey several information related to their life cycle (e.g., source device,

processing they have been subjected to). Such information may become rel-

evant when visual data are involved in a crime. In this scenario, Multimedia

Forensics (MF) has been proposed as a solution for investigating images and

videos to determine information about their life cycle [26]. During the years,

the research community developed several tools to analyse a digital image,

19
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focusing on issues related to the identification of the source device and the

assessment of content authenticity [53].

Generally, the effectiveness of a forensic technique should be verified on image

and video datasets that are freely available and shared among the community.

Unfortunately these datasets, especially for the case of videos, are outdated

and non-representative of real case scenarios. Indeed, most multimedia con-

tents are currently acquired by portable devices, that keep updating year

by year. These devices are also capable to acquire both videos and images

exploiting the same sensor, thus opening new investigation opportunities in

linking different kind of contents [44]. This motivates the need for a new

dataset containing a heterogeneous and sufficiently large set of visual data -

both images and videos - as benchmark to test and compare forensic tools.

In this Chapter we present a new dataset of native images and videos cap-

tured with 35 modern smartphones/tablets belonging to 11 different brands:

Apple, Asus, Huawei , Lenovo, LG electronics, Microsoft , OnePlus, Sam-

sung , Sony , Wiko and Xiaomi . Overall, we collected 11732 native images;

7565 of them were shared through Facebook, in both high and low quality,

and through WhatsApp, resulting in a total of 34427 images. Furthermore

we acquired 648 native videos, 622 of which were shared through YouTube

at the maximum available resolution, and 644 through WhatsApp, resulting

in a total of 1914 videos 1.

To exemplify the usefulness of the VISION dataset, we test the perfor-

mance of a well known forensic tool, i.e., the detection of the Sensor Pattern

Noise (SPN) left by the acquisition device [49] for the source identification

of native/social media contents; moreover, we describe some new opportu-

nities deriving by the availability of images and videos captured with the

same sensor to find a solution to current limits present in the literature. In

particular, the proposed dataset contains several devices featuring in-camera

digital stabilization, that is known to threaten source identification based on

sensor pattern noise. Indeed, in most papers related to SPN [64] [18] [22] [21]

digitally stabilized videos are ignored, either by turning the stabilization off

or considering non-stabilized devices only. This is unrealistic, considering

that most common modern devices (e.g., Apple iPhones) are equipped with

an in-camera digital stabilization system that cannot be turned off without

resorting to third party applications.

1Not all the videos were exchanged through social media platforms, more technical

details can be found in [59]
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The rest of the Chapter is organized as follows: in Section 3.2 a complete

description of the VISION dataset is provided for both native and social

media contents; in Section 3.3 the dataset is exploited to evaluate some

well known forensic applications and to taste new research opportunities.

Section 3.4 draws concluding remarks.

3.2 Dataset structure

Images and videos have been acquired from each mobile device by following a

specific procedure. First of all, the captured contents refer to the best-quality

camera available in the device, in general the one positioned on the upper-

rear of the device. Moreover, the devices were configured, when possible,

with the highest quality and resolution available (usually the default one for

Apple devices, but not necessarily for Android ones).

VISION is mainly thought for video and image source identification ap-

plications, as a consequence we organized the data collected from each device

into two folders, (see Figure 3.1 for an example), namely:

� images: containing native and social exchanged images. We captured

images, mainly in landscape-mode, representing flat surfaces (e.g., skies

or walls), here defined as Flat, and generic images, here defined as Nat,

for which there are no limitations on orientation or scenario, as it can

be seen in Figure 3.2. In addition, the Nat images were exchanged via

the Facebook and WhatsApp social media platforms.

� videos: containing native and social exchanged videos, acquired mainly

in landscape-mode. The collected videos represent flat, indoor and

outdoor scenarios. The flat scenario includes videos belonging to flat

surfaces such as walls and skies. The indoor scenario comprises videos

representing offices or stores, and the outdoor scenario contains videos

of open areas such as gardens. For each scenario, we used three different

acquisition modes: still-mode, where the user stands still while captur-

ing the video; move-mode, where the user walks while capturing the

video; panrot-mode, where the user performs a recoding combining a

pan and a rotation. Furthermore, the videos belonging to each scenario

were exchanged via YouTube and WhatsApp social media platforms.

The structure depicted in Figure 3.1 is maintained also in the naming

convention. The contents collected from each device are stored in its root
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Figure 3.1: VISION folder organization.

folder named ID Brand Model as in D01 Samsung GalaxyS3Mini. Then, we

distinguish between images and videos, within each of them we have the

native content folders and the social ones. A native flat image is called by

convention as ID I flat XXXX.jpg as in D01 I flat 0001.jpg, where ID is

the device identifier, I identifies it as an image content, flat identifies the

sub-folder and the type of image, while XXXX.jpg is an incremental num-

ber. Similarly, the video content naming is ID V scenario mode XXXX.mp4

as in D01 V flat panrot 0001.mp4, where V identifies the video content,

scenario and mode refer respectively to the area and the modality of the

acquisition procedure. The so described naming convention is also applied to

the social folders represented in Figure 3.1: an image uploaded to Facebook

in low quality will be named D01 I natFBL 0001.jpg, an image uploaded

to Facebook in high quality will be named D01 I natFBH 0001.jpg, while a

video exchanged through WhatsApp will be named D01 V flatWA panrot 0001.mp4.
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Figure 3.2: Some examples of the images included in the proposed dataset.
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Table 3.1: Devices main features. DStab shows the presence or absence of

digital stabilization on the acquired content, HDR indicates whether the de-

vice supports it, VR stands for video resolution and IR for image resolution.
Brand Model ID DStab HDR VR #Videos IR #Images #Flat #Nat

Apple iPad 2 D13 Off F 1280× 720 16 960× 720 330 159 171

Apple iPad mini D20 On F 1920× 1080 16 2592× 1936 278 119 159

Apple iPhone 4 D09 Off T 1280× 720 19 2592× 1936 326 109 217

Apple iPhone 4S D02 On T 1920× 1080 13 3264× 2448 307 103 204

Apple iPhone 4S D10 On T 1920× 1080 15 3264× 2448 311 133 178

Apple iPhone 5 D29 On T 1920× 1080 19 3264× 2448 324 100 224

Apple iPhone 5 D34 On T 1920× 1080 32 3264× 2448 310 106 204

Apple iPhone 5c D05 On T 1920× 1080 19 3264× 2448 463 113 350

Apple iPhone 5c D14 On T 1920× 1080 19 3264× 2448 339 130 209

Apple iPhone 5c D18 On T 1920× 1080 13 3264× 2448 305 101 204

Apple iPhone 6 D06 On T 1920× 1080 17 3264× 2448 281 149 132

Apple iPhone 6 D15 On T 1920× 1080 18 3264× 2448 337 110 227

Apple iPhone 6 Plus D19 On T 1920× 1080 19 3264× 2448 428 169 259

Asus Zenfone 2 Laser D23* On F 640× 480 19 3264× 1836 327 117 210

Huawei Ascend G6-U10 D33 Off T 1280× 720 19 2448× 3264 239 84 155

Huawei Honor 5C NEM-L51 D30 Off T 1920× 1080 19 4160× 3120 351 80 271

Huawei P8 GRA-L09 D28 Off T 1920× 1080 19 4160× 2336 392 126 266

Huawei P9 EVA-L09 D03 Off F 1920× 1080 19 3968× 2976 355 118 237

Huawei P9 Lite VNS-L31 D16 Off T 1920× 1080 19 4160× 3120 350 115 235

Lenovo Lenovo P70-A D07 Off F 1280× 720 19 4784× 2704 375 158 217

LG electronics D290 D04 On F 800× 480 19 3264× 2448 368 141 227

Microsoft Lumia 640 LTE D17 Off T 1920× 1080 10 3264× 1840 285 97 188

OnePlus A3000 D25 On T 1920× 1080 19 4640× 3480 463 176 287

OnePlus A3003 D32 On T 1920× 1080 19 4640× 3480 386 150 236

Samsung Galaxy S III Mini GT-I8190 D26 Off F 1280× 720 16 2560× 1920 210 60 150

Samsung Galaxy S III Mini GT-I8190N D01 Off F 1280× 720 22 2560× 1920 283 78 205

Samsung Galaxy S3 GT-I9300 D11 Off T 1920× 1080 19 3264× 2448 309 102 207

Samsung Galaxy S4 Mini GT-I9195 D31 Off T 1920× 1080 19 3264× 1836 328 112 216

Samsung Galaxy S5 SM-G900F D27 Off T 1920× 1080 19 5312× 2988 354 100 254

Samsung Galaxy Tab 3 GT-P5210 D08 Off F 1280× 720 37 2048× 1536 229 61 168

Samsung Galaxy Tab A SM-T555 D35 Off F 1280× 720 16 2592× 1944 280 126 154

Samsung Galaxy Trend Plus GT-S7580 D22 Off F 1280× 720 16 2560× 1920 314 151 163

Sony Xperia Z1 Compact D5503 D12 On T 1920× 1080 19 5248× 3936 316 100 216

Wiko Ridge 4G D21 Off T 1920× 1080 11 3264× 2448 393 140 253

Xiaomi Redmi Note 3 D24 Off T 1920× 1080 19 4608× 2592 486 174 312
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3.2.1 Main features

VISION is composed by 35 mobile devices from low, middle and high price

range. There are 13 Apple devices, including iPhones and iPads. There are 8

Samsung devices including Galaxy phones and tablets. There are 5 Huawei

and 2 OnePlus phones. Furthermore we gathered one device for the following

brands: Asus, Lenovo, LG electronics, Microsoft , Sony , Wiko and Xiaomi .

We collected a few devices of the same brand and model namely: two iPhone

4S, two iPhone 5, three iPhone 5c, two iPhone 6 and two Galaxy S3 Mini.

The employed devices had installed the following operating systems: iOS

from 7.x to 10.x, Android from 6.x Marshmallow to 7.x Nougat, and the

Windows Phone OS 8.1 Update 2.

In Table 3.1 we summarize the main features of the complete Dataset.

For each device we report the Brand, Model, a unique identifier ID and the

number of collected videos and images with their corresponding resolutions.

In Table 3.1 we also clarify whether videos were captured using in-camera

digital stabilization: the reader can see that for most Apple devices if the

stabilization is present it is also enabled (the only exceptions are D9 and

D13), as it is also for the Sony Xperia, D12. On the contrary, this is not

true for all other devices where the in-camera digital stabilization is set off

by default. In addition, Table 3.1 clarifies whether the device can acquire

images in HDR-High Dynamic Range mode: T(True) is used if HDR is

available and F(False) if it is not. Several additional metadata and coding

statistics are collected and reported in the Appendix.

We also make available a reduced version of VISION for researchers con-

venience. This baseline version is composed by 16100 images and 315 videos,

both native and social, equally distributed among all the devices.

3.2.2 Social contents

The collected contents in VISION were also exchanged through social media

platforms; in particular, for images in Nat we provide their corresponding

uploaded version on Facebook and WhatsApp. We chose to upload only

natural images since, from a forensic point of view, having flat surfaces shared

through social media is rather unrealistic. In addition, we shared all videos

through YouTube and WhatsApp. In the rest of this Section, we explain the

procedure used for uploading and downloading media contents through each

social media platform.
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Facebook Web Platform In order to exchange images via Facebook we

created two albums in which we uploaded all images belonging to Nat in high

and low quality respectively (FBH and FBL from now on), as allowed by the

social media platform. Indeed, as deeply explained in [52], these uploading

options cause a significantly different compression strategy for the image.

For what concerns the download, we performed single-image downloads

and album downloads, although there is no difference between the resulting

contents. Album download functionality was recently added to the Facebook

website2 options. The one click album-download button allows downloading

a zip version of each album; in each zip-file, the images are renamed by an

incremental number as: 1.jpg, 2.jpg, ... n.jpg , where n is the number of

images in the folder.

Since the collection of VISION lasted over a year, we exchanged data both

before and after this update. We took care to provide a matching naming

between the original content and the social media one: we used the SSIM

index [69] as a metric to determine whether the two images depict the same

content. Consequently, if the native image name is D01 I nat 0001.jpg, its

Facebook high quality counterpart will be named D01 I natFBH 0001.jpg.

YouTube Web Platform All video contents were uploaded to YouTube

with the Public privacy flag and collected into a playlist. During the collec-

tion of VISION we exploited different solutions to speed-up the downloading

process, but maintaining the constraints of highest resolutions and no down-

load compression. We encountered two software solutions to accomplish this

goal, namely ClipGrab3 and Youtube-dl4. Both software are freely available

and can be used on several operating systems such as Unix and Windows.

The main difference between the two is that the ClipGrab GUI can download

one video at a time, while the youtube-dl command line can download also

playlists. As an example, we provide the following youtube-dl command line

call to download a playlist:5.

youtube-dl -f 137+140/bestvideo+bestaudio -o "%(title)s.%(ext)s"

--yes-playlist "device url playlist"

The options after the -f refers to the quality of video resolution and audio

2Facebook website on March 2017.
3ClipGrab v3.6.3 - www.clipgrab.org
4youtube-dl v2017.03.10 - http://rg3.github.io/youtube-dl/
5We recommend downloading less than 20 videos at a time due to the YouTube policy.

www.clipgrab.org
http://rg3.github.io/youtube-dl/
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settings; here the meaning is to choose the highest video resolution and audio

quality, if not available choose the second-best pair and so on from left to

right. Then with option -o we set the output video name and extension to

be the YouTube video name and the default extension, i.e. mp4. For the

complete documentation we advise the reader to refer to [16].

Similarly to the image naming convention, a video recorded in an outdoor

scenario with a panrot movement has the following name: D01 V outdoor panrot 0001.mp4,

while its YouTube counterpart will be named D01 V outdoorYT panrot 0001.mp4.

WhatsApp Mobile Application: All native video contents and images

belonging to Nat were exchanged via WhatsApp v2.17.41 using an iPhone 7

A1778 with iOS v10.3.1. We decided to use the mobile-application instead

of the desktop one since the latter does not compute any compression to

the shared file, while the mobile one does so. We used an iPhone since it

produces a media file that is less compressed than the Android one, due to

WhatsApp implementation choices. In this way, we provided an equilibrate

spectrum of social image contents qualities: namely high and low provided

by Facebook, and medium from WhatsApp. As to the naming convention,

for these files we had the same issue as in Facebook: since downloaded images

are renamed, we matched images using the SSIM index.

The videos downloaded from WhatsApp follow the same name structure,

(e.g., D01 V outdoorWA panrot 0001.mp4.

3.3 Forensics applications

This dataset was created to provide a benchmark for the forensic analysis of

images and videos. In this Section, we exploit all the collected contents to

test the source identification technique based on the Sensor Pattern Noise.

In this scenario, the aim is to identify the source of an image or video by

evaluating the correlation between the SPN fingerprint estimated from the

investigated content, and the device reference fingerprint, computed from a

set of images or a video taken by this device.

We tested different application scenarios:

� Image Source Identification (ISI), where a query image is matched with

a device reference computed from a set of images taken by the device;

� Video Source Identification (VSI), where a query video is matched with
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a device reference computed from the frames of a video taken by the

device.

