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Abstract 

Current paper presents design, synthesis and biological evaluation of a library of 1,2,3-

triazole carboxylates 4a-4f, and their derivatives; carboxylic acids 5a-5f, hydoxymethyls 6a-

6f, carboxylic acid hydrazides 7a-7f, carboxamides 8a-8f bearing benzenesulfonamide. All 

the thirty novel compounds were investigated for their inhibition potential against human 

carbonic anhydrase (hCA) isoforms hCA I, II, IV and IX choosing acetazolamide (AAZ) as 

reference drug. Most of the synthesized compounds were found to be weak inhibitors of 

cytosolic isoform hCA I with Ki’s ranging between 53.2 nM to 7.616 μM while glaucoma 

associated cytosolic isoform hCA II was moderately inhibited in the range of Ki’s 21.8 nM to 

0.807 μM. The membrane bound isoform hCA IV was effectively inhibited by some 

compounds 4a, 4c, 4d, 5c, 5f, 7c, 7d, 8a, 8c with Ki < 60 nM out of which compound 8a was 

most potent and most selective inhibitor (Ki = 35.7 nM) for hCA IV as compared to reference 

drug AAZ (Ki = 74 nM).  The compound 6e was found to be better inhibitor of tumor 

associated isoform hCA IX (Ki = 14.3 nM) as compared to reference drug AAZ (Ki = 25.8 

nM) while other compounds showed moderate inhibition. 

Keywords: Carbonic anhydrase inhibitors, Carbonic anhydrase isoforms I, II, IV, IX, 

Benzenesulfonamide, Acetazolamide, 1,2,3-Triaoles. 

Abbreviations: CA: Carbonic anhydrase; hCA: human carbonic anhydrase; CAIs: Carbonic 

anhydrase inhibitors; AAZ: Acetazolamide; Ki: Inhibition constant; nM: nanomolar; μM: 

micromolar; py: pyridinyl; th: thienyl. 

mailto:pksharma@kuk.ac.in
mailto:claudiu.supuran@unifi.it


1. Introduction: Carbonic anhydrases (CAs, EC 4.2.1.1), also known as carbonate 

dehydratases, are widely distributed  zinc containing metalloenzymes present in all life phyla 

which maintain pH homeostasis in the body by catalyzing the CO2 hydration reaction to 

bicarbonate and proton as well as other hydrolytic reactions [1]. Depending upon their 

cellular localisation, catalytic activity and susceptibility to different classes of inhibitors, 

carbonic anhydrases are divided in seven genetically distinct families, α-, β-, γ-, δ-,  and θ- 

CAs [2-4]. Out of these, only α- class is known to be present in humans which can be 

distinguished into 16 isoforms differing in their subcellular localisation, distribution in tissues 

and molecular and kinetic properties [5-7]. The CA isoforms are involved in numerous 

biochemical and physiological processes such as acid base regulation, bone resorption, 

calcification, glucogenesis, gluconeogenesis, tumorigenicity, ureagenesis thus representing 

valuable biological targets for the design of CA inhibitors (CAIs) with many biomedical 

applications [8-9]. The ubiquitous isoform hCA I is involved in retinal and cerebral edema, 

and its inhibition may be a valuable tool for fighting these conditions [10-12]. hCA II is 

involved in glaucoma, edema and epilepsy [13]. hCA IV is a membrane bound isoform and 

its overactivity is associated with glaucoma, retinitis pigmentosa and stroke. hCA IX, a 

transmembrane isoform, is involved in the growth of tumor cell mainly by causing the 

acidification of extracellular environment and maintaining the neutral intercellular space [14-

17]. Thus selective inhibition of some isoforms over others is a challenging approach for 

obtaining a drug with minimum side effects. 

In the last decade, a lot of work has been done on the synthesis of carbonic anhydrase 

inhibitors (CAIs) like bischalcones, coumarins, benzenesulfonamides, phenols and uracil 

derivatives [18-30]. Out of these, sulfonamides and their bioisosteres like sulfamates and 

sulfamides are potent active site coordinating CAIs which, in deprotonated form, binds with 

the Zn(II) present at active site of enzyme [31-32]. Many sulfonamide based drugs, like 

acetazolamide (AAZ), methazolamide (MZA), ethoxzolamide (EZA), dorzolamide (DZA), 

brinzolamide (BRZ), celecoxib (CLX) etc. which are in clinical use as diuretics (target hCA 

II, IV, XII and XIV), antiepileptics (target hCA VII and XIV), antiglaucoma (target hCA II, 

IV and XII), antitumor agents (target hCA IX and XII) for the treatment of diseases related to 

overactivity of carbonic anhydrases [33-34]. Further, the compounds containing 1,2,3-triazole 

ring system  have been studied extensively by medicinal chemists for the synthesis of novel 

compounds 1-3 of medicinal importance (Fig. 1) [35-37]. Recently, our research group has 

reported the synthesis and biological evaluation of some  benzenesulfonamide  bearing 1,2,3-

triazoles as hCA I, II, IV and XI inhibitors which showed  excellent inhibition profile for 



aforesaid CA isoforms [28]. Motivated by the results of our previous work and continuing 

our interest in designing heterocyclic compounds of potential medicinal interest [20-23,27-

29,38-39]  we synthesized some novel 4-functionalized 1,5-diaryl-1,2,3-triazoles bearing 

benzenesulfonamide 4a-4f, 5a-5f, 6a-6f, 7a-7f and 8a-8f for evaluation of their carbonic 

anhydrase  inhibiton potential against hCA I, II, IV and IX. 

 

Fig. 1. Some clinically used sulfonamide bearing drugs and 1,2,3-triazole ring containing CA inhibitors. 

2. Results and discussion  

2.1. Chemistry 

The synthesis of 1,2,3-triazole derivatives 4a-4f, 5a-5f, 6a-6f, 7a-7f and 8a-8f was performed 

according to the general synthetic route as outlined in Scheme 1 and 2. The coveted 1,5-

diaryl-1,2,3-triazole carboxylates 4a-4f were synthesized (Scheme 1) starting from 

commercially available sulfanilamide (9) which upon diazotisation and subsequent reaction 

with sodium azide at 0o C yielded 4-azidobenzenesulfonamide (10) [40]. Compound 10 was 

subsequently treated with differently substituted β-ketoesters 11a-11f, which were in turn 

synthesized according to literature procedure [ 41 ] to afford 1,5-diaryl-1,2,3-triazole 

carboxylates 4a-4f. 



 

Scheme 1. Synthesis of target compounds 4a-4f. Reaction conditions: (i) HCl, NaNO2, H2O, 0oC; (ii) 

NaN3, 0oC; (iii) Piperidine, DMSO, 70oC. 

