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Abstract 

 

Satellite rainfall data are becoming available at high temporal and spatial resolution. 

The use of such data in ad-hoc developed modelling can extend hydrological 

applications to poorly instrumented areas. The use of remotely sensed information 

can provide also valuable insights about rainfall spatial variability, improving ground 

rainfall estimation. Despite the great availability of data, their use in hydrological 

practice is still very rare, with just few studies that have used such data for landslide 

hazard risk mitigation. In order to test the feasibility of using this kind of data for 

landslide prediction, a coupled hydrological-slope stability model has been developed 

and forced with remotely sensed information. Before that, several satellite rainfall 

products have been assessed through direct comparison with modelled and ground –

based benchmarks and through hydrological validations, in order to highlight 

advantages and drawbacks of this source of information. Preliminary results showed 

that satellite rainfall data can be used with benefit in natural hazards mitigation, 

although the inherent errors related to the indirect nature of measurement have to be 

deeply assessed and corrected. 

 

Abstrakt 

 

Satellitenniederschlagdaten werden mit hoher zeitlicher und räumlicher Auflösung 

verfügbar. Die Verwendung solcher Daten in einer ad-hoc entwickelten Modellierung 

kann hydrologische Anwendungen auf schlecht instrumentierte Bereiche erweitern. 

Die Verwendung von Fernerkundungsinformationen kann auch wertvolle Einblicke 

in die räumliche Variabilität des Niederschlags liefern und die 

Niederschlagsschätzung verbessern. Trotz der großen Verfügbarkeit von Daten ist ihr 

Einsatz in der hydrologischen Praxis noch sehr selten, und nur wenige Studien haben 

solche Daten zur Risikominderung von Erdrutschen verwendet. Um die Machbarkeit 

der Verwendung dieser Art von Daten für die Erdrutschvorhersage zu testen, wurde 

ein gekoppeltes Hydrologie-Hang-Stabilitätsmodell entwickelt und mit 

Fernerkundungsinformation erzwungen. Zuvor wurden mehrere 

Satellitenregenprodukte durch direkten Vergleich mit modellierten und 

bodengestützten Benchmarks und hydrologischen Validierungen bewertet, um die 

Vor- und Nachteile dieser Informationsquelle aufzuzeigen. Vorläufige Ergebnisse 

zeigten, dass die Niederschlagsdaten aus dem Satelliten mit einem Nutzen bei der 

Minderung der Naturgefahren genutzt werden können, obwohl die inhärenten Fehler 

in Bezug auf die indirekte Natur der Messung tief eingeschätzt und korrigiert werden 

müssen. 
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________________________________________ 

1.INTRODUCTION 

________________________________________ 

 

In this Chapter, a brief introduction related to rainfall estimation from space is given, together with 

the aims of this work of thesis. The first part describes the most common used methods for rainfall 

estimation, along with their main limitations and advantages. In the second part, retrieval 

algorithm from space are described. In this part state-of-the-art approaches and a new method for 

rainfall estimation are reported. The third part present a brief review of the use of satellite rainfall 

data for landslide risk assessment. In the last part of the Chapter, the purposes of this work of thesis 

are presented.  

________________________________________ 
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1.1 Satellite rainfall estimation 

Rainfall plays a key role in many fields, such as natural hazard assessment, drought management, 

weather forecasting, agriculture, and disease prevention (Dinku et al. 2007). Obtaining accurate 

rainfall estimates is of paramount importance, as precipitation data act as main driver for several 

applications. Due to the high spatial and temporal variability of rainfall, its estimation is a 

challenging task. Traditionally, rainfall is estimated through ground monitoring networks (rain 

gauges and weather radars), through short-range forecasts from Numerical Weather Prediction 

(NWP) models and through satellite observations. In the following a brief explanation of the 

methods will be provided, focusing on the advantages and the drawbacks of each approach.  

Rain gauges are generally assumed as the most accurate method to estimate rainfall, providing the 

most direct measurement of point precipitation. Despite the high quality of rainfall estimates 

obtained through rain gauges, this source of information is impacted by the variable network 

density throughout the world (Rudolf and Schneider 2005). Indeed, Kidd et al., (2017) reported that 

the number of stations available with sub-daily temporal sampling over land is just 64000 

throughout the world. As it can be seen in Figure 1.1, most of the ground stations are located in 

Europe and over the USA, limiting the use of observed rainfall data on a global scale. Examples of 

ground based rainfall dataset are the Global Precipitation Climatology Centre (GPCC) first guess 

daily product (Schamm et al., 2013), provided by the German Meteorological Service (Deutscher 

Wetterdienst, DWD) and the CPC Unified Gauge-based Analysis of Global Daily Precipitation 

(Chen et al. 2008a, 2008b, https://climatedataguide.ucar.edu/climate-data/cpc-unified-gauge-based-

analysis-global-daily-precipitation) provided by the National Center for Atmospheric Research 

(NCAR). The dataset is constructed over the global land areas. Gauge reports from over 30,000 

stations are collected from multiple. The daily analysis is constructed on a 0.125° grid over the 

entire global land areas, and released on a 0.5° grid over the global domain for a period from 1979 

to the present (Xie, 2011). Some of gauge-based rainfall datasets are listed in Table 1.1. 

 

Figure 1.1 – Spatial distribution of monthly in-situ stations used for the creation of the Global Precipitation 

Climatology Centre (GPCC) in 2015. Modified by Schneider et al., (2017). 

https://climatedataguide.ucar.edu/climate-data/cpc-unified-gauge-based-analysis-global-daily-precipitation
https://climatedataguide.ucar.edu/climate-data/cpc-unified-gauge-based-analysis-global-daily-precipitation
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Raingauges estimates are also impacted by the limited spatial representativeness of the data (Kidd et 

al., 2012) and by under-catch phenomena due to wind around the gauge orifice (Peterson et al., 

1998).  

Algorithm Input data Space/time res. Areal 

coverage/start date 

Latency Producer 

APHRODITE Water 

Resources 

~12,000 gauges 0.25°, 0.5°/daily Eurasia/1951-2007 - APHRODITE 

Project  

CPC Unified Gauge-

based Analysis of 

Global Daily Precip. 

> 30,000 gauges  0.5°/daily Global/1979-2005 - NOAA/NWS 

CPC  

> 17,000 gauges real-

time  

0.5°/daily Global/2006 1 day NOAA/NWS 

CPC  

CRU Gauge ~10,000 gauges 

(anomaly 

interpolation) 

2.5°x3.75°, 

5°/monthly 

Global/1900 - 1998 - CRU at U. 

East Anglia 

CRU TS 3.10.01 

Gauge 

~10,000 gauges  0.5°/monthly Global/1901 - 2009 1-2 

years 

CRU and 

BADC 

Dai Gauge Dataset 2 ~4,000 gauges 

(anomalies rel. to 

1950-1979) 

2.5°/monthly Global regions with 

data/1850 - 1996 

- NCAR 

GHCN+CAMS 

Gauge 

~3,800 gauges 

(SPHEREMAP) 

2.5°/monthly Global/1979 1 week NOAA/NWS 

CPC 

GPCC Monitoring ~8,000 gauges  1°,2.5°/monthly Global/1986-2006 

V. 1; 2007 V. 4 

2 

months 

DWD GPCC  

GPCC Full Data 

Reanalysis Version 6 

~67,200 gauges 0.5°,1°,2.5°/ 

monthly 

Global/1901-2010 - DWD GPC 

GPCC VASClimo 

Version 1.1 

~9,000 gauges  0.5°,1°,2.5°/ 

monthly 

Global/1950-2000 - DWD GPCC 

GPCC First Guess   1°/daily Global/2009 - DWD GPCC  

Table 1.1 - Summary of publicly available precipitation estimates from precipitation gauge data. Adapted from the IPWG 

International Precipitation Working Group (http://www.isac.cnr.it/~ipwg/). 

http://www.isac.cnr.it/~ipwg/
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Another useful source of ground rainfall data relies in ground weather radars. These instruments 

provide a spatial estimation of rainfall through the use of microwave radiation, operating at C- (4-8 

GHz), S- (2-4 GHz), X- (8-12 GHz) and K-band (18-27 GHz). The weather radar broadcast an 

energy impulse and then measures the reflected energy back to the antenna. The reflected energy 

can be linked to raindrops and hail. Besides the high costs related to setting up and maintenance of 

such instruments, a ground weather radar is impacted by several issues: 1) the backscattered 

radiation depends upon the drop size distribution, which can vary considerably across the range of 

precipitation regimes, 2) range effects due to ‘lifting’ of the beam, so that precipitation may be 

undetected and, 3) false returns from ground objects (Kidd and Huffman. 2011).  Due to these 

limitations, radar data are often merged with rain gauge observations in order to provide a more 

accurate estimate of precipitation, such as the National Centers for Environmental Prediction 

(NCEP) Stage IV product available over the US (Seo et al., 1998).  

NWP models provide rainfall estimates using satellite and ground observations of atmospheric 

variables (temperature, moisture, pressure) as input in order to solve the equations of atmospheric 

motions. This allows to predict rainfall (and other quantities) in a short-range. Among NWP 

models, one can identify analysis, reanalysis (that assimilate observed information), Global 

Circulation Models (GCM) and Regional Circulation Models (RCM), used for climate studies. An 

example of reanalysis dataset is the European Centre for Medium range Weather Forecast 

(ECMWF) ERA-Interim product (Dee et a., 2011), providing several atmospheric and surface 

variables estimates (e.g., pressure, air temperature, volumetric water content, to name a few) over a 

grid of 0.77° every 6 hours. Very recently, ECMWF developed a new version of ERA Interim 

reanalysis product, named ERA5. The new dataset covers the period 1950 to present, providing 

atmospheric and surface variables at 31 km of spatial resolution on a hourly basis. The main 

limitations of such datasets are the relative coarse spatial resolution (0.77° for ERA-Interim) and the 

high computational demand needed to solve the atmospheric motion equations globally. The 

datasets are available from ECMWF (https://www.ecmwf.int/en/research/climate-

reanalysis/browse-reanalysis-datasets). 

A way to overcome some of the issues and limitations related to the different source of rainfall 

estimates described above could rely on satellite based observations. Satellite estimates of 

precipitation can be derived from a range of observations from many different sensors. In the 

following, a background of the most important satellite sensors used for the retrieval of 

precipitation will be provided along with the different retrievals algorithm that exploit a 

combination of these sensors and (in some cases) ground data. Large part of the text that will follow 

is a summary of three important review papers in the field of precipitation measurement (Kidd and 

Huffman, 2011, Kidd and Levizzani 2011, Serrat-Capdevila et al. 2014). For further details, the 

reader is referred to these papers. 

Meteorological satellites can be divided in to two broad categories: Geostationary (GEO) satellites 

and Low Earth Orbiting (LEO) satellites, which include polar-orbiting satellites (Figure 1.2). Table 

1.2 summarizes the main instrumentation used for the estimation of precipitation, covering both 

visible (VIS) and infrared (IR) sensors and those in the microwave (MW) region of the spectrum. 

https://www.ecmwf.int/en/research/climate-reanalysis/browse-reanalysis-datasets
https://www.ecmwf.int/en/research/climate-reanalysis/browse-reanalysis-datasets
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Figure 1.2 – Schematic representation of Low Erath Orbit (LEO) and Geostationary (GEO) satellite orbit 

geometry. Modified from satellites4everyone.co.uk. 

 

GEO satellites orbit the Earth about 35 800 km above the Equator such that they orbit at the same 

rate as the Earth turns, appearing stationary relative to a location over the surface. Each GEO 

satellite is able to view about one third of the Earth’s surface, but due to increasing scan angle 

towards the extremities of the imagery degrading the usability of the data.  

Five operational GEO satellites are required to ensure full West – East (and ∼70 N to 70 S) 

coverage. From their position, they are able to provide imagery on a frequent and regular basis (e.g., 

VIS and IR sensors with nominal resolutions of 1 km × 1 km and 4 km × 4 km, respectively, 

acquiring images every 30 min). 

 

http://satellites4everyone.co.uk/
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Sensor Acronym meaning Satellite Channels Bands Resolution 

(km) 

Sampling  Orbit  Type Scanning 

method 

AVHRR 

Advanced very high 

resolution radiometer 

NOAA/MetOp 5 VIS-IR 1  Twice daily LEO Imager Cross track 

SEVIRI 

Spinning Enhanced 

Visible and Infrared 

Imager 

MSG (Meteosat 

Second 

Generation) 

11 VIS-IR 1–3 15 min GEO Imager Geostationary  

GOES 

 Geostationary 

Operational 

Environmental 

Satellite 

GOES 5 VIS-IR 1–4 30 min GEO Imager  Geostationary  

AMSU A/B 

Advanced 

microwave Sounding 

Unit 

NOAA/MetOp 5 23.8–183 20–50 Twice daily LEO Sounder Cross track 

MHS 

Microwave Humidity 

Sounder 

NOAA/MetOp 5 89–190 17–50 Twice daily LEO Sounder Cross track 

AMSR 

Advanced 

microwave Scanning 

radiometer 

NASA Aqua 12 6–85 5–25 Twice daily LEO Imager Conical Scanner 

SSM/I 

Special Sensor 

Microwave Imager 

DMSP (Defense 

Meteorological 

7 

PMW 

19–85 

12.5–25 Twice daily LEO Imager Conical Scanner 
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Satellite 

Program 

(DMSP) 

SSMIS 

Special Sensor 

Microwave Imager-

Sounder 

DMSP 11 19–183 13–45 Twice daily LEO 

Imager-

Sounder 

Conical Scanner 

TMI 

TRMM microwave 

imager 

TRMM 9 10–85 5–25 Twice 2-days LEO Imager Conical Scanner 

GMI 

GPM microwave 

Imager 

GPM core 

Observatory 

NASA/JAXA 

13 10-183 5–25 Twice 2-days LEO Imager Conical scanner 

PR Precipitation radar TRMM 1 13.6 (Ku) 5 Twice 3 days LEO Radar Conical scanner 

CPR Cloud profiling radar CloudSat 1 94 1.4 Once 16 days LEO Radar Conical scanner 

DPR 

Dual precipitation 

radar 

GPM core 

Observatory 

NASA/JAXA 

2 

13.6 (Ku), 

35.5(Ka) 

5 (250 m 

in height) 

 Twice 2 days LEO Radar Conical scanner 

Table 1.2 - Summary of the main important instrument used for the retrieval of precipitation from space for quasi-operational, quasi-global precipitation estimates from a single 

satellite sensor type. 
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Notable examples of GEO satellites are the Meteosat Second Generation (MSG, Figure 1.3) 

satellites operated by the European Organization for the Exploitation of Meteorological Satellites 

(EUMETSAT), two U.S. operated Geostationary Operational Environmental Satellite (GOES). 

 

Figure 1.3 – Artistic view of the Meteosat Second Generation (MSG) 4 satellite orbiting in geostationary 

orbit (https://directory.eoportal.org/web/eoportal/satellite-missions/m/meteosat-second-generation). 

LEO satellites generally cross the Equator at the same local time on each orbit, providing about two 

overpasses per day. These satellites carry a range of instruments capable of precipitation retrievals, 

including multi-channel VIS/IR sensors, and passive microwave (PMW). Sensors typically include 

both multichannel VIS and IR sensors and PMW sounders and imagers. Imagers provide a two-

dimensional array of pixels from which an image of instantaneous precipitation may be produced. 

The typical scanning technology for these sensors is the conical scanning. Sounders, measure the 

vertical distributions of atmospheric parameters such as temperature, pressure, water vapor, and 

composition from multispectral information. Due to their characteristics (built to obtain vertical 

information of atmosphere variables) they have a lower spatial resolution when used for collecting 

information at the surface and do not own information on polarization. Typical scanning technology 

for sounders is the cross track scanning. The latter has the advantage of large scan width but the 

resolution degrades as one moves toward the edges (e.g., from 45 km at nadir to 75 km at the edge 

of the swath, see Figure 1.4). 
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Figure 1.4 -  Difference between conical (up) and cross-track (bottom) scanning technology (courtesy of 

National Center of Atmospheric Research http://www2.ucar.edu/). 

 

Current operational and non-operational polar-orbiting satellites used for the retrieval of 

precipitation include the National Oceanic and Atmospheric Administration (NOAA) series of 

satellites with NOAA-19, the EUMETSAT’s MetOp series, the Defense Meteorological Satellite 

Program (DMSP) series of satellites and the National Aeronautics and Space Administration 

(NASA) and the Japanese Aerospace Exploration Agency (JAXA) satellites. 

Notable examples of the sensors installed on these satellites are the Special Sensor 

Microwave/Imager (SSM/I) installed on the DMSP series of satellites. It provides observations 

from 18 to 85 GHz, the latter being particularly useful for rainfall estimation over land. The AQUA 

satellite includes the PMW Advanced Microwave Scanning Radiometer-Earth Observing System 

(EOS) (AMSR-E) which provides measurements across the microwave spectrum from 6 to 85 GHz 

at resolutions up to 5 km at the highest frequency. Operational PMW observations useful for 

precipitation estimation have relied upon the cross-track Advanced Microwave Sounding Unit 

(AMSU on NOAA-19) and the Microwave Humidity Sounder (MHS) instruments that provide 

http://www2.ucar.edu/
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information at higher frequencies, between 23.8 and 190 GHz.  

The Tropical Rainfall Measuring Mission (TRMM), launched in 1997, was the first dedicated 

precipitation satellite and is key in the development and improvement of satellite rainfall estimation 

techniques. It carries a range of instruments which allow direct comparisons to be made between 

VIS, IR, PMW and active microwave observations. The Precipitation Radar (PR) was the first 

spaceborne precipitation radar, capable of sampling precipitation both vertically and horizontally, 

although with a limited swath of 210 km. Other instruments include the TRMM Microwave Imager 

(TMI), the Visible and InfraRed Scanner (VIRS), and the Lightning Imaging Sensor (LIS). The non 

sun-synchronous nature of its orbit allows samples across the full diurnal cycle to be made. 

The Global Precipitation Measurement (GPM) Mission launched in 2014 is an international satellite 

mission to provide next-generation observations of rain and snow worldwide every three hours 

through a constellation of satellites. The mission carries advanced instruments for precipitation 

measurements from space. The foundation of the GPM mission is the Core Observatory satellite. 

Data collected from the Core satellite serves as a reference standard that unify precipitation 

measurements from research and operational satellites launched by a consortium of GPM partners 

in the United States, Japan, France, India, and Europe. The GPM constellation (Figure 1.5) of 

satellites can observe precipitation over the entire globe every 2-3 hours.  

 

Figure 1.5 – Global Precipitation Measurement (GPM) Mission constellation satellites 

(https://pmm.nasa.gov/image-gallery/gpm-constellation). 

 

The Core satellite measures rain and snow using two science instruments: the GPM Microwave 

Imager (GMI) and the Dual-frequency Precipitation Radar (DPR). The GMI captures precipitation 

intensities and horizontal patterns, while the DPR provides insights into the three dimensional 

structure of precipitating particles. Together these two instruments provide a database of 
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measurements against which other partner satellites’ microwave observations can be meaningfully 

compared and combined to make a global precipitation dataset 

(http://www.nasa.gov/mission_pages/GPM/). 

1.2 Precipitation retrievals 

VIS/IR methods 

In the visible (VIS) part of the electromagnetic spectrum, clouds appear relatively bright against the 

surface of the Earth due to their high albedo. Rainfall can be inferred from VIS images since bright 

clouds tend to be thick, and thick clouds are more likely to be associated with rainfall. However, the 

relationship between brightness and rainfall is poor and consequently VIS imagery is usually only 

used in conjunction with other observations. 

IR imagery that measures the thermal emissions from objects is potentially more useful, and is 

available at night and day. Heavier rainfall tends to be associated with larger, taller clouds with 

colder cloud tops. By observing cloud top temperatures, a simple rainfall estimate can be derived 

trough Cold-Cloud duration techniques (CCD). CCD techniques relate the occurrence of cold 

clouds to the surface rainfall, such as the Global Precipitation Index (GPI; Arkin and Meisner, 

1987). The GPI assigns a constant rain-rate (3 mm/h) to the fraction of clouds below a set threshold 

(235 K). However, the indirectness of the relationship between rainfall and cloud temperature along 

with the significant variations of such relationship during the lifetime of a rainfall event, between 

different rain systems, and between climatological regimes reduce the accuracy of rainfall IR 

estimates.  

Passive microwave methods 

The radiation emitted by Earth in the spectrum of microwave may be passively sensed by 

radiometers. This radiation is primarily attenuated by the presence of precipitation-sized particles. 

Two processes can be used to identify precipitation: emission from rain droplets which lead to an 

increase in PMW radiation and scattering caused by precipitating ice particles which leads to a 

decrease in PMW radiation.  

The background radiometric signal over water is low and constant, therefore additional emissions 

from precipitation can be used to identify and quantify the rainfall using low-frequency channels 

(<20 GHz). Over land, the surface has a much higher background emissivity hence emissions from 

hydrometeors cannot be reliably measured. Here, scattering caused by ice particles, resulting in a 

decrease in received radiation at high- frequencies (>35 GHz), must be used.  

Since the observed PMW brightness temperatures (Tb) generally have a non-unique response to 

rainfall intensity, multi-channel approaches are the norm. These techniques for the retrieval of 

precipitation can be divided in two broad groups: empirically derived and physically derived 

techniques. 

In particular, physical techniques minimize the difference between modelled and the observed 

radiation. More successful physical techniques use a priori databases of which compare the satellite 

observations with model-generated atmospheric profiles. A noteworthy example of these techniques 

is the Goddard Profiling technique (GPROF; Kummerow et al., 2001) which has evolved to ensure 

http://www.nasa.gov/mission_pages/GPM/
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consistency between the physical retrievals from the TRMM PR and TMI PMW Tbs through the 

use of cloud resolving models. Artificial Neural Network (ANN) are also used to derive 

relationships between the satellite passive microwave observations and surface rainfall but are 

mostly used in conjunction with other type of information (Sorooshian et al. 2000, Sanò et al., 

2016). 

High-frequency PMW observations from, for example, the AMSU-B instrument, provide additional 

information and the ability to retrieve precipitation over problematic surface backgrounds, such as 

coastlines and snow/ice (Kongoli et al., 2007). Chen and Staelin (2003) constructed one of the first 

global techniques to exploit these sounding channels to derive precipitation rates at 15- and 50-km 

resolution from the Atmospheric Infrared Sounder (AIRS), AMSU and the Humidity Sounder for 

Brazil using an ANN. 

The main drawback of PMW-based techniques is that observations are currently only available 

from LEO satellites, typically resulting in two observations per day per satellite. Moreover, the 

retrieval of precipitation using PMW observations has always represented a problem over coastal 

areas; often techniques omit retrievals over the coastline, or use a less optimum technique (Kidd, 

1998). 

Active microwave methods 

Active MW techniques, although considered the most direct method of precipitation estimation are 

specifically designed for retrieving precipitation characteristics. 

Despite this, radar technology for spaceborne precipitation estimation is limited primarily to the 

TRMM PR and then to GPM DPR. For the retrieval of precipitation, these systems rely upon the 

interpretation of the backscattered radiation from precipitation, which is broadly proportional to the 

number of precipitation-sized particles and therefore the intensity. The DPR provides three-

dimensional information about precipitation particles derived from reflected energy by these 

particles at different heights within the cloud system. The two frequencies of the DPR also allow 

the radar to infer the sizes of precipitation particles and offer insights into a storm’s physical 

characteristics with an increase accuracy in the estimation of light rainfall. 

Multi-sensor techniques 

Retrievals from a single sensor have the relative advantage of processing simplicity, but the VIS/IR 

lack the directness of the PMW and the PMW lack the frequency sampling of the VIS/IR. To this 

end, a growing number of techniques are developed to exploit the synergy between the polar-

orbiting PMW retrievals (infrequent, more direct) with the geostationary observations (frequent, 

less direct).  

Techniques that generate calibration curves to map IR radiances to other data sets (such as the 

PMW) are generally termed “blended” algorithms (e.g. Turk et al., 2000). One example, is the 

TRMM Multi-Satellite Precipitation Analysis (TMPA; Huffman et al., 2007) which ingests data 

from PMW imaging and sounding sensors and geostationary IR data with adjustments made for the 

different satellite retrievals before combining them into a single precipitation product. 

Other techniques have used ANNs to derived precipitation estimates through combining 

information from multi-channel and multi-sensor observations like the Precipitation Estimation 
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from Remotely Sensed Information using Artificial Neural Network (PERSIANN; Hsu et al., 1997). 

The above techniques are ultimately limited by the indirectness of the IR to sense rainfall itself. 

However, the IR data can provide a reasonable measure of cloud movement, which can then be used 

to advect or morph the more direct PMW data between the successive satellite overpasses. 

Examples of current state-of-the-art methodologies are the Climate Prediction Center Morphing 

technique (CMORPH; Joyce et al., 2004) and the Global Satellite Mapping of Precipitation 

(GSMaP; Kubota et al., 2007). The main drawback of this methodology is that the retrieved cloud 

motion might not necessarily represent the true motion of the precipitation at the surface, 

particularly if changes in the surface precipitation pattern occur between the infrequent PMW 

overpasses. 

For many applications the combination of all available data sets is ideal, incorporating products 

derived from the various satellite observations, gauge data sets and, where available, surface radar 

data. In this framework, various combination schemes are developed like the Global Precipitation 

and Climatology Project (GPCP) precipitation product (Huffman et al., 1997, Adler et al., 2003), 

which generates a largely homogeneous global precipitation product or the Climate Prediction 

Center Merged Analysis of Precipitation (CMAP; Xie and Arkin, 1997), which merges satellite IR 

along with gauge and re-analyses data from the NCEP and NCAR. 

Recently, the GPM mission in coordination with the Goddard Earth Sciences Data and Information 

Services Center (GES DISC) released the Integrated Multi-satellitE Retrievals for GPM (IMERG) 

which merges precipitation estimates from passive microwave sensors, geo-IR, and monthly surface 

precipitation gauge analysis data (where available) to provide half-hourly and monthly precipitation 

estimates and related fields on a 0.1° lat./long grid over the domain 60°N-S. 