The identification is performed according to the classical workflow [19]:

a camera fingerprint K is estimated from N still images or video frames

I(1), . . . , I(N) captured by the source device. A denoising filter [49], is applied

to each image/frame and the noise residuals W(1), . . . ,W(N) are obtained as

the difference between each frame and its denoised version. Then, the camera

fingerprint estimate K̃ is derived by the maximum likelihood estimator [19]:

K̃ =

∑N
i=1 W(i)I(i)∑N
i=1(I(i))2

. (3.1)

The fingerprint of the query is estimated in the same way by the available

image or video frames. Then, the Peak to Correlation Energy (PCE) be-

tween the reference and the query pattern is computed and compared to a

threshold [35]: if the PCE is higher than the threshold, then it is decided

that the query content has been acquired by the reference device.

3.3.1 Image Source Identification

In this scenario, the reference SPN for each device is estimated using 100

still flat field images. Then, we run four experiments using natural, What-

sApp, Facebook high-quality, and Facebook low-quality images as queries.

In all experiments, we consider for each device 100 matching cases (images

from the same device) and the same number of mismatching cases (images

randomly chosen from other devices). The achieved results are reported us-

ing ROC curves, that plot true positive rate against false positive rate (see

Figure 3.3). The overall performance are summarized in Table 3.2 where,

for each experiment, we also reported the dataset path of the query images

and the Area Under Curve. ID Brand Model stands for any of the available

device e.g., D03 Huawei P9.

3.3.2 Video Source Identification

Here, the source of a test video is determined based on references estimated

from a flat-field video. In particular, the reference SPN for each device is

estimated from the first 100 frames of a flat video. Then, three experiments

are performed using natural, YouTube and WhatsApp videos as queries,
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Table 3.2: Performance of Image Source Identification in growing difficulty

scenarios.
Experiment Test Path AUC

1 ID Brand Model/images/nat 0.9906

2 ID Brand Model/images/natWA 0.9860

3 ID Brand Model/images/natFBH 0.9859

4 ID Brand Model/images/natFBL 0.9544

Table 3.3: Dataset paths for VSI experiments.

Experiment Test path
AUC

All Videos Unstab. Videos

ID Brand Model/videos/flat

1 ID Brand Model/videos/indoor 0.7069 0.9394

ID Brand Model/videos/outdoor

ID Brand Model/videos/flatYT

2 ID Brand Model/videos/indoorYT 0.6032 0.7700

ID Brand Model/videos/outdoorYT

ID Brand Model/videos/flatWA

3 ID Brand Model/videos/flatWA 0.5262 0.5437

ID Brand Model/videos/flatWA

respectively. The fingerprint of each tested video is estimated from the first

100 frames. We consider for each device all available matching cases (videos

from the same device) and the same number of mismatching cases (videos

randomly chosen from other devices). The achieved results are reported in

Figure 3.4, where only non-stabilized cameras are analysed, and in Figure 3.5,

where all devices in the dataset are considered. This experiment shows

that performance of VSI strongly drop when digitally stabilized videos are

involved. In Table 3.3 we briefly summarize for each test the paths in the

dataset of tested videos and the Area Under Curve values obtained with and

without stabilized videos.

For in-camera stabilized videos, possible solutions are still under develop-

ment, as the one proposed in [63]. Anyway the solution in [63] is proved to be

effective only on third party (out-camera) digital stabilization (FFmpeg), and

when a non-stabilized video is available as reference. Unfortunately, most

of the considered devices enforce in-camera digital stabilization, without an

option to turn it off in the standard camera application.
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3.3.3 Image vs Video SPN fingerprint

In the research community, ISI and VSI applications are separately studied,

so that there’s still no better way to perform image and video source iden-

tification for the same device than computing two different reference SPNs,

one for still images and one for videos, respectively.

A first step towards an integration of these cases is a hybrid source iden-

tification (HSI) approach, that exploits still images for estimating the fin-

gerprint that will be used to verify the source of a video, as proposed in [44].

Authors of [44] investigate the geometrical relation between image and video

acquisition processes. Indeed, even if the sensor is the same, videos are usu-

ally acquired at a much lower resolution than images: top-level smartphones

reach 4K video resolution at most (8 Megapixels per frame), but can easily

capture 20 Megapixels images. To achieve that, in video recording a central

crop is carried so to adapt the sensor size to the desired aspect ratio (com-

monly 16:9), then the selected pixels are scaled to match the desired video

resolution. As a direct consequence, the fingerprints extracted from images

and videos cannot be directly compared and most of the times, because of

cropping, it is not sufficient to just scale them to the same resolution. In-

stead, image-based and video-based fingerprints are linked by the cropping

and scaling factors between image and video sensor portion, that usually

change across different device models.

With the aim of facilitating researchers exploring the HSI framework

within the VISION dataset, we provide the cropping and scaling factor for

several devices contained therein. For simplicity, we limit to non-stabilized

devices; the hybrid analysis for stabilized devices is even more complex, and

is one of the future research scopes this dataset has been built for. In order to

estimate cropping and scaling factors, for each device we estimated the video

and image references from the videos contained in ID Brand Model/videos/flat

and from the images in ID Brand Model/images/flat, respectively. Specifi-

cally, we estimated each image reference fingerprint from 100 flat field images

and each video reference fingerprint from 100 frames of a flat field video.

The cropping and scaling factors are estimated by a brute force search, as

suggested in [34]. In Table 3.4 we report the scaling factor and the cor-

responding cropping corner (upper-left corner along x and y axes) yielding

the maximum PCE for each examined device. We consider the parameter

search unsuccessful if the obtained maximum PCE is lower than 50 (denoted

by “n.a.” in Table 3.4). For instance, with the device D11 an image finger-
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Table 3.4: Estimated Cropping and Scaling factors for non stabilized videos
ID D01 D03 D07 D08 D09 D11 D13 D16 D17 D21

Scaling 0.5 0.48 0.27 1 0.61 0.59 1 0.46 0.59 n.a.

Cropping

[x y]
[0 228] [0 372] [0 7] [408 354] [227 411] [0 307] [-160 0] [8 396] [0 1] n.a.

ID D24 D26 D27 D28 D30 D31 D32 D33 D35 D22

Scaling 0.5 n.a. 0.5 0.36 0.47 0.46 0.59 0.52 0.39 0.49

Cropping

[x y]
[0 240] n.a. [0 228] [0 0] [39 10] [9 397] [0 0] [464 693] [0 306] [0 246]

print should be scaled by a factor 0.59 and then cropped on the upper left

side of 307 pixels along the y axis to match the video fingerprint (the right

and down cropping are derived by the corresponding video size). D13 is a

pretty unique case in which the full frame is applied for videos and the left

(and right) cropping of 160 pixels is applied to capture images. We put a

−160 meaning that the video frame is cropped by 160 pixel to capture im-

ages. Finally, we notice that we were not able to register the fingerprints for

the devices D21 and D26 by means of the presented techniques. A deeper

analysis of the registration techniques is still an open topic.

3.4 Remarks

In this Chapter we propose a new image and video dataset useful for bench-

marking multimedia forensic tools. We collected thousands of images and

videos from portable devices of most famous brands, including those featur-

ing in-camera digital stabilization. We also prepared the “social version”

of most contents, by uploading and downloading them to/from well known

social media platforms, namely Facebook, YouTube and WhatsApp.

In addition showed examples of some popular applications that would

benefit from the proposed dataset, such as the Video Source Identification,

for which there are no sizeable benchmarks available in the research com-

munity. Furthermore we showed how this dataset allows the exploration of

new forensic opportunities such as comparing camera reference fingerprints

estimated from still images and from videos. The whole dataset is made

available6 to the research community, along with a guide that clarifies its

structure and several csv files containing technical information.

6Vision is available online at https://lesc.dinfo.unifi.it/en/datasets.

https://lesc.dinfo.unifi.it/en/datasets
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Figure 3.3: ISI performance on Native, Facebook (HQ and LQ) and What-

sApp images using flat field references.
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Figure 3.4: The VSI performance on Native, YouTube and WhatsApp videos

(in blue, red and green respectively) considering only devices devices without

in-camera digital stabilization.
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Figure 3.5: The VSI performance on Native, YouTube and WhatsApp videos

(in blue, red and green respectively) considering all available devices.
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Although VISION is a huge collection of media contents, we believe that

there is space for future improvements, indeed we are currently working

to extend VISION with more videos, by means of a Mobile Application

(MOSES [58]). MOSES allows everyone with a smart device, both Android

and iOS based, to contribute to the proposed Dataset. The end-user can

record a video at default settings, under different scenarios and motions, as

in VISION guidelines, then upload it to our servers. Each acquisition has a

maximum duration of 30 seconds, since we have to consider the user band-

width and storage limits, despite that, we considered it sufficient since most

mobile devices record videos at a frame rate of 30 frame per second, resulting

in the availability of video sequences composed by 900 frames. In addition,

MOSES collects further information available from the camera, that are re-

lated to the source and the video file format, such as GPS coordinates or

the container type. It is important to notice that the acquisition process is

carried out by MOSES using the native-camera application of each device,

while uploading videos from the device gallery is not allowed. This choice

aims at preventing the upload of manipulated videos, or videos that have not

been captured by the device running the application. MOSES is still under

development since many issues have to be faced, how to properly store the

captured contents but also accessing more and more information from the

original device.
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Chapter 4

Low-Level features analysis

In this Chapter we focus on the analysis of video file containers

and, based on its fragility and variability between sources, we in-

troduce two main forensic applications. The first focuses on the

integrity verification based on the dissimilarity between two video

containers structure; the latter focuses on the identification and

classification of the video brand/model based on the analysis the

containers structure and content. This last application rests on

the likelihood-ratio framework, more and more approved by the

forensic community as an appropriate way to exhibit findings in

court.

4.1 Introduction

Multimedia Forensics has designed several tools to blindly deduce the digital

history of a digital video, based on the fact that any step in the media life

cycle leaves distinctive traces on the content itself.

In this regard, the techniques for the forensic analysis of digital videos

mainly focused on the data stream, i.e. the audio-visual signal, based on the

detection of artefacts and inconsistencies in the statistics of the content itself.

A less explored approach is the analysis of the file formats and metadata, to

determine their compatibility, completeness, and consistency with respect to

the context in which it is assumed the resource has been created. Indeed, the

potentiality of the information contained within the video file containers has

not still been deeply investigated; naturally the video container structure

37
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and content can be extremely variegated and customized among different

sources. This fact complicates the analysis, but at the same time it makes

possible a higher discriminating power of the discovered peculiarities.

The goal of this Chapter is to bring a contribution to the field of video

integrity verification. First, expanding Gloe et al. idea on the importance of

video file container analysis, we provide a formal measure allowing to quan-

tify the distance between two containers. The measure accounts for both

the container structure and content, thus providing an excellent capability

in distinguishing videos whose integrity is preserved from videos whose in-

tegrity is compromised. Then, building on this measure we define a formal

framework for container- based brand/model identification and classification:

noticeably, this framework analyses the container structure and content of

training data and automatically computes weighting factors telling which

parts of a container are mostly relevant for discriminating a specific brand/-

model from other. Moreover, the framework expresses results in terms of

likelihood-ratio, which is considered the best way for evaluative reporting in

the forensic field [50], [7].

In detail, we introduce two main video forensic applications based on the

analysis of the file container:

� the video integrity verification based on the measure of the dissimilarity

between file containers structures;

� a brand/model identification and classification, based on the contain-

ers structure and content, properly modelled in the likelihood ratio

framework. The identification task consists of checking the compati-

bility degree of a query video with an alleged source brand/model; The

classification task automatically assigns the most likely source brand/-

model from a set of known brands/models.

Concerning the first application, we have proved the effectiveness of

the proposed approach under three different challenging scenarios: a video

has been exchanged through YouTube and WhatsApp; a video has been

cut, without further encoding, through FFmpeg1; a few video metadata

have been changed through ExifTool2.Concerning the second application,

1FFmpeg is a free software project that produces libraries and programs for handling

multimedia data (available at: https://www.ffmpeg.org/).
2ExifTool is a platform-independent Perl library plus a command-line application for

reading, writing and editing meta information in a wide variety of files (available at:

http://www.sno.phy.queensu.ca/~phil/exiftool).

https://www.ffmpeg.org/
http://www.sno.phy.queensu.ca/~phil/exiftool
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the method is proved to be effective for the identification/classification of

both brand and model of portable devices. More specifically, both appli-

cations have been tested in a realistic scenarios, by exploiting the newly

released VISION Dataset [59] presented in detail in Chapter 3.

The rest of the Chapter is organized as follows: Section 4.2 introduces the

standards related to the most common video file formats, mainly MP4 and

MOV, and briefly summarises the structure of a video container; Section 4.3

formalizes the mathematical framework and the metrics exploited to compare

the structure and the contents of video file containers; Section 4.4 is dedicated

to the experimental validation of the proposed technique; finally, Section 4.5

draws some final remarks and outlines future works.

4.2 ISO container structure

The main features of MP4 File Format [3] and MOV File Format [10] con-

tainers derive from the standard ISO/IEC 14496 Part 12 [4]. The ISO Base

format is characterized by a sequence of atoms or boxes. Each atom consists

of a header and a data box, and occasionally nested atoms; as an example,

in Figure 4.1 a common structure of an MP4-like container is reported. The

file type box, ftyp, is a four letter code that is used to identify the type of

encoding, the compatibility or the intended usage of a media file. According

to the latest ISO standards, it is considered as a semi-mandatory atom, i.e.

the ISO expects it to be present and to be explicit as soon as possible in the

file container. In the example given in Table 4.1, the fields of the ftyp de-

scriptor explain that the video file is MP4-like and it is compliant to the MP4

Base Media v1 [IS0 14496-12:2003] (here isom) and the 3GPP Media (.3GP)

Release 4 (here 3gp4 ) specifications3. While in the movie box, moov, there is

a nested atom which contains in its sub-structure the metadata needed for

the decoding of the data stream contained in the following mdat atom. It is

important to note that moov may contain multiple instances of the trak box,

as reported in Figure 4.1. The trak atom is mandatory and its cardinality

depends on the number of streams contained in the media; for example, if

the video contains a visual-stream and an audio-stream, there will be two

independent trak atoms.

All the mentioned container structure and data are extracted from the

3We suggest the reader to look at http://www.ftyps.com/ to have a better under-

standing of the values reported in Table 4.1.

http://www.ftyps.com/
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Table 4.1: Example of the ftyp atom descriptor belonging to a video ac-

quired with a Samsung Galaxy S3.

Name Value

majorBrand isom

minorVersion 0

compatibleBrand 1 isom

compatibleBrand 2 3gp4

video by means of the MP4 Parser library [9], and stored in an XML file for

further analysis, as explained in the following Section.

4.3 Forensic Analysis of Video File Container

The video container will be represented as a labelled tree where internal

nodes are labelled by atoms names (e.g. moov-2 ) and leaves are labelled

by field-value attributes (e.g. @stuff: MovieBox[]). To take into account

the order of the atoms, each XML-node is identified by a 4-byte code of the

corresponding atom along with an index that represents the relative position

with regards to the other siblings at a certain level. On the contrary, in

our representation the order of field-values, within the same atom, is not

considered, since the analysis demonstrated that this sub-ordering is not

discriminative.