Other derivatives of 1,5-diaryl-1,2,3-triazoles viz carboxylic acids 5a-5f, methyl alcohols 6a-

6f, carboxylic acid hydrazides 7a-7f and carboxamides 8a-8f were synthesized by reacting 

ethyl carboxylates 4a-4f with aqueous NaOH, LiAlH4, hydrazine hydrate, and ammonia 

solution respectively (Scheme 2) [42-43]. Postulated structures of the synthesized 1,2,3-

trizolic benzenesulfonamides were characterized by rigorous analysis of their spectral data 

(IR, 1H NMR, 13C NMR and HRMS) when their spectral information was found to be in full 

agreement with the proposed structures. In general, ethyl 1,2,3-triazole carboxylates 4a-4f 

were characterized by appearance of a strong characteristic band for C=O in the range 1713-

1736 cm-1 in their FT-IR spectra and appearance of a characteristic quartet of two protons and 

a triplet of three protons in the range 4.23-4.26 ppm and 1.14-1.33 ppm respectively for ethyl 

protons in their 1H NMR spectra. The 1,2,3-triazole carboxylic acids 5a-5f were 

characterized by a sharp absorption band at 1705-1744 cm-1 corresponding to C=O stretch 

along with a broad band from 3209 cm-1 to 3265  cm-1 due to O-H stretching of COOH in FT-

IR spectra and a broad exchangeable singlet in the range 13.15-13.36 ppm due to acidic 

proton in 1H NMR spectra. The methyl alcohols 6a-6f exhibited a broad band at 3250-3472 

cm-1 corresponding to O-H stretch in FT-IR spectra while their 1H NMR spectra exhibited a 

triplet in the range 5.17-5.64 ppm along with a doublet in the range 4.50-4.64 ppm 

corresponding to OH and CH2 protons respectively. Corresponding hydrazinocarbonyl 

derivatives 7a-7f were characterized by a sharp band at 1651-1682 cm-1 for C=O stretching in 

FT-IR and two exchangeable singlets in the range 9.92-10.01 ppm and 4.49-4.55 ppm for NH 

and NH2 protons respectively in 1H NMR spectra. The 1,2,3-triazole carboxamides 8a-8f 

displayed a sharp absorption band at 1643-1675 cm-1 corresponding to C=O stretch in FT-IR 

and two exchangeable singlets in the range 8.00-8.15 ppm and 7.50-7.65 ppm corresponding 



to NH/OH protons in 1H NMR spectra. Further, all the synthesized compounds exhibited 

sharp absorption bands in their FT-IR spectra at ~1342 cm-1 and ~1165 cm-1 for SO2 

stretching, and a sharp singlet at ~7.56 ppm for SO2NH2 protons in 1H NMR spectra. 

 

Scheme 2. Synthesis of target compounds 5a-5f, 6a-6f, 7a-7f and 8a-8f. Reaction conditions: (i)  aq. 

NaOH, reflux; (ii)  H3O+
; (iii)  LiAlH4, dry THF; (iv) NH2NH2.H2O, EtOH, Reflux; (v) NH3 solution. 

 

2.2. CA inhibition studies 

The target compounds 4a-4f, 5a-5f, 6a-6f, 7a-7f and 8a-8f were tested for their efficacy to 

inhibit the physiologically relevant hCA isoforms, cytosolic hCA I (associated with edema), 

cytosolic hCA II (associated with glaucoma), membrane bound hCA IV (associated with 

glaucoma and retinitis pigmentosa) and transmembrane isoform hCA IX (associated with 

tumorigenicity). All the synthesized compounds were screened for their inhibition potential 

by means of stopped flow carbon dioxide hydration assay and compared with clinically used 

reference drug acetazolamide (AAZ). 



(a) All the compounds except 5a-5f, 6a-6d, 7a, 7e, 8d showed better inhibitory effect (Ki 

< 250 nM) against the cytosolic isoform hCA I as compared to standard drug AAZ. 

Further, among the synthesized compounds, ethyl carboxylates 4a-4f were found to 

be the best hCA I inhibitors while carboxylic acids 5a-5f were found to be the 

weakest inhibitors (Table 1). 

(b) All the synthesized compounds moderately inhibited the cytosolic isoforms hCA II 

ranging between 21.8 nM to 0.807 μM as compared to reference drug AAZ with Ki 

12.1 nM. However most of compounds 4c, 6a-6f, 7a-7f, 8a, 8d, 8e, 8f inhibited the 

hCA II with Ki < 100 nM (Table 1). 

(c) The membrane bound isoform hCA IV found moderately to strongly inhibited by the 

synthesized sulfonamides in the range of Ki 35.7 nM to 2.50 μM. The compounds 4a, 

4c, 4d, 5c, 5d, 5f, 5e, 7c, 7d, 8a, 8c were most potent inhibitors among the 

synthesized compounds, Ki ranging from 35.7 nM to 66.2 nM which is even better 

than reference drug AAZ (Ki = 74 nM). In broader sense, derivatives containing 4-

chlorophenyl and 4-bromophenyl were found strongest while those having 2-pyridinyl 

moiety as Ar group were weakest inhibitor of hCA IV in tested compounds (Table 1). 

(d) The membrane bound tumor associated isoform hCA IX is weakly inhibited by all of 

the reported compounds in the range of Ki 70 nM-2.9 μM except derivative 6e which 

showed better inhibitory property (Ki = 14.3 nM) compared to the reference drug 

AAZ (Ki = 25.8 nM) (Table 1). 

(e) Interestingly, in terms of structure activity relationship (SAR), derivatives containing 

carboxylic acid 5a-5f have shown weaker inhibiton of cytosolic isoform hCA I as 

compared to standard drug AAZ. In particular, carboxylic acid derivatives 5a and 5d 

were found to be selective inhibitors of glaucoma associated isoforms hCA II and IV 

at low nanomolar values. During the inhibitory study of tumor associated membrane 

bound hCA IX isoform, only one compound 6e was found to be better inhibitor as 

compared to standard drug AAZ but with poor selectivity over off target isoforms 

hCA I and II (Table 1). 

(f) A comparative study with our previous work [28] in terms of structure activity 

relationship (SAR) reveals that compounds containing methyl group at C-5 position 

of 1,2,3-triazole ring were the best while compounds containing 2-napthyl were 

weakest inhibitors of cytosolic isoform hCA I. From this observation it can be 

concluded that as the bulk at C-5 position of 1,2,3-triazole ring increases their 

inhibition potency for cytosolic isoform hCA I decreases. 



Table 1  

Inhibitory potency data for compounds 4a-4f, 5a-5f, 6a-6f, 7a-7f and 8a-8f against isozymes hCA I, hCA 

II, hCA IV, and hCA IX. 

 Ar = 4-CH3 C6H4  4a-8a 

         4-F C6H4  4b-8b 

        4-Cl C6H4  4c-8c 

        4-Br C6H4  4d-8d 

        2-Pyridinyl  4e-8e 

        2-Thienyl  4f-8f  

X =     -COOEt  4a-4f 

           -COOH  5a-5f 

           -CH2OH  6a-6f 

           -CONHNH2  7a-7f 

           -CONH2  8a-8f 

 
   Ki (nM)* 

Compounds Ar X CA I CA II CA IV CA IX 

4a 4-CH3 C6H4 -COOEt 53.2 747.6 36.2 198.3 

4b 4-F C6H4 -COOEt 87.1 356.3 84 633 

4c 4-Cl C6H4 -COOEt 68 91.5 44.3 1477 

4d 4-Br C6H4 -COOEt 173.8 518.2 53 227.5 

4e 2-Pyridinyl -COOEt 232.1 666.3 836.1 1423 

4f 2-Thienyl -COOEt 79.7 376.4 2506.7 237.2 

5a 4-CH3 C6H4 -COOH 7616.1 553 152.9 1415 

5b 4-F C6H4 -COOH 613.9 730.7 85.7 1581 

5c 4-Cl C6H4 -COOH 377.9 459 44.8 715.5 

5d 4-Br C6H4 -COOH 4715.1 406.3 66.2 1406 

5e 2-Pyridinyl -COOH 881.2 807.5 736.1 2089 

5f 2-Thienyl -COOH 479.2 707.8 59.8 1307 

6a 4-CH3 C6H4 -CH2OH 916.1 84.9 648.7 2333 

6b 4-F C6H4 -CH2OH 322.1 51.8 229.5 2373 

6c 4-Cl C6H4 -CH2OH 554.3 29.6 88.3 1213 

6d 4-Br C6H4 -CH2OH 655.7 41 277.9 1730 

6e 2-Pyridinyl -CH2OH 88.4 57.1 1954.2 14.3 

6f 2-Thienyl -CH2OH 71.2 21.8 169.2 71.2 

7a 4-CH3 C6H4 -CONHNH2 395 27.2 295.4 737.7 

7b 4-F C6H4 -CONHNH2 95.2 71.3 272.5 2451 

7c 4-Cl C6H4 -CONHNH2 79.7 48.9 49.5 909 

7d 4-Br C6H4 -CONHNH2 203.2 66.2 36.6 1353 

7e 2-Pyridinyl -CONHNH2 477.6 92.6 884.9 2905 

7f 2-Thienyl -CONHNH2 91 53.3 628.2 2833 

8a 4-CH3 C6H4 -CONH2 194.9 83.7 35.7 73 

8b 4-F C6H4 -CONH2 72.1 637.9 229.4 107.2 

8c 4-Cl C6H4 -CONH2 90.5 559.5 49.9 116.7 

8d 4-Br C6H4 -CONH2 272.9 88.7 79.2 256.4 

8e 2-Pyridinyl -CONH2 76 38.3 478.4 730.3 

8f 2-Thienyl -CONH2 87.4 51.6 569.7 225.4 

AAZ  - - 250 12.1 74 25.8  

*Mean from 3 different assays, by a stopped flow technique (errors were in the range of  5-10 % of the reported values). 