Some of the main satellite precipitation products currently produced are summarized in Table 1.3 

and Table 1.4, showing satellite-only and gauge-corrected rainfall estimates, respectively. 
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Algorithm Input data Space/time grid Areal coverage/start 

date 

Update 

frequency 

Latency Producer 

AIRS AIRG2SSD 

AIRS , AMSU, HSB 

sounding retrievals 

Level 2G swath/orbit 

segments 

Global/Sept. 2002 Daily 1 day NASA/GSFC GES DISC  

AIRS AIRX3STD, 

AIRX3ST8, 

AIRX3STM 

AIRS, AMSU, HSB 

sounding retrievals 

1°/daily, 1°/8-day, 

1°/monthly 

Global/Sept. 2002 

Daily, 8-day, 

monthly 

1 day NASA/GSFC GES DISC  

CMORPH 

TMI, AMSR-E, SSM/I, 

SSMIS, AMSU, MHS, 

IR vectors 

8 km/30-min 50°N-S/1998 Daily 18 hours NOAA/CPC 

CMORPH V1.0 RAW 

TMI, AMSR-E, SSM/I, 

SSMIS, AMSU, MHS, 

IR vectors 

0.25°/3-hourly 50°N-S/1998 Daily 18 hours NOAA/CPC  

GPM Imerg 

Satellites used in the 

TMPA, CMORPH and 

PERSIANN-CCS 

10 km – 0.5 hours 

Global - 60°N-S/Mar 

2014 

30-min 

(early run) 

6 hours 

(early run) 

NASA/GSFC PPS 

GPM Imerg 
Satellites used in the 

TMPA, CMORPH and 

10 km – 0.5 hours 

Global - 60°N-S/Mar 

2014 

30-min 18 hours NASA/GSFC PPS 
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PERSIANN-CCS (late run) (late run) 

GSMaP-NRT 

TMI, AMSR-E, SSM/I, 

SSMIS, AMSU, IR 

vectors 

0.1°/hourly 60°N-S/Oct. 2007 1 hour 4 hours JAXA  

GSMaP-MWR 

TMI, AMSR-E, AMSR, 

SSM/I, IR vectors 

0.25°/hourly, daily, 

monthly 

60°N-S/1998-2006 - - JAXA  

GSMaP-MVK 

TMI, AMSR-E, AMSR, 

SSM/I, SSMIS, AMSU, 

IR vectors 

0.1°/hourly 

60°N-S/2000 (currently 

2003-2008 data available) 

Monthly 

Reprocess now; 

will become 

operational 

JAXA 

GSMaP-MVK+ 

TMI, AMSR-E, AMSR, 

SSM/I, AMSU, IR 

vectors 

0.1°/hourly 60°N-S/2003-2006 - - JAXA 

MPE 

Meteosat 7, 8, 9, 10 IR 

and SSM/I, SSMIS 

MFG: original pixels/30-

min 

Indian Ocean 8°W-

122°E, 65°N-S 

30-min 10 min EUMETSAT 

 

MSG: original pixels/15-

min 

Europe/Africa 79°W-E, 

8165°N-S 

15-min 10 min 

 

NRL Real Time SSM/I- & F16/SSMIS- 0.25°/hourly 40°N-S/ July 2000 Hourly 3 hours NRL Monterey 
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cal IR (Prob.-Matching 

Method) 

PERSIANN 

(TMI, AMSR-E, SSM/I, 

SSMIS, AMSU, MHS)-

cal. IR 

0.25°/30-min 60°N-S/ March 2000 Hourly 1 day UC Irvine  

PERSIANN-CCS Grid Geo-IR 0.04°/30-min 60°N-S/2003 None 1 hour UC Irvine  

PR-OBS-3 

SSMIS, AMSU/MHS, 

MSG-IR 

5 km/15 min Europe/Jan 2009 15 min 15 min HSAF  

PR-OBS-4 

SSMIS, AMSU/MHS, 

MSG-IR 

8 km/30 min Europe/Nov 2011 1 hour 3 hours HSAF 

TCI (3G68) PR, TMI 0.5°/hourly 

Global - 37°N-S/ Dec. 

1997 

Daily 4 days NASA/GSFC PPS  

TOVS HIRS, MSU sounding 

retrievals 

1°/daily Global/1979-April 2005 Daily 1 month NASA/GSFC 610 

TRMM Real-Time HQ 

Version 7 (3B40RT) 

TMI, SSM/I, SSMIS, 

AMSR-E, AMSU, MHS 

0.25°/3-hourly Global - 70°N-S/Mar. 

2000 

3 hours 9 hours NASA/GSFC PPS 

TRMM Real-Time MW-VAR (IR) 0.25°/hourly Global - 50°N-S/Mar. 1 hour 9 hours NASA/GSFC PPS 
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VAR Version 7 

(3B41RT) 

2000 

TRMM Real-Time 

HQVAR Version 7 

(3B42RT) 

HQ, MW-VAR (IR) 0.25°/3-hourly Global - 50°N-S/Mar. 

2000 

3 hours 9 hours NASA/GSFC PPS 

Table 1.3 - Summary of publicly available, precipitation estimates that are produced by combining input data from several satellite sensor types. Adapted from the IPWG 

International Precipitation Working Group (http://www.isac.cnr.it/~ipwg/). 

 

Algorithm Input data Space/time grid Areal coverage/start date 

Update 

frequency 

Latency Producer 

CAMS/OPI CMAP-OPI, gauge 2.5°/monthly Global/1979 Monthly 5 days NOAA/NWS CPC  

CMAP 

OPI, SSM/I, SSMIS, GPI, 

MSU, gauge, model 

2.5°/monthly Global/1979 - Oct. 2010 Seasonal 3 months NOAA/NWS CPC  

OPI, SSM/I, GPI, MSU, 

gauge, model 

2.5°/pentad Global/1979 - Sept. 2009 Seasonal 3 months NOAA/NWS CPC  

OPI, SSM/I, GPI, gauge 2.5°/pentad-RT Global/2000 Pentad 1 day NOAA/NWS CPC  
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CMORPH V1.0 BIAS-

CORRECTED 

TMI, AMSR-E, SSMI, 

SSMIS, AMSU, MHS, IR 

vectors, CPC Gauge, 

GPCP Pentad 

0.25°/3-hourly 50°N-S/1998 Daily 18 hours NOAA/CPC  

CMORPH V1.0 

BLENDED 

TMI, AMSR-E, SSMI, 

SSMIS, AMSU, MHS, IR 

vectors, daily gauge 

0.25°/3-hourly 50°N-S regional/1998 Daily 18 hours NOAA/CPC 

GPCP One-Degree Daily 

(Version 2.2) 

SSMI- & SSMIS-TMPI 

(IR), TOVS, AIRS, GPCP 

monthly 

1°/daily 

Global - 50°N-50°S/Oct. 

1997 - now 

Monthly 3 months NASA/GSFC 612  

GPCP pentad (Version 

1.1) 

OPI, SSM/I, GPI, MSU, 

gauge, GPCP monthly 

2.5°/5-day Global/1979 - 2008 Seasonal 3 months NOAA/NWS CPC 

GPCP Version 2.2 

Satellite-Gauge (SG) 

GPCP-OPI, gauge 1/79-

7/87, 12/87, thereafter 

SSMI- & SSMIS-AGPI 

(IR), gauge, TOVS, AIRS 

2.5°/monthly Global/1979 - 2010 Monthly 2 months NASA/GSFC 612 

GPM Imerg 
Satellites used in the 

TMPA, CMORPH and 

10 km – 0.5 hours Global - 60°N-S/Mar 2014 Monthly  3 Months NASA/GSFC PPS 
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PERSIANN-CCS (final run) (final run) 

PERSIANN-CDR 

GRIDSAT-IRWIN, GPCP 

Monthly Precipitation 

0.25°/daily 60°N-S/1980 Monthly 2 months UC Irvine 

PR-OBS-5 

PR-OBS-3, gauge, radar, 

NWP 

5 km/3-hour Europe/Jan 2009 3 hours 0.5 hours H SAF  

RFE 

GPI, NOAA-SSM/I, 

gauge 

10 km/daily Africa/Oct 2000 Daily 6 hours NOAA/NWS CPC  

 

10 km/daily South Asia/Apr 2001 Daily 6 hours NOAA/NWS CPC 

TRMM Plus Other Data 

(3B43 Version 7) 

TCI, TMI, SSMI, SSMIS, 

AMSR-E, AMSU, MHS, 

MW-VAR (IR), gauge 

0.25°/monthly Global - 50°N-S/Jan 1998 Monthly 2 months NASA/GSFC PPS  

TRMM Plus Other 

Satellites (3B42 Version 

7) 

TCI, TMI, SSMI, SSMIS, 

AMSR-E, AMSU, MHS, 

MW-VAR (IR), gauge 

0.25°/3-hourly Global - 50°N-S/Jan 1998 Monthly 2 months NASA/GSFC PPS  

Table 1.4 - Summary of publicly available precipitation estimates that are produced by combining input data from several sensor types, including satellite sensors and precipitation 

gauges. Adapted from  the IPWG International Precipitation Working Group (http://www.isac.cnr.it/~ipwg/).
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1.3 New bottom-up approach 

All the sensors and algorithms described above refer to the so-called “top-down” approach (Brocca 

et al. 2015), in which information obtained by sensing the top of clouds (or within the clouds) are 

used to estimate rainfall. Another promising and innovative approach consists in using satellite-

based soil moisture (SM) observations as an indirect signature of the rainfall dynamic in order to 

correct and/or to directly estimate precipitation fallen at ground. Various authors have proposed a 

method to estimate rainfall from in-situ or satellite based SM products (Crow et al., 2007, 2009; 

Pellarin et al., 2009, 2013; Brocca et al., 2013, 2014; Wanders et al. 2015; Zhan et al. 2015). 

Among them, the SM2RAIN algorithm developed by Brocca et al. (2014) allows to directly 

estimate rainfall from SM observations. The algorithm is based on the inversion of the soil water 

balance equation: 

)()()()(
)(*

trtgtetp
dt

tdsZ
                                                (1.1) 

Where Z* is the soil water capacity (soil depth times soil porosity), s(t) is the soil relative 

saturation, t is the time and p, e, g and r are the precipitation, evapotranspiration, drainage and 

surface runoff rates, respectively. The drainage rate is calculated by the relationship proposed by 

Famiglietti and Wood (1994): 

btastg )()(                                                                      (1.2) 

Where a and b are two parameters describing the non-linearity between SM and drainage. By 

neglecting r(t) and e(t) during a rainfall event (Brocca et al., 2015) and solving Eq. 1.1 for 

precipitation, one can obtain: 

btas
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With Z*, a and b that have to be estimated through calibration. The algorithm allows to estimate the 

accumulated rainfall fallen at ground by knowing the difference in SM between to measurements 

(obtained through satellite sensors, in-situ stations or by models). The algorithm suffers the main 

limitations to not be able to estimate rainfall when the soil is close to saturation, as no variations of 

SM can be observed in such conditions after a rainfall event. On the other hand, SM2RAIN has 

proven to be able to correctly estimate the amount of rainfall fallen at ground, which is of 

paramount importance for hydrological applications. The algorithm is applied and tested both on a 

local (Brocca et al., 2013; 2015; 2016a; 2016b, Ciabatta et al., 2015; 2017a, Massari et al., 2014, 

Tarpanelli et al., 2017) and on a global scale (Brocca et al., 2014, Koster et al., 2017, Ciabatta et al., 

2018) to several in-situ and satellite SM datasets. Alongside with the rainfall estimation capabilities, 

the integration between SM-derived and state-of-the-art rainfall products is tested. The integration 

allows to obtain a unique, superior rainfall product through very simple nudging schemes. As way 

of example in Ciabatta et al. (2017a), SM-derived rainfall, obtained through the application of 

SM2RAIN to the ASCAT SM product (Wagner et al., 2013), is integrated with a product obtained 

through PMW remotely sensed information. The results showed that the limitations of the two 

approaches (top-down and bottom-up) are compensated in the integrated product. In this respect, 
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the integration allows to improve the estimation of accumulated rainfall through SM2RAIN, while 

the state-of-art satellite rainfall product allows a better estimation of high intensity rainfall during 

close to saturation conditions.  

 

1.4 Use of satellite rainfall data for landslide risk assessment and hydrological application  

Despite the large availability of satellite rainfall data and their increasing spatial/temporal coverage 

and accuracy, their use for hydrological applications is still very scarse. The reasons for this could 

rely on: 1) the coarse spatial/temporal resolution of the provided satellite products; 2) the inherent 

BIAS contained in every estimate; 3) the latency own by the product before been collected by the 

end-users (Serrat-Capdevilla et al., 2014); 4) a general and unjustified skepticism regarding satellite 

data in the hydrologist community.  

If one makes a research on the literature available on the use of satellite rainfall data for 

hydrological applications, the result would be that the majority of the studies are carried out at the 

basin scale for flood simulations, mainly in developing countries. On the other hand, just few 

studies provided some guidelines in order to use satellite rainfall products for hydrological 

applications. For instance, Artan et al. (2007) used the NOAA Climate Prediction Center (CPC) 

product for Famine Early Warning System (FEWS, Xie and Arkin, 1997) to drive a physically-

based semi-distributed hydrologic model over four basins in Asia and Africa. They found that 

satellite rainfall products (SRPs) can be used to force a hydrologic model provided that the 

recalibration of the model parameter values is carried out. Harris et al. (2007) used TMPA 3B42 

real-time product to drive a hydrologic model over a catchment in Kentucky finding that a BIAS 

correction is needed before using real-time satellite data in flood forecasting. Stisen and Sandholt 

(2010) forced a distributed hydrologic model over the Senegal River Basin with different SRPs: 

TMPA 3B42 V6, CPC MORPHing technique (CMORPH, Joyce et al., 2004), CPC FEWS v.2, 

PERSIANN and a local product based on CCD relationship. They found that the SRPs need a BIAS 

correction because of the differences in the estimates of the analyzed products (e.g., the number of 

rainy days and the recorded intensity). Camici et al., 2018 stated that BIAS correction and specific 

model recalibration are mandatory steps, even if not always sufficient to achieve good performance, 

mainly in small basins. They also stated that a simple integration between state-of-the-art and SM-

derived products allows to obtained results even better than those obtained by using observed data. 

In this respect, Massari et al. (2014) showed that a simple integration between ground observed data 

and satellite rainfall provided better performance in terms of flood simulation for 3 out 4 basins 

with respect to use ground rainfall data only.  

With respect to landslide risk assessment, just a handful of studies uses satellite rainfall data. Hong 

et al. (2006; 2007) set up an experimental monitoring system for rainfall-induced landslides using 

TMPA 3B42v6 product. The precipitation data were linked to a landslide susceptibility map in 

order to identify the location and timing of the earth movement and the associated risk. The model 

was applied to 74 landslide events during the period 1998-2006 with satisfactorily results. Although 

satellite rainfall data have their own limitations, the authors stated that “this may form a starting 

point for developing an operational early warning system for rainfall-induced landslides around the 

globe”.  

Ray and Jacobs (2007), Ray et al., (2010) and Liao et al., (2010; 2012) used TMPA rainfall 



1. Introduction 

35 

 

estimates to force a land-surface model in order to assess the stability conditions over 4 areas 

throughout the globe. They stated that satellite rainfall data can be a valuable source of information 

and a valid input for such applications. More in details, Liao et al., (2010; 2012) developed an 

experimental early warning system based on several satellite information. The model framework is 

reported in Figure 1.6. 

 

Figure 1.6 – Experimental early warning system for rainfall-induced landslides set up in Indonesia 

(Courtesy of Liao et al., 2010).  

As it can be seen in Figure 1.6, satellite rainfall estimates are used to force the Rain-SLIDE model. 

The model’s outputs are then linked to susceptibility maps in order to predict landslide events at the 

site scale. The authors drawn the conclusions that despite the limitations of each early warning 

system and the satellite rainfall estimates, the proposed framework was able to identify real events 

occurred in the study area, enabling researchers to develop operational early warning systems at the 

regional scale. Posner and Georgakakos (2015) instead defined a rainfall-soil moisture threshold for 

El Salvador by forcing a hydrologic model with the Global Hydro-Estimator (GHE, Scofield and 

Kuligowsky, 2003). The satellite data are used to simulate the soil moisture conditions associated 

with occurred landslide events, underlining the beneficial effect of coupling hydrologic modelling 

to landslide early warning systems. 

A different approach was used by Farahmand and AghaKouchak (2013), who used PERSIANN 

rainfall estimates and 581 landslide events (Kirschbaum et al., 2010) to train a Support Vector 

Machine (SVM). The SVM is used to classify, through a binary classifier, between landslide events 

(value of 1) and non-landslides events (value of 0), by considering rainfall, slope, land cover and 

land use and observed landslide events. The model provided very good results, with just 2% of false 
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alarms and 7% of missed events, but needed to be calibrated and trained with specific data. 

Up to now, one of the only operational satellite-based early warning system is represented by the 

global Landslide Hazard Assessment for Situational Awareness (LHASA, Kirschbaum et al., 2011; 

2015; 2016; Stanley and Kirschbaum, 2017; Kirschbaum and Stanley, 2018; 

https://pmm.nasa.gov/applications/global-landslide-model). The framework of the model is reported 

in Figure 1.7. The model is based on TMPA (and now GPM) rainfall real-time estimates. The 

model computes the Antecedent Rainfall Index based on the following equation: 
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where t is the number of days before the running date, n is the length of the time window use for the 

ARI estimation, pt is the rainfall amount at day t and wt is defined by wt=t-α. In Stanley and 

Kirschbaum (2017) n was set to 7 and α to 0.5 after calibration. One of the most important 

component of this model is a susceptibility map. The map was created starting from combining 

information from elevation, geology, roads and infrastructures and forest cover. The map considers 

5 different levels of susceptibility (very low, low, moderate, high and very high). If the 7-day 

precipitation is unusually high, the susceptibility map is used to discriminate if the landslide risk of 

the analyzed pixel is low, moderate or high. 

 

Figure 1.7 – Global Landslide Hazard Assessment for Situational Awareness (LHASA) model framework. 

(https://pmm.nasa.gov/applications/global-landslide-mode ) 

https://pmm.nasa.gov/applications/global-landslide-model
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Very recently, Rossi et al., (2017) defined rainfall thresholds over Umbria region by using observed 

and satellite rainfall data obtained through TMPA products. The authors stated that the general 

underestimation of precipitation provided by the remotely sensed estimates is reflected in lower 

rainfall thresholds with respect to the ones obtained by considering rain gauge data. One the most 

recent application of satellite rainfall data to landslide risk assessment is the one proposed by 

Brunetti et al. (2018). In this work, the authors evaluated the capabilities of TMPA 3B42RT, 

CMORPH, PERSIANN real-time data and SM-derived rainfall estimates in terms of predicting the 

spatial-temporal occurrence of landslide events over the Italian territory during the period 2008-

2014. Specifically, for all the analyzed products, an empirical cumulated rainfall – rainfall duration 

(ED) threshold is estimated by analyzing more than 1400 landslide events. The ED thresholds were 

then used to estimate several skill scores for the assessment of the products. The results showed that 

satellite-based rainfall estimates generally underestimated precipitation amount with respect to the 

ground-based dataset used for comparison. However, this aspect is not an issue for the development 

of an early warning system, as it could reflect in a lower ED threshold.  

On this basis, it could be stated that satellite rainfall products are able to be used for such 

applications, taking advantages of the short latency of the real-time products. More details about 

this application can be found in Appendix 1. 

1.5 Purposes of the thesis 

Worldwide, rainfall-induced landslides occur every year causing fatalities, considerable damage and 

relevant economic losses with approximately 300 million people are estimated to be exposed to 

landslides (Dilley et al., 2005). Italy is one of the countries most prone to landslide risk (Guzzetti et 

al., 2005) and where the population is heavily affected, with about 20 % of the national territory 

characterized by hydrogeological risk (ISPRA, 2015). In the 50-year period 1964–2013, 1354 

people died due to landslides (Salvati et al., 2014), while in the period 2010-2014, 566 landslides 

events caused 55 fatalities. Moreover, climate changing is expected to exacerbate the impact of 

landslides, mostly due to the increase in heavy rainfall (Fischer and Knutti, 2015; Ciabatta et al., 

2016; Gariano and Guzzetti, 2016). In order to mitigate landslide risk, early warning systems for the 

prediction of rainfall-induced failures were developed in several countries based on different 

approaches and input datasets (Keefer et al., 1987; Baum and Godt, 2010; Ponziani et al., 2012; 

Rossi et al., 2012; Lagomarsino et al., 2013; Kirschbaum et al., 2015; Segoni et al., 2015; Piciullo et 

al., 2016, Stanley and Kirschbaum, 2017). Basically, the proposed early warning systems cited 

above use two main approaches: 1) definition of specific rainfall duration-intensity thresholds; 2) 

development of a physically-based model specifically designed for the study area. While the first 

approach has the main advantage to be easily implemented and used operationally, it requires high 

quality rainfall data. Another limiting issue is the problem to extend the threshold over larger areas, 

due to the high spatial variability of predisposing factors related to the triggering of landslides 

(mainly topography and geotechnical parameters). On the other hand, physically-based models have 

the advantages to fully describe the characteristics of the investigated slope, but they required a 

deep knowledge of the site with respect to the parameters needed to run the model itself. Also in 

this case, this approach is not applicable on large scale. The purposes of the present work are the 

develop and test a physically-based model for the assessment of the landslide hazard by using also 

satellite data as input, in order to reduce the computational demand of this approach. The present 
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work is a collection of papers published in peer-reviewed journal, showing the results and the 

insights found during the research period by the Author. 

At first, a thorough validation of state-of-the-art satellite rainfall and SM products was carried out 

over Italy. The rainfall data obtained by classical satellite products as well as the SM-derived 

precipitation obtained through the application of SM2RAIN to SM products, are compared to high 

quality information obtained by ground network (Ciabatta et al., 2015; 2017; 2018) (Chapter 2). 

Moreover, the capabilities of such products as input in rainfall-runoff models is tested over several 

basins in Italy and Europe (Ciabatta et al., 2016a). Along with the performance of the single 

products, the integration between top-down and bottom-up rainfall products is deeply tested, 

showing higher skills than the parent products alone (Chapter 3). 

The developed stability model structure is discussed in Chapter 4. There, a detailed description of 

the components of the model and of the equations used for assess the slope stability over the study 

area are reported, along with the use of satellite rainfall data as input for the stability module, over a 

small study area in Italy. 

Chapter 5 presents the main conclusions of the present work and an outline for future research and 

applications.  

Appendix 1 collects all the supplementary material produced during this research. More in details, 

the evaluation of SM2RAIN-derived and state-of-the-art satellite rainfall products over larger areas 

(Brocca et al., 2016b and Tarpanelli et al., 2017) are reported along with the application of 

SM2RAIN to a sensor not used to retrieve SM (Brocca et al., 2016a). The findings of Camici et al. 

(2018) about hydrological modelling over the Mediterranean area carried out by considering several 

satellite rainfall products are described, underlining the feasibility and the beneficial effect of 

integrating SM2RAIN-derived rainfall with classical precipitation products. The last part of this 

section reports the results obtained by Brunetti et al. (2018) about the use of satellite rainfall data in 

order to define empirical ED thresholds over Italy. 

 



 

39 

 

________________________________________ 

2.ASSESSMENT AND VALIDATION OF 

SATELLITE RAINFALL PRODUCTS 

________________________________________ 

 

In this Chapter, the assessment of satellite rainfall products carried out over Italy, India, Australia 

and on a global scale, is described. More in details, the study areas, the products, the modelling 

chains used for such analysis will be explained. The first study area is the Italian territory, for 

which the results of validation of several rainfall products (obtained through top-down and bottom-

up approaches) was carried out against high quality observed rain gauge data. The integration 

between rainfall products will be also described. After the description of the results obtained over 

Italy, the results obtained on a global scale will be presented.  

________________________________________ 
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2.1 Methodology development and testing over Italy 

________________________________________________________________________________ 

This section will present the results of the comparison and integration of satellite rainfall products 

over Italy. The assessment allowed to characterize satellite rainfall products performances over the 

complex territory of Italy both in time and in space. The section is based on the following two 

publications: 

 

Ciabatta, L., Brocca, L., Massari, C., Moramarco, T., Puca, S., Rinollo, A., Gabellani, S., Wagner, 

W. (2015). Integration of satellite soil moisture and rainfall observations over the Italian territory. 

Journal of Hydrometeorology, 16(3), 1341-1355. 

Ciabatta, L., Marra, A.C., Panegrossi, G., Casella, D., Sanò, P., Dietrich, S., Massari, C., Brocca, 

L. (2017). Daily precipitation estimation through different microwave sensors: verification study 

over Italy. Journal of Hydrology, 545, 436-450. 

________________________________________________________________________________  
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Study area 

The study area is the Italian territory, spreading between 47° N and 36° S of latitude and between 6° 

E and 18° E of longitude (Pantelleria and Lampedusa islands are not taken into account as too small 

to be recognize within a satellite field of view). The territory is characterized by the Alps mountain 

range (along the West-East direction) in the Norther part of the country, and by the Apennines 

mountain range from North to South. Figure 2.1 shows the elevation map of Italy.  

 

Figure 2.1 – Morphology of the study area. The letters indicate the boxes (highlighted in black) where the 

analysis of 5-day accumulated rainfall timeseries is carried out (Ciabatta et al., 2017). 

 

The territory is mainly hilly expect for the Po river valley in the northern part of the country. The 

presence of the two mountain ranges strongly influences the rainfall pattern and impacts the satellite 

retrievals due to orographic effects. As it can be seen in Figure 2.2, showing the cumulated rainfall 

over Italy for the period 2010-2013, two sectors are characterized by intense rainfall regimes. This 

is due to the effect of Alps and Apennines to block the hydrometeors causing intense precipitation 

in that areas. 

The impact of topography can be observed also in the satellite retrievals over the study area. Figure 

2.3 draws the mean monthly noise associated to ASCAT SM retrievals over Italy. 
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Figure 2.2 – Cumulated observed rainfall for the period 2010-2013 over Italy. The data are obtained 

through the high quality ground network of the Italian Civil Protection Department (Modified from 

Ciabatta et al., 2015). 

As it can be seen, high error values (blueish and reddish areas) are associated with high topographic 

complexity (the Alps and part of the Apennines). The error maps are provided by the Vienna 

University of Technology (TUWIEN) through the ASCAT Soil Moisture Data Viewer 

(http://rs.geo.tuwien.ac.at/dv/ascat/). In those areas, the satellite retrievals could be challenging and 

the obtained estimates should be used carefully. 

 

Figure 2.3 – Noise map over Italy obtained through the ASCAT SM product 

(http://rs.geo.tuwien.ac.at/dv/ascat/). 

http://rs.geo.tuwien.ac.at/dv/ascat/
http://rs.geo.tuwien.ac.at/dv/ascat/
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Datasets 

Ground-based rainfall dataset 

A ground-based rainfall dataset is used as a benchmark. The observed rainfall dataset is obtained by 

the measurements of more than 3000 rain gauges over the Italian territory spatially interpolated 

using the Random Generator of Space Interpolations from Uncertain Observations (GRISO; 

Pignone et al. 2010) algorithm. GRISO is a derivation of the most known kriging method, so it is 

also based on the geostatistical approach and the use of the semivariogram for generating the spatial 

structure of the interpolated field. The main innovations are the possibility of using different 

semivariograms per gauge at the same time and of reducing the computational time with respect to 

kriging. The spatial distribution of the rain gauges is drawn in Figure 2.4.  