Given a video X, its container is represented as an ordered collection of

atoms a1, . . . , an, possibly nested. Each atom can then be described in terms

of a set of field-value attributes, as ai =
(
ω1(ai), . . . , ωmi

(ai)
)
. By combining

the two previous descriptions, the video container can be characterised by a

list of field-value attributes X =
(
ω1, . . . , ωm

)
.

To each field-value attribute ω ∈ X, we also associate the path pX(ω),

that is the ordered list of atoms to be crossed to reach ω in X starting

from the root. As an example, consider the videos X and X
′

reported in

Figure 4.1 and 4.2 respectively. The path to reach the field-value ω =

@timescale: 1000 in X is the sequence of atoms (ftyp-1, moov-2, mvhd-

1 ). The same field-value is available in X
′

but pX′ (ω) is given by the list

(ftyp-1, free-2, mdat-3, moov-4, mvhd-1 ). In this sense, we can state that

pX(ω) = pX′ (ω
′
) if the same ordered list of atoms is crossed to reach the

field-values in the two trees respectively.
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In summary, the video container structure will be described by a list

of field-value attributes X =
(
ω1, . . . , ωm

)
, and their corresponding paths

pX(ω1), . . . , pX(ωm).

In the following we will formally define two metrics to be used for the

forensic analysis of video file containers. More specifically, the first one

is thought for video integrity verification, while the second one is applica-

ble for the brand/model identification and classification. From now on, we

will denote with X = {X1, . . . , XN} the world set of digital videos, and

C = {C1, . . . , Cs} the set of disjoint possible origins, e.g., device Huawei P9,

iPhone 6s, etc. .

4.3.1 Video Integrity Verification

When a video is processed in any way (with respect to its native form), its

integrity is compromised [62]. In particular, any processing, even without

further encoding, strongly alters the container structure with respect to its

native structure. Conversely, the file containers of native contents generated

from a specific source device are expected to have a small intra-variability.

As an example, in Figure 4.14 and 4.2, we provide two file containers in

comparison, one for a native video coming from a Samsung Galaxy S3 and

one from the same video after editing with FFmpeg. It is indisputable that

the differences in the position of the moov and mdat boxes can be exploited

to determine that the two file containers come from videos with different

processing histories, even without taking into account the atoms contents.

Thanks to these traces, given a video X whose integrity has to be assessed,

and a native video X
′

coming from the same device, their container structure

dissimilarities can be exploited to expose evidences of integrity violation, as

follows.

Given two containersX = (ω1, . . . , ωm), X
′

= (ω
′

1, . . . , ω
′

m) with the same

cardinality m5, we define a similarity core function between two field-values

as

S(ωi, ω
′

j) =

{
1 if ωi = ω

′

j and pX(ωi) = pX′ (ω
′

j)

0 otherwise
(4.1)

We can easily extend it to the comparison between a single field-value ωi ∈ X

4The complete XML structure is given in Appendix A.2.
5if the two containers have different cardinality, we pad the smaller one with empty

field-values to obtain the same value m.
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Figure 4.1: A fragment of the Video container original content of a Samsung

Galaxy S3 device.
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Figure 4.2: A fragment of the Video container FFmpeg cut from a Samsung

Galaxy S3 device.
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and the whole X
′

as

1X′ (ωi) =

{
1 if ∃ ω′

j ∈ X
′

: S(ωi, ω
′

j) = 1

0 otherwise
(4.2)

Then, the dissimilarity between X and X
′

can be computed as the mis-

matching percentage of all field-values, i.e.,

mm(X,X
′
) = 1−

m∑
i=1

1X′ (ωi)

m
(4.3)

and, to preserve symmetry, the degree of dissimilarity between X and X
′

can be computed as

D(X,X
′
) =

mm(X,X
′
) +mm(X

′
, X)

2
. (4.4)

4.3.2 Video Brand/Model identification and classifica-

tion

In this Section we formally define an approach that, given a query video,

outputs the likelihood that the video belongs to an alleged brand/model.

This approach can be used directly for video brand/model identification (that

is, checking the compatibility degree of a query video with an alleged source

brand), and it can be used as a building block for brand/model classification

(that is, automatically assign the most likely source brand from a set of

known brands) Overall, we denote Ω the set of all fields-values available in

the world set, i.e.,

Ω =
{
ω1, . . . , ωM | ∀i ωi ∈ Xj ,∃j

}

Given a class C ∈ C, we can split the world set in two subsets XC ∪XC where

XC = {X1, . . . , XNC
∈ C} and XC = X \ XC . Then, for each field-value

ω ∈ Ω, we determine its discrimination powers for the two classes, namely
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WC(ω) and WC(ω), based on its frequency in XC and XC respectively:

WC(ω) =

∑
Xi∈XC

1Xi(ω)

NC
(4.5)

WC(ω) =

∑
Xi∈XC

1Xi
(ω)

NC
(4.6)

where NC is the cardinality of XC .

We now formalize how to assess whether a query video X = {ω1, . . . ωm}
belongs to a class C. The problem is defined as a two hypotheses test

H0 : X ∈ C
H1 : X ∈ C

For each field-value ωi ∈ X we compute its likelihood ratio by approximating

the conditioned probability with the conditioned frequency computed by

Eq 4.5:

P (ωj |H0) = WC(ωj)

P (ωj |H1) = WC(ωj)

Then, supposing that ωj are independent, the log likelihood ratio of X for

the class C is computed as

LC(X) = log
∏
ωj∈X

LC(ωj) = log
∏
ωj∈X

WC(ωj)

WC(ωj)
. (4.7)

This approach allows to produce for a query video X a sequence of likelihood

ratios, one for each of the considered classes, i.e., X → (LC1(X), . . . , LCs(X)).

Note that the assumption of independent ωj may be restrictive and unsat-

isfied in some cases. For instance some field-values may be repeated several

times within the same path of the file container. In this case, equation 4.7

may produce biased ratios, pushing the likelihood towards the class C or the

class C improperly. At the same time, it is not feasible to study all pos-

sible dependencies between different field-values. We discuss this issue and

propose a way to reduce its influence in the Appendix A.1; however, the in-

dependence assumption proved to have a limited impact during experimental

validation.
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4.4 Experimental validation

In this Section we show how the proposed methods can be effectively ex-

ploited to perform video integrity verification, brand/model video identifi-

cation and classification.

We tested the proposed techniques on a subset of the VISION dataset [59],

composed of 31 portable devices of 8 major brands6, that leads to a collection

of 578 videos in the native format and in their corresponding social version

(YouTube and WhatsApp are considered).

The available data, represented in Table 4.10, includes both videos cap-

tured using Android, which uses the MP4 [3] file format, and videos captured

using iOS, which are stored in MOV file format [10]. A detailed description

of the dataset is given in [59].

4.4.1 Video Integrity Verification

We considered four different scenarios of integrity violation:

� WhatsApp: the video is exchanged through the WhatsApp7 social plat-

form, that performs a strong modification of both data stream and file

container structure (the video is re-encoded and, possibly, downscaled);

� YouTube: the video is exchanged through the YouTube8 social plat-

form; also in this case, a strong modification of both data stream and

file container structure occurs;

� FFmpeg : the video is cut after 10 seconds using FFmpeg, but without

re-encoding9;

� Exiftool : only date-related metadata are changed using Exiftool10.

6VISION dataset is composed by 35 devices; however, four of them, namely D07, D12,

D17 and D35, have been excluded since the MP4 parser software was not able to correctly

extract the container structure.
7The videos were uploaded/downloaded via an iPhone7 A1778 with iOS v10.3.1 from

the corresponding WhatsApp mobile application v2.17.41.
8The videos were uploaded via the YouTube web interface and downloaded at the

maximum resolution available with ClipGrab [1].
9To cut a video without re-encoding we adopted the following FFmpeg

command line call: ffmpeg -i input.mp4 -ss 00:00:00 -t 00:00:10 -acodec copy

-vcodec copy output.mp4
10The adopted Exiftool command line call to modify all the date related fields to a

specific time is exiftool "-AllDates=1986:11:05 12:00:00" "input.mp4"
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For each of the four cases, tests are performed as in the following. We con-

sider the set of videos available for each class device C, namely X1, . . . , XNC
,

and we compute the intra-class dissimilaritiesDi,j = D(Xi, Xj),∀i 6= j based

on equation (4.4), where both reference and query videos are in their orig-

inal native version. For simplicity we denote with Doo the intra-class set

of dissimilarities. Then, we consider the corresponding Dt
i,j = D(Xi, X

t
j),

∀i 6= j, where Xt
j is the altered version of the video Xj with the tool-t (i.e.,

WhatsApp, YouTube, FFmpeg, or Exiftool). We denote with Dt
oa the inter-

class set of dissimilarities. By applying this procedure to all the considered

devices, we collected 2890 samples for both Doo and any of the four Dt
oa.

We report in Table 4.2 the maximum Doo and the minimum of Dt
oa for each

of the tested cases, indeed, the following relations hold:

maxDoo < min(DWhatsApp
oa ),

maxDoo < min(DY ouTube
oa ),

maxDoo < min(DFFmpeg
oa ),

maxDoo > min(DExiftool
oa ).

These values demonstrate that the exchange through WhatsApp and YouTube

strongly compromises the container structure, and thus it is easily possible to

detect the corresponding integrity violation. Interestingly, cutting the video

using FFmpeg, without any re-encoding, also results in a strong container

modification that can be detected. On the contrary, the date modification

with Exiftool, induced on containers a modification that is comparable with

the observed intra-variability of native videos for some brand, model and

device configuration, and thus it is not detected.

In order to investigate more accurately the performance, we separately

analysed the results obtained for each device. Thus, for each device class,

we report in Table 4.3 the minimum and maximum intra-class variability

on the original videos; next, for each of the four scenarios, the minimum

and maximum variability between original and altered videos, and the area

under the receiver operating characteristic curve (AUC), summarizing the

discrimination ability between original and altered contents (where a value

equal to one denotes a perfect classifier).

As expected, we have a unitary AUC for all WhatsApp, YouTube and

FFmpeg tests. As to Exiftool, we notice that fourteen devices still yield

unitary AUC, eight more devices yield an AUC greater than 0.8, and the

remaining nine devices yield AUC below 0.8, with the lowest value of 0.593
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Table 4.2: Intra-Class and Inter-Class dissimilarities for each considered sce-

nario
max (Doo) min

(
DWhatsApp
oa

)
min

(
DY ouTube
oa

)
min

(
DFFmpeg
oa

)
min

(
DExiftool
oa

)
0.328 0.814 0.790 0.662 0.000

obtained for D20 (Apple iPad mini running iOS 8.4). Noticeably, all devices

yielding an AUC lower than 1 belong to the Apple or Xiaomi brands. Indeed,

as shown in the Original column of Table 4.3, the intra-class variability for

these devices is noticeably higher than for the others.

Summarizing, for the video integrity verification tests we obtain perfect

discrimination for videos altered by social network or FFmpeg, while for

Exiftool we obtain an AUC greater than 0.82 on 70% of the considered

devices.

It can be noted that, using state of the art methods based on data stream

analysis, it would be nearly impossible to detect cutting with FFmpeg, since

no re-encoding occurs; still, cutting an arbitrary portion of the video can be

considered a realistic and powerful attack.

Finally, let us highlight that the comparison between a video reference

and a video query required on average just 0.15 seconds.11 For this reason, we

believe that this contribution to video integrity verification is highly valuable.

4.4.2 Video Brand/Model Identification and Classifica-

tion

In this Section we evaluate the performance of the proposed method using

a subset of the VISION dataset, composed of videos belonging to devices

of 8 different brands for a total of 25 models, to identify and classify the

brand/model of a query video content.

Brand/Model Identification

To test brand identification, we consider all available videos from brand C:

for each Xi ∈ C we randomly choose an Yi ∈ C. Then, weights (equation 4.5)

are computed using all videos from class C, except for Xi, and an equal

number of videos from other brand classes. The likelihoods LC(Xi) and

11The computational cost has been computed on an Intel(R) Core(TM) i7−3770 CPU

at 3.40GHz, running all algorithms by means of Python 2.7.
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Table 4.3: Video integrity verification summary
Device ID Original WhatsApp YouTube FFmpeg Exiftool

Min Max Min Max AUC min max AUC Min Max AUC Min Max AUC

D01 0.005 0.005 0.995 0.995 1.000 0.986 0.986 1.000 0.985 0.985 1.000 0.010 0.015 1.000

D02 0.016 0.016 0.818 0.822 1.000 0.792 0.801 1.000 0.662 0.672 1.000 0.009 0.019 0.627

D03 0.034 0.034 0.985 0.985 1.000 0.991 0.991 1.000 0.991 0.991 1.000 0.009 0.043 0.906

D04 0.000 0.000 0.995 0.995 1.000 0.986 0.986 1.000 0.986 0.986 1.000 0.000 0.010 0.974

D05 0.328 0.328 0.845 0.849 1.000 0.825 0.833 1.000 0.716 0.723 1.000 0.320 0.330 0.721

D06 0.011 0.011 0.814 0.818 1.000 0.790 0.799 1.000 0.664 0.668 1.000 0.002 0.013 0.822

D08 0.005 0.005 0.995 0.995 1.000 0.986 0.986 1.000 0.986 0.986 1.000 0.010 0.015 1.000

D09 0.012 0.012 0.818 0.818 1.000 0.791 0.799 1.000 0.662 0.668 1.000 0.002 0.016 0.723

D10 0.011 0.011 0.814 0.814 1.000 0.790 0.797 1.000 0.664 0.668 1.000 0.009 0.013 0.884

D11 0.000 0.000 0.995 0.995 1.000 0.986 0.986 1.000 0.986 0.986 1.000 0.010 0.010 1.000

D13 0.011 0.011 0.818 0.818 1.000 0.791 0.797 1.000 0.664 0.668 1.000 0.009 0.012 0.891

D14 0.007 0.007 0.818 0.818 1.000 0.791 0.795 1.000 0.664 0.664 1.000 0.009 0.009 1.000

D15 0.326 0.326 0.845 0.845 1.000 0.825 0.833 1.000 0.716 0.720 1.000 0.325 0.327 0.768

D16 0.005 0.005 0.985 0.985 1.000 0.991 0.991 1.000 0.991 0.991 1.000 0.009 0.014 1.000

D18 0.011 0.011 0.814 0.814 1.000 0.790 0.797 1.000 0.664 0.668 1.000 0.009 0.013 0.870

D19 0.328 0.328 0.820 0.849 1.000 0.799 0.837 1.000 0.664 0.725 1.000 0.127 0.427 0.699

D20 0.013 0.013 0.814 0.814 1.000 0.790 0.799 1.000 0.664 0.668 1.000 0.006 0.017 0.593

D21 0.000 0.000 0.985 0.985 1.000 0.990 0.990 1.000 0.990 0.990 1.000 0.000 0.010 0.955

D22 0.000 0.000 0.995 0.995 1.000 0.986 0.986 1.000 0.985 0.985 1.000 0.010 0.010 1.000

D23 0.000 0.000 0.985 0.985 1.000 0.991 0.991 1.000 0.991 0.991 1.000 0.009 0.009 1.000

D24 0.027 0.027 0.985 0.985 1.000 0.991 0.991 1.000 0.991 0.991 1.000 0.009 0.062 0.618

D25 0.005 0.005 0.985 0.985 1.000 0.991 0.991 1.000 0.991 0.991 1.000 0.009 0.014 1.000

D26 0.000 0.000 0.995 0.995 1.000 0.986 0.986 1.000 0.985 0.985 1.000 0.010 0.010 1.000

D27 0.000 0.000 0.985 0.985 1.000 0.991 0.991 1.000 0.991 0.991 1.000 0.009 0.009 1.000

D28 0.005 0.005 0.985 0.985 1.000 0.991 0.991 1.000 0.991 0.991 1.000 0.009 0.014 1.000

D29 0.326 0.326 0.845 0.845 1.000 0.825 0.833 1.000 0.716 0.720 1.000 0.320 0.327 0.765

D30 0.005 0.005 0.985 0.985 1.000 0.991 0.991 1.000 0.991 0.991 1.000 0.009 0.014 1.000

D31 0.000 0.000 0.995 0.995 1.000 0.986 0.986 1.000 0.986 0.986 1.000 0.010 0.010 1.000

D32 0.026 0.026 0.985 0.985 1.000 0.991 0.991 1.000 0.991 0.991 1.000 0.009 0.062 0.821

D33 0.005 0.005 0.995 0.995 1.000 0.986 0.986 1.000 0.986 0.986 1.000 0.010 0.015 1.000

D34 0.015 0.015 0.814 0.818 1.000 0.795 0.803 1.000 0.664 0.672 1.000 0.006 0.017 0.696
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LC(Yi) are computed, thus achieving statistics for matching cases (videos

belonging to brand C) and for mismatching cases (videos belonging to other

brands). We use values LC(Xi) for building a ROC curve, and report its

AUC in Table 4.4: we notice that the AUC is perfect on almost all brands

with the exception of Xiaomi , that achieves an AUC equal to 0.99. These

result were caused by some Wiko videos that share a very similar container

as to the Xiaomi one.