(g) Changing the methyl group at C-5 position of 1,2,3-triazole ring with heterocyclic 

moiety 4e-8e, 4f-8f also resulted into overall decrease of inhibition potency for all of 

the hCA isoforms under study. At the same time it also resulted into better selective 

inhibition of one isoform over others; e.g. compounds 4f, 5f, 6e and 7e were found to 

be selective inhibitors of isoforms hCA I, IV, IX and II respectively. 

 

3. Conclusions 

In the present work, we reported a series of thirty novel 1,2,3-triazole derivatives containing  

primary benzenesulfonamide moiety at N-1 position, different functionalities like ethyl 

carboxylate 4a-4f, carboxylic acid 5a-5f, methyl alcohol 6a-6f, carboxylic acid hydrazide 7a-

7f and carboxamide 8a-8f at C-4 position and different/differently substituted aromatic 

scaffolds at C-5 position  of 1,2,3-triazole ring. All the synthesized compounds were assayed 

as inhibitors of carbonic anhydrase isoforms of pharmacological relevance i.e. cytosolic 

isoforms (hCA I and hCA II) and membrane bound isoforms (hCA IV and hCA XI). These 

isoforms were inhibited by the synthesized compounds in low to medium nanomolar range. 

Most of the compounds showed rather a weak inhibitory potency against hCA I, while some 

others 4a, 4c, 4f, 6f, 7c, 8b and 8e showed better inhibition potency in the range of Ki 53 to 

80 nM. Against hCA II, nearly all the tested compounds showed moderate inhibition 

potential in the range of 21.8 nM to 0.807 μM. For transmembrane isoform hCA IV, in the 

broader sense, the compounds having 4-chlorophenyl 4c-8c and 4-bromophenyl 4d-8d at C-5 

position of 1,2,3-triazole ring were found as the most potent inhibitors with low Ki values. 

Compound 6e showed better inhibitory effect for tumor associated isoform hCA IX (Ki = 

14.3 nM) than reference drug AAZ (Ki = 25.8 nM). In short, it may be concluded that 1,2,3-

triazolic benzenesulfonamide scaffold is associated with hCAs inhibition and on further study 

can prove to be an important pharmacophore for the synthesis of isoform selective CAIs. 

4. Experimental protocols 

4.1. Chemistry 

4.1.1. General  

All the commercially available chemicals were used without further purification. All the 

solvents were dried and/or purified according to standard procedures prior to use. All the air- 

or moisture-sensitive reactions were performed under a nitrogen atmosphere using dried 

glassware and syringes techniques to transfer solutions. All the reactions were monitored by 



thin layer chromatography (TLC) on TLC silica gel on F254 aluminium plates using a mixture 

of chloroform and methanol as eluent while UV lamp was used to visualize the spots. Melting 

points were determined in open capillaries in an electrical melting point apparatus and are 

uncorrected. IR spectra were recorded on ABB MB 3000 DTGS IR instrument using the KBr 

pellet technique. 1H NMR spectra were recorded on 400 MHz, while 13C NMR spectra were 

registered at 100 MHz, using deuterated dimethyl sulfoxide (DMSO-d6) as solvent, and 

tetramethylsilane (TMS) as internal standard at room temperature. Chemical shifts are 

reported as δ values in parts per million (ppm) downfield from TMS. High resolution mass 

spectra were obtained from a MicroMass ESI-TOF MS spectrometer. Multiplicities are 

described as singlet (s), doublet (d), doublet of doublet (dd), doublet of triplet (dt), triplet (t), 

quartet (q), multiplet (m), exchangeable proton (ex) for NMR assignments and strong (s), 

medium (m), broad (br) for IR assignments. The coupling constants are expressed in hertz 

(Hz). 

4.1.2. Synthesis of ethyl 1-[4-(aminosulfonyl)phenyl]-5-aryl-1H-1,2,3-triazole-4-carboxylates 

(4a-4f) 

General procedure: To a solution of appropriate β-diketoester 8a-8f (16.00 mmol) in DMSO 

(5 mL) was added piperidine (5 mol%). After 5 min. of stirring at 70o C in silicon oil bath, 4-

azidobenzenesulfonamide (15.01 mmol) was added and the mixture was stirred at 70o C for 

an additional 4-6 hrs and the progress of reaction was monitored by TLC. After the reaction 

was completed, the reaction mixture was poured into the ice water and the precipitates 

formed were filtered, washed with water and recrystallized from ethanol. 

4.1.2.1. Ethyl 1-[4-(aminosulfonyl)phenyl]-5-(p-tolyl)-1H-1,2,3-triazole-4-carboxylate (4a) 

Yield 80%; mp: 209oC; IR(KBr) (ν, cm-1):  3317, 3225, 3109 (m, N-H stretch), 1713 (s, C=O 

stretch), 1335, 1165 (s, SO2 stretch); 1H NMR (400 MHz, DMSO-d6) δ (ppm): 7.94-7.93 (m, 

2H, Ar), 7.62-7.57 (m, 4H, Ar, SO2NH2), 7.30-7.23 (m, 4H, Ar), 4.23 (q, J = 5.6 Hz, 2H, 

CH2), 2.33 (s, 3H, CH3), 1.17 (t, J = 5.6 Hz, 3H, CH3); 
13C NMR (100 MHz, DMSO-d6) δ 

(ppm): 160.71, 145.50, 141.75, 140.15, 138.33, 136.89, 130.74, 129.31, 127.33, 126.95, 

122.78, 61.02, 21.40, 14.38; HRMS (ESI-MS) m/z 387.1121 (M+H)+, C18H18N4O4SH+, calcd 

387.1127. 

4.1.2.2. Ethyl 1-[4-(aminosulfonyl)phenyl]-5-(4-fluorophenyl)-1H-1,2,3-triazole-4-

carboxylate (4b) 



Yield 75%; mp: 199oC; IR(KBr) (ν, cm-1):  3326, 3077, 2989 (m, N-H stretch), 2989 (m, -

CH3stretch), 1713 (s, C=O stretch), 1327, 1165 (s, SO2 stretch); 1H NMR (400 MHz, DMSO-

d6) δ (ppm): 7.91 (d, J = 8.8 Hz, 2H, Ar), 7.60 (d, J = 8.8 Hz, 2H, Ar), 7.55 (s, 2H, SO2NH2), 

7.50-7.47 (m, 2H, Ar), 7.29 (t, J = 8.8 Hz, 2H, Ar), 4.24 (q, J = 7.2 Hz, 2H, CH2), 1.18 (t, J = 

7.2Hz, 3H, CH3);  
13C NMR (100 MHz, DMSO-d6) δ (ppm): 162.88 (d, 1JCF = 246 Hz), 

160.14, 145.09, 140.42, 137.65, 136.66, 132.95 (d, 3JCF = 9 Hz), 126.89, 126.49, 121.85 (d, 

4JCF = 3 Hz), 115.43 (d, 2JCF = 22 Hz), 56.04, 13.87; HRMS (ESI-MS) m/z 391.0889 (M+H)+, 

C17H15FN4O4SH+, calcd 391.0876. 