 

Figure 2.4 – Spatial distribution of the rain gauges used for obtaining the ground-based benchmark 

(courtesy of CIMA). 

 

This dataset provides hourly rainfall observations throughout the Italian territory over a grid defined 

within GRISO. In this work, grids with spacing of 12.5 km (Ciabatta et al. 2015) and 25 km 

(Ciabatta et al., 2017) are used. The daily observed product is obtained by summing the hourly data 

from 0000 to 2400 UTC + 1 h. A ground-based benchmark is used benchmark because, besides the 

fact they are used worldwide, they are used operationally by Italian Civil Protection Service for 

hazard forecast and management; therefore, the satellite rainfall dataset performances are evaluated 

in such kinds of applications. 
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Satellite rainfall products 

In this section, a brief introduction to the satellite rainfall products will be provided. The readers are 

referred to Chapter 1 for the acronyms, sensors and retrieval algorithms. The H05 product is 

provided by EUMETSAT within the Satellite Application Facility on support to operational 

hydrology and water management (H-SAF) project. The product is based on frequent precipitation 

measurements as retrieved by blending LEO MW-derived precipitation rate measurements and 

GEO IR imagery. As stated before, the LEO PMW rainfall estimates are obtained through cross-

track and conical scanners, characterized by lower spatial/temporal resolution but higher accuracy. 

The IR data are obtained by GEO satellites, like the MSG. This kind of sensors provides frequent 

measurements over the covered area, with high spatial resolution. This product provides daily 

rainfall data with a spatial resolution of about 5 km over the full-disk area 

(http://hsaf.meteoam.it/overview.php). In this study, the period 2010-2013 is considered. The 

TMPA 3B42-RT, version 7 (http://trmm.gsfc.nasa.gov), combines rainfall estimates from various 

satellite sensors. The multisatellite platform uses the TRMM Microwave Imager (TMI), the Special 

Sensor Microwave Imager (SSM/I) on board the Defense Meteorological Satellite Program (DMSP) 

satellites, AMSR-E, and the Advanced Microwave Sounding Unit-B (AMSU-B) on board the 

National Oceanic and Atmospheric Administration (NOAA) satellite series. In addition, the TMPA 

product also uses GEO IR data through a constellation of GEO satellites. The 3B42-RT product is 

provided by the National Aeronautics and Space Administration (NASA) with a temporal resolution 

of 3 h and a spatial resolution of 0.25° for the 50° north–south latitude band. The cumulated daily 

rainfall is obtained by simply summing the eight 3-h time windows every day. It should be noted 

that TMPA data are provided within a time window of 90 min from the nominal time (0000, 0300, . 

. . , 2100 UTC) while the observed rainfall dataset is delivered in local time, that is, UTC + 1. 

Therefore, the daily cumulated rainfall product from TMPA represents the total rainfall starting, and 

ending the next day, at 2330 UTC, with only 30 min of delay with respect to the other products. 

Such a delay can be considered negligible, especially when taking into account longer accumulation 

intervals. All the products described above are used along with the SM-derived rainfall, described in 

the following, for assess their quality over the Italian territory by considering a grid with 12.5 km of 

spacing and 5 days of accumulated rainfall during the period 2010-2013. 

In Ciabatta et al. (2017), three different satellite rainfall products are used. One is the Cloud 

Dynamics and Radiation Database algorithm (hereinafter CDRD, Casella et al., 2013, Mugnai et al., 

2013a, b, Sanò et al., 2013), a physically-based Bayesian approach for the conically scanning 

radiometers originally developed for SSMIS (on board the three DMSP F16, F17 and F18 satellites 

in the time frame of this study). The second one is the Passive microwave Neural network 

Precipitation Retrieval algorithm (hereinafter PNPR) for cross-track scanning radiometers (Mugnai 

et al., 2013a, b, Sanò et al., 2015a), originally developed for the cross-track scanning AMSU/MHS 

radiometers (on board the MetOp-A, MetOp-B, NOAA-18, and NOAA-19 satellites in the time 

frame of this study).  Both CDRD for SSMIS and PNPR for AMSU-A/MHS are used operationally 

within the EUMETSAT H-SAF program and provided as H01 and H02 instantaneous precipitation 

rate products (Mugnai et al., 2013a). The algorithms, originally optimized for the European and 

Mediterranean regions, are recently extended to other regions (i.e., Africa and Southern Atlantic) to 

provide precipitation products for the full MSG disk area (Panegrossi et al., 2014).  Towards the full 

exploitation of the GPM constellation of MW radiometers, a new version of CDRD for AMSR-2, 

and PNPR for ATMS are recently released within H-SAF (Sanò et al., 2015b, 2016). The third one 

http://hsaf.meteoam.it/overview.php
http://trmm.gsfc.nasa.gov/
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is a combination of all SSMIS and AMSU-A/MHS observations, hereinafter CDRD-PNPR. These 

last three datasets are characterized by a spatial resolution of 0.25° and a daily temporal resolution. 

The performance of these products are evaluated during the period 2011-2014.  

Soil moisture-derived rainfall 

 The SM data are obtained by backscattering retrievals from the ASCAT sensor (C-band 

scatterometer operating at 5.4GHz) on board the MetOp-A and B satellites. In this study the Water 

Retrieval Package (WARP), version 5.51, is used for estimating SM from backscatter 

measurements. The product has a nearly daily temporal resolution for the study area and a spatial 

resolution of about 25 km (resampled to 12.5 km; Wagner et al. 2013; 

http://rs.geo.tuwien.ac.at/products/), provided as soil moisture product H109 by the EUMETSAT 

H-SAF. In order to reduce the effect of noise in the estimated precipitation, an exponential filter 

was first applied to SM retrievals. The exponential filter (Albergel et al., 2008) requires a single 

parameter, the characteristic time length (T), to be calibrated. In the original formulation, the 

exponential filter allows to estimate the root-zone soil moisture conditions of a deeper layer starting 

from surface observations. The T- value takes into account all the factors affecting the temporal 

variability of soil moisture, e.g. hydraulic properties, evaporation, and soil layer thickness. The use 

of such a filter on one hand increases the considered soil layer thickness, thus affecting Z* 

parameter, while, on the other hand, reduces the noises contained in the surface soil moisture time 

series. Because of the variable temporal resolution of the SM product, all the SM data are 

interpolated in time at 0000 UTC + 1 h each day. This step allows to compare all the datasets 

considered in the study in a consistent manner, that is, the daily cumulated rainfall from 0000 to 

2400 UTC +1 h is obtained for each product. SM-derived rainfall (hereinafter SM2RASC) is 

estimated at 12.5 km (Ciabatta et al., 2015) and 25 km (Ciabatta et al., 2017) of spatial resolution. 

The calibration of SM2RAIN parameters for both studies are carried out during the period 2010-

2011. Figure 2.5 draws the spatial distribution of the SM2RAIN parameters obtained in the 

Ciabatta et al. (2015). As it can be noticed, Z* parameter shows the highest values in those areas 

characterized by an intense rainfall regime, as shown in Figure 2.5. The a parameter shows the 

higher variability throughout the Italian territory, with the highest values along the coastline. This 

‘‘coast effect’’ could be due to satellite issues at the water-land interface. The b parameter shows 

the highest values in northern Italy, mainly over the Alps. The variation patterns of these two 

parameters are in good agreement with the noise map drawn in Figure 2.3, that is, the higher the 

uncertainty on SM retrieval, the higher parameter values needed to produce rainfall that contrasts 

the satellite noise. Similar patterns can be observed for the SM2RAIN parameters calibration 

carried out in Ciabatta et al. (2017a). Z* shows higher values due to the introduction of the 

exponential filter applied to the ASCAT SM data before applying SM2RAIN. This prepocessing 

step related the SM time series to a deeper soil layer, resulting in higher Z* values than the ones 

obtained in Ciabatta et al. (2015). 

http://rs.geo.tuwien.ac.at/products/
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Figure 2.5 – Spatial distribution of SM2RAIN parameters (left) Z*, (middle) a, and (right) b, obtained in 

Ciabatta et al. (2015). 

 

Integrated rainfall datasets 

Along with state-of-the-art satellite rainfall products and SM-derived precipitation, the integration 

of the top-down and bottom-up approaches is evaluated. To this end, the following nudging scheme 

is used: 

)(int butdbu PPwPP                                                       (2.1) 

Where Pint is the integrated rainfall product, Pbu is the SM-derived rainfall, Ptd is the rainfall 

obtained through top-down approach and w is the integration weight, ranging from 0 and 1. The 

integration weight is estimated by minimizing the RMSE between observed and integrated rainfall 

considering 5 days of accumulated rainfall in Ciabatta et al. (2015) while the equation proposed by 

Kim et al. (2015) is used in Ciabatta et al. (2017a): 

RtdtdbuRbuRbutdbuRtd

RtdtdbuRbuw












                                      (2.2) 

where ρP1P2 is the correlation between datasets P1 and P2 that can be the bottom-up (bu), top-down 

(td) and reference (R) rainfall products. The integration weights are estimated on a monthly scale in 

the calibration period and then applied to CDRD-PNPR and SM2RASC during the validation 

period in order to obtain the integrated product CDRD-PNPR + SM2RASC. Figure 2.6 shows the 

estimated integration weights over the Italian territory during the calibration period. 
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Figure 2.6 - Spatial (a) and temporal (b) variability of the integration weights between CDRD-PNPR and 

SM2RASC during the 1st January–31st December 2011 period obtained in Ciabatta et al. (2017). 

 

After the calibration of the integration weights, a median value of 0.675 was obtained. This means 

that, on average, more weight is given to the CDRD-PNPR product. The limited calibration period 

(one year) could impact the representation of the relative error between the parent products. 

Therefore, the calibration of integration weights between top-down and bottom-up products should 

be performed on a longer period and more often. As it can be seen in Figure 2.6, the lowest values 

(higher weight to SM2RASC) are located mainly over Sardinia and Sicily islands, central Italy 

along the coast of the Adriatic Sea, Po Valley and Apulia region. The temporal pattern of spatially 

averaged weights (Figure 2.6b) shows an increase of w values during the period from May to 

October, while during the winter season (from November to April) lower weights are obtained. 

However, the limited period used to compute the monthly weights might affect the reliability of 

their temporal variability. This is in good agreement with the results obtained by Ebert et al. (2007) 

showing that satellite rainfall products seem to work better during the summer season. 

After the SM2RAIN algorithm and integration weights calibration, the two studies analysed a total 

of 9 satellite rainfall products over the Italian territory. Table 2.1 summarises the main features of 

the analysed products. 

Dataset Spatial 

Resolution 

Temporal 

Resolution 

Period 

OBS 12.5/25 km Daily 2010-2013/2011-2014 

H05 5 km Daily 2010-2013 

3B42-RT 0.25° 3-hourly 2010/2013 
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CDRD 0.25° 3-hourly 2011-2014 

PNPR 0.25° 3-hourly 2011-2014 

CDRD-PNPR 0.25° 3-hourly 2011-2014 

SM2RASC 12.5/25 km Daily 2010-2013/2011-2014 

H05+SM2RASC 12.5 km Daily 2010-2013 

3B42RT+SM2RASC 12.5km Daily 2010-2013 

CDRD-PNPR+SM2RASC 0.25° Daily 2011-2014 

 Table 2.1 – Main features of the analyzed satellite rainfall products 

 

Assessment strategy 

The assessment of the analysed rainfall products is carried out over the Italian territory on a pixel-

by-pixel basis by considering two different rainfall accumulation intervals, daily and 5-days. The 

quality is evaluated by using several performance indexes, both statistical and categorical. The 

Pearson’s correlation coefficient (R) and, Root Mean Square Error (RMSE) and BIAS are 

calculated over the study area to assess the agreement between ground-based and satellite-based 

rainfall dataset. Three different categorical scores are used to test the skills of each product in 

correctly identify a rainfall event. More in details, the Probability of detection (POD), the False 

Alarm Ratio (FAR) and the Treat Score (TS) are calculated for different rainfall classes. This 

allowed also to assess the quality of the satellite rainfall products as a function of rainfall intensities. 

The categorical scores are defined as follow: 

MH

H
POD


                                                                         (2.3) 

HF

F
FAR


                                                                            (2.4) 

MFH

H
TS


                                                                      (2.5) 

Where H represents the number of rainfall events successfully estimated (hits), M is the number of 

the missed events, and F is the number of no-rain events erroneously predicted as events (false 

alarms). For each given rainfall class, a rainfall event is scored as hit, miss, or false depending on 
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how the observed and estimated rainfall behave with respect to that threshold: hit if they both reach 

it, miss if only the observed rainfall reaches it, false if only the estimated rainfall reaches it. All the 

categorical scores range between 0 and 1, with 1 as perfect score for POD and TS, while FAR has a 

perfect score of 0. Two different approaches are used in the two studies; in Ciabatta et al. (2015) 

categorical scores are estimated for each percentile of the distribution of the OBS dataset, while in 

Ciabatta et al. (2017) they are estimated for 1, 2, 4, 8, 16 and 32 mm/day. 

The same assessment strategy is applied to large scale validation study carried out over Australia 

(Brocca et al., 2016a), over India and Italy (Tarpanelli et al., 2017) and on a global scale (Ciabatta 

et al., 2018).  

Results  

Impact of satellite overpasses on top-down products performance 

 In this section, the impact of the number of satellite overpasses available throughout the day on the 

daily rainfall estimates derived from the top-down products is analysed. For each day and for each 

grid point, the satellite daily rainfall is associated to the number of 3-hour intervals (i.e., 00:00 – 

03:00 UTC, 03:00 438 – 06:00 UTC, …, 21:00 – 24:00 UTC, hereafter “time slots”) covered by at 

least one satellite overpass. The number, ranging from 1 to 8, is used to split the satellite datasets in 

8 classes (as a function of the number of time slots covered with overpasses used to compute the 

daily rainfall estimate). The correlation coefficient R between the three top-down daily rainfall 

products CDRD, PNPR and CDRD-PNPR and the observed dataset is computed as a function of the 

class number (corresponding to the number of covered time slots). Only classes with sample size 

greater than 200 are used in this analysis. The results are shown in Figure 2.7. As it can be seen, an 

increase in the number of time slots with at least one overpass provides an increase in R for each 

analysed product. CDRD daily rainfall is derived from a lower number of satellite overpasses, 

(mainly 3 and 4 time slots are covered), while PNPR daily rainfall is associated to more frequent 

overpasses (4 to 6 time slots are covered). The integration of the CDRD and PNPR rainfall rate 

estimates in the CDRD-PNPR daily rainfall product allows to have better temporal sampling of the 

precipitation throughout the day, with most of the satellite overpasses covering 6 to 7 time slots. 

This analysis clearly shows how the MW daily rainfall estimates based on top-down approaches are 

impacted not only by the number of overpasses available, but also by their temporal distribution 

throughout the day. The integration of multiple sensors provides a more reliable daily rainfall 

product. For instance, the median R increases from values lower than 0.5 when 3 (or less) time slots 

are covered, to values greater than 0.6 for 6 (or more) time slots covered.  
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Figure 2.7 - Boxplots of the correlation coefficient (R) between CDRD, PNPR and CDRD-PNPR and the 

observed rainfall dataset as a function of the number of 3-hour intervals with at least one satellite overpass 

during the validation period (2012-2014). Specifically, the black dots indicate the median values, the boxes 

the 25th and 75th 1008 percentiles while the whiskers the minimum and maximum values. (Modified from 

Ciabatta et al., 2017). 

Assessment during the calibration period 

The assessment of the satellite-based rainfall products over the Italian territory provided good 

results. In this respect, all the analysed products showed good capabilities in estimating rainfall 

during the period 2010-2013 and 2011-2014. Figure 2.8 shows the results obtained in Ciabatta et 

al. (2015) during the calibration period (2010-2011) for the five rainfall products (two top-down, 

one bottom-up and two integrated) in terms of R and RMSE for 1- and 5-day of accumulated 

rainfall.  

The lower performance scores obtained for 1 day of accumulated rainfall depend on several factors: 

1) at a daily time step, the noise of ASCAT soil moisture data has a strong impact on the estimated 

rainfall through SM2RAIN algorithm; 2) the ASCAT soil moisture data are not always available for 

every day; and 3) the SM2RAIN algorithm is found to perform satisfactorily when applied with a 

time resolution 3–4 times longer than the resolution of soil moisture data, even when applied with 

in situ observations (Brocca et al., 2013). 
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Figure 2.8 - Boxplot reporting the performance scores [(left) R and (right) RMSE] obtained during the 

calibration period for (top) 1 day and (bottom) 5 days of accumulated rainfall. The box lines represent the 

25th, 50th, and 75th percentiles, while the whiskers represent the max and min values (Ciabatta et al., 

2015). 

Indeed, the change in the storage over a day cannot be related solely to the rainfall, and the use of 

daily satellite soil moisture observations may lead to errors in daily rainfall estimation.   By 

computing the total rainfall over 5 days, more accurate results can be obtained thanks to an 

averaging effect. When more accurate and temporally dense satellite SM data are available (e.g., 

through merging of retrievals from different sensors), more accurate results, even at the daily time 

scale, are expected. Concerning the integrated products, results for 1 day of accumulated rainfall 

show a slight improvement. By way of example, R for SM2RASC+H05 shows an increase of 6% 

with respect to H05, while there is no noticeable difference considering the SM2RASC+3B42-RT 

product. This is probably due to the lower correlation of SM2RASC with respect to 3B42-RT. 

However, in terms of RMSE, there is a reduction of 4% and 6% for both SM2RASC+H05 and 

SM2RASC+3B42-RT compared to the parent satellite rainfall products. For 5 days of accumulated 

rainfall, the improvement due to the integration is evident and significant; the integrated products 

show the highest median R values (0.72 and 0.76 for SM2RASC+H05 and SM2RASC+3B42-RT, 

respectively), with an increase of nearly 41% and 23% compared to the parent products (i.e., H05 

and 3B42-RT). In terms of RMSE (for 5 days of accumulated rainfall), the integrated products show 

a reduction of about 25% and 21% compared to the satellite rainfall datasets with the best results for 

SM2RASC+3B42-RT (with a median RMSE of 16.60 mm). 

Assessment during the validation period 

After the SM2RAIN calibration during the period 2010-2011, the parameters are applied to ASCAT 

SM data during the validation periods: 2012-2013 (Ciabatta et al., 2015) and 2012-2014 (Ciabatta et 

al., 2017). Table 2.2 indicates that for 1 and 5 days of accumulated rainfall the validation results are 
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consistent to those obtained in calibration, showing only a little deterioration of the performance 

scores with respect to the calibration. In particular, significant improvements are obtained for 1 and 

5 days of accumulated rainfall of the integrated products with respect to the parent products. The 

results for 5 days of accumulated rainfall deserve more attention. In this case, the correlation maps 

in Figure 2.9 show good correlation against ground data in all cases. In particular, 3B42-RT results 

are 1) consistent with those found by Chen et al. (2013), Brocca et al. (2014), and Stampoulis and 

Anagnostou (2012) at mid latitude; 2) slightly lower than those of SM2RASC; and 3) better than 

H05. 

Product 

Calibration 
 

Validation 

1 day 5 days   1 day 5 days 

Median R 

SM2RASC 
0.45 

(0.12) 0.68 (0.14) 
 

0.43 
(0.13) 0.62 (0.16) 

H05 
0.48 

(0.09) 0.51 (0.12) 
 

0.50 
(0.10) 0.54 (0.11) 

3B42-RT 
0.60 

(0.11) 0.62 (0.12) 
 

0.57 
(0.12) 0.60 (0.13) 

SM2RASC+H05 
0.51 

(0.09) 0.72 (0.10) 
 

0.51 
(0.11) 0.68 (0.11) 

SM2RASC+3B42-RT 
0.59 

(0.11) 0.76 (0.11) 
 

0.57 
(0.12) 0.71 (0.10) 

 
Median RMSE 

SM2RASC 
8.27 

(3.66) 
18.01 
(7.95) 

 

8.71 
(4.05) 

19.94 
(10.97) 

H05 
7.93 

(3.61) 
23.22 

(11.95) 
 

8.25 
(3.68) 

22.32 
(12.41) 

3B42-RT 
7.51 

(3.10) 
21.16 

(10.05) 
 

7.80 
(3.44) 

21.87 
(11.60) 

SM2RASC +H05 
7.62 

(3.64) 
17.36 
(8.24) 

 

7.86 
(4.03) 

18.32 
(11.56) 

SM2RASC +3B42-RT 
7.06 

(3.34) 
16.60 
(7.71) 

 

7.47 
(3.83) 

18.13 
(10.91) 

 
Pixels with p value < 0.01 

SM2RASC 96% 95% 
 

96% 94% 

H05 97% 97% 
 

95% 97% 

3B42-RT 97% 97% 
 

97% 96% 

SM2RASC +H05 97% 97% 
 

97% 97% 

SM2RASC +3B42-RT 97% 97% 
 

97% 97% 
Table 2.2 - Median R, median RMSE (mm), and pixels with a significant correlation (p-value, 0.01) for each analyzed 

product (%), during the calibration and validation periods, considering 1 and 5 days of accumulated rainfall (std 

dev is given in parentheses) (Modified by Ciabatta et al., 2015). 

 

The integration of the products improves the performance, causing an increase in median R from 

0.60 to 0.71 for 3B42-RT and from 0.54 to 0.68 for H05. It is interesting to note that R maps 

highlight areas where the SM2RASC product provides less accurate results because of topographic 
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complexity (the Alps and Apennines chains), while both 3B42-RT and H05 products show lower 

performance in southern Italy. With respect to 3B42-RT performance, Stampoulis and Anagnostou 

(2012) found similar results. Therefore, the integration involves a substantial improvement in the 

product performance with an increase, during the validation period, in SM2RASC+H05 

(SM2RASC+3B42-RT) median R value of about 26% (18%) with respect to the H05 (3B42-RT) 

product. 

  

Figure 2.9 - Maps of R for 5 days of accumulated rainfall for (a) SM2RASC (median R 5 0.62), (b) 3B42-RT 

(median R 5 0.6), (c) H05 (median R 5 0.53), (d) SM2RASC +H05 (median R 5 0.68), and (e) SM2RASC 

+3B42-RT (median R 5 0.71) during the validation period (2012–13) (Modified from Ciabatta et al., 2015). 

For assessing the reliability of the analysis in terms of correlation, the percentage of pixels (over 

2043) with a p value < 0.01 (significant correlation) are calculated and reported in Table 2.2. The 

high percentage (>94%) of the pixels having a significant correlation confirms the analysis 

reliability. In particular, the pixels showing a p value <0.01 are mainly located over the Alps and 

the Gran Sasso massif for the SM2RASC product, while H05 and 3B42-RT products show pixels 

with a p value <0.01 over southern Italy and the mountainous regions, as might be expected by 

looking the correlation maps (Figure 2.9). In Figure 2.10, the RMSE maps for the validation period 
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are shown. Median values of 19.94, 21.87, 22.32, 18.32, and 18.13mm are obtained for SM2RASC, 

3B42-RT, H05, SM2RASC+H05, and SM2RASC+3B42-RT, respectively. 

 

Figure 2.10 - Maps of RMSE for 5 days of accumulated rainfall for (a) SM2RASC (median RMSE 5 19.94 

mm), (b) 3B42-RT (median RMSE 5 21.87 mm), (c) H05 (median RMSE 5 22.32 mm), (d) SM2RASC+H05 

(median RMSE 5 18.32 mm), and (e) SM2RASC+3B42- RT (median RMSE 5 18.13 mm) during the validation 

period (2012–13). (Modified from Ciabatta et al., 2015) 

The five analysed rainfall products in Ciabatta et al. (2017) are evaluated during the independent 

validation period 2012–2014. The comparison is carried out pixel-by-pixel by using the gauge-

observed rainfall dataset as benchmark. Table 2.3 and Figure 2.11 summarize the results in terms 

of R and RMSE. As it can be seen, all the analysed products provide quite good results. More in 

detail, CDRD and SM2RASC show worse performances in terms of R (median values of 0.57 and 

0.58, respectively), while PNPR and CDRD-PNPR provide better R-values (median values of 0.61 

and 0.68, respectively). The integrated product CDRD-PNPR + SM2RASC outperforms the other 

datasets with a median R-value of 0.71. 
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Figure 2.11 - Pearson correlation coefficient (R [–], upper panel) and Root Mean Square Error (RMSE 

[mm], lower panel) maps for CDRD-PNPR (first column), SM2RASC (second column) and CDRD-PNPR + 

SM2RASC (third column) during the validation period (2012–2014) for 1 day of accumulated rainfall. 

(Modified from Ciabatta et al., 2017). 

In terms of RMSE, CDRD shows the highest values (median values of 10.97 mm), probably due to 

the limited number of satellite overpasses over the study area (see previous section). PNPR, CDRD-

PNPR and SM2RASC provide similar performances with median values of about 7.70 mm. 

Product  R (-) RMSE (mm) BIAS (%) POD FAR TS 

CDRD 0.57 10.97 3.65 0.36 0.12 0.34 

PNPR 0.61 7.78 -23.5 0.53 0.17 0.48 

CDRD-PNPR 0.68 7.3 -12.09 0.58 0.17 0.51 

SM2RASC 0.58 7.71 -3.76 0.60 0.39 0.42 

CDRD-PNPR+SM2RASC 0.71 6.62 -8.22 0.75 0.34 0.54 
 

Table 2.3 - Statistics of continuous (Pearson correlation, R, Root Mean Square Error, RMSE and BIAS), and categorical 

performance median scores (Probability Of Detection, POD, False Alarm Ratio, FAR and Threat Score, TS) of the 

different analyzed products during the validation period 2012–2014. (Modified from Ciabatta et al., 2017). 

The integrated product CDRD-PNPR + SM2RASC provides the significantly lower values, i.e., the 

best performance, with a median RMSE of 6.62 mm, showing a reduction of errors of about 15% 

over north-western, central and southern Italy with respect to the parent products. Overall, the 

integrated product (CDRD-PNPR+ SM2RASC) shows the highest performance scores throughout 
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the Italian territory (see Figure 2.11), both in terms of R and RMSE. For the BIAS (see Table 2.3), 

CDRD slightly overestimates rainfall on average, while the other four datasets show a general 

underestimation of rainfall. In order to visualize the agreement of the analysed products with the 

observed data, Figure 2.12 shows the timeseries over the whole validation period of the 5-day (for 

the sake of better visualization) cumulated rainfall calculated for four different areas (A, B, C, and 

D) corresponding to the 4 grid boxes highlighted in black in Figure 2.1.  