As to model identification, we adopt a similar strategy for testing by

considering all available videos from models C; for each Xi ∈ C we consider

an Yi ∈ C randomly chosen. Then, weights (equation 4.5) are built using all

videos from class C, except12 for Xi, and an equal number of videos from

same brands but other model classes. The likelihoods LC(Xi) and LC(Yi)

are computed, thus achieving statistics for matching cases (videos belonging

to model C) and for mismatching cases (videos belonging to other models).

We compute the ROC curve and report the AUC in Table 4.5. We notice that

the worst results are obtained for the OnePlus brand, where the container

structure of the videos belonging to the A3000 and A3003 models are not

sufficient to perform a significant identification.

It is worth noting that Apple devices running a firmware older than iOS

9.x obtain an AUC greater than 0.90 while more recent firmwares result in

AUC smaller than 0.81. Clearly, the worst results are obtained with the

iPhone 6 plus that runs the latest firmware and corresponds to the latest

device in the Apple family. On the other hand, the best performance is

obtained with the Samsung brand, where unitary AUC is obtained for all

models. Also the Huawei brand performs almost perfectly for all models,

while resulting in an AUC around 0.80 in the recent models, namely the

P9 and P9 Lite. Note that, with the proposed technique, the mean compu-

tational time required for a video brand/model identification is up to 0.86

seconds11.

Brand/Model Classification

As shown in Section 4.3.2, the proposed approach can be exploited to classify

the brand/model of a video. In the following we deal only with the model

12In principle, it would be correct not to consider videos from the same exemplar in

class C. However, given the limited number of available videos for some models, we

also allowed videos from the same device exemplar here. Since we do not expect video

containers to carry any information about the specific exemplar, the impact of this choice

should be negligible.
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Table 4.4: Brand identification
Brand AUC

Apple 1.00

Asus 1.00

Huawei 1.00

Lg 1.00

Oneplus 1.00

Samsung 1.00

Wiko 1.00

Xiaomi 0.99

Table 4.5: Model identification
Apple Huawei Samsung Oneplus

Model AUC Model AUC Model AUC Model AUC

iPad 2 0.92 Ascend 1.00 Galaxy S3 1.00 A3000 0.52

iPad mini 1.00 Honor 5C 0.95 Galaxy S3 Mini 1.00 A3003 0.51

iPhone 4 0.98 P8 1.00 Galaxy S4 Mini 1.00

iPhone 4S 0.99 P9 0.79 Galaxy S5 1.00

iPhone 5 0.81 P9 Lite 0.80 Galaxy Tab 3 1.00

iPhone 5C 0.79 Galaxy Trend Plus 1.00

iPhone 6 0.78

iPhone 6 Plus 0.53

classification task, since it comprises the brand classification too. Let us con-

sider a query video X, whose source device is unknown. The task is to assign

to X the most likely source model from a set of known models. To do so, for

all available brand classes {B1, . . . Bs}, the likelihoods LB1
(X), . . . LBs

(X)

are computed and the output brand B∗ is chosen as the one achieving the

maximum value. Then, given all available model classes for the selected

brand, say {M1, . . .Mt |Mi ∈ B∗}13, the likelihoods LM1
(X), . . . LMt

(X)

are computed (as defined in the identification pipeline) and the model is

chosen as the one achieving the maximum value.

Table 4.6 gives the confusion matrix for the case of Brand classifica-

tion: we see that the likelihood-metric works perfectly on Apple, Asus, LG

and OnePlus brands, whereas gain over 80% accuracy on average on the

13Here, the notation M ∈ B means that model M belongs to brand B.



52 Low-Level features analysis

remaining brands. It is worth noting that videos belonging to Wiko and

Xiaomi , while not reaching perfect accuracy, always do appear in the TOP

3 brands according to the likelihood metric. Unfortunately, videos belong-

ing to Huawei and Samsung are not classified perfectly even in the TOP 3

brands, where the Huawei performs better than the Samsung .

In the Model Classification tests, we perform the analysis only for those

brands of the dataset for which we have more than one model, that is Sam-

sung , Apple and Huawei . The Samsung model classification confusion ma-

trix is represented in Table 4.7. The likelihood metric results in a perfect

match on almost all models with exception to the Galaxy S3, where indeed

no video is considered to be belonging to the Samsung brand. This is proba-

bly due to the D11 firmware, that is known to be an Anonymous Android, as

the D21 device; indeed, we see in Table 4.6 that 10.81% of Samsung videos

are assigned to the Wiko brand.

The Huawei model classification confusion matrix is given in Table 4.8,

showing performances in line with the Brand classification case: some Huawei

videos are not matched to this brand, in fact 10.53% of videos belonging to

the Ascend and the 63.16% of videos belonging to the P8 model, are assigned

to the other class. The TOP 3 model match is perfect on the Honor 5c, P9

and P9 Lite, but have the worst results on the P8 due to the majority of

the videos being matched to another brand. It is important to notice that

the models P9 and P9 Lite are mismatched, all videos from the P9 Lite are

matched to the P9 and viceversa. These results would likely improve by

adding to the dataset more devices belonging to the same model.

The Apple models confusion matrix is represented in Table 4.9. We

obtain always a perfect match on the TOP 3 model, meaning that for each

video the exact model match is always in the TOP 3 of the model likelihood.

As to the best single match, we obtain the worst performances on the iPhone

5, iPhone 5c, iPhone 6 Plus and iPad 2. These unbalanced performances

are probably due to the devices firmware version since, as Table 4.10 shows,

we do not have for the same model also the same firmware. This means

that if the container structure changes between firmwares, the same model

cannot be perfectly described with our weights, and instead of detecting the

model we obtain a firmware classification, as can be seen on the two iPhone

6 devices. The D06 and D15 have two possible firmwares, and in indeed the

performances on Table 4.9 show that 42% of the tested videos are considered

as iPad mini that run iOS 8.4 whereas 51% are considered to belong to an
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iPhone 6 Plus that runs iOS 10.2. The model classification on the OnePlus

devices show that all OnePlus videos are matched to A3000 model. Note

that, with the proposed technique, the mean computational time required

for a video brand/model classification is 8.74 seconds11.

Table 4.6: Brand classification confusion matrix
cnf% Apple Asus Huawei Lg Oneplus Samsung Wiko Xiaomi TOP3

Apple 100.00 0 0 0 0 0 0 0 100.00

Asus 0 100.00 0 0 0 0 0 0 100.00

Huawei 0 0 85.26 2.11 0 0 5.26 7.37 98.95

Lg 0 0 0 100.00 0 0 0 0 100.00

Oneplus 0 0 0 0 100.00 0 0 0 100.00

Samsung 0 0 0 0 2.03 87.16 10.81 0 87.16

Wiko 0 0 0 0 0 0 81.82 18.18 100.00

Xiaomi 0 0 0 0 0 0 21.05 78.95 100.00

Table 4.7: Model classification confusion matrix for Samsung devices
cnf % Galaxy S3 Galaxy S3 mini Galaxy S4 mini Galaxy S5 Galaxy Tab 3 Galaxy Trend Plus Other TOP3

Galaxy S3 0 0 0 0 0 0 100.00 0

Galaxy S3 mini 0 100.00 0 0 0 0 0 100.00

Galaxy S4mini 0 0 100.00 0 0 0 0 100.00

Galaxy S5 0 0 0 100.00 0 0 0 100.00

Galaxy Tab 3 0 0 0 0 100.00 0 0 100.00

Galaxy Trend Plus 0 0 0 0 0 100.00 0 100.00

Table 4.8: Model classification confusion matrix for Huawei devices
cnf % Ascend Honor 5C P8 P9 P9 Lite Other TOP3

Ascend 89.47 0 0 0 0 10.53 89.47

Honor5c 0 100.00 0 0 0 0 100.00

P8 0 0 36.84 0 0 63.16 36.84

P9 0 5.26 0 0 94.74 0 100.00

P9 Lite 0 0 0 100.00 0 0 100.00

4.5 Remarks

This Chapter proposes an approach for the forensic analysis of video file

containers. The core idea is to exploit the differences in the file container

structure and content introduced by different manufacturers and models. In

particular, we proposed the first formal approach in the state of the art to

perform integrity verification, brand/model identification and classification
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Table 4.9: Model classification confusion matrix for Apple devices
cnf % iPad 2 iPad Mini iPhone 4 iPhone 4S iPhone 5 iPhone 5C iPhone 6 iPhone 6 Plus TOP3

iPad 2 31.25 0 68.75 0 0 0 0 0 100.00

iPad Mini 0 100.00 0 0 0 0 0 0 100.00

iPhone 4 0 0 100.00 0 0 0 0 0 100.00

iPhone 4S 0 0 3.57 96.43 0 0 0 0 100.00

iPhone 5 0 62.75 0 0 0 0 0 37.25 100.00

iPhone 5C 0 23.53 0 37.25 1.96 0 0 37.25 100.00

iPhone 6 0 42.86 0 0 0 0 5.71 51.43 100.00

iPhone 6 Plus 0 0 0 5.26 0 0 0 94.74 100.00

based on such features. Extensive experiments were carried on a publicly

available dataset, showing excellent results for the integrity verification task,

and encouraging results for the brand/model identification and classification

tasks. Noticeably, the proposed technique allows to automatically detect

manipulations that are performed without video re-encoding, which is an

unexplored field in video forensic state of the art.

As a future work, we propose to refine the atom matching strategy pre-

sented in Section 4.3 in such a way that atom values that are expected to

change between different videos of the same device (e.g., date, video dura-

tion, etc.) are compared differently than values which re expected to remain

constant. Similarly, the robustness of the method to intra-class variability

can be increased by defining refined container comparison strategies.
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Table 4.10: VISION dataset main features.
Brand Model ID Software/Firmware #vOrigin

Apple iPad 2 D13 iOS 7.1.1 16

Apple iPad mini D20 iOS 8.4 16

Apple iPhone 4 D09 iOS 7.1.2 19

Apple iPhone 4S D02 iOS 7.1.2 13

Apple iPhone 4S D10 iOS 8.4.1 15

Apple iPhone 5 D29 iOS 9.3.3 19

Apple iPhone 5 D34 iOS 8.3 32

Apple iPhone 5c D05 iOS 10.2.1 19

Apple iPhone 5c D14 iOS 7.0.3 19

Apple iPhone 5c D18 iOS 8.4.1 13

Apple iPhone 6 D06 iOS 8.4 17

Apple iPhone 6 D15 iOS 10.1.1 18

Apple iPhone 6 Plus D19 iOS 10.2.1 19

Asus Zenfone 2 Laser D23* - 19

Huawei Ascend G6-U10 D33 - 19

Huawei Honor 5C NEM-L51 D30 Android 6.0/NEM-L51C432B120 19

Huawei P8 GRA-L09 D28 Android 6.0/GRA-L09C55B330 19

Huawei P9 EVA-L09 D03 Android 6.0/EVA-L09C55B190 19

Huawei P9 Lite VNS-L31 D16 Android 6.0/VNS-L31C02B125 19

Lenovo Lenovo P70-A D07 - 19

LG electronics D290 D04 - 19

Microsoft Lumia 640 LTE D17 Windows Phone 10

OnePlus A3000 D25 Android 7.0/NRD90M 15 dev-keys 19

OnePlus A3003 D32 Android 7.0/NRD90M 138 dev-keys, 19

- - - NRD90M 18 dev-keys -

Samsung Galaxy S III Mini GT-I8190 D26 I8190XXAMG4 16

Samsung Galaxy S III Mini GT-I8190N D01 I8190NXXAML1, I8190NXXALL6 22

Samsung Galaxy S3 GT-I9300 D11 - 19

Samsung Galaxy S4 Mini GT-I9195 D31 I9195XXUCNK1 19

Samsung Galaxy S5 SM-G900F D27 Android 6.0.1/G900FXXS1CQAA 19

Samsung Galaxy Tab 3 GT-P5210 D08 P5210XXUBNK2 37

Samsung Galaxy Tab A SM-T555 D35 T555XXU1AOE9 16

Samsung Galaxy Trend Plus GT-S7580 D22 S7580XXUBOA1 16

Sony Xperia Z1 Compact D5503 D12 14.5.A.0.270 6 f100000f 19

Wiko Ridge 4G D21 - 11

Xiaomi Redmi Note 3 D24 Android 6.0.1/MMB29M 19

- - - V8.1.1.0.MHOMIDI release-keys -
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Chapter 5

High-Level features analysis

In this Chapter we introduce an extended version of the Vari-

ation of Prediction Footprint, arguing a justification based on

Rate-Distortion curves, and by including B-frames in the second

compression stage. The new algorithm will be tested to evaluate

double compression identification and first GOP estimation using

multiple encoding codecs, constant bit rate and variable bit rate

parameters.

5.1 Introduction

In the last decades, the huge technological advancement in the communica-

tion and information fields have allowed the burst of digital videos to the

point of becoming one of the preferred means to share information. Given

their digital nature, these data also convey several information related to

their life cycle thus carrying integrity issues that must be studied. The

Forensics community, as seen in Section 2.2.3, have been studying the in-

tegrity of such contents by taking into account high-level features that are

derived from the encoding process. Although many contributions include

the macroblocks prediction types as a mean to double compression detec-

tion, very few have directly faced the issue of including all type of frames

in their analysis. We believe that this gap must be filled, since in new com-

pression algorithms inter-frames play an important role on both the size and

the quality of a video content.