4.1.2.3. Ethyl 1-[4-(aminosulfonyl)phenyl]-5-(4-chlorophenyl)-1H-1,2,3-triazole-4-

carboxylate (4c) 

Yield 76%; mp: 208oC; IR(KBr) (ν, cm-1):  3263, 3186, 3109 (m, N-H stretch), 1713 (s, C=O 

stretch), 1335, 1165 (s, SO2 stretch); 1H NMR (400 MHz, DMSO-d6) δ (ppm): 7.92 (d, J = 

8.4 Hz,  2H, Ar), 7.60 (d, J = 8.4 Hz, 2H, Ar), 7.53-7.51 (m, 4H, Ar, SO2NH2), 7.45 (d, J = 

8.4 Hz, 2H, Ar),  4.24 (q, J = 7.2 Hz, 2H, CH2), 1.17 (t, J = 7.2 Hz, 3H, CH3); 
13C NMR (100 

MHz, DMSO-d6) δ (ppm): 160.54, 145.61, 140.65, 138.02, 137.16, 135.40, 132.79, 128.85, 

127.38, 126.95, 124.88, 61.13, 14.34; HRMS (ESI-MS) m/z 407.0580 (M+H)+, 409.0555 

(M+H+2)+, C17H15ClN4O4SH+, calcd 407.0581. 

4.1.2.4. Ethyl 1-[4-(aminosulfonyl)phenyl]-5-(4-bromophenyl)-1H-1,2,3-triazole-4-

carboxylate (4d) 

Yield 81%; ; mp: 227oC; IR(KBr) (ν, cm-1):  3371, 3271, 3103 (m, N-H stretch), 2982 (m, -

CH3stretch), 1713 (s, C=O stretch), 1342, 1165 (s, SO2 stretch); 1H NMR (400 MHz, DMSO-

d6) δ (ppm): 7.92 (d, J = 8.4 Hz. 2H, Ar), 7.65 (d, J = 8.4 Hz, 2H, Ar), 7.61 (d, J = 8.4 Hz, 

2H, Ar), 7.55 (s, 2H, SO2NH2), 7.38 (d, J = 8.4 Hz, 2H, Ar), 4.24 (q, J = 7.2 Hz, 2H, CH2), 

1.17 (t, J = 7.2Hz, 3H, CH3); 
13C NMR (100 MHz, DMSO-d6) δ (ppm): 160.09, 145.15, 

140.26, 137.56, 136.66, 132.53, 131.32, 126.94, 126.51, 124.79, 123.76, 60.68, 13.89; 

HRMS (ESI-MS) m/z 451.0075 (M+H)+, 453.0057 (M+H+2)+, C17H15BrN4O4SH+, calcd 

451.0075. 

4.1.2.5. Ethyl 1-[4-(aminosulfonyl)phenyl]-5-(pyridin-2-yl)-1H-1,2,3-triazole-4-carboxylate 

(4e) 

Yield 70%; mp: 221oC; IR(KBr) (ν, cm-1):  3217, 3086 (m, N-H stretch), 1736 (s, C=O 

stretch), 1346, 1167 (s, SO2 stretch); 1H NMR (400 MHz, DMSO-d6) δ (ppm): 8.55 (dd, J = 

4.0 Hz, J = 0.8 Hz, 1H, py), 7.97 (dt, J = 8.0 Hz, J = 1.6 Hz, 1H, py), 7.88 (d, J = 8.8 Hz, 2H, 



Ar), 7.85 (d, J = 6.8 Hz, 1H, py), 7.58 (d, J = 8.8 Hz, 2H, Ar), 7.56 (s, 2H, SO2NH2), 7.49 (m, 

1H, py), 4.24 (q, J = 7.2 Hz, 2H, CH2), 1.14 (t, J = 7.2 Hz, 3H, CH3); 
13C NMR (100 MHz, 

DMSO-d6) δ (ppm): 159.97, 149.51, 145.19, 144.96, 140.02, 138.00, 137.12, 136.82, 127.24, 

126.89, 125.83, 124.83, 56.05, 13.82; HRMS (ESI-MS) m/z 374.0931 (M+H)+, 

C16H15N5O4SH+, calcd 374.0923. 

4.1.2.6. Ethyl 1-[4-(aminosulfonyl)phenyl]-5-(thiophen-2-yl)-1H-1,2,3-triazole-4-carboxylate 

(4f) 

Yield 75%; mp: 232oC; IR(KBr) (ν, cm-1):  3362, 3194, 3073 (m, N-H stretch), 1728 (s, C=O 

stretch), 1335, 1165 (s, SO2 stretch); 1H NMR (400 MHz, DMSO-d6) δ (ppm): 7.97 (dd, J = 

6.8 Hz, J = 1.6 Hz,  2H, Ar), 7.83 (dd, J = 4.8 Hz, J = 1.2, 1H, th), 7.70 (dd, J = 6.8 Hz, J = 

1.6 Hz, 2H, Ar), 7.59 (s, 2H, SO2NH2), 7.36 (dd, J = 3.6 Hz, J = 1.2 Hz, 1H, th), 7.14 (dd, J = 

4.8 Hz, J = 3.6 Hz, 1H, th), 4.29 (q, J = 7.2 Hz, 2H, CH2), 1.23 (t, J = 7.2 Hz, 3H, CH3); 
13C 

NMR (100 MHz, DMSO-d6) δ (ppm): 160.55, 146.00, 138.19, 137.24, 135.83, 133.23, 

131.56, 127.81, 127.38, 127.35, 124.12, 61.30, 14.40; HRMS (ESI-MS) m/z 379.0527 

(M+H)+, C15H14N4O4S2H
+, calcd 379.0534. 

 

4.1.3. Synthesis of 1-[4-(aminosulfonyl)phenyl]-5-aryl-1H-1,2,3-triazole-4-carboxylic acids 

(5a-5f) 

General procedure: An aqueous solution of NaOH (10%, 10 mL) was added into the 

appropriate 1,2,3-triazolic ester 4a-4f (1.00 mmol). The mixture was refluxed for 4-5 hrs. 

Then cooled the solution and the mixture was neutralized with concd HCl in ice bath. The 

crude white solid was precipitated out which was filtered off, washed with water, dried and 

recrystallized with appropriate solvent. 

4.1.3.1. 1-[4-(Aminosulfonyl)phenyl]-5-(p-tolyl)-1H-1,2,3-triazole-4-carboxylic acid (5a) 

Yield 84%; mp: 177oC; IR(KBr) (ν, cm-1): 3348, 3094 (m, N-H stretch), 3225 (br, O-H 

stretch), 1713 (s, C=O stretch), 1342, 1165 (s, SO2 stretch); 1H NMR (400 MHz, DMSO-d6) δ 

(ppm): 13.20 (s, br, 1H, COOH), 7.90 (d, J = 7.2 Hz, 2H, Ar), 7.59 (d, J = 7.6 Hz, 2H, Ar), 

7.55 (s, 2H, SO2NH2), 7.27 (d, J = 7.6 Hz, 2H, Ar), 7.22 (d, J = 7.2 Hz, 2H, Ar), 2.32 (s, 3H, 

CH3); 
13C NMR (100 MHz, DMSO-d6) δ (ppm): 162.19, 145.38, 141.46, 139.97, 138.44, 

137.62, 130.73, 129.32, 127.28, 126.93, 123.09, 21.38; HRMS (ESI-MS) m/z 359.0822 

(M+H)+, C16H14N4O4SH+, calcd 359.0814. 