 

Figure 2.12 - Timeseries of 5-day cumulated rainfall for all analysed products for the four analysis boxes A, B, C and D 

shown in Figure 1.2 (from top to bottom). The text annotation indicates the Pearson correlation coefficient, R and Root 

Mean Square Error, RMSE (mm), values with respect to the observed rainfall. (Modified from Ciabatta et al., 2017). 
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 All the products reproduce well the observed patterns, although some limitations can be noticed. 

Over box A (northwestern Italy), PNPR, CDRD-PNPR, SM2RASC and the integrated product 

underestimate rainfall, especially during the most intense events (for example the 9–13 October 

2014 flood in Liguria and Piedmont regions, see the CASE STUDIES section). CDRD reproduces 

better the observed trend, with a general overestimation. Box B (northeastern Italy) highlights a 

different scenario: all the analysed products are characterized by high RMSE values (more than 23 

mm) and almost all the intense events are largely underestimated. The underestimation is 

particularly evident during the winter months (especially for the winter season of 2013–2014) when 

the occurrence of snowfall (or the presence of snow at the surface) is more likely (in January–

February 2014 record snowfall season was registered in the north-eastern Alpine region, partly 

included in Box B). In presence of snowfall, with a frozen or snow-covered background, the 

satellite precipitation estimate is affected by large uncertainty. It is worth noting that in snowfall 

conditions also the raingauge measurements used as benchmark are affected by large errors. The 

underestimation is noticeable also in other periods, for example in May of 2013 when very intense 

precipitation occurred in northern Italy for an extended period of time, and a big flood hit several 

areas in Veneto, included in Box B (May 16–19, 2013). While the top-down approaches might not 

be able to correctly capture the orographic enhancement of the precipitation in this area (orographic 

precipitation is associated to larger uncertainty in the PMW top-down approaches), the SM2RASC 

underestimates the precipitation because of soil conditions close to saturation. Box C (central Italy) 

shows an intense rainfall event at the end of 2012 (associated to flood occurred in Tuscany on 10–

12 November 2012) that is not identified by SM2RASC, likely because of the soil conditions close 

to saturation, while it is well captured by the top-down products. The top-down products work very 

well in this region, with R values higher than 0.79. The timeseries over box D shows a general 

overestimation of CDRD, mainly in 2012 and 2013. PNPR, CDRD-PNPR and SM2RASC perform 

quite similarly, underestimating rainfall during the analysis period and not identifying the most 

intense rainfall event at the end of 2013 (flood in Apulia region on November 30-December 2, 

2013). Finally, it is worth underlining that also in this analysis, the integrated product CDRD-PNPR 

+ SM2RASC shows the highest performance scores, both in terms of R and RMSE, for all the 

investigated boxes. 

Categorical scores assessment 

In Ciabatta et al. (2015), the POD, FAR, and TS values are computed by considering percentile 

thresholds based on the observed rainfall distribution at each pixel. The results for 5 days of 

accumulated rainfall are displayed in Figure 2.13. The figure shows that the 3B42-RT product has 

the lowest FAR and POD, probably because of the difficulty in estimating light rainfall, while H05 

has the highest values of POD, mainly when considering the first percentiles. The integrated 

products generally outperform the parent products, providing a small reduction of FAR for higher 

percentiles (>70th percentile) and an increase in the detection of rainfall events (i.e., POD) for 

nearly all the considered thresholds. Consequently, higher TS values are obtained from the 

integrated products for >50th percentiles, that is, for higher rainfall rates that are more of interest 

for hydrological applications addressing flood and landslide prediction. 
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Figure 2.13 - Spatial averages of categorical metrics, computed for 5 days of accumulated rainfall, for the 

analyzed rainfall products (SM2RASC, 3B42-RT, H05, SM2RASC+H05, and SM2RASC+3B42-RT) in the 

validation period (2012–13): (left) FAR, (middle) POD, and (right) TS for a 5-day rainfall accumulation 

threshold. An event is defined as a 5-day rainfall accumulation that exceeds a given percentile threshold of 

all 5-day accumulations observed for a given pixel over the analyzed period. (Modified from Ciabatta et al., 

2015). 

Conversely, in Ciabatta et al. (2017), the categorical scores are evaluated by considering rainfall 

thresholds of 1, 2, 4, 8, 16 and 32 mm/day during the validation period (2012-2014). Figure 2.14 

shows the spatially averaged scores obtained for the different rainfall products (see also Table 2.3, 

last three columns). For each rainfall threshold (based on observed rainfall data), the number of 

identified, missed and erroneously predicted events is estimated.  

 

Figure 2.14 - Spatial average of False Alarm Ratio (FAR, left), Probability Of Detection (POD, middle) and 

Threat Score (TS, right) for the five analyzed products during the validation period (2012-2014) for different 

rainfall thresholds (1, 2, 4, 8, 16 and 32 mm/day). (Modified from Ciabatta et al., 2017) 



2. Assessment and validation of satellite rainfall products 

59 

 

All the rainfall datasets show similar trends with CDRD that provides the lowest FAR, POD and TS 

mainly when considering rainfall classes below 4 mm. PNPR shows FAR, POD ad TS very close to 

those obtained by analysing CDRD-PNPR, with better performance than CDRD alone. SM2RASC 

provides the highest FAR (up to 0.50) for rainfall classes below 8 mm and the lowest POD and TS 

for the rainfall thresholds of 16 and 32 mm/day. The FAR values could be explained in terms of 

noise in the SM satellite data, i.e. the small variations in SM could be related to the impact of noise 

on the satellite retrieval more than to SM variations due to rainfall. POD values, instead, are 

impacted by soil conditions close to saturation during intense rainfall events. The integrated product 

CDRD-PNPR+SM2RASC in general provides the best scores, with the lowest FAR for rainfall 

classes above 8 mm/day, the highest POD for rainfall classes below 8 mm/day (up to 0.73) and the 

best TS for nearly all the rainfall classes. 

Temporal variability of the products performance 

The temporal variability of the product performance is investigated by estimating R and RMSE 

values on a monthly scale in order to evaluate their trends during the entire period (2010–13). 

Specifically, for each month, the temporal R and RMSE values are computed by appending the time 

series of each pixel. Figure 2.15 shows a general agreement between the analyzed products: 

SM2RASC, SM2RASC+3B42-RT, and SM2RASC+H05 show R values between 0.38 and 0.82. 

The other two products show more pronounced fluctuations in R value, between 0.13 and 0.75. All 

products show poor performance values during the winter months (Tian et al. 2009). In terms of 

RMSE, all the considered rainfall products have a similar pattern, with higher values (up to 50mm) 

during winter months and lower values during summer months (due to the RMSE dependency on 

rainfall amount). 
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Figure 2.15 - Monthly (top) correlation coefficient (R) and (bottom) Root Mean Square Error (RMSE) values 

for 5 days of accumulated rainfall for each analyzed product. (Modified from Ciabatta et al., 2015) 

 

The temporal analysis is also carried out by considering each individual season, that is, the entire 

analysis period is split into four different time ranges according to season. For spring the months of 

March–May (MAM) are considered, for summer June–August (JJA), for fall September–November 

(SON), and for winter December–February (DJF). For each period POD, FAR, and TS values are 

calculated (considering 5 days of accumulated rainfall) and averaged in space (over the 2043 grid 

points) and in time (every performance score presents four values, one for each year of the analysis 

period). In this way, one value per season is obtained. In Figure 2.16, the POD and FAR values are 

plotted for each season, considering the 10th and 90th percentile thresholds.  



2. Assessment and validation of satellite rainfall products 

61 

 

  

Figure 2.16 – POD vs FAR plot for each seasonal period considering 5 days of accumulated rainfall. The 

gray lines indicate TS values, the horizontal bars represent the standard deviation of POD, and the vertical 

bars represent the standard deviation of FAR for each analyzed percentile. (Modified from Ciabatta et al., 

2015) 

Specifically, in Figure 2.16, the closer a point is to the lower-right corner of the plot, the better the 

performance is. By contrast, the proximity of a point to the upper-left corner suggests worse 

performance. On this basis, a downward and/or rightward variation implies an improvement. In 

terms of TS, Figure 2.16 highlights that all the rainfall products perform better during the JJA and 

SON period than during MAM and DJF, mainly for the 90th percentile. The parent products (i.e., 

H05 and 3B42-RT) show the lowest performance during the MAM and DJF periods, probably 

because of the tendency of these products to underestimate light rainfall (Kidd and Levizzani 2011). 

In Ciabatta et al. (2017), the seasonal analysis is carried out during the validation period (2012-

2014), by estimating R, RMSE and BIAS for the five analyzed products (Figure 2.17).  In terms of 

R, CDRD, PNPR and CDRD-PNPR show an increasing trend from DJF to SON. This pattern is in 
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agreement with Ebert et al. (2007), who found that satellite rainfall products work slightly worse 

during winter with respect to the rest of the year. SM2RASC provides higher scores during MAM 

period, i.e., in correspondence with the drying period. In fact, during this period, the SM time series 

show a decreasing trend due to higher evapotranspiration and plant water demand. The 

performances of SM2RASC are comparable with those obtained with CDRD. Again, the integrated 

product outperforms the other datasets during all the seasons. With respect to RMSE, all the rainfall 

datasets show an increase in the errors during SON, due to the more intense rainfall regime. As 

highlighted by the previous analysis, CDRD shows the highest RMSE, while PNPR, CDRD-PNPR 

and SM2RASC have similar values. Also in this case, CDRD-PNPR + SM2RASC has the lowest 

RMSE values during all the seasons. In terms of BIAS, it can be seen that CDRD underestimates 

rainfall (about -25%) during DJF, while it overestimates precipitation during JJA (about +25%). 

This trend provides the almost ‘‘unbiased” rainfall estimates obtained during the validation period 

(see Table 2.1). PNPR and CDRD-PNPR overestimate rainfall during JJA, while underestimate 

rainfall during the other three seasons (up to -50% and -45%, respectively, during DJF). SM2RASC 

underestimates rainfall from March to November with maximum value of -15% during JJA. 

SM2RASC is found to provide the lowest BIAS (in magnitude) throughout the four seasons. The 

integration between CDRD-PNPR and SM2RASC provides more accurate rainfall estimates with 

respect to top-down products but less accurate with respect to SM2RASC. Indeed, due to the high 

values of the integration weights (Eq. 2.2), the performance of the CDRD-PNPR + SM2RASC is 

impacted mainly by the BIAS of CDRD-PNPR.  

 

Figure 2.17 - Pearson correlation coefficient (R [–], upper panel), Root Mean Square Error (RMSE (mm), 

middle panel) and percentage BIAS (lower panel) for the five analyzed products on a seasonal scale during 

the whole validation period (2012–2014). Ciabatta et al. (2017). 

Case studies 

To visualize the temporal variability of rainfall products, two representative time series are reported 

in Figure 2.18. Specifically, two pixels are selected throughout the study area, in order to show 

good and bad integration results in the calibration and validation period. The pixels are chosen by 
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considering the RMSE difference between the parent and the integrated products for 5 days of 

accumulated rainfall during the calibration period. Figures 2.18a and 2.18b show the bad 

integration results with RMSE values equal to 25.59 and 34.93mm for the SM2RASC+3B42-RT 

and SMR2ASC+H05 products, respectively, while the parent products (i.e., 3B42-RT and H05) 

provide RMSE values equal to 26.08 and 37.43mm. As can be seen from the plot, the integrated 

products’ time series are characterized by a general underestimation during both the calibration and 

validation periods. 

 

Figure 2.18 - Time series for the two selected pixels throughout the study area, showing (a), (b) bad 

integration results and (c), (d) good results in terms of the variation in RMSE after the integration. (a) 

Results for H05 and SM2RASC1H05 (RMSE values of 37.43 and 34.93 mm, respectively) and (b) results for 

3B42-RT and SM2RASC13B42-RT (RMSE values of 26.08 and 25.59 mm, respectively) for 5 days of 

accumulated rainfall. (c) Results for H05 and SM2RASC+H05 (RMSE values of 46.91 and 21.30 mm, 

respectively) and (d) results for 3B42-RT and SM2RASC+3B42-RT (RMSE values of 41.24 and 21.26 mm, 

respectively). (Modified from Ciabatta et al., 2015) 
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The pixel is chosen over a mountainous area where the parent products are affected by many 

factors, such as the presence of snow/frozen soil and complex topography, and they do not provide 

good performance separately. As a result, their integration does not yield a satisfactory score. In 

contrast, Figures 2.18c and 2.18d plot the time series for the good integration results. The RMSE 

values for the integrated products are 21.26 and 21.30mm, for SM2RASC+3B42-RT and 

SMR2ASC+H05, respectively, while the parent products show nearly double RMSE values equal to 

41.24 and 46.91mm. Figures 2.18c and 2.18d show a general agreement between the observed and 

the integrated products, confirming the capability of the SM2RAIN method to correctly estimate 

rainfall and the usefulness of the proposed integration procedure that allowed for a more reliable 

rainfall dataset by partially overcoming the satellite issues related to light rainfall estimation. In 

Ciabatta et al. (2017), 6 case studies are analyzed by comparing the spatial patterns of rainfall 

provided by the five rainfall products with respect to the observed benchmark. The first two cases 

refer to the year 2011, included in the calibration period of SM2RASC and of the integration 

coefficient (Eq. 2.2) used for CDRD-PNPR + SM2RASC. The other four cases refer to rainfall 

events occurred in the four areas selected for the timeseries analysis, and already evidenced in the 

analysis of Figure 2.12. Details about the selected case studies are reported in Table 2.4. The 

results are shown in Figure 2.19, where the maps of the cumulated rainfall obtained from each 

product for the time frame corresponding to each event are shown. All the analysed products 

reproduce the observed rainfall fields with some limitations.  

Event # Date Area (Box) Maximum cumulated 

rainfall (mm) 

1 15–18 March 2011 North and Central 

Italy (A, B, C) 

239.07 

2 5–8 November 2011 Northern Italy, 

Campania, Sardinia (A, B) 

417.06 

3 10–12 November 2012 Central (Tuscany) (C) 442.26 

4 16–19 May 2013 North-east (Veneto) (B) 351.01 

5 30 November–2 

December 2013 

South (Apulia) (D) 248.88 

6 9–13 October 2014 North-west (Liguria-Piedmont) (A) 349.71 

Table 2.4 - Rainfall events occurred in Italy within the period 2011–2014 for the case studies analysis. For each event, the 

maximum cumulated rainfall, calculated during the rainfall event, is reported. 
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The underestimation of rainfall is the most common issue that heavily affects the retrieval, in 

particular by SM2RASC in cases of extensive floods (i.e., the 10–12 November 2012 flood in 

Central Italy, and the 16–19 May 2013 flood in Veneto), and PNPR, CDRD-PNPR (and to a less 

extent by CDRD) in the north-east and in the Alpine regions (i.e., 15–18 March 2011 and 16–19 

May 2013). In other cases, the top-down approaches (CDRD, or PNPR or CDRD-PNPR) are able to 

identify quite well the areas of heavy precipitation (i.e., in the north-west in the 5–8 November 

2011 and in the 9–13 October event), although in some cases overestimation by CDRD is evident 

(i.e., Sardinia and Central Italy on 5–8 November 2011). By integrating all the available 

information, CDRD-PNPR+SM2RASC provides rainfall estimates closer to the observed ones, 

during almost all the analyzed events. Only for the fourth event (16–19 May 2013), rainfall is  

 

Figure 2.19 - Cumulated rainfall maps for some important rainfall events in the study period listed in Table 

2.4. The first column represents the observed rainfall data, while the other five columns the maps obtained 

by the satellite rainfall products considered in the study. The color bar refers to the cumulated rainfall [mm] 

over the time period considered for each case in Table 2.4. (Modified from Ciabatta et al., 2017) 
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underestimated also by the integrated product, as already discussed in the analysis of Figure 2.12. It 

is worth noting the good agreement with the observations of the integrated product for the two 2011 

events (1 and 2 in Table 2.4), showing the importance of the calibration procedure on SM2RASC 

and on the computation of the weights in Eq. 2.2 for the integration of SM2RASC with CDRD-

PNPR. The presented case studies highlight the benefits due to the integration in different rainfall 

regimes.  
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2.2 Validation on a global scale 

________________________________________________________________________________ 

This section shows the results of the assessment on a global scale a new derived SM-derived rainfall 

product. Specifically, the SM2RAIN algorithm is applied to the ESA Climate Change Initiative 

(CCI) SM products in order to obtain a long-term rainfall dataset. This section is based on the 

publication: 

 

Ciabatta, L., Massari, C., Brocca, L., Gruber, A., Reimer, C., Hahn, S., Paulik, C., Dorigo, W., 

Kidd, R., Wagner, W. (2018). SM2RAIN-CCI: a new global long-term rainfall data set derived from 

ESA CCI soil moisture. Earth System Science Data, 10, 267-280. 

________________________________________________________________________________ 
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Dataset 

Rainfall datasets 

In the study, five state-of-the-art rainfall products including models, satellite-based and ground-

based observations are intercompared with the new SM2RAIN-CCI data set. In particular, the two 

following products are considered as benchmark:  

1) the Global Precipitation Climatology Centre Full Data Daily (GPCC-FDD) product 

(Schamm et al., 2015), available at 1° spatial sampling during the period 1988-2013 (ground based 

data set) at daily temporal resolution, used for calibrating SM2RAIN; 

2) Multi-Source Weighted-Ensemble Precipitation (MSWEP, Beck et al., 2017), available from 

1st January 1979 to 31st December 2015 at 0.25° spatial sampling on a daily basis (combination of 

models, ground measurements and satellite observations), used as independent benchmark for the 

yearly global analysis.  

Three rainfall data sets are additionally used for cross-comparison with the SM2RAIN-CCI product: 

1) TMPA 3B42RT (hereinafter referred to as TRMMRT), available from 1st March 2000 to 

present at 0.25° spatial resolution for the ± 50° latitude band every 3 hours (only satellite); 

2) Climate Prediction Center Morphing Technique (CMORPH, Joyce et al., 2004) raw data 

(hereinafter referred to as CMORPH), available from 1st January 2000 to present at 0.25° spatial 

resolution for the ± 60° latitude band every 3 hours (only satellite); 

3) ERA-Interim reanalysis product, available from 1st January 1978 to present at 0.77° spatial 

sampling on a daily basis (Dee et al., 2011) (reanalysis). 

Due to the different spatial sampling and coverage (both in space and in time), the assessment is 

carried out during the period 1998-2013 for the ± 50° latitude band (due to data availability 

TRMMRT and CMORPH are considered starting from 2000).  A more detailed description of the 

analysed rainfall products is reported below. For TRMMRT, CMORPH and ERA-Interim data, the 

reader is referred to the previous sections.  

The GPCC-FDD data set is a gauge-based product. The number of stations used in the data set 

varies throughout the years. In total, data from more than 60000 stations are used. GPCC-FDD is 

provided on a global scale over a grid with 1° spatial sampling and on a daily basis. The product is 

available for the period 1988-2013. Here, GPCC-FDD is used as benchmark because it is 

completely independent from any satellite data and it does not contain any missing values (Herold 

et al., 2017). For further details, the reader is referred to Schamm et al. (2015). 

MSWEP is a recently developed rainfall data set that combines precipitation information from 

several sources, including GPCC-FDD, TRMMRT, CMORPH and ERA-Interim. The estimates 

obtained through satellite sensors, global models and in-situ stations are merged by the use of 

integration weights. The product is available from 1979 to 2015 with a spatial sampling of 0.25°. 

More information about MSWEP can be found in Beck et al. (2016). 

Satellite soil moisture data 

The ESA CCI (http://www.esa-soilmoisture-cci.org/) provides long-term SM data sets for the 

period 1978-2015 (Liu et al., 2011; Dorigo et al., 2015; Dorigo et al., 2017). The products are 

http://www.esa-soilmoisture-cci.org/
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provided on a global scale with a spatial sampling of 0.25° with daily temporal sampling in three 

different configurations. The passive microwave product (hereinafter referred to as “PASSIVE“) is 

provided for the period 1978-2015 and it is generated by merging SM products derived from the 

Scanning Multichannel Microwave Radiometer (SMMR, operating at 6.6 and 10.7 GHz, Owe et al., 

2001), the Special Sensor Microwave Imager (SSM/I, operating at 19.35 GHz, Owe et al., 2008), 

the TRMM Microwave Imager (TMI, operating at 10.65 GHz and above, Gao et al., 2006), the 

Advanced Microwave Scanning Radiometer  - Earth Observing System (AMSR-E, operating at 6.9 

and 10.65 GHz, Owe et al. 2008) and its successor AMSR2 (operating  at 6.93, 7.3 and 10.65 GHz),  

WindSat (operating between 6.8 and 37 GHz, Li et al., 2010 and Parinussa et al., 2012) and the 

ESA Soil Moisture and Ocean Salinity mission (SMOS, Kerr et al., 2012). Although the PASSIVE 

data set is obtained by considering some of the sensors used for creating the TMPA products, this 

will not impact the comparison between TRMMRT and SM2RAIN-CCI as different microwave 

frequency are taken into account for rainfall estimation. The Active data set (hereinafter referred to 

as “ACTIVE”) is provided for the period 1991-2015 and it is generated by merging active 

microwave satellite retrievals from the European Remote Sensing satellites (ERS-AMI, operating at 

5.3 GHz) and from the Advanced Scatterometer (ASCAT, operating at 5.255 GHz, Wagner et al., 

2013) onboard the Metop-A and -B satellites. The third data set (hereinafter referred to as 

“COMBINED”) is obtained by merging the ACTIVE and PASSIVE products. The merging of the 

individual data sets is performed by means of a weighted averaging which is parameterized using a 

triple collocation (TC, Stoffelen, 1998) approach (Gruber et al., 2017). In this study, we consider 

the ESA CCI SM product at version v03.2. For further details regarding the ESA CCI SM product 

development, sensors availability and performances the reader is referred to Liu et al., (2011; 2012), 

Dorigo et al., (2015; in 2017) and Wagner et al., (2012). 

ESA CCI SM data preprocessing 

Before applying SM2RAIN algorithm the following preprocessing steps are applied to the ESA CCI 

SM data sets. A static mask (Figure 2.20) is used to mask out periods with high frozen soil and 

snow probability, rainforest areas and areas with high topographic complexity. The latter two are 

provided within the ESA CCI SM data portal. Notice that deserts are particularly challenging for 

SM retrieval from active instruments. Therefore, we use the passive data set only in such areas, 

which typically provides more reliable retrievals over desert areas (Dorigo et al., 2010). Moreover, 

a dynamic mask is applied to SSM data on a daily basis in order to remove observations 

characterized by issues in the retrieval (frozen soil, dense vegetation). This mask is provided 

alongside with each of the ESA CCI SM products. After the application of the dynamic mask, many 

temporal gaps are found within the SM time series.  In order to reduce the data gaps, the time series 

are interpolated to 00:00 UTC.  
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Figure 2.20 – Data mask used for remove areas (red areas) characterized by issues in the soil moisture 

retrieval. 

A maximum data gap of three days is considered for the temporal interpolation. Data gaps larger 

than three days are left empty, i.e., no rainfall estimation is carried out within these intervals. Prior 

to 1998, the SM data sets are characterized by a low temporal coverage and a reduced data quality 

(Dorigo et al., 2015). Thus, the SM2RAIN-CCI product is generated only for the period 1998-2015. 

The original ACTIVE and PASSIVE CCI SM data sets are read and preprocessed by using routines 

developed in Python® language by the TUWIEN Remote Sensing Research Group (Ciabatta et al., 

2016b). After the preprocessing steps, the ESA CCI SM data are ready to be used as input in 

SM2RAIN. 

SM2RAIN-CCI rainfall product generation 

The SM2RAIN parameters are obtained by minimizing the Root Mean Square Difference (RMSD) 

between the 5-day estimated rainfall and the GPCC-FDD data during three calibration periods 

1998-2001, 2002-2006, 2007-2013 on a pixel-by-pixel basis. We considered 5-day of accumulation 

to reduce the amount of data and speed-up the calibration step. The use of different calibration 

periods relies on the different data and sensors that we used for building the ACTIVE and 

PASSIVE SSM data sets (Table 2.5, see also Dorigo et al., 2012). The calibration is performed on a 

pixel-by-pixel basis separately for ACTIVE and PASSIVE. SM2RAIN was also applied to the 

COMBINED SSM data set, but we observed a reduction of performance with respect to the 

individual ACTIVE and PASSIVE products (not shown), hence the COMBINED SSM data set is 

not considered here.  
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Sensor (Active/Passive) Temporal interval 

AMI-WS / SSMI & TMI 1998-01-01 to 2002-06-30 

AMI-WS / AMSR-E 2002-07-01 to 2006-12-31 

ASCAT-A & ASCAT B / 

AMSR-E & Windsat & SMOS 

& AMSR2 

2007-01-01 to 2013-12-31 

AMI-WS / SSMI & TMI & 

AMSR-E 

1992-01-01 to 2006-12-31 

ASCAT-A & ASCAT-B / 

AMSR-E & Windsat & SMOS 

& AMSR2 

2007-01-01 to 2013-12-31 

Table 2.5 – Available sensors and temporal intervals considered for the SM2RAIN algorithm application. 

 

In order to match the different spatial resolutions of the considered data sets, GPCC-FDD was 

regridded to the 0.25° CCI grid by using the griddata function implemented in MATLAB® R2012a, 

through linear interpolation. After the application of SM2RAIN to the ACTIVE and PASSIVE SM 

data sets, the two obtained rainfall products are integrated through: 

PASACTCCIRAINSM PkkPP )1(2                                           (2.6) 

where PACT and PPAS are the two rainfall data sets obtained through the application of SM2RAIN 

to the ACTIVE and the PASSIVE SM data sets, respectively, and PSM2RAIN-CCI is the final 

SM2RAIN-CCI rainfall data set. The integration weights (k) are estimated through (Kim et al., 

2015): 
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Where ρ is the Pearson correlation coefficient between two data sets with the subscript A, P and B 

denoting the ACTIVE, the PASSIVE and the benchmark (GPCC-FDD in this case) rainfall 

estimates, respectively. When one of the two data sets (PACT or PPAS) is not available at a certain 
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location (e.g., due to unfavourable retrieval conditions), then only the available one is used for the 

generation of the combined rainfall product. The workflow is depicted in Figure 2.21.  

 

Figure 2.21 - Analysis framework 

Results 

SM2RAIN-CCI performance 

The SM2RAIN-CCI rainfall data set is available from 1st of January 1998 to 31st December 2015 

with daily temporal resolution. The data are provided over a 0.25° grid on a global scale, given the 

native spatial resolution of SM observation of 25 and 50 km. The spatio-temporal coverage is 

reported in Figure 2.22. As it can be seen, there is an increase of available data after 2002 and 

2007, corresponding to the start of the AMSR-E and ASCAT operations, respectively. Before 2002, 

the ESA CCI SM products are characterized by a small amount of data, due to longer revisit times 

of the used satellites. Before that date, the rainfall estimates obtained through SM2RAIN should be 

used with caution because of the likelihood of missing precipitation events. The lack of data over 

tropical areas and at high latitudes is due to the application of the mask described above. Figure 

2.22 also shows the mean daily rainfall for the SM2RAIN-CCI data set during the analysis period. 