In this Chapter we propose a novel extension on the Variation of Pre-

57
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diction Footprint that, in collaboration with the authors in [65], will focus

firstly on providing a unique coding-based justification of the VPF effect. It

refers to the traces left by the intra-predicted macroblocks decrement con-

currently to the increment of skip-predicted macroblocks in P-frames that

were encoded as an I-frame in the first compression. In addition, we will

focus on the insertion of bi-predicted frames in the coding chain, and discuss

when and how the VPF effects shows up in double compressed videos with

B-frames. The proposed algorithm will refine the VPF signal by means of

a pair of SVM classifiers trained on B-frames and locate those that were

encoded as I-frames in the first compression stage. Finally, the VPF-ext

signal will be used to perform double compression detection and first GOP

identification, in double compressed scenario that include coding algorithm

such as MPEG-2, MPEG-4 and H.264/AVC, but also different compression

parameters that include Constant Bit Rate and Variable Bit Rate.

The rest of the Chapter is organized as follows: Section 5.2 explains

the VPF effect in case of single and double inter-frame types based on rate

distortion curves; Section 5.3 formalizes the mathematical framework of the

new Variation of Prediction Footprint and describes how can be used to face

MF integrity verification; Section 5.4 is dedicated to the experimental vali-

dation of the proposed technique along with some state-of-art comparisons;

finally, Section 5.5 draws some final remarks and outlines future works.

5.2 The VPF effect

5.2.1 The notation

Figure 5.1 shows the first and second compression workflow of the n-th frame

of a raw video X in a hybrid video coding algorithm. In the first compression

the prediction algorithm will define the best type of frame to encode Xn with,

distinguishing between an Intra frame, I-frame, or an Inter-frame, P-frame

or B-frame. In addition depending on the frame type, the prediction X̂n

may contain different types of macroblocks, namely I, PF , PB , PD and S,

that respectively correspond to intra predicted, forward predicted, backward

predicted, bidirectional predicted and skip predicted macroblocks.

Let us define the number of macroblocks, of a specific prediction type,

belonging to the n-th frame as In, P
F
n , P

B
n , P

D
n and Sn.

The same notation will be used in a double compression scenario. In
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Figure 5.1: Double compression scheme.

particular let us denote with Yn and Zn the n-th frame of a single and

double encoded video, respectively. In order to facilitate the reader, we use

superscripts {I, P, B} to make explicit the kind of frame: for example, by

writing YI
n we mean that the n-th frame of the single compressed video is

an intra-coded frame, while ZB
n denotes that the n-th frame of the double

compressed video is a bidirectionally predicted frame.

Let us consider the double compression depicted in Figure 5.4 we will

refer to the group of consecutive B-frames as the B-frame sub-GOP, or just

sub-GOP. We will refer with ZB1,P to the first B-frame in the sub-GOP,

namely ZB2 corresponding in the first compression to YP
2 .

5.2.2 Predictions via JDR

The main goal of an encoder is to efficiently represent an input sequence

of frames using the available elements of a particular video coding stan-

dard. To achieve this, the encoder minimizes under certain constraints the

distortion between the original sequence Xn and its reconstruction after en-

coding X
′

n. This minimization problem can be solved using the Lagrangian

optimization [60] resulting in the following

J (Xn, X
′

n) = D(Xn, X
′

n) + λR(X
′

n), (5.1)

minimize J (Xn, X
′

n) (5.2)

where J and λ are respectively the Lagrangian functional and multiplier;

D(Xn, X
′

n) represents a function that measures the distortion between the
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Figure 5.2: Double encoding in presence of P-frames in the second compres-

sion.

original frame and the reconstructed one, and R(X
′

n) provides the number

of bits needed to encode the predicted frame X
′

n. When this strategy is

applied for the macroblock type decision, the minimization of the Lagrangian

functional for each MB-type, Jmb(Xn, X
′

n), yields the following minimization

problem

min
mb

(
D(Xn, X

′

n) + λmbR(X
′

n)
)

(5.3)

where mb ∈ {I, PF , PB , PD, S} and λmb is the Lagrange multiplier for

the selected type whose value is obtained as a function of the quantization

parameter Q1 ∈ R. Finally a macroblock type is chosen by the encoder if

the corresponding value on Equation 5.3 is the smallest one, in the following

we will discuss how this mathematical description explains the VPF effect

on double encoded videos.

5.2.3 Double Compression

P Inter-frames Figure 5.3 depicts the Rate-Distortion curves for a double

encoding scenario with I-frames and P-frames, as in Figure 5.2, by means

of the MPEG-2 encoding algorithm for both compressions, with Q1 = 16,

G1 = 10, Q2 ∈ [2, 31] and G2 = 33.

If we take under consideration how frame-4 and frame-6 are encoded in

Z, the encoder will evaluate the R-D curves in Figure 5.3(a) to predict ZP4 ,

that corresponds to an I-frame in the first encoding, namely YI
4 ; whereas

will evaluate the R-D curves in Figure 5.3(b) to predict ZP6 , that corresponds

to a P-frame in the first encoding, namely YP
6 . It should be clear that the

VPF effect can be derived from these curves. Let us consider ZPi,P and the

R-D curves in Figure 5.3(b), in this case the VPF effect does not manifest,
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(a) I-frame falls over P-frame

(b) P-frame falls over P-frame

Figure 5.3: Rate-Distortion curves for inter (blue) and intra (red) prediction

modes averaged across all macroblocks in a double compression scenario with

Q1 = 16.
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Figure 5.4: Double encoding scenarios in presence of B-frames in the second

compression.

indeed from the encoder point of view is much more convenient to predict

the Zi frame with PF and S-MBs, with respect to including intra predicted

macroblocks. Much more interesting is the representation in Figure 5.3(a)

where in some cases the intra-curve is much more convenient that the inter-

curve, although when the quantization parameter in the second compression

is much stronger, the VPF effect does not show up, and the normal behaviour

of the encoder take place, thus preferring inter-prediction to intra-prediction.

B Inter-frames The addition of B-frames allows to increase the compres-

sion ratio at the cost of a higher coding complexity, so it is commonly adopted

when the encoding device has enough computational resources available, and

real-time processing is not requested. Common video capturing devices, like

camcorders or smartphones, do not usually meet these requirements, and

limit themselves to the use of P-frames. On the contrary, video editing tools

usually run on powerful devices and are not subject to strict time constraints,

so they will probably make use of B-frames to optimize the encoding.

In the following, we extend our analysis to account for the presence of B-

frames in one or both the encodings. Actually, we expect the use of B-frames

in the first encoding not to have a sensible impact on the proposed method,

since the position of I-frames depends on the size of the GOP and not on

its structure. On the other hand, we expect the presence of B-frames in the

second encoding to affect the VPF, because it enlarges the set of possible

choices for encoding each MB. Let us consider the scenario in Figure 5.4,

where the frame YI
4 is re-encoded in the B-frame ZB

4 . It is worth recalling

that, due to the presence of B-frames, the second compression encoding order

is as follows:



5.2 The VPF effect 63

Figure 5.5: This figure graphically shows the criterion for selecting Class A

and Class B P-frames, and Early and Late B-frames.

� ZP
1 is encoded;

� ZP
6 is encoded;

� ZB
2,3,4,5 are encoded, starting from ZB

2 .

Thus, ZP
6 prediction is computed from ZP

1 . In this situation, the presence

of an I-frame in the previous compression at frame 4 plays an important role:

predicted MBs in ZP
6 reference to ZP

1 , that is the re-encoded version of YP
1 .

Since YP
1 and YP

6 belong to different GOPs in Y, we expect a significant

residual error in ZP
6 , that should imply a reduced number of S-MBs.

This conjecture can be easily verified by adapting the experiment re-

ported in Figure 5.3. To do so, we divide the P-frames of a double compressed

video in two sets: Class A P-frames, i.e., those whose preceding sub-GOP

re-encodes an I-frame, and Class B P-frames, i.e., those whose preceding

sub-GOP does not re-encode any I-frame. Figure 5.5 provides a graphical

explanation. Then, we plot in Figure 5.6 the rate-distortion curves for IN-

TRA and INTER mode averaged on Class A P-frames, Figure 5.6(a), and

on Class B P-frames, Fig. 5.6(b). We notice that the INTER and INTRA

mode curves are significantly closer in the former case, especially for Q2 = 8

and Q2 = 16, as it was also in Figure 5.3(a) compared to Figure 5.3(b).

Therefore, we can state that the presence of an I-frame in the first encoding

between two P-frames is likely to cause a decrease of skipped and predicted

MBs in the P-frame that follows, and an increase of I-MBs. In other words,

the presence of B-frames will not cancel the VPF, but simply shift it to the

next P-frame. In the following we show how this shift can be measured and

compensated, thus restoring the original periodicity of the signal.
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(a) Class A P-frames

(b) Class B P-frames

Figure 5.6: Rate-Distortion curves for inter (blue) and intra (red) prediction

modes averaged across all macroblocks of all Class A and Class B P-frames

of the News sequence.
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B-frames differ from P-frames in that they allow referencing each MB to

one of a previous I/P reference frame (forward-prediction), to one of a fol-

lowing I/P reference frame (backward prediction), or to combine information

from both past and future I/P reference frames (bidirectional-prediction).

The choice on whether using a forward-predicted MB, backward-predicted

MB, or bidirectional-predicted MB is once more guided by the rate-distortion

principle.

In a single, almost static, compressed sequence, the encoder uses back-

ward prediction more likely when encoding B-frames near to the last ref-

erence frame, and gradually turns toward forward prediction as the future

reference frame approaches. The intuition behind this fact is straightforward:

frames that are near in time are normally more similar, and the prediction

is more convenient.

Let us now repeat the same reasoning for the double encoding case, fo-

cusing on the scenario depicted in Figure 5.4 to derive the idea. The frame

ZB4 must encode YI
4 by referencing either ZP1 or ZP6 (which are, respectively,

the decoded version of YP
1 and YP

6 ). Since YP
6 belongs to the GOP initiated

by YI
4 , the similarity of its encoded version ZP6 with YI

4 is likely to be much

higher than the one of ZP1 . As a consequence, the frame ZB4 , and also the

following ones, are more conveniently encoded using PB-MBs, even when the

preceding P-frame is nearer in time.

This conjecture can be easily verified resorting once again to the analysis

of rate-distortion curves. Let us divide the B-frames of the double encoded

sequence in two classes (graphically explained in Fig. 5.5): Early B-frames

are those having an I-frame in the previously encoded sequence “falling” over

them or over a successive B-frame of the same sub-GOP, and Late B-frames

are those having an I-frame in the previously encoded sequence falling over a

preceding B-frame of the same sub-GOP. B-frames that are neither Early nor

Late, meaning their sub-GOP does not re-encode any I-frame, are excluded

from the analysis because they do not carry the VPF effect. We compute the

rate-distortion curves for the forward, backward and bidirectional prediction

modes under the same settings used for previous experiments [65], setting

the GOP length of the first encoding to 12 and that of the second encoding

to 34, and allowing the use of 3 consecutive B-frames in the second encoding.

Fig. 5.7(a) shows the curve for Early B-frames, and Fig. 5.7(b) shows that

for Late B-frames. As expected, we see that for Early B-frames using the

forward prediction is much more convenient, while the opposite holds for
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Late B-frames.

Therefore, we expect to observe an abrupt change in the use of PF-MBs

and PB-MBs in those sub-gops of the double compressed sequence that re-

encode an I-frame of the single compressed sequence. This is indeed the case,

as Fig. 5.8 shows: while in sub-gops that do not re-encode any I-frame we

see a progressive increase in the number of PB-MBs compared to PF-MBs,

that is because the new information is likely to appear in the future, on

the other hand we notice an abrupt increase in sub-gops that re-encode a

previous I-frame. In particular, the strongest variation is observed exactly in

the B-frame that re-encodes the previous I-frame. This fact suggests that by

analysing the prediction type within B-frames MBs we can understand where

the previous encoding I-frame occurred within a sub-GOP, thus allowing us

to measure the previously mentioned VPF shift and compensate it.
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(a) Early B-frames

(b) Late B-frames

Figure 5.7: Rate-Distortion curves for forward (blue), backward (red), and

bidirectional (green) prediction averaged across all bidirectional macroblocks

of all Early and Late B-frames of the News sequence.
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Figure 5.8: Difference in the number of PB-MBs and PF-MBs for the double

encoded News sequence (Q1 = 16, Q2 = 12). Only frames in the range

[39-69] are plotted for better visibility.
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Figure 5.9: A simple example of a linear SVM classification.

5.3 VPF extension

In the following we will describe the VPF extension algorithm, firstly we will

discuss the basics of the SVM algorithm, the new prediction framework will

be described and we will conclude this section with the technique used to

perform multimedia forensics analysis on the integrity verification problem.

5.3.1 SVM basics

The scientific community often deals with data that are linked with some sort

of relationship. In many cases, unfortunately, handling huge data contents

and understanding the overall behaviour is not always feasible. To solve this

problems many researchers have investigated automatic machine learning

solutions to perform classification.

One of the most used solutions is the supervised learning algorithm known

as Support Vector Machines [23] represented using a toy example in Fig-

ure 5.9. In the case of a two-class pattern problem, as in Figure 5.9, where

the classes are linearly separable the SVM selects from among the infinite

number of linear decision boundaries the one that maximizes the margin

between the two classes, where the margin is defined as the sum of the dis-

tances to the hyperplane from the closest points of the two classes. The data
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points that are closest to the hyperplane are used to measure the margin;

hence called support vectors. If the two classes are not linearly separable,

the SVM tries to find the hyperplane that splits the examples as cleanly as

possible by means of a soft margin solution, that introduces a set of slack

variables that allow for a certain degree of misclassification.

SVM can also be extended to handle non-linear decision surfaces by ap-

plying the kernel trick [17], that corresponds to projecting the input data

onto a high-dimensional feature space V, where the classes are easily sepa-

rable, using kernel functions and formulating a linear classification problem

in that feature space.

Supposing that our examples lie in a f -dimensional feature spaceX ⊆ Rf ,

and considering a feature map φ : X → V and the inner product in the V
space 〈·, ·〉V , the kernel function k can be written as

k(xi, xj) = 〈φ (xi) , φ (xj)〉V . (5.4)

Commonly used kernel functions are:

� Linear: k(xi, xj) = 〈xi, xj〉,

� RBF - Radial Basis Function: k(xi, xj) = exp(−γ‖xi− xj‖2) γ ∈ R.

SVM was initially designed for binary problems, when dealing with mul-

tiple classes, an appropriate multi-class method is needed. Knerr et al.

proposed in [47] the one versus one approach, that perform pair-wise com-

parisons between m-classes. Thus, all possible two-class classifiers are eval-

uated, each classifier being trained on only two out of m-classes. Applying

each classifier to the test data vectors gives one vote to the winning class,

then the data is assigned to the label of the class with most votes.