4.1.3.2. 1-[4-(Aminosulfonyl)phenyl]-5-(4-fluorophenyl)-1H-1,2,3-triazole-4-carboxylic acid 

(5b)  

Yield 80%; mp: 187oC; IR(KBr) (ν, cm-1): 3333, 3087 (m, N-H stretch), 3256 (br, O-H 

stretch), 1706 (s, C=O stretch), 1342, 1165 (s, SO2 stretch); 1H NMR (400 MHz, DMSO-d6) δ 

(ppm): 13.18 (s, br, 1H, -COOH), 7.90 (dd, J = 6.8 Hz, J = 1.6 Hz, 2H, Ar), 7.58 (dd, J = 6.8 

Hz, J = 1.6 Hz, 2H, Ar), 7.54 (s, 2H, SO2NH2), 7.50–7.45 (m, 2H, Ar,), 7.30-7.25 (m, 2H, 

Ar); 13C NMR (100 MHz, DMSO-d6) δ (ppm): 164.48 (d, 1JCF = 226 Hz), 162.09,145.56, 

140.58, 138.23, 137.82, 133.24 (d, 3JCF = 8.7 Hz), 127.31, 122.25, (d, 4JCF = 3.2 Hz), 115.88 

(d, 2JCF = 21.8 Hz); HRMS (ESI-MS) m/z 363.0560 (M+H)+, C15H11FN4O4SH+, calcd 

363.0563. 

4.1.3.3. 1-[4-(Aminosulfonyl)phenyl]-5-(4-chlorophenyl)-1H-1,2,3-triazole-4-carboxylic acid 

(5c) 

Yield 88%; mp: 177oC; IR(KBr) (ν, cm-1): 3340 (m, N-H stretch), 3232 (br, O-H stretch), 

1735 (s, C=O stretch), 1335, 1080 (s, SO2 stretch); 1H NMR (400 MHz, DMSO-d6) δ (ppm): 

13.25 (s, 1H, OH), 7.93 (d, J = 8.6 Hz,  2H, Ar), 7.61 (d, J = 8.6 Hz, 2H, Ar), 7.55 (s, 2H, 

SO2NH2), 7.51 (d, J = 8.4 Hz, 2H, Ar), 7.45 (d, J = 8.4 Hz, 2H, Ar); 
13C NMR (100 MHz, 

DMSO-d6) δ (ppm): 162.06, 145.52, 140.39, 138.17, 137.91, 135.29, 132.81, 128.86, 127.38, 

126.95, 125.18; HRMS (ESI-MS) m/z 379.0267 (M+H)+, 381.0236 (M+H+2)+, 

C15H11ClN4O4SH+, calcd 379.0268. 

4.1.3.4. 1-[4-(Aminosulfonyl)phenyl]-5-(4-bromophenyl)-1H-1,2,3-triazole-4-carboxylic acid 

(5d) 

Yield 79%; mp:  180oC; IR(KBr) (ν, cm-1): 3333, 3094 (m, N-H stretch), 3265 (br, O-H 

stretch), 1744 (s, C=O stretch), 1335, 1111 (s, SO2 stretch); 1H NMR (400 MHz, DMSO-d6) δ 

(ppm): 13.25 (s, br, 1H, COOH), 7.92 (d, J = 8.8 Hz, 2H, Ar), 7.64 (d, J = 8.4 Hz, 2H, Ar), 

7.60 (d, J = 8.4 Hz, 2H, Ar), 7.54 (s, 2H, SO2NH2), 7.37 (d, J = 8.8 Hz, 2H, Ar); 13C NMR 

(100 MHz, DMSO-d6) δ (ppm): 161.62, 145.06, 139.97, 137.70, 137.43, 132.56, 131.32, 

126.93, 126.51, 125.11, 123.64; HRMS (ESI-MS) m/z 422.9757 (M+H)+, 424.9737 

(M+H+2)+, C15H11BrN4O4SH+, calcd 422.9762. 

4.1.3.5. 1-[4-(Aminosulfonyl)phenyl]-5-(pyridin-2-yl)-1H-1,2,3-triazole-4-carboxylic acid 

(5e) 



Yield 94%; mp: 190oC; IR(KBr) (ν, cm-1): 3364, 3094 (m, N-H stretch), 3209 (br, O-H 

stretch), 1705 (s, C=O stretch), 1335, 1157 (s, SO2 stretch); 1H NMR (400 MHz, DMSO-d6) δ 

(ppm): 13.36 (s, br, 1H, COOH), 8.55-8.54 (m, 1H, py), 7.98-7.93 (m, 4H, py, Ar), 7.58-7.46 

(m, 5H, py, Ar, SO2NH2); 
13C NMR (100 MHz, DMSO-d6) δ (ppm): 161.91, 149.87, 145.89, 

145.31, 140.22, 138.60, 138.31, 137.26, 127.71, 127.30, 126.25, 125.16; HRMS (ESI-MS) 

m/z 346.0611 (M+H)+, C14H11N5O4SH+, calcd 346.0610. 

4.1.3.6. 1-[4-(Aminosulfonyl)phenyl]-5-(thiophen-2-yl)-1H-1,2,3-triazole-4-carboxylic acid 

(5f) 

Yield 89%; mp: 183oC; IR(KBr) (ν, cm-1): 3356, 3101 (m, N-H stretch), 3240 (br, O-H 

stretch), 1713 (s, C=O stretch), 1358, 1173 (s, SO2 stretch); 1H NMR (400 MHz, DMSO-d6) δ 

(ppm): 13.31 (s, br, 1H, COOH), 7.95 (d, J = 8.4 Hz, 2H, Ar), 7.80 (d, J = 4.4 Hz, 1H, th), 

7.68 (d, 2H, J = 8.4 Hz, Ar), 7.58 (s, 2H, SO2NH2), 7.34 (d, J = 2.8 Hz, 1H, th), 7.14-7.12 (m, 

1H, th); 
13C NMR (100 MHz, DMSO-d6) δ (ppm): 162.04, 145.90, 138.31, 137.98, 135.48, 

133.04, 131.37, 127.80, 127.34, 127.33, 124.47; HRMS (ESI-MS) m/z 351.0222 (M+H)+, 

C13H10N4O4S2H
+, calcd 351.0221. 

 

4.1.4. Synthesis of 4-(4-(hydroxymethyl)-5-aryl-1H-1,2,3-triazol-1-yl) benzenesulfonamides 

(6a-6f) 

General procedure: A solution of 1,2,3-triazolic ester 4a-4f (1.5 mmol) in dry tetrahydrofuran 

(30 ml) cooled to 10-15o C was added drop-wise to a cold suspension of LiAlH4 (3.0 mmol) 

in dry tetrahydrofuran (5 mL) with stirring under anhydrous condition. After 20 minutes of 

stirring, the reaction mixture was refluxed for 2 hrs. After completion of reaction, the reaction 

mixture was neutralized with aqueous solution of 1N HCl and extracted with ethyl acetate, 

dried over anhydrous Na2SO4 and concentrated under reduced pressure. The residue was 

recrystallized with ethanol. 