As it can be seen, an increase in the daily values can be observed after 2007, especially over the 

tropical areas, where the seasonality is well reproduced, due to the higher number of satellite 

overpasses.  
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Figure 2.22 – Hovmoller plot showing the spatial-temporal data availability, in percentage of the total 

annual available data (upper panel) and the mean daily rainfall (lower panel) of the SM2RAIN-CCI rainfall 

data set for different latitude bands. 

When compared to the GPCC-FDD rainfall data set, SM2RAIN-CCI shows relatively good 

performance for 5-day rainfall accumulation both in terms of correlation and RMSD, as drawn in 

Figure 36 for the ±50° latitude bands during the three calibration periods at 1° of spatial resolution, 

in order to perform a fair comparison with the benchmark. SM2RAIN-CCI rainfall shows relatively 

good agreement with GPCC-FDD, especially over Africa, Australia, India and South America in 

terms of correlation (R). The RMSD pattern is related to the rainfall regimes. The highest values are 

located in those regions characterized by high total annual precipitation, e.g. tropical areas. The 

comparison also provides better performance for the 2007-2013 period than for the 1998-2001 and 

2002-2006 periods due to the better temporal coverage of the ESA CCI SM products and their 

improved accuracy (Dorigo et al., 2015). As it can be seen in Figure 2.23, the median R (RMSD) 

obtained for the 1998-2001 calibration period is 0.54 (10.94 mm), while for the 2007-2013 period, a 
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median value of 0.65 (9.6 mm) is obtained. Indeed, due to the nature of the SM2RAIN algorithm, 

more frequent satellite overpasses are expected to provide more reliable rainfall estimates. 

SM2RAIN-CCI shows a lower performance over the Sahara Desert and at high latitudes, due to 

lower SM data quality over these regions. Figure 2.23 also displays the lower performances 

obtained for the eastern US. A similar performance pattern was also found by Massari et al. (2017) 

who calculated global correlation of different rainfall data sets by applying the Extended TC 

(McColl et al., 2014) analysis. A cross-comparison of SM2RAIN-CCI with GPCC, TRMM, 

CMORPH, ERA-Interim and MSWEP is reported in Figure 2.24. The Figure displays the 1°x1° (± 

50°) correlation maps of 5 day of accumulated rainfall (on the left) and the differences in the mean 

annual rainfall (on the right) between SM2RAIN-CCI and the other rainfall data sets. The 

difference in the mean annual rainfall are calculated by subtracting the mean annual rainfall of each 

data set to the one provided by SM2RAIN-CCI.  The analysis shows that SM2RAIN-CCI rainfall 

estimates are in good agreement with the state-of-the-art data sets both in terms of R and mean 

annual rainfall. Non-negligible differences can be observed over the Sahara Desert, Eastern US, 

South America, the tropical area and over Europe, where SM2RAIN-CCI provides a smaller 

amount of rainfall than the other rainfall data sets. On the other hand, very good performance can be 

observed over Africa, Brazil, western US, India and Australia, both in terms of R and mean annual 

rainfall. 

 

Figure 2.23 – Global Pearson correlation (left) and Root Mean Square Difference (right) maps obtained 

between GPCC-FDD and the SM2RAIN-CCI rainfall data set for 5-day accumulated rainfall during the 

periods 1998-2001 (upper panel), 2002-2006 (middle panel) and 2007-2013 (lower panel). 
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Figure 2.24 – Correlation maps for 5 days of accumulated rainfall (left column) and differences in mean 

annual rainfall (right column) obtained by comparing (from top to bottom) SM2RAIN-CCI and GPCC (a), 

SM2RAIN-CCI and TRMMRT (b), SM2RAIN-CCI and CMORPH (c), SM2RAIN-CCI and ERA-Interim (d) 

and SM2RAIN-CCI and MSWEP (e) at 1° of spatial resolution. 
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Seven macro-regions worldwide are selected to check the capability of the SM2RAIN-CCI in 

estimating rainfall under different climatic conditions. Therefore, mean monthly rainfall (MMR) 

was computed from GPCC-FDD and SM2RAIN-CCI during the period 1998-2013 within these 

regions, illustrated as green boxes in Figure 2.25. From Figure 2.25, one can see that the temporal 

rainfall patterns agree well in all considered macro-regions. SM2RAIN-CCI provides a general 

underestimation before 2007, due to the increased number of data gaps. Indeed, if the GPCC-FDD 

MMR is estimated only when SM observations are available (i.e. when both GPCC-FDD and 

SM2RAIN-CCI provide a rainfall estimate), the two estimates are very close to each other, for the 

entire analysis period.  

 

Figure 2.25 – Mean Monthly Rainfall estimated by GPCC-FDD (blue line) and the new CCI-derived rainfall 

data set (red line) over the six analysis boxes throughout North America (A), South America (B), Europe (C), 

Sahel (D), Asia (E), India (F) and Australia (G) during the period 1998-2013. The blue lines draw the Mean 

Monthly Rainfall estimated by GPCC-FDD when both a ground-based and a SM-derived rainfall estimate is 

available. 
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SM2RAIN-CCI performance over time 

Figure 2.26 shows box plots of R and RMSD values between SM2RAIN-CCI and MSWEP on a 

yearly scale. The use of an independent benchmark removes the effect of the algorithm calibration 

against GPCC-FDD data set and (partly) the effect of in situ stations density on the benchmark 

reliability. The comparison is carried out over the ± 50° latitude band. The SM2RAIN-CCI rainfall 

product generally agrees well with MSWEP. An increasing trend in the performance can be 

observed over time during the analysis period, highlighting the impact of data availability on 

estimation uncertainty. The most significant improvements can be observed in 2003 and 2007, 

corresponding to the start of AMSR-E and ASCAT operations, respectively. Figure 2.35 shows that 

the SM2RAIN-CCI product provides the lowest R (0.57) during 2001 and the highest (0.80) during 

2013. Similar patterns are found for the RMSD score. The improvements are not just recognizable 

in the median values, but also in the spread of R and RMSD values within each year.    

 

Figure 2.26 –  Yearly boxplots for the correlation coefficients (R) and Root Mean Square Differences 

(RMSD, in mm) between SM2RAIN-CCI and MSWEP obtained on a global scale at 0.25° spatial resolution 

during the period 1998-2015. For each box, the red line represents the median values, the blue box the 25th 

and 75th percentile, while the black dotted whiskers extend to the most extreme data points. 

Regional scale assessment 

For the regional scale assessment, three macro-areas with a high rain gauge station density are 

selected, which are Europe, India, and Australia. SM2RAIN-CCI estimates are compared against 

data from these ground-based measurements on the 0.25° scale. The comparison over Europe is 

carried out by considering the so-called E-OBS rainfall data set (Haylock et al., 2008) as 

benchmark. This data set provides daily rainfall estimates over the European area at 0.25° spatial 

resolution starting from 1950. The estimates are obtained by interpolating via a three-step kriging 

procedure rainfall values from gauge stations over Europe. For this analysis, we consider the region 

between -9.875°W and 24.875°E longitude and between 28.125°N and 59.875°N latitude. Due to 

the TRMM orbit geometry, the considered TRMMRT data set covers only the area between 
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28.125°N and 49.875°N latitude.  The analysis is carried out during the period 2002-2015, in order 

to avoid to consider partly the data calibrated during the period 1998-2001. Figure 2.27 shows R 

and RMSD statistics against E-OBS for 5 days accumulated rainfall. As can be seen, SM2RAIN-

CCI provides a median R lower than 0.5, close to that provided by TRMMRT and CMORPH. All 

rainfall products show a large variability in terms of R, ranging between -0.4 and almost 1. In terms 

of RMSD, all the products show median values close to 10 mm, with values ranging approximately 

between 5 and 20 mm. ERA Interim provided very good performance, both in terms of R and 

RMSD, due to the use of dense meteorological networks in Europe that guarantees good 

performance of the ERA-Interim reanalysis product. It is worth noting that ERA-Interim does not 

use raingauge data, but only other meteorological variables. MSWEP provided the best performance 

over Europe, due to the merging of different rainfall products. In general, SM2RAIN-CCI performs 

quite well in southern Europe (Italy, Spain and southern France). In central and northern Europe, 

observations are subject to a high selective masking of frozen soil and snow, which reduces the 

temporal observation density and hence also the SM2RAIN retrieval accuracy. 

 

Figure 2.27 – Correlation coefficient (left) and Root Mean Square Difference (RMSD, right) box plots 

obtained by comparing SM2RAIN-CCI (in red), TRMMRT (in green), CMORPH (in blue), ERA-Interim (in 

black) and MSWEP (in magenta) with gauge-based data sets over Europe (top), India (middle) and Australia 

(bottom). 
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The analysis over India is carried out during the period 2002-2015 using observed rainfall data 

provided by the India Meteorological Department (IMD). The considered region spans from 70°E 

to 90°E longitude and from 5°N to 25°N latitude. As can be seen in Figure 2.27, R values are 

generally higher than those obtained over Europe, most likely due to the strong seasonal signal. The 

SM2RAIN-CCI data set shows a median R of 0.60, which is slightly lower than that achieved by 

TRMMRT, CMORPH, ERA Interim and MSWEP. In terms of RMSD, values are generally higher 

than over Europe, which result from the larger annual precipitation amount. SM2RAIN-CCI 

performs very well over India, and is less reliable along the coast and in the Northern parts of the 

country due to the impact of the Himalaya. 

Over Australia, the Australian Water Availability Project (AWAP) observed rainfall data during the 

period 2010-2013 is used as benchmark. The analysis box spans from 120°E to 160°E longitude and 

from 10°S to 40°S latitude. The analysis shows very good results both in terms of R and RMSD 

(Figure 2.27). SM2RAIN-CCI provides a median R of 0.71 which is higher than that obtained with 

TRMMRT and CMORPH. Moreover, R values are consistently higher than 0.5 in the entire macro-

region. In terms of RMSD, median value of 11.90 mm is obtained for SM2RAIN-CCI, while 

TRMMRT and CMORPH provided median values of 16.56 mm and 13.52 mm, respectively. The 

large variability of errors is related to the different rainfall regimes in Australia, i.e. tropical climate 

in the northern sector and drier conditions in the inland part. In tropical rainfall regimes, the 

SM2RAIN algorithm is often subject to close-to-saturation soil conditions, which lead to a general 

underestimation of precipitation. Results are consistent with those of Tarpanelli et al., (2017) over 

India.
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________________________________________ 

3.HYDROLOGICAL VALIDATION 

________________________________________ 

 

The hydrological validation of satellite rainfall products is carried out over some basins in Italy, to 

further assess their quality and reliability. The use of satellite-based rainfall data in the 

hydrological modeling is a challenging task, as rainfall estimation is impacted by several factors 

(see previous sections). These errors have a significant impact on the hydrological simulation and 

propagates forward in time for several months. As a result, any short period in which rainfall 

estimates are less accurate produces remarkable errors in the simulation of discharge through 

rainfall-runoff modeling. While a large amount of work is carried out to quantify these errors, 

comparatively, little work is done to quantify the implications of these errors on derived predictions 

of hydrological models. Because of the strong nonlinearities of hydrological models, precipitation 

errors can be amplified or dampened in flood simulations and this response likely depends upon the 

interactions between the model itself and the quality of the underlying satellite rainfall product. In 

order to quantify the impact of satellite rainfall data into hydrological modeling, the use of ad-hoc 

model recalibration, bias correction, and rainfall integration are tested over river basins 

characterized by different morphologic features, size, geographical areas and climatic conditions.  

________________________________________ 
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3.1 Rainfall-runoff modelling over Italy 

________________________________________________________________________________ 

This section shows the performance of satellite rainfall products over four basins in Italy. A semi-

distributed model is forced with TMPA 3B42RT and SM2RAIN derived rainfall data. The 

simulated discharge time series are then compared with observed data in order to assess the 

feasibility of using remotely sensed information. The integration of ground- and satellite-based 

rainfall data is investigated as well. the following section is based on the publication: 

 

Ciabatta, L., Brocca, L., Massari, C., Moramarco, T., Gabellani, S., Puca, S., Wagner, W. (2016a). 

Rainfall-runoff modelling by using SM2RAIN-derived and state-of-the-art satellite rainfall products 

over Italy. International Journal of Applied Earth Observation and Geoinformation, 48, 163-173. 

________________________________________________________________________________ 
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Study areas 

Four basins throughout the Italian territory are considered in this analysis, specifically the Brenta, 

the Tanaro (Northern Italy), the Tiber (Central Italy) and the Volturno (Southern Italy) basins. The 

elevation maps reported in Figure 3.1, and the main features listed in Table 3.1, highlight the 

differences between the basins: Tanaro is the biggest basin and is characterized by a mountainous 

area upstream and a large flood plain downstream. Brenta is the smallest one, mainly mountainous 

and it is characterized by the highest rainfall regime (see Table 3.1). These two first basins are 

characterized by mountainous areas where snow fall might occur during winter. Tiber basin is 

characterized by a quite large flood plain in the central area of the basin surrounded by hills and it 

has the lowest rainfall regime.  

 

 

 

 

 

 

 

 

 

 

Figure 3.1 – Geographical location and elevation of the a) Tanaro River basins, b) Brenta River basin, c) 

Tiber River basin and d) Volturno River basin (not in scale). 

 

Volturno basin is mainly flat with the presence of some low elevation mountains in the southern 

part of the basin. The basins are selected in four sectors of the Italian territory (North-Eastern, 

North-Western, Central and Southern Italy) in order to investigate different physiographic and 

climatic conditions. Moreover, basin selection is driven from the availability of good quality 

meteorological and discharge observations (based on the study by Massari et al., 2015), and from 

the suitability of the employed hydrological model, MISDc, as it does not incorporate a snow 

melting module. 
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Basin 

Gauging 

station 

Area 

(km2) 

MAR 

(mm) 

MAT 

(°C) 

Average 

altitude  

(m a.s.l.) 

Average 

slope (°) 

Tanaro Asti S. Martino 3229.7 1125 8.94 1025 15.59 

Brenta Berzizza 1506.3 2123.8 7.04 1239 22.53 

Tiber Ponte Felcino 1879 967.76 13.22 518 10.76 

Volturno Solopaca 2578.8 1208.1 13.33 543 8.80 

Table 3.1 - Main characteristics of the investigated basins: gauging station, drainage area, Mean Annual Rainfall (MAR), 

Mean Annual Temperature (MAT), average elevation (in m a.s.l.) and average slope (in °). 

 

Rainfall products 

Ground-based rainfall, temperature and discharge data at hourly temporal resolution are provided 

by the Italian hydrometeorological network of the National Civil Protection Department. For a 

complete description of the observed dataset, the reader is referred to Massari et al. (2015). 

Specifically, the observed rainfall dataset is provided by the interpolation of more than 3000 

raingauges throughout the Italian territory (Ciabatta et al., 2015). 

The SRPs considered in this study are the TMPA 3B42-RT product (Huffman et al., 2007), 

hereinafter TMPA, and the dataset obtained by applying the SM2RAIN algorithm (Brocca et al., 

2013; 2014) to the Advanced SCATterometer (ASCAT) SM data (Wagner et al., 2013), hereinafter 

SM2RASC. 

The TMPA product combines rainfall estimates from various satellite sensors. The multi-satellite 

platform uses TRMM Microwave Imager (TMI), the Special Sensor Microwave Imager (SSM/I) 

onboard Defense Meteorological Satellite Program (DMSP) satellites, the Advanced Microwave 

Scanning Radiometer-Earth Observing System (AMSR-E) and the Advanced Microwave Sounding 

Unit-B (AMSU-B) onboard the National Oceanic and Atmospheric Administration (NOAA) 

satellites. In addition, the TMPA product also uses geostationary (GEO) satellite infra-red (IR) data, 

characterized by higher spatial and temporal resolution than the Microwave (MW) sensors, through 

a constellation of GEO satellites. The TMPA product is provided by the National Aeronautics and 

Space Administration (NASA, http://trmm.gsfc.nasa.gov/) with a temporal resolution of 3 hours and 

a spatial resolution of 0.25° for the ± 50° North-South latitude band. Although a gauged corrected 

TMPA 3B42 product version is also available, in this study such product is not used in order to 

evaluate the feasibility of using SRPs in an operational framework, i.e., for real-time flood 

forecasting. 

The second dataset is obtained by the application of the SM2RAIN algorithm (Brocca et al., 2013, 

2014; Ciabatta et al., 2015) to the Surface Soil Moisture (SSM) product obtained from ASCAT 

(Wagner et al., 2013), a scatterometer operating at 5.3 GHz onboard MetOp A and B satellites. 

Specifically, the Water Retrieval Package (WARP) 5.51 product is used in this study to estimate 

rainfall from SM data. The product has a resolution of 25 km (resampled at 12.5 km, Wagner et al., 

2013) and is provided within the H-SAF project (http://hsaf.meteoam.it). For more details about 

SM2RAIN algorithm, the reader is referred to (Brocca et al., 2013, 2014; Ciabatta et al., 2015), 

http://trmm.gsfc.nasa.gov/
http://hsaf.meteoam.it/
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while a first application using the algorithm SM2RAIN for flood prediction through in situ SM data 

can be found in Massari et al. (2014). In this study, the same SM2RAIN-derived product as 

considered in Ciabatta et al. (2015) is employed. 

Both SRPs and the observed rainfall data are remapped over a grid with spacing of 12.5 km, using 

the nearest neighbor algorithm. As described in Ciabatta et al., (2015), the selected spacing is a 

compromise between the resolution of the different rainfall datasets and it was found to not 

significantly affect the results. The one-day cumulated rainfall at 00:00 UTC+1 for each analyzed 

dataset is considered in this study. Although TMPA data are provided within a time window ± 90 

minutes from the nominal time (0000,0300,…,2100 UTC), all the remaining data are released in 

local time, i.e. UTC +1. This allows to compare TMPA data with the other datasets with only 30 

minutes of delay. 

In order to match the different temporal resolutions, the analysis is carried out at a daily time scale, 

and hence, the mean observed discharge, mean temperature and the accumulated rainfall during one 

day are computed and considered in the sequel. 

Bias correction 

In order to take into account, the systematic errors due to the indirect measurement of rainfall by 

satellite sensors (Kucera et al., 2013), a bias correction is applied to each SRP. The applied 

correction allows to match the mean and the standard deviation of SRPs with the observed rainfall 

data. The correction applied in this study is expressed by: 
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where 
corrP  is the bias corrected SRP, 

satP  is the original SRP, satP  is the temporal mean of SRP, 

sat  is the standard deviation of SRP, obsP  is the temporal mean of observed rainfall, and obs  is 

the standard deviation of observed rainfall. This formulation, originally applied by Draper et al. 

(2009) and Brocca et al. (2011a) to satellite SM data, is simple to implement in an operational 

framework and allows to correct the bias of SRPs. The correction is applied in the calibration period 

before the computation of the mean areal rainfall. In the validation period, the same correction is 

applied without changing the correction coefficients. 

Mean areal rainfall 

The mean areal rainfall for each basin is obtained by considering the contribution of each pixel 

inside the basin by using the following equation: 
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                                                                  (3.2) 

where 
AP  is the mean areal rainfall amount, pi is the rainfall for the pixel i within a polygon of area 

ai that represents the portion of the basin area covered by the pixel i, and Atot is the total basin area. 

Integration scheme 

The integration of satellite and ground observed rainfall datasets is carried out by using the 

following nudging scheme: 
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  )()()()(int tPtPKtPtP satobssat   (3.3) 

where t is the time, Pint is the integrated rainfall, Psat is the satellite rainfall, Pobs is the observed 

rainfall, and K is the weight factor that ranges between 0 and 1. For K=1, only the observed rainfall 

is considered, while for K=0 only the satellite products are used as input into the model. The K-

values are obtained through calibration, by maximizing the Nash-Sutcliffe efficiency index (NS) 

between the observed and simulated discharge during the calibration period. 

To sum up, a total of 5 different rainfall datasets are used in this study: 

1. Observed rainfall (hereinafter OBS); 

2. Bias corrected SM2RAIN-derived rainfall dataset (SM2RASC); 

3. Bias corrected TMPA 3B42-RT (TMPA); 

4. Integrated rainfall dataset between OBS and SM2RASC (hereinafter SM2RASC+OBS); 

5. Integrated rainfall dataset between OBS and TMPA (hereinafter TMPA+OBS). 

MISDc rainfall-runoff model 

The lumped version of the continuous and semi-distributed rainfall-runoff model MISDc (Figure 

3.2), proposed by Brocca et al. (2011b) is adopted here. MISDc is a single layer model and it was 

specifically developed for flood forecasting purposes, as a consequence it may have limitations in 

reproducing accurately the low flow conditions which in turn may determine volume errors in the 

long-term comparison between observed and simulated discharge. MISDc couples a routing module 

with a single layer soil water balance module (Brocca et al., 2008). Soil water balance is based on 

the following equation: 

 )()()]()([
)(

tgtetptp
dt

tdW
e   (3.4) 

where W(t) is the soil water content at time t, p(t), pe(t), e(t) and g(t) are the rainfall, effective 

rainfall, actual evapotranspiration and percolation rates, respectively.  

 

Figure 3.2 - Schematization of the MISDc rainfall-runoff model with the representation of the simulated 

hydrological processes. 
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In Eq. 3.4, e(t) is calculated as a linear function between the potential evaporation, that is estimated 

via the Blaney and Criddle relation modified by Doorembos and Pruitt, (1977), and the soil 

saturation. The non-linear relation proposed by Famiglietti and Wood (1994) is used for the 

computation of the percolation rate, g(t). The rainfall excess, pe(t), is calculated by using the well-

known Soil Conservation Service–Curve Number (SCS-CN) method for estimation of losses 

incorporating the relationship between soil saturation and the parameter S (soil potential maximum 

retention) of the SCS-CN method as proposed by Brocca et al. (2009). Three different components 

contribute to generate discharge: the surface runoff, the saturation excess and the subsurface runoff 

component. The first two are summed and routed to the outlet by the Geomorphological 

Instantaneous Unit Hydrograph (GIUH). The subsurface runoff is transferred to the outlet section 

by a linear reservoir approach. For both routing schemes, the lag time is evaluated by the 

relationship proposed by Melone et al. (2002). Full details on model equations are already given in 

Brocca et al. (2009; 2011) and, hence, are not repeated here. The MATLAB® code of the model is 

freely available at: http://hydrology.irpi.cnr.it/download-area/midsc-code/. 

MISDc uses 8 parameters, i.e., the maximum soil water capacity, the pore size distribution index, 

the saturated hydraulic conductivity, the fraction of percolated water that generates baseflow, the 

lag-area relationship coefficient, a correction parameter for the evapotranspiration, the initial 

abstraction coefficient of the SCS-CN method and the coefficient of the relationship relating SM to 

the initial condition of the SCS-CN method. As input data, the model needs continuous rainfall and 

temperature timeseries. The calibration step is carried out in MATLAB® environment by using a 

standard gradient-based automatic optimization method (Bober, 2013) and the maximization of the 

Nash-Sutcliffe efficiency index is considered as objective function. 

Performance metrics 

The assessment of the model performances, driven by ground rainfall observations and SRPs, is 

carried out in terms of Nash-Sutcliffe efficiency (NS), correlation coefficient (R) and percentage 

volume error (Ev). NS is often used for hydrological modelling assessment and it ranges between -∞ 

and 1. The closer the index is to 1, the better the performance is. NS index is defined as: 

 

 

 












n

t

obsobs

n

t

simobs

QQ

QQ

NS

1

2

1

2

1  (3.5) 

where Qobs and Qsim are the observed and simulated discharge at time t, while obsQ  is the temporal 

mean of observed discharge. 

The percentage volume errors, Ev, is expressed by the following equation: 
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http://hydrology.irpi.cnr.it/download-area/midsc-code/
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Positive Ev values indicate discharge underestimation while negative ones, an overestimation. The 

performance metrics are calculated during both the calibration and validation period, for each 

rainfall input dataset. 

For each basin, the most significant flood events are extracted in order to assess the capability of the 

considered rainfall datasets in reproducing the flood hydrograph, volume and peak at the event-

scale. The evaluation is carried out by considering the indexes described above, computed for each 

flood event, and by using the percentage error in peak discharge, expressed by the following 

equation: 
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A negative error highlights overestimation, while a positive value means underestimation. 

Results and discussions 

The hydrological validation of satellite rainfall datasets is described for both the calibration and the 

validation period, for each of the 5 rainfall datasets, and over the 4 selected basins considered in the 

study. 

Rainfall datasets comparison 

First, an intercomparison of rainfall datasets is carried out in order to evaluate the quality of input 

data used to drive MISDc model. This analysis is carried out by considering R and the root mean 

square error (RMSE) between the daily ground and the satellite mean areal rainfall during the 

calibration and the validation periods. Results, reported in Table 3.2, show a satisfactorily 

agreement between the ground and satellite derived rainfall datasets. SM2RASC provides lower 

performance scores than TMPA: this is probably due to the algorithm calibration procedure, based 

on 5 days of accumulated rainfall (Ciabatta et al., 2015). All the analysed datasets provide R values 

higher than 0.48 and quite low RMSE values. The higher RMSE values over Brenta basin are due to 

the high rainfall regime and the presence of mountains that might affect the satellite retrievals 

accuracy. The obtained results are in line with those showed by Ciabatta et al. (2015) who obtained 

median R values over the Italian territory equal to 0.44 and 0.59 for SM2RASC and TMPA, 

respectively, for 1 day of accumulated rainfall. Moreover, similar results are also obtained by 

Stampoulis and Anagnostou (2011) and Nikolopoulos et al. (2013) who evaluated the real-time 

TMPA product over Northern Italy. 

Basin 

SM2RASC TMPA 

CAL VAL CAL VAL 

R RMSE R RMSE R RMSE R RMSE 

Brenta 0.56 14.97 0.49 14.91 0.70 12.78 0.66 13.55 

Tanaro 0.60 7.56 0.48 6.96 0.79 5.94 0.69 6.52 

Tiber 0.54 7.00 0.49 7.66 0.71 5.73 0.83 9.25 

Volturno 0.63 6.10 0.60 5.80 0.64 6.07 0.63 5.78 

Table 3.2 – Correlation coefficients (R) and Root Mean Square Error (RMSE) for the analysed satellite products 

(SM2RASC and TMPA) against observed rainfall during the calibration (CAL) and validation (VAL) periods. 
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Discharge simulation with ground observed rainfall 

The performance scores obtained by forcing MISDc model with OBS are assessed in order to 

evaluate the model capability in reproducing observed discharges and are used as benchmark to 

highlight any increase (or deterioration) in model accuracy when using SRPs. 