5.3.2 Prediction framework

We evaluated the contribution to the DC identification given by only B-

frames and in particular by the PF ,PB and PD macroblocks quantities. In

Section 5.2 we noticed that forward and backward macroblocks change their

behaviour in occasion of an I-frame encoded as a B-frame, indeed Figure 5.10

shows the frame differences, d = PF − PB , for Akiyo double encoded in

H.264 with constant bit rate. In Figure 5.10(a) we compared such differences

for normal B-frames, ZBi,P , and B-frames previously encoded as I-frames, ZBi,I
, it is clear that these frames can be separated nicely, in fact most of the ZBi,I
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lie in the range [0.06,−0.07] and ZBi,I ∈ {d1|d > 0.06∪d ≤ −0.08}. Although

this information in quite interesting, it is not sufficient for us to determine

whether a sub-GOP re-encodes an I-frame; we also need to understand which

B-frame of the subgop is the re-encoded version of the I-frame. In particular

the sub-GOP must be taken into account, in particular with ZBi,I we want

to address B-frames in the i -th position of the sub-GOP that in the first

compression were encoded as I-frames. Therefore in Figure 5.10(b), the

same data is depicted, in red we have ZB1,I , in magenta ZB2,I and in blue ZB3,I ,

unfortunately these classes of B-frames cannot be easily separated, thus a

supervised algorithm can be used to identify the ZBi,I frames.

Feature extraction So far, we noticed that in B-frames the contribution

of the new-macroblock types can be exploited to identify B-frames that carry

the VPF effect. For each B-frame in a video, the macroblock types cardi-

nality is extracted. Let us call SB a set of consecutive B-frames encoded in

Z as SB = {ZB1 ,ZB2 , · · · ,ZBnB
} where nB ∈ N identifies the total number of

consecutive frames of type B. With pF ∈ RnB , pB ∈ RnB and pD ∈ RnB we

refer to the number of forward predicted, backward predicted and bidirec-

tional predicted macroblocks for each frame of the SB sub-GOP. Thus the

feature matrix that describes the VPF effect on B-frames is derived as

F =
[
pF |pB |pD

]
∈ RnB×3 ∀SB ∈ Z, (5.5)

whereas the label l vector will be long K ∈ R as the total number of

B-frames sub-gops in Z and it will assign to each sub-GOP, 0 if none of the

frames were encoded as an I-frame in the first compression, or the B-frame

sub-GOP index to identify the position of a fallen I, as in

l = [l1, l2, · · · , lK ]
T
li ∈ [0, nB ]. (5.6)

SVM framework Given a training set ZnB of double compressed1 videos

and nB consecutive B-frames, we trained in cross-validation two SVM clas-

sifiers, namely Clf1 and Clf+.

1For each compression algorithm a set of CBR and VBR parameters are taken into

account to perform the actual encoding, thus leading to SVM classifiers that refer to the

triplet Codec-Mode-nB .
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(a) clf1: B-frames previously encoded as I frames in red.

(b) clf2: 1-red,2-magenta,3-blue in sub-GOP

Figure 5.10: PF − PB for each B-frame in a H.264 DC scenario with B1 =

100k, B2 = 400k and sub-GOP size 3.
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Figure 5.11: VPF-ext framework workflow

Clf1 uses an RBF kernel and the feature-label2 pair (F, l) to determine

whether a B-frame sub-GOP SB hides an I-frame in the first compres-

sion or not.

Clf+ uses a linear kernel and a subset of the pair (F, l) that contains only

SB that re-encode a previously encoded I-frame. Clf+ handles a multi-

class problem using the one-vs-one scheme thus predicting the B-frame

index in the range [1, nB ] for each SB .

Therefore, to determine if a set of features extracted from a double en-

coded video, may contain hints on B-frames encoded as I-frames, the previ-

ous trained classifiers will be used in series. Clf1 will determine if sub-GOP

anomalies are present, and on those data Clf+ will evaluate where the I-

frames are located.
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Figure 5.12: I-MBs(red) and S-MBs(blue) comparison limited to frames

[5.50] in Bus double compressed with H.264. The first compression GOP

is represented with black dots.

5.3.3 MF analysis

In the following, the algorithm depicted in Figure 5.11 will be described and

it will be shown how to exploit it with Multimedia Forensics problems such

as double compression identification and first GOP estimation.

The VPF-ext signal Given a double encoded video Z containing M -

frames of type I, P and nB B-frames, the macroblock types are extracted for

each frame; Then the P-frame footprint is extracted by taking into account

the number of I and S macroblocks for each frame of the set P affected by

the VPF-effect as introduced in [65], the following notation will be used:

P = {n ∈ {0,M−1} | (In−1 < In) ∧ (In > In+1) ∧ (Sn−1 > Sn) ∧ (Sn < Sn+1)},
(5.7)

2The feature matrix will be fed to the classifier after a normalization process based on

the maximum number of macroblocks in the video frame.
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Figure 5.13: VPF signal(blue) computed on Bus using first GOP equal to

9(black dots) and a CBR in a H.264 compression algorithm with nB = 3.

En = | (In − In−1) · (Sn − Sn−1) |+ | (In+1 − In) · (Sn+1 − Sn) |, (5.8)

vn =

{
En if n ∈ P,
0 otherwise.

(5.9)

The VPF effect formalized by the vn signal is shown in Figure 5.13,

and the contribution of intra macroblocks and skip macroblocks is shown in

Figure 5.12 with respect to a double compressed video with H.264, three con-

secutive B-frames in constant bit rate with the first compression compressed

at 100kb/s and the second one at 700kbit. It should be clear that the VPF

effect is present in this double compression scenario that includes B-frame,

but as can be seen in Figure 5.12 the frame ZB46, that was encoded as an

I-frame in the first compression, the I-MBs, S-MBs variations are drifted to

the nearest P-frame corresponding to frame ZP47.

The introduction of B-frames in the second compression stage drifts the

VPF effect into the next P-frame in the sequence, as deeply discussed in

Section 5.2. The the novelty introduced with this prediction framework is to
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Figure 5.14: VPF-ext signal (orange) compared to the original VPF signal

(blue) on H.264 double compressed Bus. Notice that in the VPF-ext signal

the periodicity is re-established.
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identify the B-frames that were previously encoded as an I-frame by means

of the SVM classifier pairs. For each SB in the double compressed video Z,

the SVM classification produces the predicted vector l̂ where the location of

ZBi,I is determined for i ∈ [1, nB ]. Let us denote with k ∈ P and ZPk the first

P-frame encoded after the sub-GOP SkB , then the l̂k
3 prediction will be used

to shift back the vk peak to the position k +
(
l̂k − nB − 1

)
, thus correcting

the v-signal periodicity. The drift correction is depicted in Figure 5.14.

Then the periodicity of the signal-v will be studied using the same tech-

nique of [65]: firstly if a repeated period is found the first GOP estimation

will follow, otherwise the video will be classified as compressed once. The

signal-v is evaluated by a two step framework, candidate GOP selection and

evaluation.

The candidate GOP selection determines the set of possible G1 GOPs

in the first compression by means of the Greatest Common Divisors (GCD)

metric, thus building the set of candidates CG as follows:

CG = {g ∈ [2,M ] | ∃(n1, n2) ∈ P, GCD(n1, n2) = g}, (5.10)

Then, for each candidate g ∈ CG is applied the goodness function φG :

CG → R that determines how well the candidate g describes the signal-v

period. Furthermore, the function φG has to take into account noisy peaks

coming from multiples of g, the absence of peaks at multiples of g but also

periodic components with a period smaller than g but stronger in amplitude.

Thus φG(g) can be derived as φ from [65].

DC identification The double compression identification can be deter-

mined after the φG(g) computation on each candidate g as

DCZ =

{
1, if maxg∈CG φG(g) > Tφ,

0, otherwise,
(5.11)

where Tφ ∈ R is an appropriate threshold value, and DCZ = 0 means

that the video Z is classified a single compressed one.

3It is important to note that drift is corrected only if l̂k > 0, meaning that an I-frame

has fallen in the SkB sub-GOP.
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GOP estimation In case of DCZ = 1, Z is identified as a double encoded

video, the first GOP estimation can be carried out and performed as

Ĝ1 = arg max
g∈CG

φG(g). (5.12)
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5.4 Performance evaluation

In this Section we show how the proposed method can be exploited to per-

form double compression identification and first GOP estimation. We will

firstly describe the configuration settings used to perform the evaluation of

the VPF-ext algorithm. Then we will discuss the performances on the Con-

stant Bit Rate and Variable Bit Rate settings considering both the double

compression identification and the GOP estimation. In addition a compari-

son with a state of the art algorithm will be used for the GOP estimation in

a VBR scenario.

5.4.1 Configuration settings

We tested the proposed approach on a dataset of 29 raw sequences4 with

at least 140 frames5. Each sequence has undergone a double compression

conveyed using FFmpeg6 and x2647 sofware depending on the encoding al-

gorithm. In addition, the first compression uses a profile that does not allow

the introduction of B-frames, the baseline profile, and the second compres-

sion, the one we are interested in, is compressed with the default profile thus

supports a fixed number of consecutive B-frames. The main reasons behind

this constraint is motivated by the fact that most acquisition devices do not

include B-frames in the first encoding since the storing process has to be in

real time, whereas the second compression, can vary, and B-frames can be

inserted.

Table 5.1 and Table 5.2 report respectively the overall parameters used

in the training phase and the testing one. Is is important to notice that

in a Variable Bit Rate compression mode, the quantization values used for

MPEG-2/4 and H.264/AVC are different, that is because, as in Bestagini

et. al [15], the Peak to Noise Ratio has been used as a metric to obtain

the same video quality between an MPEG-X compression and an AVC one.

Furthermore, the two sets of GOP sizes are chosen in such a way that for each

number of consecutive B-frames the overall amount of I-frames previously

4The videos depicted in Table 5.1 and Table 5.2 have been downloaded in YUV 4:2:0

from https://media.xiph.org/video/derf/.
528 videos out of 29 have at least 240 frames, whereas Bus is the only sequence with

140 frames.
6ffmpeg-3.0.1 was download from https://ffmpeg.org/.
7x264-snapshot-20160424-2245 was downloaded from https://www.videolan.org/

developers/x264.html.

https:// media.xiph.org/video/derf/
https://ffmpeg.org/
https://www.videolan.org/developers/x264.html
https://www.videolan.org/developers/x264.html
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encoded are well distributed in the sub-GOP range [1, nB ].

Compression configuration The compression parameters used in the

2nd encoding are represented in the following Listing8, we provide an ex-

ample on how to perform CBR, in here with x264 and FFmpeg MPEG-4,

and VBR with FFmpeg MPEG-2. In addition, we will refer to CBR with

--bitrate and -b:v, and VBR with -qmin, -qmax and show how each en-

coder is set up, the profile will not be made explicit since we will insert the

parameter --bframes or -bf to set the number of consecutive B-frames.

Listing 5.1: An example of double compression settings for VBR and CBR

scenarios.

x264 -v --bframes 3 --b-adapt 0 --bitrate 700 --vbv -bufsize 10000

--subme 6 --trellis 0 --no-scenecut --scenecut 0 --aq -mode 0 -I 14

--frames 240 -o outputVideo.h264 --input -res 352 x288 inputVideo.yuv

ffmpeg -f rawvideo -pix_fmt yuv420p -s 352 x288 -i inputVideo.yuv

-vcodec mpeg2video -g 14 -q:v 1 -qmin 1 -qmax 1 -bf 3 -flags cgop

-sc_threshold 1000000000 -cmp sad -subcmp sad -mbcmp sad -mbd 0

-vframes 240 -y outputVideo.mpeg

ffmpeg -f rawvideo -pix_fmt yuv420p -s 352 x288 -i inputVideo.yuv

-vcodec mpeg4 -g 14 -b:v 100k -bf 3 -flags cgop

-sc_threshold 1000000000 -cmp sad -subcmp sad -mbcmp sad -mbd 0

-vframes 240 -y outputVideo.mp4

Classification configuration The SVM classifiers introduced in Section 5.3

have been trained and tested by means of the Sklearn Library9 with Python10.

Sklearn performs a Python-implementation of the libsvm C-library11.

The double encoded videos obtained from Table 5.1 were grouped with

respect to the 2nd encoding algorithm, number of B-frames and compression

modes. Then are fed to Sklearn.SVC in a five-video cross-validation, con-

sisting of samples of the same video not spread between the training and the

validation sets but belong to either one. We want to further address that the

8We suggest the reader to read the relative documentation in order to have a better

understanding of the parameters used.
9Sklearn 0.18.2 can be download from http://scikit-learn.org/stable/.

10Python 2.7.12 can be downloaded from https://www.python.it/download/.
11For more information on libsvm the reader can refer to https://www.csie.ntu.edu.

tw/~cjlin/libsvm/.

http://scikit-learn.org/stable/
https://www.python.it/download/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Table 5.1: Training compression configuration
1st encoding 2nd encoding

Encoder MPEG-2 MPEG-4 H.264/AVC MPEG-2 MPEG-4 H.264/AVC

VBR {2, 4, 7} {20, 23, 29} {1, 5, 10} {10, 23, 32}
CBR {100, 300, 500} kb/s {200, 400, 700} kb/s

GOP size {9, 18} {14, 30}
nB frames {3, 4, 5}

YUV videos

Akiyo, Bowing, Bridge-close, Bridge-far, Coastguard, Container, Deadline, Flower,

Football, Foreman, Hall, Highway, Husky, Mobile, Mother-daughter,

News, Pamphlet, Paris, Silent, Tempete

Video resolution 352× 288 pixels

Frames 240

Table 5.2: Testing compression configuration
1st encoding 2nd encoding

Encoder MPEG-2 MPEG-4 H.264/AVC MPEG-2 MPEG-4 H.264/AVC

VBR {2, 4, 7} {20, 23, 29} {1, 5, 10} {10, 23, 32}
CBR {100, 300, 500} kb/s {100, 300, 500} kb/s {200, 400, 700} kb/s

GOP size {9, 18} {14, 30}
nB frames {3, 4, 5}
YUV videos Bus, City, Crew, Harbour, Ice, SignIrene, Soccer, Students, Waterfall

Video resolution 352× 288 pixels

Frames {140, 240}

cross-validation has been performed to determine the best pair C-gamma by

means of a logarithmic scale as in

C = {log2(x) | x ∈ [20, 26]}, (5.13)

gamma = {log10(x) | x ∈ [10−3, 100]}. (5.14)

The values assigned to C and gamma are tuned to avoid over-fitting/under-

fitting the training set, the best results are selected by means of the F-

score [54], corresponding to the harmonic mean of precision and recall.

5.4.2 Double compression identification

Constant Bit Rate Figure 5.15 compares in a CBR scenario the video

configurations in Table 5.2 thus describing the double identification perfor-

mances by means of ROC curves. In Figure 5.15 we compare: the origi-

nal algorithm of the VPF, therefore without B-frames; the VPF algorithm
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Figure 5.15: ROC double compression identification in a CBR scenario.
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Figure 5.16: ROC double compression identification in a VBR scenario.

considering B-frames and finally the VPF-ext algorithm proposed in this

Chapter .

As we extensively described, the effect of introducing B-frames in the

second compression drifts the VPF-effect into the next P-frame, causing the

loss of periodicity and resulting in an Area Under the Curve of 0.55, whereas

the new approach increases the performance of the original VPF of 0.2 in

this preliminary tests.