4.1.4.1. 4-(4-(hydroxymethyl)-5-(p-tolyl)-1H-1,2,3-triazol-1-yl)benzenesulfonamide (6a) 

Yield 65%; mp: 223oC; IR(KBr) (ν, cm-1): 3250 (br, O-H stretch), 3163, 3063, 3032 (m, N-H 

stretch), 1342, 1165 (s, SO2 stretch); 1H NMR (400 MHz, DMSO-d6) δ (ppm): 7.91 (dd, J = 

6.8 Hz, J = 1.6 Hz, 2H, Ar), 7.57-7.52 (m, 4H, Ar, SO2NH2), 7.29-7.22 (m, 4H, Ar), 5.36 (t, J 

= 5.6 Hz, 1H, OH), 4.50 (d, J = 5.2 Hz, 2H, CH2), 2.33 (s, 3H, CH3); 
13C NMR (100 MHz, 

CDCl3) δ (ppm): 145.79, 144.92, 139.59, 139.12, 136.10, 129.97, 127.45, 126.16, 123.56, 

54.37, 21.31; HRMS (ESI-MS) m/z 345.1023 (M+H)+, C16H16N4O3SH+, calcd 345.1021. 



4.1.4.2. 4-(4-(hydroxymethyl)-5-(4-fluorophenyl)-1H-1,2,3-triazol-1-yl) benzenesulfonamide 

(6b) 

Yield 58%; mp: 215oC; IR(KBr) (ν, cm-1): 3310 (br, O-H stretch), 3225, 3101, 2924 (m, N-H 

stretch), 1342, 1165 (s, SO2 stretch); 1H NMR (400 MHz, DMSO-d6) δ (ppm): 7.94 (d, J = 

8.4 Hz, 2H, Ar), 7.57 (d, J = 8.4 Hz, 2H, Ar), 7.53 (s, 2H, SO2NH2), 7.43 (dd, J = 8.4 Hz, J = 

5.6 Hz, 2H, Ar), 7.34-7.30 (m, 2H, Ar), 5.64-5.17 (br, 1H, OH), 4.52 (s,  2H, CH2), 
13C NMR 

(100 MHz, DMSO-d6) δ (ppm): 163.25 (d, 1JCF = 246 Hz), 146.04, 145.01, 138.91, 135.16, 

132.58 (d, 3JCF = 8.7 Hz), 127.49, 126.19, 123.02 (d, 4JCF = 3.2 Hz), 116.52 (d, 2JCF = 21.8 

Hz), 54.38; HRMS (ESI-MS) m/z 349.0770 (M+H)+, C15H13FN4O3SH+, calcd 349.0770. 

4.1.4.3. 4-(4-(hydroxymethyl)-5-(4-chlorophenyl)-1H-1,2,3-triazol-1-yl)benzenesulfonamide 

(6c) 

Yield 62%; mp: 130oC; IR(KBr) (ν, cm-1): 3371 (br, O-H stretch), 3232, 3101, (m, N-H 

stretch), 1342, 1165 (s, SO2 stretch); 1H NMR (400 MHz, DMSO-d6) δ (ppm): 7.93 (d, J = 

8.8 Hz, 2H, Ar), 7.62-7.50 (m, 6H, Ar, SO2NH2) 7.40 (d, J = 8.8 Hz, 2H, Ar), 5.40 (t, J = 5.2 

Hz, 1H, OH), 4.54 (d, J = 5.2 Hz, 2H, CH2), 
13C NMR (100 MHz, CDCl3) δ (ppm): 146.51, 

145.10, 138.90, 134.94, 134.90, 131.97, 129.49, 127.51, 126.62, 125.51, 54.40; HRMS (ESI-

MS) m/z 365.0473 (M+H)+, 367.0445 (M+H+2)+, C15H13ClN4O3SH+, calcd 365.0475. 

4.1.4.4. 4-(4-(hydroxymethyl)-5-(4-bromophenyl)-1H-1,2,3-triazol-1-yl)benzenesulfonamide 

(6d) 

Yield 60%; ; mp: 120oC; IR(KBr) (ν, cm-1): 3364 (br, O-H stretch), 3225, 3094, 2947 (m, N-

H stretch), 1342, 1165 (s, SO2 stretch); 1H NMR (400 MHz, DMSO-d6) δ (ppm): 7.93 (dd, J = 

6.8 Hz, J = 2 Hz, 2H, Ar), 7.69 (dd, J = 6.4 Hz, J = 2 Hz, 2H, Ar), 7.58 (dd, J = 6.8 Hz, J = 2 

Hz, 2H, Ar), 7.54 (s, 2H, SO2NH2), 7.32 (dd, J = 6.4 Hz, J = 2 Hz, 2H, Ar), 5.42 (t, J = 5.6 

Hz, 1H, OH), 4.53 (d, J = 5.2Hz, 2H, CH2),  13C NMR (100 MHz, DMSO-d6) δ (ppm): 

146.10, 145.06, 138.82, 134.99, 132.41, 132.18, 127.55, 126.23, 125.86, 123.66, 54.38; 

HRMS (ESI-MS) m/z 408.9988 (M+H)+, 410.9949 (M+H+2)+, C15H13BrN4O3SH+, calcd 

408.9970. 

4.1.4.5. 4-(4-(hydroxymethyl)-5-(pyridin-2-yl)-1H-1,2,3-triazol-1-yl)benzenesulfonamide 

(6e) 

Yield 57%; mp:  220oC; IR(KBr) (ν, cm-1): 3472 (br, O-H stretch), 3178, 3078, 3032 (m, N-H 

stretch), 1335, 1157 (s, SO2 stretch); 1H NMR (400 MHz, DMSO-d6) δ (ppm): 8.56 (d, J = 



4.4 Hz, 1H, py), 7.99 (dt, J = 7.6 Hz, J = 1.6 Hz, 1H, py), 7.91 (d, J = 8.8 Hz, 2H, Ar), 7.77 

(d, J = 8.4 Hz, 1H, py), 7.55 (d, J = 8.8 Hz, 2H, Ar), 7.53 (s, 2H, SO2NH2), 7.47-7.44 (m, 1H, 

py), 5.43 (t, J = 5.6 Hz, 1H, OH), 4.64 (d, J = 5.2Hz, 2H, CH2),  13C NMR (100 MHz, 

DMSO-d6) δ (ppm): 150.32, 146.88, 146.32, 144.81, 139.61, 137.92, 135.07, 127.28, 125.91, 

125.76, 124.58, 54.59; HRMS (ESI-MS) m/z 332.0821 (M+H)+, C14H13N5O3SH+, calcd 

332.0817. 

4.1.4.6. 4-(4-(hydroxymethyl)-5-(thiophen-2-yl)-1H-1,2,3-triazol-1-yl)benzenesulfonamide 

(6f) 

Yield 58%; mp: 222oC; IR(KBr) (ν, cm-1): 3464 (br, O-H stretch), 3240, 3171, 3063 (m, N-H 

stretch), 1342, 1165 (s, SO2 stretch); 1H NMR (400 MHz, DMSO-d6) δ (ppm): 7.97 (dd, J = 

6.8 Hz, J = 2 Hz, 2H, Ar), 7.75 (dd, J = 5.2 Hz, J = 1.6 Hz, 1H, th), 7.67 (dd, J = 6.8 Hz, J = 2 

Hz, 2H, Ar), 7.58 (s, 2H, SO2NH2), 7.33 (dd, J = 3.6 Hz, J = 1.2 Hz, 1H, th), 7.19 (dd, J = 5.2 

Hz, J = 3.6 Hz, 1H, th), 5.44 (t, J = 5.2 Hz, 1H, OH), 4.59 (d, J = 5.2 Hz, 2H, CH2), NMR 

(100 MHz, DMSO-d6) δ (ppm): 146.08, 145.67, 138.75, 131.09, 130.72, 130.57, 128.37, 

127.50, 127.02, 125.82, 54.53; HRMS (ESI-MS) m/z 337.0426 (M+H)+, C13H12N4O3S2H
+, 

calcd 337.0429. 