Figure 3.3 shows the simulated discharge timeseries obtained by forcing MISDc with OBS data. As 

it can be seen, the model is able to reproduce the observed discharge well, showing NS values of 

0.72, 0.76, 0.77 and 0.86 during the calibration period (2010-2011) for Brenta, Tanaro, Tiber and 

Volturno basins, respectively. During the validation period (2012-2013), the simulations provide NS 

values of 0.76, 0.68, 0.52 and 0.77 with only a slight deterioration of model performance. In terms 

of correlation, the model provides R values greater than 0.86 (0.77) during the calibration 

(validation) period. For what concerns the errors in volume, MISDc simulations provide Ev values 

lower than 23% in calibration and lower than 15% during the validation step. These not negligible 

errors in volume are partly due to the difficulties of the model in reproducing the low flows and to 

the objective function used for model calibration (maximization of NS) that is mainly addressed for 

the reproduction of high flows. In addition, as it can be noticed by Figure 3.3, some discharge 

peaks are not correctly identified, as over Brenta basin during the calibration period and over 

Tanaro in 2011. These errors might be due to different causes, for example the inaccuracy of input 

observations and the modelling structure, to the effect of spatial variability that is neglected here, 

and to the daily time step used for the simulation that could be not fully appropriate for fast 

responding basins.  

 

Figure 3.3 - Comparison of observed and simulated discharge obtained by forcing MISDc model with 

ground observed rainfall for Brenta (up-left), Tanaro (up-right), Tiber (bottom-left) and Volturno (bottom-

right) basins, during the entire analysis period (2010-2013). 

 

Despite these limitations, MISDc confirms its good capability in simulating floods, also in different 

physiographic and climatic conditions in Italy, thus representing an useful tool for testing the 
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potential added-value of SRPs for flood forecasting. All the performance scores obtained with each 

rainfall product, for the calibration and validation period, are summarized in Table 3.3. 

 

Basin 
Calibration (2010-2011) Validation (2012-2013) 

NS R Ev (%) NS R Ev (%) 

OBS 

Brenta 0.72 0.86 6 0.76 0.88 4 

Tanaro 0.76 0.89 23 0.68 0.83 11 

Tiber 0.77 0.88 16 0.52 0.77 -15 

Volturno 0.86 0.93 14 0.77 0.88 5 

SM2RASC 

Brenta 0.63 0.73 -2 0.52 0.73 -4 

Tanaro 0.60 0.78 13 0.48 0.70 -10 

Tiber 0.66 0.81 3 0.48 0.70 -1 

Volturno 0.63 0.79 -3 0.48 0.72 -32 

TMPA 

Brenta 0.32 0.60 9 0.20 0.49 6 

Tanaro 0.76 0.89 19 -0.22 0.49 -4 

Tiber 0.53 0.73 16 -0.23 0.42 -27 

Volturno 0.37 0.61 6 0.07 0.36 36 

SM2RASC+OBS 

Brenta 0.78 0.89 1 0.79 0.88 -5 

Tanaro 0.78 0.89 21 0.71 0.85 9 

Tiber 0.81 0.90 10 0.74 0.86 -6 

Volturno 0.77 0.88 1 0.63 0.82 -34 

TMPA+OBS 

Brenta 0.77 0.88 3 0.74 0.87 -4 

Tanaro 0.79 0.90 20 0.47 0.73 3 

Tiber 0.77 0.88 17 0.36 0.81 -14 

Volturno 0.75 0.87 5 0.61 0.81 -26 

 

Table 3.3 - Nash-Sutcliffe efficiency (NS), correlation coefficient (R) and percentage volume error (Ev) obtained by forcing 

MISDc hydrologic model with observed, satellite (SM2RASC and TMPA) and integrated (SM2RASC+OBS and 

TMPA+OBS) rainfall data, during the calibration (2010-2011) and validation (2012-2013) periods. In bold font 

the best performance scores of each basin are reported while the scores are in italic font if better than those 

obtained with ground observed rainfall (OBS). The highest performance of the integrated SM2RASC+OBS product 

for Brenta, Tanaro and Tiber river basins is evident. 

 

Discharge simulation with satellite rainfall products 

Before introducing the bias correction and recalibration steps into the workflow, discharge 

simulations are carried out by using the raw SRPs. By way of example, Figure 3.4 shows the 
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observed and simulated hydrographs for Tanaro basin obtained by forcing MISDc with TMPA 

rainfall dataset without and with the application of the bias correction step.  

 

Figure 3.4 - Observed and simulated hydrographs obtained by forcing MISDc model with TMPA data before 

(upper panel) and after (lower panel) bias correction and model recalibration. 

 

As it can be seen, if the model is forced with bias corrected data and after the recalibration, higher 

performances are obtained. Indeed, the obtained performance scores, before and after the bias 

correction and the model recalibration, increase from NS=0.40, R=0.71 and Ev=35%, to NS=0.53, 

R=0.77 and Ev=9%. Although the improvement is not so significant, the effect of the two pre-

processing steps is evident. In most of the cases (results not shown for brevity) the simulations 

carried out by using corrected data provide higher performance scores than those obtained by using 

the raw data. Exceptions are found for the Brenta and Tanaro during the validation period for 

TMPA and for Brenta and Volturno during the calibration period for SM2RASC. These results may 

be due to the high variability of the rainfall regime from year to year which would need a dynamic 

correction of the bias or its more frequent recalibration. On this basis, the correction of the bias is in 

general beneficial but may also provide additional uncertainties in case the rainfall presents a high 

non-stationary character. Moreover, it is obtained that after the recalibration, all the parameter 

values remained into a physically acceptable range of variation thus ensuring the consistency of the 

hydrological simulations. The small but consistent improvement in hydrological model performance 

after bias correction of TMPA product (and model recalibration) is also obtained by Artan et al. 

(2007) for two sub-basins of Mekong River in South Asia, Stisen and Sandhot (2010) for the 

Senegal River basin in West Africa, Tarnavsky et al. (2013) in Senegal and Tunisia, and Zhao et al. 

(2015) in the Weihe River basin in China. Therefore, due to the overall improved performances, in 

the following we show only results in which SRPs bias is corrected through ground observations 

and the model parameter values are recalibrated for each SRP (in the calibration period). 

The comparison between observed and simulated discharge obtained by using TMPA and SM2RASC 

as input is reported in Figure 3.5. Although a general agreement between observed and simulated 
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discharge is recognizable, some peaks are not identified (mainly in the Brenta basin) or 

overestimated (Tanaro and Tiber basins) likely due to errors in the SRPs used here as input data. 

 

Figure 3.5 - Comparison of observed and simulated daily discharge obtained by forcing MISDc model with 

the two satellite rainfall products SM2RASC and TMPA for Brenta (up-left), Tanaro (up-right), Tiber 

(bottom-left) and Volturno (bottom-right) basins, during the entire analysis period (2010-2013). 

 

More specifically, when SM2RASC is used as input, a deterioration of the results with respect to 

those obtained by using OBS is found, with NS values of 0.63 (0.52) for Brenta, 0.60 (0.48) for 

Tanaro, 0.66 (0.48) for Tiber and 0.63 (0.48) for Volturno during the period 2010-2011 (2012-

2013). The lower scores are probably due to SM2RAIN algorithm limitations, i.e., underestimation 

of rainfall when the soil is close to saturation and to the presence of mountains and/or snow within 

the basin that affects the SM data quality (and, hence, of the SM2RAIN-derived rainfall). The first 

issue can be easily observed over the Tiber basin at the end of 2012, when a discharge peak of over 

500 m3/s is not identified. The latter issue is evident over Brenta and Tanaro basins characterized by 

higher uncertainty in SM data and a general underestimation of river discharge. In terms of 

correlation coefficient, SM2RASC still provides fair R values for all the analysed basins: during the 

calibration (validation) period R values greater than 0.73 (0.70) are obtained for the analysed basins. 

In terms of errors in volume, quite low Ev values are observed during the calibration (validation) 

period: -2% (-4%) for Brenta, 13% (10%) for Tanaro, 3% (-1%) for Tiber and -3% (-32%) for 

Volturno. The negative values, mainly obtained during the last two years of the analysis period, 

highlight an overestimation of discharge. 

When MISDc is forced with TMPA, lower NS values are obtained, even negative during the 

validation period. R values are greater than 0.60 (0.36) during the calibration (validation) period and 

an overall discharge underestimation is observed with Ev values lower than 6% and 36% in the 

calibration and validation period, respectively. It is likely that the lower performance scores are due 

to the accuracy of the TMPA product, which is highly affected by topographic issue and by the type 

and intensity of precipitation. Indeed, Ciabatta et al. (2015) highlighted that TMPA product shows 



3. Hydrological validation 

92 

 

low performance in Southern Italy and in areas characterized by an intense rainfall regime (e.g., 

Brenta basin). Moreover, the low and even negative scores obtained during the validation period are 

likely due to the need of a more frequent correction of the bias in order to take into account its 

variability due also to the changes in the retrieval algorithms and measurement sensors (note that 

the TMPA product is based on measurements from a constellation of satellite sensors that are 

changing in time). A monthly analysis (not shown) was also carried out in order to investigate the 

reasons of the low performance of MISDc using TMPA during the validation period and by 

analysing both rainfall and discharge data. The analysis has shown that the performance in terms of 

rainfall reproduction (by using ground observations as benchmark) of TMPA during the validation 

period are highly variable (much more that in the calibration period), with some months in which 

the performance reaches very low values (e.g., R<0.2). Therefore, it appears that any error or 

performance reduction in rainfall estimation have a significant impact on the hydrological 

simulation and propagates forward in time for several months. As a result, any short period in which 

rainfall estimates are less accurate produces remarkable errors in the simulation of discharge and it 

is the main reason for the observed low performance of TMPA in the validation period. 

In Italy, just a work by Nikolopoulos et al. (2013) evaluated the reliability of different SRPs for 

discharge simulation but their study was addressed to the simulation of only a limited number of 

flood events and not a continuous simulation such as we have performed here. The obtained 

performances are in agreement anyhow with those obtained by previous studies in different regions 

worldwide (Artan et al., 2007; Stisen and Sandhot, 2010; Zhao et al., 2015). We note also that the 

discharge simulation in Mediterranean areas is more complex than that one for large basins in 

Africa or South Asia that are characterized by a consistent and pronounced seasonal cycle and that 

are the basins in which most of the studies were carried out by employing SRPs (see Serrat-

Capdevilla et al., 2013 for a review). Therefore, the results obtained here highlight that SRPs may 

be employed with some skill also in smaller basins of the Mediterranean region. 

 

Discharge simulation by using the integrated rainfall datasets 

The integration procedure between ground observed and satellite rainfall by using Eq. 3.3 provides 

improvements in the performance scores, showing NS values most of the times (for 3 out 4 basins) 

higher than those obtained by using observed rainfall, mainly for SM2RASC+OBS product (see bold 

numbers in Table 3.3). Table 3.4 reports K values obtained during the calibration period for each 

rainfall dataset. The simple integration scheme here proposed involves very high values of K, 

except for TMPA+OBS in the Tanaro basin that shows the lowest K value equal to 0.5. It should be 

noted that the high weight given to ground observations is expected due the high quality of ground 

observed rainfall datasets used in this analysis.  

Basin SM2RASC+OBS TMPA+OBS 

Brenta 0.8 0.9 

Tanaro 0.8 0.5 

Tiber 0.7 0.9 

Volturno 0.8 0.9 

Table 3.4 - Integration coefficient (K) for the considered basins by using as model input the integrated products between 

the observed and satellite products (SM2RASC+OBS and TMPA+OBS). 
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As it can be noticed in Figure 3.6, the use of the integrated datasets into MISDc allows to obtain an 

accurate discharge simulation over the four analysed basins. It is worth to notice that some of the 

discharge peaks are still not properly identified by the simulated discharge. This is not due to the 

SRPs quality, as the same events are also not well captured in the simulations carried out by using 

OBS as input (see Figure 3.3). Therefore, these errors have to be attributed to the MISDc model 

deficiencies in representing the hydrological behaviour of the basins throughout the year. 

 

Figure 3.6 - Comparison of observed and simulated daily discharge obtained by forcing MISDc model with 

the two integrated rainfall products SM2RASC+OBS and TMPA +OBS for Brenta (up-left), Tanaro (up-

right), Tiber (bottom-left) and Volturno (bottom-right) basins, during the entire analysis period (2010-2013). 

 

The integration between observed and satellite rainfall improves the model performance for all the 

basins except Volturno basin. Figure 3.7 shows the mostly positive percentage variations of NS 

values obtained by using OBS and the integrated products over the four basins, both during the 

calibration and validation period. During calibration, SM2RASC+OBS (TMPA+OBS) provides NS 

values greater than 0.77 (0.75), while during validation NS values greater than 0.63 (0.36) are 

obtained. In terms of correlation, similar results are obtained.  
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Figure 3.7 - Nash-Sutcliffe efficiency index (NS) percentage variation obtained by forcing MISDc model with 

SM2RAIN derived rainfall (SM2RASC), TMPA 3B42-RT product (TMPA) and the integrated products 

between the observed and satellite rainfall data (SM2RASC+OBS and TMPA+OBS) during calibration (blue 

squares) and validation (green rumbles). The text boxes show the percentage variations in NS obtained for 

TMPA during the validation period that exceed the axis limit. 

 

That is, SM2RASC+OBS provides R values higher than 0.88 and 0.82 during calibration and 

validation, respectively, while TMPA+OBS dataset yields R higher than 0.87 and 0.73. The use of 

integrated rainfall datasets provides also a reduction of the error in volume, for all basins. 

Model performance for flood events 

The analysis of the performance is carried out on a total of 43 flood events extracted from the 

analysed timeseries: 11 for Tanaro basin, 12 for Brenta basin, 10 for Tiber and Volturno basins. The 

events were extracted by selecting those characterized by a total rainfall of more than 20 mm. An 

event is distinguished from another if a total rainfall less than 1 mm occurred for at least 6 h. 

Specifically, the performances are assessed by considering the hydrographs obtained by forcing 

MISDc with the different rainfall datasets, and thus, no recalibration based on flood events is 

carried out. In Figure 3.8 the performance scores obtained for each flood event and basin are 

shown. It can be noticed that if MISDc is forced with OBS data, quite high NS values are obtained, 

except for Tiber basin which is characterized by lower performance scores.  
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Figure 3.8 - Performance scores obtained during the flood events simulations over the Tanaro 

(TA), Brenta (BR), Tiber (TI) and Volturno (VO) basins by forcing MISDc model with observed 

data (OBS, solid green line), SM2RAIN derived rainfall (SM2RASC, dashed red line), TMPA data 

(TMPA, dashed blue line), integrated product between SM2RASC and OBS data (SM2RASC+OBS, 

dashed black line) and integrated product between TMPA and OBS data (TMPA+OBS, dashed 

magenta line). Nash-Sutcliffe efficiency index (NS, upper panel), percentage error in peak 

discharge (EQp, middle panel) and percentage error on direct runoff volume (Ev, bottom panel). In 

the upper panel graph, the y-axis is truncated to 0 for visualization purposes. 

 

These results are in agreement with those obtained by Brocca et al. (2011b) in Central Italy and by 

Massari et al. (2015) throughout the Italian territory who obtained NS values at the event-scale 

ranging between 0.50 and 0.95. If TMPA and SM2RASC datasets are used as input data, lower 

performance can be observed with an average reduction of NS equal to -40% and -36% for TMPA 

and SM2RASC, respectively. More in details, TMPA provides the worst performance with several 

negative NS values over Tanaro and Brenta basins (e.g., event 8 for Tanaro and event 11 for 

Brenta). SM2RASC provides NS values comparable with those obtained by forcing MISDc with OBS 

over Tanaro, Brenta and Tiber basins, while NS is consistently lower for Volturno basin. The 

integrated products provide results comparable and sometimes higher than those obtained by using 

OBS, except for event 8 over Tanaro basin, where TMPA+OBS product yields a NS value of about 

-2. 

In terms of EQp, a general underestimation of peak discharge can be observed by using OBS as input 

data. Even in this case, the simulations over Tiber basin provide the worst performance scores, with 

an error of about 50% for events 3, 4, 6, 7, 8 and 9 and about -100% for event 7. TMPA product 

provides a general underestimation of the discharge peaks over Tanaro, Brenta and Tiber basins. 

SM2RASC is characterized by a general underestimation over all the four analysed basins, mainly for 
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Tiber and Volturno basins. TMPA+OBS and SM2RASC+OBS products provide EQp values similar to 

those obtained if MISDc is driven with OBS and even lower error values (with respect to OBS) 

over Brenta basin. In terms of Ev, OBS data provide the best performance scores, mainly for 

Volturno basin. TMPA and SM2RASC products are characterized by a general underestimation for 

Tanaro, Brenta and Tiber basins while the simulations carried out for Volturno basin provide better 

results with respect to the other basins, except for event 10. 

To sum up, in terms of median NS on all the selected flood events, the use of integrated products 

provides comparable results with those achieved by using OBS with the best performance obtained 

for Tiber River for SM2RASC+OBS (+54%) and Brenta basin by using TMPA+OBS (+14%) and 

worst ones obtained for Volturno with TMPA+OBS (-18%). In the remainder of the cases both 

SM2RASC+OBS and TMPA+OBS yields values close to OBS with better results obtained by 

SM2RASC+OBS. The poor results obtained for Volturno basin can be explained by the relatively 

high quality OBS data when they are used as input in MISDc. Similar results are obtained for EQp 

(Ev) with an error reduction of about 28% (38%) for Tiber basin by using SM2RASC+OBS and 43% 

(16%) for Brenta basin by using TMPA+OBS. 

If compared with the study by Massari et al. (2014), who forced a rainfall-runoff model over a small 

catchment in France by using an estimated rainfall product obtained by the application of 

SM2RAIN to in situ SM observations, a good agreement in the obtained results is observed. Indeed, 

Massari et al. (2014) found that the use of the SM2RAIN-derived rainfall provides reasonable 

results but lower than using traditional raingauge observations. However, accordingly our study, the 

integration of observed (from raingauge) and estimated rainfall (from SM2RAIN) provided the best 

performance with an increase in the mean NS equal to 38% (from 0.48 to 0.66). 
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________________________________________ 

4.APPLICATION OF SATELLITE 

RAINFALL DATA FOR LANDSLIDES 

PREDICTION 

________________________________________ 

 

Once the satellite rainfall data are assessed in a thorough way, by considering different scales, 

periods and methodologies, they are applied for landslide prediction. In this Chapter, the use of 

satellite rainfall data within a physically-based model is tested. The model is based on the 

integration of a hydrological module the simulates the soil moisture within a soil column for 

different soil layers and a stability module that estimates the Factor of Safety (FS) taking into 

account the soil moisture conditions. The first part of this Chapter describes the developed model, 

while the second one shows some preliminary results obtained over a study area in Umbria. 

________________________________________ 
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4.1 The coupled hydrological-stability distributed model for landslide risk assessment 

________________________________________________________________________________ 

A physically-based model is developed during this work of thesis with the aim of estimating FS by 

using satellite rainfall data has input. The model is composed of two main modules: 1) a 

hydrological module that estimate soil saturation conditions over the analysis area and, 2) a stability 

module the estimates FS by taking soil moisture into account. 

________________________________________________________________________________ 
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Model description 

A coupled hydrological-stability model is developed for testing the capabilities of using satellite 

rainfall data for landslide risk assessment. The model allows to estimate the FS over the analyzed 

area, by taking into account the soil saturation conditions, and by using as input data ground (or 

satellite) rainfall and air temperature observations. The input data are rescaled to a common regular 

grid, according to their native spatial and temporal resolutions. However, the user is free to set the 

temporal/spatial resolution of the analysis grid, according to specific needs. The soil saturation 

conditions and FS estimation is carried out by considering multiple soil layers. In this respect, soil 

layers within the same soil column are assumed to be parallel to the ground surface. The user can 

set the number and the thickness of the layers. The model is fully distributed, i.e. the relationships 

between grid cells are taken into account. A visual representation of the analysis grid is reported in 

Figure 4.1.  

 

Figure 4.1 – Planar(A) and sectional (B) view of the analysis mesh 
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The model is composed of three main modules: 

1) Input data reading, preprocessing and memory allocation; 

2) Soil Water Balance Module (SWBM) for the estimation of soil saturation conditions; 

3) Stability module for the estimation of FS. 

In the following, a detailed description of the main features of each module is provided. The basic 

idea of coupling of a hydrological and a geotechnical module is not new, but up to now just few 

papers report such application. The main idea is based on the works by Valentino et al. (2014) and 

by Xiaogang et al. (2016), who simulated soil moisture conditions in order to assess slope stability. 

The developing a new model comes from the need to reduce the number of required parameters and 

the possibility to be forced with satellite data  

Input data reading, pre-processing and memory allocation 

The first module of the model reads all the necessary input data and preprocesses them in order to 

be used within the second and third modules in a common way. Regarding the necessary inputs, the 

model needs data related to: 

1) Topography, usually obtained through a Digital Elevation Model (DEM); 

2) Air temperature data, through a ground monitoring network, along with coordinates of 

measurement points and temporal sampling; 

3) Rainfall data, obtained through ground monitoring network or through satellite observations, 

along with coordinates of measurement points and temporal sampling; 

4) Soil texture information, in order to derive the hydraulic properties of the study area; 

5) Geotechnical parameters of the study area; 

First of all, DEM is loaded and resampled to a different spatial resolution, if required. A spatial 

sampling of 100 m is used to test the procedure and to assess the stability condition over the study 

area. The selected resolution is a compromise between the need to provide stability information at 

medium-high resolution and the computational time required for the simulation. After this step, the 

model creates a slope layer that has two-fold utility: 1) to identify the slope conditions of the 

analysis cells and 2) to identify the relationships between each cell, in order to assess the direction 

of surface and subsurface water flows. This step is carried out by using the d8 algorithm 

(O’Callaghan and Mark, 1984), in which the water flows from a centered grid point to its neighbor 

along with the steepest direction, as described in Figure 4.2. The inflow cell is defined by ascribing 

an index corresponding to flow direction to the centered cell.  
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Figure 4.2 – Visual representation of the d8 algorithm 

 

Rainfall and air temperature data, obtained through the regional monitoring network of Umbria 

region, are loaded along with their spatial coordinates and interpolated over the study area at the 

defined resolution. The user can set in this step if ground or satellite rainfall data are used as input 

and the model simulation time step.  

The hydrological module 

The soil saturation conditions are estimated by running a multi-layer soil water balance model 

(SWBM) that takes into account several fluxes within the soil column. A visual representation of 

water fluxes is reported in Figure 4.3. 
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Figure 4.3 – Visual representation of water fluxes considered in the coupled hydrological-stability model.  

 

For the first soil layer, the following water content balance equation holds: 
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while for the remain soil layers it becomes: 
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where W(t) is the water amount within the soil, Wmax is the maximum water capacity of the soil 

layer, t is the time, f(t) is the infiltration rate, e(t) is the evapotranspiration rate, perc(t) is the deep 

percolation rate, latout(t) is the interflow rate exits the soil cell, while latin(t) is the flow entering the 

downstream cell and the subscript i indicates the soil layer. In the following, the subscripts are 

removed for sake of simplicity. Wmax is defined through the following formulation: 
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LW ressat *)(max                                                      (4.3) 

Where θsat is the soil water content at saturation, θres is the residual soil water content and L is the 

soil layer thickness. The infiltration rate is estimated by adopting the empirical formulation 

proposed by Georgakakos and Baumer (1996), defined by the following equation: 
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where p(t) is the precipitation rate, Se is the saturation degree defined by Eq. 4.5 and ψ is a 

parameter linked to the non-linearity of the process with value greater than 1. 

Evapotranspiration rate is estimated by using a linear equation depending on the potential 

evapotranspiration, EPOT(t), and the soil saturation: 

eStEPOTte *)()(                                                            (4.6) 

According to the empirical relation of Blaney and Criddle modified by Doorenbos and Pruitt 

(1997), the potential evapotranspiration rate is estimated through: 

 )]13.8)(*46.0(*[*26.12*)(  tTKtEPOT c                        (4.7) 

where T(t) is the 2-meters air temperature,   is the percentage of daytime hours out the total hours 

during a year while Kc is a correction factor due to the empirical nature of the formulation.  

The deep percolation and interflow rates are estimated by considering the formulation of Famiglietti 

and Wood (1994): 
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where Ks is the saturated hydraulic conductivity and Λ is the pore size distribution index. Nu is a 

repartition coefficient, introduced in this work, estimated as function of slope, β is the slope angle. 

Lateral water flow is assumed parallel to the surface. No percolation from the deepest layer is 

allowed, i.e. an impermeable bedrock is assumed at the end of the soil column.  

The surface runoff rate is estimated by summing up the amount of rainfall that does not infiltrate 

into the soil (infiltration excess) and the water that move upwards from the soil layers for ex-

filtration or saturation excess phenomena. The surface water volume is moved to the downstream 

cell by applying the kinematic model approximated by the Manning’s formula, as proposed by Liu 

and Todini (2002): 
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with 
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and 

2* XrV                                                                    (4.13) 

Where r is the water depth over the surface resulting from precipitation, infiltration excess, 

saturation excess or surface runoff from the upstream cell, X is the cell dimension, η is the Manning 

coefficient over land, ω=5/3 and V is the surface water volume over the cell. As in Todini and 

Ciarapica (2001), the equation solution is carried out by applying the fourth order Runge-Kutta 

ordinary differential equation solving method.  

The volume of water over the surface that does not flow to the downstream cell and remains over 

the surface, is summed up to rainfall during the next model time step (t+1).  

The module needs five parameters, the maximum soil water capacity (Wmax), the soil layer thickness 

(L), the pore size distribution index (Λ), the empirical correction factor for evapotranspiration (Kc) 

and the hydraulic conductivity at saturation (Ks). The parameters are assumed to be constant within 

the soil column, i.e. every layer within a cell has the same textural class, except for Ks. The 

hydraulic conductivity decreases with depth according to the following power law: 
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 where A is a reduction coefficient, Ks1 is the hydraulic conductivity of the first layer, L is the layer 

thickness and the subscript N stands for the soil layer. 
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The stability module 

Once the soil saturation conditions are estimated within the soil column, the FS can be estimated 

through the stability module. FS is defined as ratio between resisting and driving forces acting on a 

slope: 



 f
FS                                                                    (4.15) 

with 

)tan(*)( ''  wf uc                                                        (4.16) 

where c’ is soil cohesion, σ is the total normal stress, uw is the pore water pressure, φ’ is the soil 

angle of internal friction and τ is the shear stress. Landslide is expected to occur when FS<=1.0, due 

to increase of driving forces (earthquakes, increase in load) or a reduction of resisting forces 

(increase in water pressure, weathering). The most used analysis methods for evaluating slope 

stability are limit equilibrium methods. One of the easiest limit equilibrium method often applied to 

shallow landslides is the infinite slope. In this method, soil layer thickness is negligible with respect 

to longitudinal extension of landslide and the failure plan is assumed to be parallel to the slope.  