Variable Bit Rate Figure 5.16 depicts the VBR performances of the pro-

posed method by comparing it with the VPF without B-frames and with

B-frames. It is interesting noting that these preliminary results show that

in case of a variable bit rate, the VPF-ext does not perform well, indeed an

AUC of 0.68 is obtained, but we have to consider the fact that cannot per-

form better that the original VPF, since this extension uses the VPF-period

and corrects it when B-frames occur. A clear limitation that has to be fur-

ther improved. It is interesting to evaluate the same data but to focus on



84 High-Level features analysis

the number of consecutive B-frames; the results show that an AUC of 0.70

can be obtained if considering nB = 3 but on the other hand with nB = 5

the AUC drops at 0.66, that is probably due to the fact that the number of

sub-GOPs in the first case are much more that the second case, thus more

samples can improve the overall classification.

5.4.3 GOP estimation

The GOP estimation of the proposed algorithm has been tested in both

Constant and Variable Bit Rate scenarios, in addition a comparison with a

state of the art work by Bestagini et al. [15] has been considered, just for the

VBR case, since the authors of [15] do not argue the CBR case. The reason

behind this choice is due to the fact that many state-of-the-art algorithms

that study the GOP estimation of a double compression problem do not take

into consideration the B-frame scenario, as discussed deeply in Chapter 2.

Constant Bit Rate Figure 5.17 depicts the VPF-ext performances with

9 double compressed videos in CBR. Figure 5.17(a) focuses on the Bit-rate

values between the first and the second compression, and reports the exact

GOP match for each encoding algorithm and GOP size. The best results

are obtained when the first compression is less powerful then the second

one, thus leaving more traces to build the VPF on. Figure 5.17(b) describes

the same data, but it focus on the encoding algorithm pair between the

two compression stages. The best results are obtained when H.264/AVC

belongs to the second compression, whereas the pair (H.264, MPEG-2) has

the worst performances, reasonable due to the less-refined characteristics of

the MPEG-2 compression algorithm with respect to the H.264 one.

Variable Bit Rate Figure 5.18 shows the VPF-ext performances with

VBR, and Figure 5.19 represents the same data analysed by Bestagini et

al. [15]. It is important to notice that VPF-ext technique outperforms

Bestagini et al. on the computational cost, indeed a single video GOP esti-

mation is performed in a few seconds from the proposed algorithm whereas

Bestagini et al. takes several minutes.

Figure 5.18(a) and Figure 5.19(a) describe the exact GOP match via the

quantization parameters used in the first and second encoding procedures.

Both algorithms perform similarly when the second compression is lighter, al-

though the VPF-ext obtains better results if all the quantization parameters
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(a) Comparison with respect to Bitrate values.

(b) Comparison with respect to the coding algorithm.

Figure 5.17: Double compression GOP estimation in a CBR scenario.
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are taken under consideration. It is interesting noticing the performances

obtained from the video Bus, the worst case scenario for both algorithms,

probably due to the video itself that is recorded with a zoom-out and a sub-

sequent pan movement, the rest of the videos in dataset do not share these

features.

The VPF-ext method outdoes on average Bestagini et al. method, but

gets the same poor performances on the (20, 32) and (23, 32) quantization

pairs as can be expected since the second compression in quite strong and

weakens the traces studied by both methods. In Figure 5.18(b) and Fig-

ure 5.19(b) both methods are evaluated by focusing on the coding algorithm.

The depicted results confirm the analysis argued so far, the average VPF-ext

performances correspond to the best video in Bestagini et al. [15].

5.5 Remarks

This Chapter proposes an extension of the Variation of Prediction Footprint

introduced by Vázquez-Pad́ın et al. [65]. The proposed method extends the

VPF by introducing to the analysis the presence of B-frames while moti-

vating the VPF-effect by means of Rate-Distortion curves in compressions

that include P-frames and B-frames. We discussed that the VPF-effect man-

ifests in the first P-frame after the sub-GOP B, and we proposed an SVM

framework to correct this drift, thus identifying the correct first GOP. The

proposed approach has been tested in a configuration that uses CBR and

VBR, and the performances are reported for the double compression identi-

fication with respects to the original VPF, and by considering Bestagini et al.

as a comparative algorithm to test the GOP estimation in VBR. The overall

results show the benefits of this extended approach on the GOP estimation

and the overall computational cost.

As a future work, we propose to extend the test to a real acquisition

scenario, as the one introduced by the VISION dataset in Chapter 3, and

evaluate the possibility of including in the feature matrix the contribution of

P-MBs that uses zero Motion Vectors, that to a preliminary analysis seems

to behave as S-MBs. Therefore, the Clf+ kernel can be substituted by an

RBF one, that will increase the computational cost of the training but can

probably identify a better classification hyperplane.
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(a) Comparison with respect to Quantization values.

(b) Comparison with respect to the coding algorithm.

Figure 5.18: Double compression GOP estimation in a VBR scenario.
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(a) Comparison with respect to Quantization values.

(b) Comparison with respect to the coding algorithm.

Figure 5.19: Double compression GOP estimation in a VBR scenario per-

formed by Bestagini et al. [15].



Chapter 6

Conclusion

This Chapter summarizes the contribution of the thesis and discusses avenues

for future research.

6.1 Summary of contribution

In this thesis we discussed multimedia forensics issues, such as video origin

identification, classification and integrity verification, thus introducing three

contributions to solve them with.

� In Chapter 3 a novel Dataset have been introduced. With respect to

the state of the art, VISION includes videos and images captured from

to 35 modern devices belonging to 11 different brands, and provides

for each content the respective social version, the one uploaded and

downloaded from the main social platforms namely Facebook, Youtube

and WhatsApp. Furthermore, some forensics tools have been tested on

VISION, thus highlighting interesting issues that have not been noted

until now, since there were no sizeable benchmarks available in the

research community.

� In Chapter 4 we introduced a new forensic tool that exploits, Low-

level video features extracted from the video container structure and

content. We argued that these features are able to perform integrity

verification on video contents coming from VISION and altered for

example by FFmpeg or Exiftool. Furthermore, these low-level charac-

teristics have been exploited to distinguish the acquisition source, in

89
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terms of Brand-Model, thus achieving source identification and classi-

fication.

� In Chapter 5 we proposed a novel extension on the Variation of Pre-

diction Footprint in collaboration with the authors in [65]. The new

approach, extended to double compressed scenarios with B-frames, in-

troduced a mathematical formulation based on Rate-Distortion curves

that explains the behaviour of VPF effect, and provided a prediction

framework based on SVM to correct the signal that locates the GOP

of the first compression in cases of Constant Bit Rate and Variable Bit

Rate encodings.

6.2 Directions for future work

The introduction of the new dataset can be further expanded into two main

directions: the first being the inclusion of new devices by means of the Mobile

Application (MOSES [58]), currently available for devices running Android,

but still in Beta for iOS mobiles; the second direction would be to consider

including altered digital contents as we did in Chapter 4, thus providing a

broader dataset for tampering detection.

The VPF-ext algorithm, introduced in Chapter 5 can be improved by

considering three aspects:

� extend the number of extracted features

� introduce a coding-based feature extraction

� substitute the classification algorithm

For what concerns the first aspect, the addition of other features, it would

be interesting evaluating the VPF effect on B-frames motion vectors then

adjusting the feature extraction on a microscopic level, meaning to take into

consideration when and how a specific macroblock changes the prediction

type instead of having just the frame cardinality for each prediction type.

The current feature extraction, by means of FFmpeg dump can be speeded

up by developing an algorithm that operates directly within the encoding

procedure, thus decrementing the overall time cost and consequently exploit-

ing the VPF-effect on the same macroblock prediction in time and space.

An interesting future activity to the proposed algorithm is to replace

or combine the SVM classifier, a simple solution to achieve higher trade



6.2 Directions for future work 91

off between classification-power and computational-cost, with other machine

learning techniques such as CNN - Convolutional Neural Network that would

take as input the prediction features collected in the proposed algorithm.



92 Conclusion



Appendix A

Appendix

This appendix is related to the method presented in Chapter 4, we discuss

in Section A.1 the Likelihood metric and the main issues that can affect

it, in Section A.2 we provide an example of a full container structure and

container dissimilarities between videos from the same brand.

A.1 Likelihood metric discussion

When calculating the likelihood ratio as in equation (4.7) some special cases

may occur; in the following, we explain how we implemented the system to

tackle with them. Moreover, we provide a way to account for correlated fea-

tures that violate the independence assumption requested by equation (4.7).

Null Denominator

When WC(ωj) = 0, the ratio takes the form of
wi
0

, with wi the weight

associated with the attribute value for the class C. To overcome this issue,

we modified the computation to

wi
1

NC + 1

whereNC is the number of videos in the class C. In this way, the denominator

will have the smallest possible value and the ratio will still pull the likelihood

towards the class C.

93



94 Appendix

Null numerator

When WC(ωj) = 0, the ratio takes the form of
0

wj
, with wj the weight

associated with the attribute value for the class C. In this case, since the

numerator is zero, the ratio will equal to zero too. This is an unwanted

scenario because, since all the ratios are multiplied between them, a single

ratio that equals to zero is enough to make the general likelihood zero too.

We solve this problem by modifying the computation of the ratio for this

case to
1

NC + 1

wj

where NC is the number of videos in the class C.

Null numerator and numerator

When an atom or an attribute value of the query file container is not present

in the configuration files, we have the case where both weights equal to zero.

Since our goal is to determine whether a given query video X belongs to

the class C, any information of its file container that is not present in the

configuration file associated with the class C will be treated as if the video

does not belong to the class C. That is the case even if the same information

is also not present in the configuration file for the class C. Therefore, we

solve this issue by treating it as the null numerator case.

Correlated Features

When multiplying the ratios for a specified atom, the resulting value can

be seen as a likelihood of observing that particular atom with its attributes

values in either of the two classes. However, the values of the attributes for

an atom are not, in general, independently distributed. For example, the

values of some attribute can change by groups. If we only multiplied all the

ratios, it could be as if we are counting the same information multiple times,

pushing the likelihood towards the class C or the class C improperly.

To solve this issue, we multiply the likelihood ratios of each atom by

also taking into consideration the decorrelation factors. Given a vector of
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likelihood ratios (x1, . . . , xn) we compute the likelihood

L(x) =

n∏
i=1

xαi
i

with

αi =
(n− 1)γi + 1

n

γi = − n

logn
P (xi)logP (xi)

and where P (xi) represents the probability of finding that value of ratio in

the vector. Thus, we may have three cases:

1) P (xi) =
1

n
with xi 6= xj , ∀i 6= j. Then we have

γi = − n

logn

1

n
log

1

n
,

resulting in αi = 1. The likelihood will be computed as

L(x) =

n∏
i=1

xi.

2) P (xi) = 1 with xi = xj , ∀i, j. Then we have γi = 0 and αi =
1

n
. The

likelihood will be computed as

L(x) =

n∏
i=1

x

1

n
i = x

∑ 1

n
1 = x1.

3) xi = xj , i, j = 1, . . . , k with P (xi) =
k

n
for i = 1, . . . , k and P (xj) =

1

n
for j > k. Then we have

γi = −n n

logn

k

n
log

k

n
= k(log

k

n
)logn,

and

αi =
(n− 1)(klog

k

n
)logn+ 1

n
.

The likelihood will be computed as

L(x) = x

∑ 1

n
i = x

(n−1)(klog
k

n
)logn+1

k
n

1 ·
n∏

j=k+1

xj .
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A.2 MP4-like container discussion

Full container structure

In Listing A.1 it is reported the full container structure belonging to a native

video content acquired with a Samsung Galaxy S3 as an extension to the

fragment reported in Figure 4.1.

Listing A.1: Samsung Galaxy S3 sample video container

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<root modelName=”phoneBrandName”>

<ftyp−1 majorBrand=”isom” minorVersion=”0” compatibleBrand 1=”

isom” compatibleBrand 2=”3gp4” count=”0” />

<moov−2 s t u f f=”MovieBox [ ] ” count=”0”>

<mvhd−1 creat ionTime=”Fr i Aug 07 13 : 0 0 : 1 5 CEST 2015”

modi f icat ionTime=”Fr i Aug 07 13 : 0 0 : 1 5 CEST 2015”

t ime s ca l e=”1000” durat ion=”72856” ra t e=” 1 .0 ” volume=” 1 .0

” matrix=”Rotate 0” nextTrackId=”3” version=”0” f l a g s=”0

” count=”0” />

<trak−2 s t u f f=”TrackBox [ ] ” count=”0”>

<tkhd−1 creat ionTime=”Fr i Aug 07 13 : 0 0 : 1 5 CEST 2015”

modi f icat ionTime=”Fr i Aug 07 13 : 0 0 : 1 5 CEST 2015”

t rack Id=”1” durat ion=”72619” l ay e r=”0” alternateGroup=

”0” volume=” 0 .0 ” matrix=”Rotate 0” width=” 1920.0 ”

he ight=” 1080.0 ” version=”0” f l a g s=”7” count=”0” />

<mdia−2 s t u f f=”MediaBox [ ] ” count=”0”>

<mdhd−1 creat ionTime=”Fr i Aug 07 13 : 0 0 : 1 5 CEST 2015”

modi f icat ionTime=”Fr i Aug 07 13 : 0 0 : 1 5 CEST 2015”

t ime s ca l e=”90000” durat ion=”6535724” language=” ‘ ‘ ‘ ”

version=”0” f l a g s=”0” count=”0” />

<hdlr−2 handlerType=” vide ” name=”VideoHandle” version=”0

” f l a g s=”0” count=”0” />

<minf−3 s t u f f=”MediaInformationBox [ ] ” count=”0”>

<vmhd−1 graphicsmode=”0” opco lor0=”0” opco lo r1=”0”

opco lor2=”0” version=”0” f l a g s=”1” count=”0” />

<dinf−2 s t u f f=”DataInformationBox [ ] ” count=”0”>

<dref−1 version=”0” f l a g s=”0” count=”0”>

<url−1 s t u f f=”DataEntryUrlBox [ ] ” count=”0” />

</dref−1>
</dinf−2>
<stbl−3 s t u f f=”SampleTableBox [ ] ” count=”0”>

<stsd−1 version=”0” f l a g s=”0” count=”0”>

<avc1−1 da t a r e f e r e n c e i nd ex=”1” width=”1920”

he ight=”1080” h o r i z r e s o l u t i o n=” 72 .0 ”

v e r t r e s o l u t i o n=” 72 .0 ” frame count=”1”

compressorname=” nu l l ” depth=”24” count=”0”>

<avcC−1 con f i gu ra t i onVe r s i on=”1”

av cP r o f i l e I n d i c a t i o n=”66”

p r o f i l eCompa t i b i l i t y=”128”

avcLeve l Ind i ca t i on=”40” lengthSizeMinusOne=”

3” hasExts=” f a l s e ” chromaFormat=”−1”
bitDepthLumaMinus8=”−1” bitDepthChromaMinus8

=”−1” lengthSizeMinusOnePaddingBits=”63”
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numberOfSequenceParameterSetsPaddingBits=”7”

chromaFormatPaddingBits=”31”

bitDepthLumaMinus8PaddingBits=”31”

bitDepthChromaMinus8PaddingBits=”31” count=”

0” />

<pasp−2 hSpacing=”65536” vSpacing=”65536” count=

”0” />

</avc1−1>
</stsd−1>
<stts−2 entryCount=”1468” version=”0” f l a g s=”0”

count=”0” />

<s t s s −3 entryCount=”73” version=”0” f l a g s=”0” count=

”0” />

<stsz−4 sampleSize=”0” sampleCount=”2179” version=”0

” f l a g s=”0” count=”0” />

<stsc−5 entryCount=”3” version=”0” f l a g s=”0” count=”