4.1.5. Synthesis of 4-[4-(hydrazinocarbonyl)-5-aryl-1H-1,2,3-triazol-1-

yl]benzenesulfonamides (7a-7f) 

General procedure: The mixture of a suitable 1,2,3-triazolic ester 4a-4f (1.0 mmol) and 

hydrazine hydrate (1.5 mmol) was dissolved in ethanol (12 mL). The reaction mixture was 

refluxed for 10-12 hrs. Reaction was followed by thin layer chromatography (TLC). After the 

completion of reaction, some of the solvent was removed under vacuum and allowed to cool 

at room temperature. The obtained solid was filtered, dried at room temperature and 

recrystallized from EtOH:THF (1:1) to afford the desired compound in good yield. 

4.1.5.1. 4-[4-(hydrazinocarbonyl)-5-(p-tolyl)-1H-1,2,3-triazol-1-yl]benzenesulfonamide (7a) 

Yield 80%; mp: 187oC; IR(KBr) (ν, cm-1): 3194, 3094 (m, N-H stretch), 1674 (s, C=O 

stretch), 1335, 1157 (s, SO2 stretch); 1H NMR (400 MHz, DMSO-d6) δ (ppm): 9.84 (s, ex, 

1H, NH), 7.90 (d, J = 8.8 Hz, 2H, Ar), 7.58 (d, J = 8.8 Hz, 2H, Ar), 7.55 (s, 2H, SO2NH2), 

7.25 (d, J =8 Hz, 2H, Ar), 7.20 (d, J = 8 Hz, 2H, Ar), 4.49 (s, br, ex, 2H, NH2), 2.32 (s, 3H, 

CH3); 
13C NMR (100 MHz, DMSO-d6) δ (ppm): 159.77, 145.32, 139.80, 139.14, 138.72, 

138.54, 130.79, 129.27, 127.35, 126.83, 122.92, 21.37. 



4.1.5.2. 4-[4-(hydrazinocarbonyl)-5-(4-fluorophenyl-1H-1,2,3-triazol-1-

yl]benzenesulfonamide (7b) 

Yield 74%; ; mp: 215oC; IR(KBr) (ν, cm-1):  3078, 3024, 2970 (m, N-H stretch), 1674 (s, 

C=O stretch), 1335, 1157 (s, SO2 stretch); 1H NMR (400 MHz, DMSO-d6) δ (ppm): 9.92 (s, 

ex, 1H, NH), 7.91 (d, J = 6.0 Hz,  2H, Ar), 7.60-7.26 (m, 8H, SO2NH2, Ar), 4.50 (s, ex, 2H, 

NH2); 
13C NMR (100 MHz, DMSO-d6) δ (ppm): 162.70 (d, 1JCF = 246 Hz), 159.11, 144.92, 

138.73, 137.87, 137.48, 132.97 (d, 3JCF = 8 Hz), 126.90, 126.38, 121.96 (d, 4JCF = 4 Hz), 

115.30 (d, 2JCF = 21 Hz); HRMS (ESI-MS) m/z 377.0829 (M+H)+, C15H13FN6O3SH+, calcd 

377.0832. 

4.1.5.3. 4-[4-(hydrazinocarbonyl)-5-(4-chlorophenyl)-1H-1,2,3-triazol-1-

yl]benzenesulfonamide (7c) 

Yield 81%; mp: 195oC; IR(KBr) (ν, cm-1): 3194, 3124 (m, N-H stretch), 1674 (s, C=O 

stretch), 1335, 1173 (s, SO2 stretch); 1H NMR (400 MHz, DMSO-d6) δ (ppm): 9.92 (s, ex, 

1H, NH), 7.91 (d, J = 8.6 Hz,  2H, Ar), 7.59 (d, J = 8.6 Hz, 2H, Ar), 7.54 (s, 2H, SO2NH2), 

7.49 (d, J = 8.4 Hz, 2H, Ar), 7.40 (d, J = 8.4 Hz, 2H, Ar), 4.50 (s, ex, 2H, NH2); 
13C NMR 

(100 MHz, DMSO-d6) δ (ppm): 159.47, 145.45, 139.29, 138.25, 137.74, 135.07, 132.87, 

128.75, 127.40, 126.86, 124.99; HRMS (ESI-MS) m/z 393.0540 (M+H)+, 395.0512 

(M+H+2)+, C15H13ClN6O3SH+, calcd 393.0536. 

4.1.5.4. 4-[4-(hydrazinocarbonyl)-5-(4-bromophenyl)-1H-1,2,3-triazol-1-

yl]benzenesulfonamide (7d) 

Yield 77%; mp: 215oC; IR(KBr) (ν, cm-1):  3348, 3271, 3225 (m, N-H stretch), 1682 (s, C=O 

stretch), 1342, 1165 (s, SO2 stretch); 1H NMR (400 MHz, DMSO-d6) δ (ppm): 9.93 (s, ex, 

1H, NH), 7.91 (d, J = 8.8 Hz, 2H, Ar), 7.62-7.58 (m, 4H, Ar), 7.54 (s, 2H, SO2NH2), 7.33 (d, 

J = 8.8 Hz, 2H, Ar), 4.49 (s, ex, 2H, NH2); 
13C NMR (100 MHz, DMSO-d6) δ (ppm): 159.03, 

145.00, 138.81, 137.80, 137.35, 132.63, 131.23, 126.98, 126.43, 124.92, 123.44; HRMS 

(ESI-MS) m/z 437.0029 (M+H)+, 439.0005 (M+H+2)+, C15H13BrN6O3SH+, calcd 437.0031. 

4.1.5.5. 4-[4-(hydrazinocarbonyl)-5-(pyridin-2-yl)-1H-1,2,3-triazol-1-yl]benzenesulfonamide 

(7e) 

Yield 68%; mp: 216oC; IR(KBr) (ν, cm-1): 3248, 3124 (m, N-H stretch), 1682 (s, C=O 

stretch), 1350, 1165 (s, SO2 stretch); 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.01 (s, ex, 

1H, NH), 8.49 (d, J = 4 Hz, 1H, py), 7.97-7.85 (m, 4H, py, Ar), 7.57-7.54 (m, 4H, Ar, 



SO2NH2), 7.47-7.44 (m, 1H, py), 4.54 (s, br, ex, 2H, NH2); 
13C NMR (100 MHz, DMSO-d6) 

δ (ppm): 159.39, 149.83, 145.76, 145.16, 139.90, 138.92, 137.67, 137.15, 127.73, 127.26, 

126.23, 124.96; HRMS (ESI-MS) m/z 360.0873 (M+H)+, C14H13N7O3SH+, calcd 360.0879. 

4.1.5.6. 4-[4-(hydrazinocarbonyl)-5-(thiophen-2-yl)-1H-1,2,3-triazol-1-

yl]benzenesulfonamide (7f) 

Yield 74%; mp: 207oC; IR(KBr) (ν, cm-1): 3310, 3209, 3109 (m, N-H stretch), 1651 (s, C=O 

stretch), 1391, 1165 (s, SO2 stretch); 1H NMR (400 MHz, DMSO-d6) δ (ppm): 9.93 (s, ex, 

1H, NH), 7.96 (d, J = 8.4 Hz, 2H, Ar), 7.78 (d, J = 5.2 Hz, 1H, th), 7.69 (d, J = 8.4 Hz, 2H, 

Ar), 7.60 (s, 2H, SO2NH2), 7.38 (d, J = 3.2 Hz, 1H, th), 7.11 (t, J = 5.2 Hz, 1H, th), 4.55 (s, 

br, ex, 2H, NH2);  
13C NMR (100 MHz, DMSO-d6) δ (ppm): 159.11, 145.50, 138.87, 137.95, 

132.48, 132.23, 130.64, 127.27, 126.99, 124.26, 56.04 HRMS (ESI-MS) m/z 365.0491 

(M+H)+, C13H12N6O3S2H
+, calcd 365.0490. 