A schematic representation of infinite slope analysis is drawn in Figure 4.4.  

 

Figure 4.4 – Schematic representation of infinite slope  
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For various saturation conditions, Lu and Godt (2008) proposed a formulation based on a new 

definition of the effective stress: 

s

au   )('                                                     (4.17) 

Where ua is the pore air pressure and σs is the suction stress. 

Lu and Likos (2004) showed that suction stress can be related to water content through: 
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With Se expressed by the Soil Water Characteristic Curve proposed by van Genutchen (1980): 
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Where α and n are empirical fitting parameters of the soil water characteristic curve proposed by 

van Genutchen (1980). Then by combining Equation 3.18 and 3.19, suction stress can be expressed, 

as shown in Lu et al. (2010) by: 
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Once s  is estimated, it can be inserted into the infinite slope stability equation (Lu and Godt, 

2008): 
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Where γ is the unit weight of soil, and H is the depth of the failure surface.  

Eq. 4.21 allows to estimate FS for the complete range of saturation conditions via infinite slope 

analysis.   
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4.2 Application of satellite-based rainfall data for slope analysis in Umbria region 

________________________________________________________________________________ 

The model is tested over a small area in central Italy by using both ground and satellite rainfall data. 

First, soil moisture simulations are carried out by using the distributed module described in the 

previous section and then FS is estimated through the stability module. The assessment of the 

model outputs is made by comparing soil moisture simulations with ASCAT soil moisture product, 

while the assessment in terms of stability is carried out by considering a limited number of landslide 

events occurred in the study area. 

________________________________________________________________________________ 
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Results of the application of the coupled hydrological-stability model 

In order to test the capabilities of satellite rainfall data in slope stability analysis, the coupled 

hydrological-stability model described above is applied over a small area of 36 km2, drawn in 

Figure 4.5. The study area is located in central Italy and it is characterized by a hilly territory. The 

northern and eastern sectors of the study area are characterized by the highest slope angles, while in 

the western part a flat area is presented.  

 

Figure 4.5 – Study area (left) and slope angles (right). 

 

The study area is not fully appropriate as the contribution of cells outside the selected boundaries 

might occur. The purpose of this case study is only testing the proposed model with ground- and 

satellite-based rainfall data. In the future, the model will be applied over larger areas and, 

particularly, to different hydrological basins. As described in the previous section, the model needs 

several parameters and input data to perform the analysis. To this end, a 20 m DEM is used to 

define the slope conditions and flow direction, through d8 algorithm. The flow direction layer is 

displayed in Figure 4.6. The soil textural map of Umbria (Brocca et al., 2016) is used to obtain soil 

texture information and to derive all the necessary soil hydraulic parameters. The definition of a 

texture layer allows to define soil hydraulic properties according to values defined in literature 

following Table 4.1 (Rawls et al., 1982). 
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Figure 4.6 – Flow direction layer obtained during the preprocessing step. The colors refer to a direction, as 

displayed in the direction coding inset. 

The soil textural map is obtained through the analysis of more than 1500 soil surveys and it is 

shown in Figure 4.7.  

 

Figure 4.7 – Soil textural map for Umbria region (Modified from Brocca et al., 2016c). 
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Table 4.1 summarizes the selected parameters values according to the study proposed by Rawls et 

al. (1982) as a function of soil texture. With respect to Eqs 4.4 and 4.7, ψ is set equal to 10 while Kc 

equal to 1.96. 

Soil texture Θsat [cm3/cm3] Θres [cm3/cm3] Λ [-] Ks [mm/h] 

Silty clay 0.423 0.056 0.15 0.9 

Sandy clay 0.321 0.109 0.223 1.2 

Silty loam 0.486 0.015 0.234 6.8 

Silty clay loam 0.432 0.040 0.177 1.5 

Sandy clay loam 0.33 0.068 0.319 4.3 

Silty 0.434 0.027 0.252 13.2 

Table 4.1 – Values of hydraulic parameters used for the hydrological module according to Rawls et al. (1982). 

Figure 48 displays the spatial distribution of soil texture over the study area, obtained through the 

soil map described in Brocca et al. (2016c). 

 

Figure 4.8 – Spatial distribution of soil textures over the study area. 

 

Air temperature data are obtained through the regional monitoring network with a temporal 

resolution of 30 minutes. Rainfall data are obtained by the raingauges operating in the analysis area 

(every 30 minutes) and through the TMPA 3B42RT rainfall product (every 3 hours over an area of 

25*25 km2). Both air temperature and rainfall ground data are interpolated over the analysis area 
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using the inverse distance weighted algorithm. One of the most challenging task in performing a 

distributed analysis over areas larger than a single slope or plot scale is the definition of 

geotechnical parameters (mainly cohesion and angle of internal friction). The Department of Civil 

and Environmental Engineering of the University of Perugia developed a geostatistical approach to 

obtained such values over large areas from punctual information. Geotechnical parameters for the 

study area are obtained by applying the methodology described in Fanelli et al. (2016) in which 

punctual values of angle of internal friction and cohesion are interpolated over large areas through a 

Kriging technique. The spatial distribution of these two variables for the study area is reported in 

Figure 4.9.  

 

Figure 4.9 – Angle of internal friction (upper panel) and cohesion (lower panel) values for the study area. 

In order to evaluate the performance of satellite rainfall products, two different model runs are 

carried out:1) the model is forced with ground data by considering a temporal resolution of 3 hours 



4. Application of satellite rainfall data for landslides prediction 

112 

 

(consistent with satellite data), 2) the model is forced with satellite rainfall data by TMPA 3B42RT. 

Due to the pixel resolution, rainfall is spatially uniform over the analysis area for each model 

iteration. 

For the sake of brevity, the results obtained by forcing the model with ground rainfall data are 

hereinafter referred as GROUND, while those obtained with TMPA 3B42RT data are hereinafter 

referred as SAT. The simulations are carried out by considering 6 soil layers of increasing 

thickness: 150, 200, 400, 500, 1000 and 1000 mm allowing the estimation of soil moisture and FS 

up to a depth of 3250 mm. The last soil layer is initialized as fully saturated and the simulation 

covered the period 1st January 2007 – 31st December 2010. For the purposes of the present work, 

the module is run over a grid with spacing of 100 m. A soil saturation condition of 50% is set for 

the 4 shallower soil layers as starting condition, while the 5th soil layer is initialized as fully 

saturated. As the model run starts in January, it is reasonable to assume saturated conditions for the 

two last soil layers. A soil saturation profile during the analysis period can be observed in Figure 

4.10 for a randomly selected cell. 

 

Figure 4.10 – Soil saturation profile for a cell simulated by the hydrological module 

 

The obtained soil moisture profiles by using ground or satellite data are assessed through the 

comparison with ASCAT soil moisture product (Wagner et al., 2013). The quality of this product is 

extensively assessed over Italy and in particular over Umbria region by several studies (Brocca et 

al., 2010; 2011; 2017, Wagner et al., 2013, to name a few). Due to the limited soil thickness 

investigated by the satellite sensor, only the first 2 layers are compared with ASCAT data. To this 

end, the exponential filter (Wagner et al., 1999) is applied to raw satellite soil moisture data in order 

to obtain a Soil Water Index (SWI) related to a thicker soil layer. Constant values of 2 (for the first 

soil layer) and 5 days (for the second layer) are selected for the T parameter during the entire 



4. Application of satellite rainfall data for landslides prediction 

113 

 

analysis period. The comparison is carried out by estimating the correlation coefficient (R) at half-

daily temporal resolution. Due to the ASCAT coarse spatial sampling (12.5 km), every grid cell is 

compared with the same ASCAT pixel.  

Figure 4.11 reported the comparison of GROUND and SAT soil moisture simulations with ASCAT 

SWI data.  

 

Figure 4.11 – Correlation maps obtained by comparing GROUND and SAT soil moisture simulations with 

ASCAT SWI estimates for the first (A, C) and second (B, D) soil layers.  

 

As it can be seen from Figure 4.11, both GROUND and SAT soil moisture simulations are in good 

agreement with ASCAT derived SWI. Median R-values of 0.83 (0.79) and 0.82 (0.76) are obtained 

by comparing GROUND (SAT) and ASCAT SWI soil moisture estimates over the first two soil 

layers. The spatial patterns highlighted lower R-values over the steepest regions of the study area 

for the first soil layer (Figure 4.11 A and C), while for the second soil layer (Figure 4.11 B and D), 

lower values are obtained over flat areas, especially when SAT soil moisture estimates are 

compared with ASCAT SWI data. This is mainly due to two major factors: 1) water flow and 

accumulation towards those sectors and, 2) the spatial resolution of ASCAT soil moisture product, 

too coarse to highlight wetter conditions over these areas. In order to show the temporal agreement 

more in details, Figure 4.12 shows the soil moisture time series, provided by GROUND and SAT 

model simulation and by ASCAT derived SWI, for 3 randomly selected pixels of the analysis grid. 

The time series are referred to the first soil layer with half-daily temporal resolution.   
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Figure 4.12 – Soil moisture time series for 3 randomly selected pixels over the analysis, obtained through 

GROUND (red dashed line), SAT (blue dashed line) and SWI ASCAT (green solid line). For each time series 

the spatial localization is provided along with the temporal correlation (R).  

 

As it can be seen, the temporal patterns provided by GROUND and SAT soil moisture estimates are 

in good agreement with those provided by SWI ASCAT, with R-values > 0.74. During Summer, 

both GROUND and SAT estimates provided higher soil moisture values, probably due to short 

rainfall events, not recognized by the satellite soil moisture sensor, while the agreement is better 

during Fall and Winter. It is worth noting that landslides usually occur during the wet season, i.e. 

when the soil moisture conditions are close to saturation. The decrease in correlation during Winter 

2008 is due to intense snow events occurred within the study area, impacting the quality of ASCAT 

soil moisture product.  

Due to the good agreement between GROUND, SAT and SWI ASCAT soil moisture estimates, the 

model is expected to provide reasonable soil moisture simulations, thus allowing to be used for FS 

estimation through the stability module.  

The assessment of FS simulations involved knowledge of landslide events occurred within the study 

area during the analysis period. Both date of occurrence and spatial localization of landslide events 

have to be as much accurate as possible. The Civil Protection Service of Umbria region has a 

landslide catalog used in the present work to test the capabilities of the developed method. Only 

three landslide events occurred in the study area during the analysis period, as reported in Figure 

4.13 and in Table 4.2. The catalog provided the date of occurrence, with daily temporal resolution 

and the spatial localization of event as punctual coordinates, so no information about the extension 

(both on the surface and in depth) are available. In order to overcome these limitations, the closest 

grid point to each landslide site is selected as “investigated pixel” by considering the vales of FS 

during the entire day of occurrence, i.e. from 00:00 to 23:59.  
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Figure 4.13 – Spatial localization of the 3 landslide events used for the assessment of stability conditions by 

using GROUND and SAT model runs. The colorbar is referred to the slope angles obtained during the 

previous steps. 

 

Landslide ID Date of Occurrence Longitude [°] Latitude [°] 

1 10 December 2008 12.39 43.10 

2 10 April 2009 12.38 43.12 

3 10 December 2008 12.41 43.13 

Table 4.2 – Date of occurrence and coordinates of the landslide events occurred within the study area. 

 

As described above, the geotechnical parameters (angle of internal friction and cohesion) are 

obtained from the analysis performed by Fanelli et al. (2016), while a constant value of 20 kN/m3 is 

used as unit weight of soil.  
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In the following the FS obtained by GROUND and SAT model runs are reported for the first two 

layers of soil for the 3 landslides occurred in the study area. Figure 4.14 draws the SM and FS time 

series for the three landslide events according to GROUND model run. For visualization purposes, 

only a small time window is reported. The red area indicates the day of occurrence according to 

Table 4.2, while the dashed red line indicates the threshold value of FS=1. At it can be seen, if the 

model is forced with ground rainfall, during the investigated time window, FS shows values very 

close to 1, i.e. instability conditions, both on the first and the second soil layer. Looking at the 

landslide event N°1 (Figure 4.14, upper panel), the FS reached the value of 1 also before the 

landslide occurrence. This can be related to four main factors: 1) the use of a 100 m grid that does 

not allow to simulate in details the soil saturation conditions and impacts the accuracy of 

geotechnical parameters and slope angles; 2) spatial interpolation of rainfall that creates wetter 

conditions during the days before the landslides; 3) the parametrization of the model, including the 

soil layer thickness, and 4) the landslide is reported some days after the real triggering rainfall 

event. 
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Figure 4.14– Soil moisture and Factor of Safety time series for three landslides events within the study area 

obtained by forcing the model with ground rainfall data 
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The event N°2 on 10th April, 2009 occurred during dry conditions. An isolated rainfall event 

triggered the landslide involving probably just the most superficial soil layer. As it can be seen in 

Figure 3.12 (middle panel), a minimum FS of 2 is obtained for the first soil layer. Although the 

model did not identify the landslide event, the decrease of FS during the investigated time window 

is clearly visible. Further analysis will be carried out by considering this landslide event, applying 

different parametrization and grid resolution.  

The last analyzed event occurred on 10th December, 2008. Similarly to event N°1, during the time 

window, a strong decrease in FS for the two soil layers is observed. In this case, values very close to 

1 are obtained, thus identifying unstable conditions.  

The analysis is carried out by forcing the model with rainfall estimates obtained by TMPA 3B42RT. 

As stated in the previous Chapters of this thesis, this kind of product is chosen to test the feasibility 

of using satellite rainfall data in an operational framework, as they are provided in near real time. 

Figure 4.15 draws the SM and FS time series obtained by the SAT model run. This model setting 

provided very good results, both in terms of soil moisture and FS values. The landslides events N°1 

and N°3 are well identified by the model, even if satellite rainfall data are used to force the 

hydrological module. More in details, for event N°1 and N°3, the model provided better results than 

those obtained by using ground data, confirming the potential added value of using remotely sensed 

information for geo-hydrological applications. For the events occurred on 10th December 2008, the 

FS estimates obtained by the SAT model run identified very well the landslides. Similarly to 

GROUND run for event N°1, a decrease in FS some days before the event is recognizable, but if 

satellite data are used, values higher than 1 can be observed in this case. On the  
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Figure 4.15 – Soil moisture and Factor of Safety time series for the three landslides events analyzed in this 

work obtained by forcing the model with satellite rainfall data. 
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other hand, event N°2 is completely missed, even if the rainfall event that probably triggered the 

landslide is identified and an increase in soil saturation is observed. In this case, the satellite rainfall 

estimates are characterized by underestimation, impacting the soil moisture simulation and FS 

estimation.  
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________________________________________ 

5.CONCLUSIONS 

________________________________________ 

  

This work of thesis investigated the feasibility of using satellite rainfall data for landslide risk 

assessment. Due to their spatial and temporal resolutions, considered too coarse, and the 

limitations that impact the quality of rainfall estimates from space, this kind of data is scarcely used 

in hydrological applications, as confirmed by the relative small number of studies available in the 

scientific literature on this topic. 

________________________________________ 
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5.1 Satellite rainfall data validation and integration 

State-of-the-art satellite rainfall products are evaluated by considering several statistical and 

categorical scores with ground and modelled precipitation benchmarks. The analysis carried out 

over Italy (Ciabatta et al., 2015; 2017) showed that satellite rainfall data can provide reliable 

estimates, but are characterized by errors that impact the quality of estimates. Indeed, satellite 

rainfall data show a seasonal dependency on product performance and suffer from topographical 

effects. These aspects have to be investigated in depth before using satellite rainfall data for any 

kind of applications. The analysis carried out on a global scale (Ciabatta et al., 2018) highlighted 

the similar limitations. These works aim to offer a thorough assessment of satellite rainfall products 

over different climate areas, by considering different periods and benchmarks, in order to provide a 

complete definition of data error.  

This work of thesis also proposed and applied a novel algorithm that allow to estimate rainfall from 

SM observations. The method, called SM2RAIN, is applied to several satellite SM products (see 

Ciabatta et al., 2015; 2017; 2018) by considering different spatial and temporal resolution. The 

algorithm allowed to obtain reliable rainfall estimates, sometime more accurate than those obtained 

by “top-down”. Indeed, the algorithm allows to obtain more reliable rainfall accumulations at 

ground, “measuring” the amount of rainfall that infiltrates the soil. The analysis and validations 

carried out for evaluating “bottom-up” rainfall datasets showed that the quality of precipitation 

estimates are closely related to the quality of the input SM product. Low quality data are obtained 

over densely vegetated areas, deserts, when the soil is frozen or in presence of snow and over areas 

characterized by high topographical complexity. The algorithm is also not able to estimate rainfall 

when the soil is close to saturation. 

The integration of multiple satellite rainfall data sources is investigated in order to obtain more 

reliable precipitation estimates. The results show that integration between different rainfall sources 

can greatly improve the performance of the parent products (Ciabatta et al., 2017; 2018). By 

integrating classical satellite and SM-derived rainfall data, products characterized by higher 

accuracy and reliability than the parent products are obtained. Indeed, the limitations of the two 

approaches are compensated in the integrated product allowing to improve the estimation of the 

ground accumulated rainfall thanks to “bottom-up” estimates while, at the same time, overcoming 

the limitation of rainfall estimates for high intensity rainfall events during wet conditions thanks to 

“top-down” rainfall products. 

5.2 Use of satellite rainfall data for flood estimation 

The rainfall products are also applied and used for hydrological applications. In Ciabatta et al. 

(2016) satellite rainfall data are used to force a hydrological model over several basins in Italy and 

over the Mediterranean area. The analysis showed that satellite rainfall data (both obtained by “top-

down” or “bottom-up” approaches) can offer valuable information over the analyzed basins but 

BIAS correction and model recalibration are necessary steps that have to be applied before these 

kind of applications. Indeed, small errors in rainfall estimates can highly impact discharge 

simulations, also after several days since the rainfall events. Also in this case, the integration of 

different rainfall products (obtained by ground network, satellite sensors or SM observations) is 

found to improve discharge simulations, due to the higher quality of the integrated product.  
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5.3 Use of satellite rainfall data for landslide risk assessment 

The impact of using satellite rainfall data is finally tested for landslide risk assessment.  

The evaluation is carried out by considering a physically-based model that directly uses remotely 

sensed rainfall information, specifically developed. 

Satellite rainfall estimates obtained through TMPA 3B42RT are used to force an ad-hoc developed 

distributed hydrological-stability model. The model allowed to estimate FS by taking the soil 

saturation conditions into account. To this end, rainfall data are used to estimate SM conditions over 

a small area in Umbria, central Italy during the period 1st January 2007 to 31st December 2010. The 

model is forced also by considering ground rainfall observation as input data. The SM simulations 

are assessed by comparison with ASCAT SM product, with satisfactorily results. Then, the obtained 

SM time series are used to estimate FS over the study area. The results provided by forcing the 

model with ground data allowed to potentially identify 3 out 3 landslide events occurred within the 

study area, whereas if the model is forced with satellite rainfall data, 2 out 3 events are identified. 

The results confirm the feasibility of using satellite rainfall data for landslide risk assessment by 

using a physically-based model with an acceptable level of confidence.   

5.4 Final remarks 

The results showed in this work are expected to provide useful insights on the use of satellite 

rainfall data for geo-hydrological applications. The added value of obtaining rainfall data few hours 

after sensing and the possibility of integration of several data sources could provide a useful tool to 

Civil Protection services. Although the performance in terms of discharge estimation and landslide 

occurrence identification are satisfactory, a detailed analysis of errors related to this new source of 

information over other climatic regions is required.  

5.5 Next steps 

Further research will be carried out by using the results obtained in this work of thesis as starting 

point. The impact of spatial/temporal resolution of satellite input data will be carefully addressed, 

also by considering the recent GPM mission data. The analysis will be carried out by considering a 

higher resolution analysis grid and over larger areas.  

Next analysis steps will involve also the use of integrated rainfall products with high-level merging 

scheme, in order to force the model with more reliable information. The introduction of a data 

assimilation module will allow to directly use satellite SM moisture information, taking advantages 

of the high resolution Sentinel-1 SM product, recently available.  

The research will be focused also on the model developed within this work. In particular, the model 

will be applied over larger areas, in order to better assess the parametrization and formulation 

applied here, also through hydrovalidation.  At the same time, more information about occurred 

events will be gathered with the final aim to perform a thorough assessment of the proposed 

modeling chain.  
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6.APPENDIX 

________________________________________ 

 

In this part additional material is reported. The validation of satellite rainfall data and the 

application of SM2RAIN over Australia and India is firstly described. Then, a thorough 

hydrovalidation of state-of-the-art satellite rainfall products over the Mediterranean area is 

reported. Lastly, the use of satellite and SM2RAIN-derived rainfall information for landslide 

prediction through the definition of rainfall thresholds over Italy is assessed. 

_______________________________________ 
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6.1 Validation over Australia 

The validation of satellite rainfall products is carried out over larger areas than the one used for the 

assessment of the performance described in the previous section. More in details, the results 

obtained by applying three different satellite rainfall correction and estimation methodologies to 

SMOS soil moisture data over Australia are here reported. The comparison is carried out against 

ground- and satellite-based rainfall data sets. This section is based on the following publication: 

Brocca, L., Pellarin, T., Crow, W.T., Ciabatta, L., Massari, C., Ryu, D., Su, C.-H., Rudiger, C., 

Kerr, Y. (2016b). Rainfall estimation by inverting SMOS soil moisture estimates: a comparison of 

different methods over Australia. Journal of Geophysical Research, 121(20), 12062-12079. 

Study area 

The main purpose of the study by Brocca et al. (2016b) is to perform a detailed analysis of three 

different methods that can be used for improving satellite rainfall estimation using remotely sensed 

soil moisture data, namely, SM2RAIN (Brocca et al., 2014), API-mod (Pellarin et al., 2013), and 

SMART (Crow et al., 2011). The main benefit of this study is that the three different methods are 

applied by using the same input data and the same analysis period thus allowing to perform a fair, 

comprehensive, and robust comparison. The Australian continent is selected as case study because 

of satellite soil moisture observations from SMOS that are known to be accurate (e.g., Al-Yaari et 

al., 2014a, 2014b) and also for the availability of the good quality gauge-based product provided by 

the Australian Water Availability Project (AWAP) which allows for an objective evaluation of the 

three algorithms. Precipitation across Australia is highly variable due to its significantly different 

climate zones, ranging from tropical in the northeast, temperate (southeastern and southwestern 

regions, and Tasmania), arid deserts and savannas (most of central and northern Australia), as well 

as semiarid regions in the transitional zones. The rainfall pattern is therefore concentric around the 

extensive arid core of the continent, which generally receives only little precipitation (<60 mm/yr). 

The northern tropical zone experiences the majority of the annual rainfall events during the summer 

months (October–March), often exceeding a total depth of 2000 mm, and its winter months are dry. 

The tropical rain events are mainly driven by the Australian monsoon, tropical depressions, and 

cyclones. The southeastern mid latitude regions are temperate and have no distinctive dry season. 

Rain falls mostly during the warm/hot summer through low-pressure systems (e.g., the east coast 

low) that can bring strong storms with heavy rain, while cold frontal systems are more prominent 

through the cooler months. The Great Dividing Range, which runs parallel along much of the east 

coast, is also a likely contributor to wetter temperature summers due to its orographic influence. 

The southwestern regions are classified temperate but experience dry warm/hot summers (in 

particular from November to February). In those summer months, the west coast trough can result 

in large thunderstorms, provided that sufficient moist air is brought into the region. Finally, the 

stable and dry conditions over large parts of central Australia are attributed to the high-pressure-

related subtropical ridge for most times of the year; northern arid regions can, however, 

occasionally receive convective rainfall during periods of monsoon and depressions in the tropics. 

The AWAP rainfall product is generated via spatial analyses on the quality-controlled daily rain 

gauge measurements from the Australian Bureau of Meteorology daily rain gauge network 

(accessed online via http://www.bom.gov.au/jsp/awap/rain/archive_recal.jsp). The first analysis 

http://www.bom.gov.au/jsp/awap/rain/archive_recal.jsp
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method applied to daily anomalies (given by the ratio of daily rainfall to monthly mean) is based on 

a two-dimensional Barnes successive correction technique that interpolates point-gauge data by 

applying a weighted averaging process. Second, the three-dimensional (i.e., latitude, longitude, and 

altitude) smoothing splines are used for the analysis of monthly climatological averages of rainfall. 

Both methods generate analysis fields that achieve their smallest errors subject to constraints on the 

smoothness and the spectrum of the final field. The analysis fields from the anomaly and 

climatology analyses are combined via simple multiplication. To reduce biases in daily estimates at 

this step, the daily rainfall analyses are recalibrated so that their sum is equal to the monthly rainfall 

analyses. AWAP daily rainfall for a given day is the 24 h total rainfall from local time 9 A.M. the 

day before to 9 A.M. the current day. The rainfall fields are gridded on a 0.05° × 0.05° grid and 

spatially resampled to the desired 0.25° × 0.25° grid by taking area-weighted averages. This product 

has known shortcomings (e.g., Contractor et al., 2015). The network has a varying density across 

the country (and also varies with time), with a strong focus on the urbanized coastal areas along the 

east, southeast, and southwest, while the network is extremely sparse in central Australia and 

essentially nonexistent in the barely populated central west. The accuracy of the data varies 

considerably across Australia (with higher analysis errors in the northern tropics than other regions), 

since it is limited to what can be resolved by the station network. In central Australia, the network is 

too sparse to support a daily rainfall analysis, leading to the data “voids” in Figure 6.1, which is 

considered acceptable, due to the little rainfall occurring in those regions. While the analysis errors 

tend to increase away from the gauges, the errors also tend to increase in data-rich areas such as in 

southeast Australia and in regions with strong rainfall gradients and/or with significantly orography; 

the spatial analysis can lead to smoothing such that grid point values may differ slightly from the 

exact reading at the contributing stations. The daily spatial analysis of highly convective systems, 

which are short and variable in length scales in the tropics, is clearly more susceptible to errors due 

to data smoothing, variability of the Barnes parameters, and the station network density. While the 

AWAP analysis typically underestimates intensity and frequency of extreme rainfall events, the 

intensity and frequency of low rainfall events are typically overestimated. On the whole, the mean 

average error is about 50% of the average daily rainfall, based on cross-validation analysis (Jones et 

al., 2009). For this study we have masked out the pixels where AWAP contains fewer than 50% of 

total 1461 analysis days. 
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Figure 6.1 - Climatology of the study area expressed as mean daily rainfall rate (mm/d) in the investigated 

period (from 15 January 2010 to 30 November 2013) obtained by the AWAP data set. The four letters 

indicate the 1° boxes for which the monthly rainfall time series are shown in Figure 6.6. Black areas 

represent the zones in which AWAP data are not available. 