0” />

<co64−6 entryCount=”71” version=”0” f l a g s=”0” count=

”0” />

</ stbl−3>
</minf−3>

</mdia−2>
</trak−2>
<trak−3 s t u f f=”TrackBox [ ] ” count=”0”>

<tkhd−1 creat ionTime=”Fr i Aug 07 13 : 0 0 : 1 5 CEST 2015”

modi f icat ionTime=”Fr i Aug 07 13 : 0 0 : 1 5 CEST 2015”

t rack Id=”2” durat ion=”72856” l ay e r=”0” alternateGroup=

”0” volume=” 1 .0 ” matrix=”Rotate 0” width=” 0 .0 ” he ight=

” 0 .0 ” version=”0” f l a g s=”7” count=”0” />

<mdia−2 s t u f f=”MediaBox [ ] ” count=”0”>

<mdhd−1 creat ionTime=”Fr i Aug 07 13 : 0 0 : 1 5 CEST 2015”

modi f icat ionTime=”Fr i Aug 07 13 : 0 0 : 1 5 CEST 2015”

t ime s ca l e=”48000” durat ion=”3497069” language=” ‘ ‘ ‘ ”

version=”0” f l a g s=”0” count=”0” />

<hdlr−2 handlerType=”soun” name=”SoundHandle” version=”0

” f l a g s=”0” count=”0” />

<minf−3 s t u f f=”MediaInformationBox [ ] ” count=”0”>

<smhd−1 balance=” 0 .0 ” version=”0” f l a g s=”0” count=”0”

/>

<dinf−2 s t u f f=”DataInformationBox [ ] ” count=”0”>

<dref−1 version=”0” f l a g s=”0” count=”0”>

<url−1 s t u f f=”DataEntryUrlBox [ ] ” count=”0” />

</dref−1>
</dinf−2>
<stbl−3 s t u f f=”SampleTableBox [ ] ” count=”0”>

<stsd−1 version=”0” f l a g s=”0” count=”0”>

<mp4a−1 bytesPerSample=”0” bytesPerFrame=”0”

bytesPerPacket=”0” samplesPerPacket=”0”

packetS i ze=”0” compress ionId=”0” soundVersion=

”0” sampleRate=”48000” sampleSize=”16”

channelCount=”2” count=”0”>

<esds−1 es Id=”0” streamDependenceFlag=”0”

URLFlag=”0” oCRstreamFlag=”0” s t r eamPr io r i ty

=”0” URLLength=”0” URLString=” ’ nu l l ’ ”

remoteODFlag=”0” dependsOnEsId=”0” oCREsId=”

0” ob jec tTypeInd icat ion=”64” streamType=”5”
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upStream=”0” buf ferSizeDB=”768” maxBitRate=”

196000” avgBitRate=”196000”

d e c od e r Sp e c i f i c I n f o=” nu l l ” con f i gByte s=”1190

” audioObjectType=”2 (AAC LC)”

samplingFrequencyIndex=”3 (48000) ”

samplingFrequency=”0” channe lConf igurat ion=”

2” syncExtensionType=”−1” frameLengthFlag=”0

” dependsOnCoreCoder=”0” coreCoderDelay=”0”

extens ionFlag=”0” layerNr=”0” numOfSubFrame=

”0” l a y e r l e n g t h=”0”

aacSec t i onDataRes i l i enceF lag=” f a l s e ”

aacSca l e f a c t o rDataRe s i l i e n c eF l ag=” f a l s e ”

aacSpec t ra lDataRes i l i enceF lag=” f a l s e ”

extens ionFlag3=”0” conf igDescr iptorDeadBytes

=” nu l l ” p r o f i l e L e v e l I n d i c a t i o nDe s c r i p t o r s=”

nu l l ” p rede f ined=”2” count=”0” />

</mp4a−1>
</stsd−1>
<stts−2 entryCount=”248” version=”0” f l a g s=”0” count

=”0” />

<stsz−3 sampleSize=”0” sampleCount=”3415” version=”0

” f l a g s=”0” count=”0” />

<stsc−4 entryCount=”3” version=”0” f l a g s=”0” count=”

0” />

<co64−5 entryCount=”73” version=”0” f l a g s=”0” count=

”0” />

</ stbl−3>
</minf−3>

</mdia−2>
</trak−3>

</moov−2>
<free−3 s t u f f=”com . coremedia . i s o . boxes . FreeBox@1” count=”0” />

<mdat−4 s i z e=”20593115” count=”0” />

</root>

Brand comparison

In Listing A.2 is reported the container comparison between two videos an

Apple iPhone 4s and an Apple iPhone 5c showing the similarities and dis-

similarities that the integrity verification method described in 4.3 is able

to produce. It is clear that the two containers are very similar, indeed 90%

of the container is shared whereas just a 10% is discriminatory, with this

feature we are confident that the two videos belong to the same brand. On

the other hand, if videos belonging to different brands are compared, usually

the percentage of similarities is about 1% of the container whereas 99% of it

is different, for simplicity we omit an example of such scenario.

Listing A.2: Container comparison between videos from the same brand.

{” r e f e r e n c e ” : ”D02 Apple iPhone4s/D02 V flat move 0001 .mov” ,
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”query” : ”D05 Apple iPhone5c/D05 V flat move 0001 .mov” ,

” tot” :285 , ” d i f f ” :30 , ” f i e l d s ” :

[{ ” f i e l d ” : ” nextTrackId” , ”queryValue” : ”5” ,

”atom” : ”mvhd−1” , ” re fVa lue ” : ”3”} ,
{” f i e l d ” : ”volume” , ”queryValue” : ” 1 .0 ” , ”atom” : ”tkhd−1” ,

” re fVa lue ” : ” 0 .0 ”} ,
{” f i e l d ” : ”matrix ” , ”queryValue” : ”Rotate 0” , ”atom” : ”tkhd−1” ,

” re fVa lue ” : ” u:0 . 0 v :0 . 0 w:1 . 0 a: −1.0 b:0 . 0 c : 0 . 0 d: −1.0 tx :1920

. 0 ty :1080 . 0 ”} ,
{” f i e l d ” : ” segmentDuration” , ”queryValue” : ”42758” , ”atom” : ” e l s t−1” ,

” re fVa lue ” : ”35800”} ,
{” f i e l d ” : ” a v cP r o f i l e I nd i c a t i o n ” , ”queryValue” : ”100” ,

”atom” : ”avcC−1” , ” re fVa lue ” : ”66”} ,
{” f i e l d ” : ”hasExts ” , ”queryValue” : ” t rue ” , ”atom” : ”avcC−1” ,

” re fVa lue ” : ” f a l s e ”} ,
{” f i e l d ” : ”chromaFormat” , ”queryValue” : ”1” , ”atom” : ”avcC−1” ,

” re fVa lue ” : ”−1”} ,
{” f i e l d ” : ”bitDepthLumaMinus8” , ”queryValue” : ”0” ,

”atom” : ”avcC−1” , ” re fVa lue ” : ”−1”} ,
{” f i e l d ” : ”bitDepthChromaMinus8” , ”queryValue” : ”0” ,

”atom” : ”avcC−1” , ” re fVa lue ” : ”−1”} ,
{” f i e l d ” : ”chromaFormatPaddingBits” , ”queryValue” : ”63” ,

”atom” : ”avcC−1” , ” re fVa lue ” : ”31”} ,
{” f i e l d ” : ” ve r s i on ” , ”queryValue” : ” nu l l ” ,

”atom” : ”meta−5” , ” re fVa lue ” : ”0”} ,
{” f i e l d ” : ” f l a g s ” , ”queryValue” : ” nu l l ” ,

”atom” : ”meta−5” , ” re fVa lue ” : ”0”} ,
{” f i e l d ” : ” count” , ”queryValue” : ” nu l l ” ,

”atom” : ”meta−5” , ” re fVa lue ” : ”0”} ,
{” f i e l d ” : ”handlerType” , ”queryValue” : ” nu l l ” ,

”atom” : ”hdlr−1” , ” re fVa lue ” : ”mdta”} ,
{” f i e l d ” : ”name” , ”queryValue” : ” nu l l ” , ”atom” : ”hdlr−1” ,

” re fVa lue ” : ” nu l l ”} ,
{” f i e l d ” : ” ve r s i on ” , ”queryValue” : ” nu l l ” ,

”atom” : ”hdlr−1” , ” re fVa lue ” : ”0”} ,
{” f i e l d ” : ” f l a g s ” , ”queryValue” : ” nu l l ” , ”atom” : ”hdlr−1” ,

” re fVa lue ” : ”0”} ,
{” f i e l d ” : ” count” , ”queryValue” : ” nu l l ” , ”atom” : ”hdlr−1” ,

” re fVa lue ” : ”0”} ,
{” f i e l d ” : ” count” , ”queryValue” : ” nu l l ” ,

”atom” : ”keys−2” , ” re fVa lue ” : ”0”} ,
{” f i e l d ” : ” count” , ”queryValue” : ” nu l l ” , ”atom” : ” i l s t−3” ,

” re fVa lue ” : ”0”} ,
{” f i e l d ” : ” count” , ”queryValue” : ” nu l l ” ,

”atom” : ”unkn−1” , ” re fVa lue ” : ”0”} ,
{” f i e l d ” : ” count” , ”queryValue” : ” nu l l ” , ”atom” : ”unkn−2” ,

” re fVa lue ” : ”0”} ,
{” f i e l d ” : ” segmentDuration” , ”queryValue” : ”42758” ,

”atom” : ” e l s t−1” , ” re fVa lue ” : ”35799”} ,
{” f i e l d ” : ” count” , ”queryValue” : ” nu l l ” ,

”atom” : ”udta−4” , ” re fVa lue ” : ”0”} ,
{” f i e l d ” : ” count” , ”queryValue” : ” nu l l ” , ”atom” : ”mod−1” ,

” re fVa lue ” : ”0”} ,
{” f i e l d ” : ” count” , ”queryValue” : ” nu l l ” ,

”atom” : ”swr−2” , ” re fVa lue ” : ”0”} ,
{” f i e l d ” : ” count” , ”queryValue” : ” nu l l ” , ”atom” : ”day−3” ,
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” re fVa lue ” : ”0”} ,
{” f i e l d ” : ” count” , ”queryValue” : ” nu l l ” ,

”atom” : ”mak−5” , ” re fVa lue ” : ”0”} ,
{” f i e l d ” : ” count” , ”queryValue” : ” nu l l ” , ”atom” : ” free−5” ,

” re fVa lue ” : ”0”} ,
{” f i e l d ” : ” count” , ”queryValue” : ” nu l l ” ,

”atom” : ” free−4” , ” re fVa lue ” : ”0” } ]}
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Publications

This research activity has led to several publications in international journals

and conferences. These are summarized below.1

International Journals

1. Bianchi, T., Piva, A., and Shullani, D.. “Anticollusion solutions for asym-

metric fingerprinting protocols based on client side embedding.” EURASIP

Journal on Information Security, 2015. 4 citations

1. Shullani, D., Fontani, M., Iuliani, M., Al Shaya, O. and Piva, A. “VISION:

a video and image dataset for source identification”, EURASIP Journal on

Information Security, 2017. 1 citation

National Conferences

1. Shullani, D., Al Shaya, O., Iuliani, M., Fontani, M. and Piva, A. “ A

Dataset for Forensic Analysis of Videos in the Wild.” In International

Tyrrhenian Workshop on Digital Communication (pp. 84-94), Springer,

Cham, Italy, September 2017.

Technical Reports

1. Iuliani, M., Fontani, M., Shullani, D. and Piva, A. “A Hybrid Approach

to Video Source Identification”, arXiv preprint arXiv:1705.01854, 2017.

1The author’s bibliometric indices are the following: H -index = 1, total number of

citations = 5 (source: Google Scholar on Month 10, 2017).
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To be Submitted

1. “Forensic Analysis of Video File Containers”, Iuliani, M., Shullani

D., Fontani, M., Meucci, S. and Piva, A., “to be submitted to”, IEEE

Transactions on Information Forensics and Security, 2018.

1. “Forgery detection with a Variation of Prediction Footprint ex-

tension”, Vazquez-Padin, D., Fontani, M., Shullani, D., Piva, A., Perez-

Gonzales, F., and Barni, M. “to be submitted to”, IEEE Transactions on

Information Forensics and Security, 2018.
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tification using sensor photo response non-uniformity,” in Electronic Imaging

2007. International Society for Optics and Photonics, 2007, pp. 65 051G–

65 051G.

[19] ——, “Determining image origin and integrity using sensor noise,” Informa-

tion Forensics and Security, IEEE Transactions on, vol. 3, no. 1, pp. 74–90,

2008.

[20] S. Chen, T. Sun, X. Jiang, P. He, S. Wang, and Y. Q. Shi, “Detecting double

h. 264 compression based on analyzing prediction residual distribution,” in

International Workshop on Digital Watermarking. Springer, 2016, pp. 61–

74.

[21] S. Chen, A. Pande, K. Zeng, and P. Mohapatra, “Live video forensics: Source

identification in lossy wireless networks,” IEEE Transactions on Information

Forensics and Security, vol. 10, no. 1, pp. 28–39, 2015.

[22] W.-H. Chuang, H. Su, and M. Wu, “Exploring compression effects for im-

proved source camera identification using strongly compressed video,” in IEEE

International Conference on Image Processing (ICIP). IEEE, 2011, pp. 1953–

1956.

github.com/rg3/youtube-dl/blob/master/README.md#readme
github.com/rg3/youtube-dl/blob/master/README.md#readme


BIBLIOGRAPHY 105

[23] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,

vol. 20, no. 3, pp. 273–297, 1995.

[24] A. Costanzo and M. Barni, “Detection of double avc/hevc encoding,” in Signal

Processing Conference (EUSIPCO), 2016 24th European. IEEE, 2016, pp.

2245–2249.

[25] D.-T. Dang-Nguyen, C. Pasquini, V. Conotter, and G. Boato, “Raise: A raw

images dataset for digital image forensics,” in Proceedings of the 6th ACM

Multimedia Systems Conference, ser. MMSys ’15. New York, NY, USA:

ACM, 2015, pp. 219–224.

[26] A. De Rosa, A. Piva, M. Fontani, and M. Iuliani, “Investigating multimedia

contents,” in 2014 International Carnahan Conference on Security Technology

(ICCST), Oct 2014, pp. 1–6.

[27] J. Electronics and I. T. I. A. J. CP-3451, “Exchangeable image file format for

digital still cameras: Exif version 2.2,” 2002.

[28] H. Farid, “Digital image ballistics from jpeg quantization: a followup study,”

[Technical Report TR2008–638] Department of Computer Science, Dartmouth

College, Hanover, NH, USA, 2008.

[29] A. Gironi, M. Fontani, T. Bianchi, A. Piva, and M. Barni, “A video forensic

technique for detecting frame deletion and insertion,” in Acoustics, Speech and

Signal Processing (ICASSP), 2014 IEEE International Conference on. IEEE,

2014, pp. 6226–6230.

[30] T. Gloe, “Forensic analysis of ordered data structures on the example of jpeg

files,” in Information Forensics and Security (WIFS), 2012 IEEE Interna-

tional Workshop on. IEEE, 2012, pp. 139–144.
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