4.1.6. Synthesis of 1-[4-(Aminosulfonyl)phenyl]-5-aryl-1H-1,2,3-triazole-4-carboxamides 

(8a-8f) 

General procedure: A mixture of aqueous ammonia solution (5-6 ml) and appropriate 1,2,3-

triazolic ester 4a-4f (1.00 mmol) was stirred at room temperature in a bunged flask for 24-26 

hrs. The solid white coloured compound was precipitated out which was filtered off, washed 

with cold water, dried and recrystallized from ethanol. 

4.1.6.1. 1-[4-(Aminosulfonyl)phenyl]-5-(p-tolyl)-1H-1,2,3-triazole-4-carboxamide (8a) 

Yield 75%; mp: 277oC; IR(KBr) (ν, cm-1): 3209, 3086 (m, N-H stretch), 1675 (s, C=O 

stretch), 1342, 1173 (s, SO2 stretch); 1H NMR (400 MHz, DMSO-d6) δ (ppm): 8.00 (s, ex, 

1H, NH/OH), 7.91 (d, J = 8 Hz, 2H, Ar), 7.59-7.54 (m, 5H, SO2NH2, NH/OH, Ar), 7.26 (d, J 

=8 Hz, 2H, Ar), 7.20 (d, J =8 Hz, 2H, Ar), 3.39 (s, 3H, CH3); 
13C NMR (100 MHz, DMSO-

d6) δ (ppm): 162.10, 145.32, 139.70, 139.60, 139.38, 138.58, 130.88, 129.20, 127.30, 126.93, 

123.33, 21.38; HRMS (ESI-MS) m/z 358.0979 (M+H)+, C16H15N5O3SH+, calcd 358.0974. 

4.1.6.2. 1-[4-(Aminosulfonyl)phenyl]-5-(4-fluorophenyl)-1H-1,2,3-triazole-4-carboxamide 

(8b) 

Yield 74%; mp: 230oC; IR(KBr) (ν, cm-1): 3209, 3031, 2970 (m, N-H stretch), 1675 (s, C=O 

stretch), 1342, 1157 (s, SO2 stretch); 1H NMR (400 MHz, DMSO-d6) δ (ppm): 8.05 (s, ex, 

1H, NH/OH), 7.91 (d, J = 8 Hz, 2H, Ar), 7.59-7.56 (m, 3H, Ar, NH/OH), 7.44-7.41 (m, 2H, 



Ar), 7.32 (s, 2H, SO2NH2), 7.25 (m, 2H, Ar); 13C NMR (100 MHz, DMSO-d6) δ (ppm): 

162.65 (d, 1JCF = 246 Hz), 161.51, 144.92, 139.25, 138.06, 37.89, 133.04 (d, 3JCF = 8 Hz), 

126.84, 126.47, 122.14  (d, 4JCF = 3 Hz), 115.23 (d, 2JCF = 22 Hz); HRMS (ESI-MS) m/z 

362.0715 (M+H)+, C15H12FN5O3SH+, calcd 362.0723. 

4.1.6.3. 1-[4-(Aminosulfonyl)phenyl]-5-(4-chlorophenyl)-1H-1,2,3-triazole-4-carboxamide 

(8c) 

Yield 74%; mp: 255oC; IR(KBr) (ν, cm-1): 3279, 3225 (m, N-H stretch), 1673 (s, C=O 

stretch), 1342, 1157 (s, SO2 stretch); 1H NMR (400 MHz, DMSO-d6) δ (ppm): 8.06 (s, ex, 

1H, OH/NH), 7.92 (d, J = 8.6 Hz,  2H, Ar), 7.59 (d, J = 8.6 Hz, 2H, NH/OH, Ar), 7.53 (s, 2H, 

SO2NH2), 7.48 (d, J = 8.4 Hz, 2H, Ar), 7.41 (d, J = 8.4 Hz, 2H, Ar); 
13C NMR (100 MHz, 

DMSO-d6) δ (ppm): 161.94, 145.46, 139.83, 138.35, 138.29, 135.01, 132.94, 128.69, 127.37, 

126.95, 125.20; HRMS (ESI-MS) m/z 378.0428 (M+H)+, 380.0401 (M+H+2)+, 

C15H12ClN5O3SH+, calcd 378.0427. 

4.1.6.4. 1-[4-(Aminosulfonyl)phenyl]-5-(4-bromophenyl)-1H-1,2,3-triazole-4-carboxamide 

(8d) 

Yield 79%; mp: 265oC; IR(KBr) (ν, cm-1): 3279, 3209 (m, N-H stretch), 1672 (s, C=O 

stretch), 1342, 1173 (s, SO2 stretch); 1H NMR (400 MHz, DMSO-d6) δ (ppm): 8.08 (s, ex, 

1H, OH/NH), 7.91 (d, J = 8.4 Hz,  2H, Ar), 7.62-7.54 (m, 7H, Ar, SO2NH2, OH/NH), 7.33 (d, 

J = 8.4 Hz, 2H, Ar); 13C NMR (100 MHz, DMSO-d6) δ (ppm): 161.49, 145.01, 139.36, 

137.96, 137.84, 132.70, 131.17, 126.94, 126.53, 125.13, 123.37; HRMS (ESI-MS) m/z 

421.9910 (M+H)+, 423.9889 (M+H+2)+, C15H12BrN5O3SH+, calcd 421.9922. 

4.1.6.5. 1-[4-(Aminosulfonyl)phenyl]-5-(pyridin-2-yl)-1H-1,2,3-triazole-4-carboxamide (8e) 

Yield 72%; mp: 220oC; IR(KBr) (ν, cm-1): 3356, 3348 (m, N-H stretch), 1643 (s, C=O 

stretch), 1335, 1157 (s, SO2 stretch); 1H NMR (400 MHz, DMSO-d6) δ (ppm): 8.49 (d, J = 

1.2 Hz, 1H, py), 8.15 (s, ex, 1H, NH/OH), 7.95-7.85 (m, 4H, py, Ar), 7.65 (s, ex, 1H, 

NH/OH), 7.56-7.44 (m, 5H, py, Ar, SO2NH2); 
13C NMR (100 MHz, DMSO-d6) δ (ppm): 

161.84, 149.63, 145.94, 145.16, 140.43, 138.91, 138.28, 137.07, 127.97, 127.24, 126.27, 

124.93; HRMS (ESI-MS) m/z 345.0765 (M+H)+, C14H12N6O3SH+, calcd 345.0770. 

4.1.6.6. 1-[4-(Aminosulfonyl)phenyl]-5-(thiophen-2-yl)-1H-1,2,3-triazole-4-carboxamide (8f) 



Yield 70%; mp: 150oC; IR(KBr) (ν, cm-1): 3302, 3225, 3109 (m, N-H stretch), 1659 (s, C=O 

stretch), 1350, 1165 (s, SO2 stretch); 1H NMR (400 MHz, DMSO-d6) δ (ppm): 8.08 (s, ex, 

1H, NH/OH), 7.96 (d, J = 8.8 Hz, 2H, Ar), 7.76 (d, J =4.8 Hz, 1H, th), 7.68 (d, J = 8.8 Hz, 

2H, Ar), 7.64 (s, ex, 1H, NH/OH), 7.59 (s, 2H, SO2NH2), 7.36 (d, J =2.8 Hz, 1H, th), 7.10 

(dd, J =4.8 Hz, J = 4.0 Hz, 1H, th); 13C NMR (100 MHz, DMSO-d6) δ (ppm): 161.52, 145.48, 

139.33, 138.04, 133.07, 132.40, 130.62, 127.16, 127.04, 126.93, 124.41; HRMS (ESI-MS) 

m/z 350.0381 (M+H)+, C13H11N5O3S2H
+, calcd 350.0381. 
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