 

For the SMOS data set (Kerr et al., 2012), the reprocessed level 3 (L3) data generated with the 

version 5.51 of the algorithm are taken. The L-Band Microwave Emission of the Biosphere Model 

(Wigneron et al., 2007) is used for inverting SM from dual-polarized multiangular brightness 

temperature observations of SMOS; the algorithm details can be found in Kerr et al. (2012). The 

product is expressed in volumetric terms (m3/m3) and is representative of a soil layer of about 3.5 

cm. The product is available from January 2010 with a spatial sampling of 0.25°. We note here that 

the analysis was carried out also with the new SMOS product (version 6.20), only with SM2RAIN, 

but no significant differences in the results are found. Therefore, we finally decided to use version 

5.51 SMOS product. We also underline that in the period January–June 2010 the SMOS data are 

expected to be of lower quality due to the commissioning phase but removing this period did not 

have a significant impact on results and hence we preferred to consider the longer period. 

The real-time (3B42RT) and the gauge-corrected version 7 (3B42) TMPA products, developed by 

Huffman et al. (2007), are used in this study. The TMPA algorithm combines infrared information 

from geosynchronous satellites and several microwave precipitation estimates from active and 

passive microwave sensors. The 3B42 product is bias adjusted to the monthly Global Precipitation 

Climatology Centre gauge analyses (Schamm et al., 2013). The real-time product does not include 

any ground-based information. The TMPA products have coverage of 50°N–50°S and are produced 

at the 3 h/0.25° temporal/spatial resolution. The accumulated daily rainfall is obtained by 

aggregating the eight 3 h time windows every day. It should be noted that TMPA data are provided 

within a time window ±90 min from the nominal time (0000, 0300, …, 2100 UTC), while the 

satellite soil moisture product and the observed rainfall data set are delivered in local time, i.e., 
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UTC + 9 (on average over Australia). Therefore, the daily accumulated rainfall product from 3B42 

and 3B42RT represents the total rainfall starting, and ending the next day, at 07:30, with 1.5 h of 

delay with respect to the other products. 

The real-time version of TMPA (3B42RT) is used as input along with SMOS soil moisture 

observations (ascending plus descending orbits). The gauge-corrected TMPA product, 3B42, is used 

for a pixel-by-pixel calibration of the parameter values of the three algorithms. The gauge-based 

AWAP product is finally employed as a separate validation data set (see the diagram in Figure 6.2). 

We acknowledge that AWAP and 3B42 data sets are not fully independent as the gauge correction 

of 3B42 product likely includes some of the AWAP gauges. However, as the correction is made at 

monthly time scale, it is less important at 1 day and 5 days time scales that are considered here for 

evaluating the candidate algorithms. Due to limitations in the current length of the SMOS soil 

moisture data set, distinct temporal periods for parameter calibration and model validation are not 

utilized. Each product is resampled in space to the same computational grid with spacing of 0.25° 

Equal-Area Scalable Earth (EASE) (EASE grid). The temporal resolution of the obtained rainfall 

products is daily (9 A.M. to 9 A.M., local standard time, as AWAP). Both the parameter calibration 

and the performance assessment are carried out for the whole data period, i.e., from 15 January 

2010 to 30 November 2013.  

 

Figure 6.2 - Diagram of the input-output data, algorithms, and processing step carried out in the study for 

estimating and correcting rainfall through SMOS soil moisture observations. Note that TMPA 3B42 and 

AWAP data sets are used for parameter calibration/estimation and products validation, respectively. 
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In the following sections, the main characteristics of each algorithm, and their specific 

implementation for this study, are summarized. More complete descriptions of each method can be 

obtained in the cited references. 

Rainfall datasets 

SM2RAIN 

SM2RAIN algorithm is already described in the previous Chapters. In this study SMOS SM data 

are used to estimate rainfall after some preprocessing steps applied to satellite estimates. the SMOS 

soil moisture data are first normalized between 0 and 1 by considering the minimum and maximum 

values of each pixel. Successively, normalized data are interpolated in time at 9 A.M. local time of 

each day. The obtained time series of relative soil moisture are used as input into the algorithm, and 

the four parameters (Z*, a, b, and T) are calibrated by minimizing the RMSE between the estimated 

rainfall and the 3B42 data set at daily time scale. The obtained rainfall product, PSM2RAIN, is in 

turn merged with 3B42RT through Eq. 6.1 implying the calibration of k parameter; the 

minimization of RMSE is used also for this step.  

)]([)()( 4223)(24234232 tPPktPtP RTBtRAINSMRTBRTBRAINSM                              (6.1) 

The second rainfall product is PSM2RAIN+3B42RT, for which the same procedure is applied 

separately for each pixel of the study area. For simplicity, the two products will be referred as 

SM2RAIN and SM2RAIN+3B42RT thereinafter. 

API-Mod 

The API-mod algorithm is based on a simple modification of the Antecedent Precipitation Index 

(API) initially designed to provide a proxy of the surface soil moisture with a single precipitation 

observation and a single parameter ι which controls the soil drying-out velocity. The API 

relationship can be written as 

)()1()( tPetAPItAPI

t
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

                                                 (6.2) 

A modification of the API model, API-mod, was introduced in Pellarin et al. (2013). The API-mod 

includes two more parameters to account for soil saturation (θsat) and soil layer thickness (dsoil). The 

API-mod algorithm can be expressed as 
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                              (6.3) 

where θsat [L
3/L3] is the saturated soil moisture value, dsoil is the soil depth [L], P(t) is the rainfall 

accumulation [L] over a Δt period [T], and ι is a parameter which describes the soil drying-out 

velocity [T]. 

A CDF-matching procedure is done in order to avoid any bias between API-mod SSM and SMOS 

L3SM data. The CDF matching is a pixel-by-pixel procedure and can be expressed as 

SMOSppSMOSCDF

21                                                     (6.4) 
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Where s and μ are the standard deviation and mean of the SM data. The API-mod algorithm 

provides one rainfall product (Figure 6.2), i.e., PAPI-mod, and requires the calibration of the single 

parameter τ on a pixel-by-pixel basis; θsat and dsoil parameters are assumed as spatially constant for 

the whole study area. Before applying the assimilation technique, a preprocessing step is carried out 

to match SSM, Eq. 6.3, forced with 3B42 daily precipitation and SMOS L3SM data thus obtaining 

the spatial distribution of p1 and p2 coefficients. Then, for implementing the API-mod 

methodology, a particle filter assimilation scheme is used. This approach is based on stochastic 

perturbation of the precipitation forcing that explicitly simulates the consequence of these 

uncertainties in the soil moisture estimates (Arulampalam et al., 2002; Doucet et al., 2000; 

Moradkhani et al., 2005; Van Leeuwen, 2009). The random generation is obtained as K = 

exp(4*Rand-2) where Rand is a random number uniformly distributed between 0 and 1. Then, each 

3 h rainfall estimate is randomly changed using the multiplicative factor K ranging from about 0.13 

(e-2) to about 7.3 (e2). The assimilation time period is fixed to five successive SMOS measurements. 

An ensemble of 100 API-mod simulations is done, and the 10 best simulations are selected based on 

RMSE minimization between API-mod and SMOS soil moisture at daily time scale. The retrieval 

accumulation product is calculated as the mean value of the 10 best simulations (average of 10 

perturbed precipitation time series). This operation is renewed for the next period of five SMOS 

measurements and for each 0.25° pixels of Australia. For simplicity, accumulation products PAPI-mod 

acquired above will be referred as API-mod thereinafter.  

SMART 

The Soil Moisture Analysis Rainfall Tool (SMART, Crow et al., 2009,2011) is based on the 

sequential assimilation of SMOS soil moisture retrievals into a daily implementation of Eq. 6.2 for 

the case of P(t) derived from TMPA 3B42RT rainfall accumulations. For each sequential 

assimilation of a single SMOS retrieval, an increment of water (δ) is either added or subtracted from 

the analysis background in an attempt to compensate for the impact of random rainfall errors on 

daily API forecasts. Given their relationship to rainfall errors, these increments can be used to 

correct satellite-based rainfall accumulations via a simple additive correction (Crow et al., 2009): 

 )]([)]([ 423 tPtP RTBSMART                                             (6.8) 

where Ω is a temporally fixed (but spatially variable) constant and bracketing “[]” reflects summing 

within a multiday period. The specific Kalman filter and the API model parameterization applied 

here follow the one described by Crow et al. (2011) except for three modifications. First, instead of 

the month-by-month approach recommended by Crow et al. (2011), the preprocessing of SMOS 

surface soil moisture retrievals is based on the application of a single pixel-wise CDF-rescaling 

function to transform the distribution of raw SMOS retrievals to match that of the API predictions 
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obtained from Eq. 6.2 (utilizing 3B42RT rainfall and no data assimilation). This change is made 

because the 4-year length of the SMOS time series is deemed too short to sample separate rescaling 

functions for each month. Note that this rescaling approach is similar to that described in Eq. 6.4 for 

API-mod, except based on the matching of all statistical moments (not just mean and variance). 

Second, to reflect relatively arid conditions within the Australian continent, the ι in Eq. 6.2 is 

lowered from the globally fixed value of 6.15 (days) recommended by Crow et al. (2011) to a lower 

value of 1.96 (days). Third, instead of applying the triple collocation-based approach recommended 

by Crow et al. (2011), soil moisture retrieval errors in assimilated SMOS soil moisture retrievals are 

held fixed at a constant value of 0.04 m3/m3. This ensures that the data input needs of SMART are 

consistent with SM2RAIN and API-mod. A temporally constant value of Ω in Eq. 6.8 is calibrated 

on a pixel-by-pixel basis to minimize the RMSE between [PSMART] and [P3B42] estimates 

(where brackets indicate either 1-day or 5-day accumulation periods). The SMART algorithm 

provides a single rainfall accumulation product (Figure 6.2), i.e., [PSMART]. The time scale of this 

product is determined by the accumulation window applied in Eq. 6.8. Past experience with 

SMART has revealed that it is preferable to apply Eq. 6.8 using a multiday accumulation window 

rather than applying it at a daily time scale and then aggregating to a multiday period (Crow et al., 

2009). Therefore, in order to maximize the 5-day performance of SMART, separate 

implementations of Eq. 6.8, each with its own unique Ω calibration, were applied to acquire 1 and 

5-day SMART rainfall accumulation estimates. Note that such an approach contrasts which that of 

SM2RAIN and API-Mod, where 5 day accumulations were obtained by simply aggregating 1 day 

or 3-hourly results (see above). See below and Crow et al. (2011) for additional SMART 

implementation details. For simplicity, the [PSMART] rainfall accumulation products resulting 

from the application of Eq. 6.8 will be referred as SMART thereinafter. 

Parameter values of rainfall estimation algorithms 

Following the procedure described in previous section, the parameter values of each method are 

computed by using 3B42 as benchmark. Table 6.1 shows the summary statistics of the spatial 

distribution (median, standard deviation, and 25th and 75th percentiles) of each parameter that is 

considered to be varying in space for each method. The percentiles are computed on the obtained 

parameter values and aim at providing an estimate of the frequency distribution of their spatial 

variability. 

The strategy for the parameterization of each method is different. For SM2RAIN and SMART, the 

parameter values are calibrated based on the explicit minimization of errors (RMSE) with respect to 

3B42 retrievals. Specifically, as mentioned above, two separate calibrations are carried out with 

SMART for 1-day and 5-day rainfall correction. For API-mod, the single parameter ι is 

parameterized as a function of soil texture information instead of performing a pixel-by-pixel 

calibration. 

For SM2RAIN, the obtained parameter values are quite consistent with those of previous studies by 

Brocca et al. (2014) and Ciabatta et al. (2015), despite that the application of the exponential filter 

was not used in those studies. In particular, the Z* parameter is found to be higher than in previous 

investigations likely due to the application of the exponential filter. Indeed, the filter smooths the 

soil moisture signal, which in turn becomes representative of a thicker soil layer thus increasing 

Z*value. Similar considerations can be made for the other parameters. The spatial variability of the 

parameter values resembles the one found in Brocca et al. (2014) and Ciabatta et al. (2015) as 
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higher Z* for higher rainfall rates (i.e., northern and eastern Australia; see Figure 6.1) and higher a 

values along the coasts where the SMOS signal is noisier (Ciabatta et al., 2015). 

For the API-mod methodology, similarly to previous studies (Pellarin et al., 2013; Louvet et al., 

2015), soil depth (dsoil) is fixed to 100 mm and θsat is fixed to 0.41m3/m3, whereas τ is assumed to be 

related to clay fraction as ι = 32 ln(clay) + 174 with clay ranging from 0 to 100% 

(FAO/IIASA/ISRIC/ISSCAS/JRC, 2012). Thus, only three parameters are spatially distributed over 

Australia in the API-mod method (p1, p2, and ι; see Eqs. 6.3 and 6.4). 

Parameters  Z* [mm] a [mm/day] b [-] T [days] k [-] 

SM2RAIN 

Median 77.2 11.5 5.3 2.9 0.25 

s 135.3 26.9 17.5 6.8 0.18 

25th 48.2 0.0 2.1 1.5 0.11 

75th 125.3 23.4 27.3 6.6 0.38 

Parameters  ι [hours]     

API-mod 

Median 209.2     

s 45.4     

25th 174.0     

75th 262.3     

Parameters  Ω (1-day) [-] Ω (5-day) [-]    

SMART 

Median 0.15 0.30    

s 0.14 0.19    

25th 0.09 0.21    

75th 0.23 0.41    
 

Table 6.1 - Summary statistic of the calibration parameters of each method; (s: Standard Deviation; 25th and 75th: 

Percentiles) 

Results 

Validation results over Australia 

Three continuous metrics are used for the evaluation of the performance of the soil moisture-

derived rainfall products (and TMPA products): R, RMSE, in mm, the BIAS, computed as relative 

error on the accumulated rainfall in the entire investigated period, the unbiased RMSE (ubRMSE, in 

mm), and the mean error (BIAS*, in mm), computed as the long-term mean difference. The 

ubRMSE is the square root of the difference between RMSE2 and BIAS*2, and it provides 

information regarding the random error only. Additionally, three more categorical metrics are 

employed: FAR, POD, and TS. See previous section for the definition of the categorical scores. The 

categorical performance metrics are evaluated for different rainfall thresholds computed as rainfall 

percentiles (from 0 to 100°) of each pixel in the study area (e.g., Chen et al., 2012; Brocca et al., 

2014). 
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Continuous performance scores (R and RMSE) are computed for both 1-day and 5-day accumulated 

rainfall, and the summary statistics of their spatial distribution are given in Table 6.2. Specifically, 

all the performances are referred to the comparison with the AWAP data set, and six different 

satellite-based rainfall products are analyzed: 3B42, 3B42RT, SM2RAIN, SM2RAIN+3B42RT, 

API-mod, and SMART. As in Table 6.1, the percentiles are simply computed on the values 

obtained for each performance score and aim at providing an estimate of their frequency 

distribution. The performance of 3B42 is reported here as a baseline product. However, we note that 

3B42, by retrospectively including ground-based observations, is not comparable with the other 

products based solely on near-real-time satellite observations. The top down baseline to be 

compared with SMOS-based rainfall products is the (purely remotely sensed) 3B42RT product. 

Additionally, the SM2RAIN product should be analyzed separately from the other three products 

(SM2RAIN+3B42RT, API-mod, and SMART) as it considers only SMOS soil moisture data and 

does not utilize 3B42RT rainfall improvement. As there is an extreme range of precipitation 

patterns across Australia, the performances are also computed for each climatic zone. The relative 

comparison between these zone-specific scores is quite similar to that obtained for the whole 

Australia with only minor differences (outlined below) and, hence, not shown here for brevity. In 

terms of correlation, which provides information about the ability of reproducing the relative 

temporal dynamics of observations, 3B42RT performs quite well for both 1-day and 5-day 

accumulated rainfall with median R values equal to 0.62 and 0.72, respectively. SM2RAIN 

provides lower (higher) scores for 1 day (5 day) accumulated rainfall. Indeed, as shown in previous 

studies (e.g., Brocca et al., 2014), the revisit time of SMOS observations (~2 days in Australia) is 

not suitable for accurately estimating rainfall at daily time scale. Nevertheless, both 

SM2RAIN+3B42RT and SMART are found to outperform 3B42RT with consistent results, which 

are also close to those of 3B42. For SM2RAIN+3B42RT (SMART) the median R values are equal 

to 0.65 (0.63) and 0.76 (0.76) for 1-day and 5-day accumulated rainfall, respectively, and these 

values are significantly different from those obtained with 3B42RT (significance level of 0.10, one-

tailed test). The performance of API-mod is found to be slightly lower in terms of correlation, 

specifically for 1-day rainfall estimates. The spatial distribution of the local correlations is shown in 

Figure 6.3 for 1-day and 5-day accumulated rainfall. Figure 6.3 (left column) represents the 

correlation maps obtained with 3B42RT, and Figure 6.3 (right column) presents the ratio between 

the correlations obtained with SMOS-based products and the baseline (3B42RT). Therefore, from 

left panels of Figure 6.3 the spatial pattern of the performance is shown, while the right panels 

provide an immediate understanding of the areas where an improvement (blue) and a deterioration 

(red) of performances occur. For 1-day rainfall it is evident that SM2RAIN+3B42RT and SMART 

provide a significant improvement of the correlation, mainly in the central part of Australia (arid 

climate). SM2RAIN and API-mod have lower performance, and only by considering 5-day 

accumulated rainfall, a widespread improvement related to these two products is observed. 

Interestingly, the lower performance of the SMOS based rainfall products is found along the coast 

and particularly in the southeastern (temperate climate) part of Australia (evident for SM2RAIN at 

1 day). This region is characterized by a high density of vegetation and the presence of urban areas, 

and, hence, the lower accuracy of SMOS soil moisture product is expected. In terms of RMSE (see 

Table 6.2), which aims at characterizing the random error plus the BIAS between observed and 

estimated rainfall data, the relative performances of the products are different with respect to 

correlations. 
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Product 

1-day Rainfall 5-day Rainfall 

BIAS |BIAS| 
R 

RMSE 

(mm) 
TS R 

RMSE 

(mm) 
TS 

3B42 

10th 0.53 3.06 0.3 0.67 6.48 0.53 -0.14 0.02 

50th 0.68 4.73 0.42 0.8 10.7 0.66 0.03 0.09 

90th 0.78 8.69 0.54 0.88 20.08 0.76 0.21 0.25 

3B42RT 

 

10th 0.46 3.44 0.27 0.54 8.3 0.48 -0.18 0.05 

50th 0.62 5.59 0.4 0.71 14 0.62 0.2 0.26 

90th 0.73 9.44 0.52 0.83 24.04 0.74 0.7 0.72 

SM2RAIN 

 

10th 0.4 2.61 0.27 0.58 6.04 0.46 -0.26 0.02 

50th 0.56 4.4 0.38 0.74 10.71 0.6 0.01 0.12 

90th 0.66 8.5 0.48 0.83 23.37 0.81 0.27 0.37 

SM2RAIN+3B42RT 

 

10th 0.51 2.86 0.28 0.61 6.81 0.47 -0.18 0.04 

50th 0.65 4.39 0.4 0.76 11.07 0.6 0.15 0.2 

90th 0.75 8.16 0.52 0.85 20.72 0.78 0.47 0.53 

API-mod 

 

10th 0.44 3.29 0.24 0.57 6.57 0.47 -0.21 0.03 

50th 0.58 5.43 0.37 0.73 11.89 0.61 0.07 0.15 

90th 0.69 9.03 0.48 0.83 22.2 0.72 0.37 0.42 

SMART 

10th 0.48 3.16 0.28 0.62 6.77 0.48 -0.24 0.03 

50th 0.63 5.24 0.39 0.76 12.13 0.63 0.09 0.18 

90th 0.74 9.04 0.5 0.85 22.53 0.81 0.5 0.59 

 

Table 6.2 - Summary statistics of the spatial distribution of performance scores of the different satellite rainfall products in 

the comparison with AWAP data. 

 

The baseline 3B42RT product has quite large RMSE values (e.g., median RMSE = 5.59mm for 1-

day rainfall), partly due to the tendency to overestimate observations (median BIAS = 0.20). 

Therefore, all SMOS-based rainfall products outperform 3B42RT for both rainfall accumulations. 

The best performing products are SM2RAIN+3B42RT for 1- day accumulation and SM2RAIN for 

5-day accumulations. 
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Figure 6.3 - (left column) Pearson’s correlation maps between AWAP-observed accumulated rainfall and 

TMPA 3B42RT product. (right column) Correlation ratio maps between the correlation obtained by 

comparing the four different SMOS-derived products (SM2RAIN, SM2RAIN+3B42RT, API-mod, and 

SMART) with AWAP observed rainfall and the correlation obtained with TMPA 3B42RT (left column); red 

pixels indicate degradation (lower correlations), whereas blue pixels an improvement (higher correlations). 

The analysis period is from 14 January 2010 to 30 November 2013, and the top (bottom) rows show results 

for 1 day (5 day) accumulated rainfall. Black areas represent the zones in which AWAP data are not 

available. 
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Interestingly, for 1-day rainfall SM2RAIN-related products show performance scores even better 

than the gauge-corrected 3B42. Differently from the correlations, API-mod provides comparable 

scores with SMART. The absolute BIAS (last column of Table 6.2) gives nearly the same picture of 

RMSE with all the SMOS-based products outperforming 3B42RT and the best results for 

SM2RAIN. Figure 6.4, similarly to Figure 6.3, shows on the spatial distribution of RMSE values 

obtained through 3B42RT (left column) and the improvement (blue)/deterioration (red) that is 

found due to the use of SMOS soil moisture data for rainfall estimation/correction (right column). 

Clearly, all the maps highlight that the use of SMOS largely improves the estimation of rainfall in 

terms of RMSE, with all the products providing the largest added value in central Australia (arid 

climate). The overall spatial patterns of RMSE and R values are in good agreement (e.g., low to no 

improvement along the coast and better scores in central Australia).  

 

Figure 6.4 - As in Figure 6.3 but for the root-mean-square error (RMSE). Red pixels indicate degradation 

(higher RMSE), whereas blue pixels indicate an improvement (lower RMSE).  

Besides the continuous performance scores, rainfall products should be analyzed in terms of their 

capacity to detect the occurrence of rainfall events. In Table 6.2 the summary statistics of the TS 
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values are given for each product. TS integrates POD and FAR scores and is computed in 6.2 for a 

rainfall threshold of 0.2 mm. 3B42RT provides quite accurate results with median TS values equal 

to 0.40 and 0.62 for 1-day and 5-day accumulated rainfall, respectively. SMOS-based products 

generally provide equal or lower performances with the SM2RAIN+3B42RT product giving the 

best scores for 1-day accumulated rainfall. For 5-day rainfall, SMART has the best scores (except 

for the 10th percentiles) with median TS of 0.63. Figure 6.5 shows the POD, FAR, and TS values 

in each panel for both 1-day and 5-day accumulated rainfall. Plots show the median (±1 standard 

deviation) values of each categorical score and for different rainfall threshold computed as the 10th, 

50th, and 90th percentiles of the AWAP-observed rainfall in each pixel. Therefore, the panels show 

the capability of the products to detect rainfall occurrence for low to high rainfall events (from left 

to right).  

 

Figure 6.5 - POD (Probability of Detection) versus FAR (False Alarm Ratio) plots for (a, d) 10th, (b, e) 

50th, and (c, f) 90th percentile and for 1 day (Figures 6a–6c) and 5 days (Figures 6d–6f) accumulated 

rainfall. The contour lines indicate TS (Threat Score) values, the horizontal (vertical) bars represent the 

standard deviation of POD (FAR), and the square is the median value. Squares represent the median POD 

(FAR) over all pixels for the 10th, 50th, and 90th percentiles at that pixel. Optimal performances are for 

FAR = 0, POD = 1, and TS = 1. Percentiles represent the rainfall threshold used for the computation of the 

scores. Therefore, low (high) percentiles indicate the product capability to detect high (low) rainfall 

intensities. 

For 1-day rainfall (Figures 6.5a–6.5c), SM2RAIN and API-mod give the lower performance in 

terms of TS. SMART, SM2RAIN, and SM2RAIN+3B42RT have a quite high probability of falsely 

identifying rainfall events (high FAR) but a good detection capability (high POD). 3B42RT and 

API-mod have an opposite behavior with low FAR and relatively low POD values. It should be also 
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underlined that for 90th percentiles (high rainfall intensities) the product’s behavior is more similar 

and the best product is found to be SM2RAIN+3B42RT. For 5-day rainfall (Figures 6.5d–6.5f), the 

product’s performance is better (lower FAR and higher POD) but with a similar pattern of 1-day 

rainfall. For medium to high rainfall intensities (50th and 90th percentiles, 5-day rainfall), the best 

product is SMART with values very close to the optimal performance (FAR = 0, POD = 1, TS = 1) 

for the 50th percentiles. Overall, performances deteriorate from left to right mainly due to the 

increased difficulty of detecting high-intensity rainfall events. The overall performance of SMOS-

based rainfall products is in agreement with previous studies by Chen et al. (2012), Brocca et al. 

(2014), and Ciabatta et al. (2015) who found that the soil moisture correction improves POD and 

deteriorates FAR, with a corresponding slight increase in TS.  

Monthly scale analysis 

The temporal pattern of observed (AWAP) and estimated (SMOS-based) rainfall is analyzed for the 

four 1° domains identified in Figure 6.1. In particular, Figure 6.6 shows monthly rain time series 

of all products (5-day SMART simulation are considered here). The main purpose of Figure 6.6 is 

to visualize explicitly the capability of the different rainfall products to reproduce the total volume 

of rainfall. The agreement with observations at monthly time scale is very good for all products 

with the exception of SM2RAIN in Figure 6.6c (underestimation) and 3B42RT and SMART in 

Figure 6.6d. The figures highlight that the temporal dynamic of SMART and 3B42RT is very 

similar (e.g., Figure 6.6d), while the other three SMOS-based products (SM2RAIN, 

SM2RAIN+342RT, and API-mod) are more independent from 3B42RT.  

 

Figure 6.6 - Time series of monthly rainfall obtained from observations (AWAP), the real-time TMPA 

product (3B42RT), and the SMOS-derived products (SM2RAIN, SM2RAIN+3B42RT, API-mod, and SMART) 

for the four boxes shown in Figure 6.1 (R: Pearson’s correlation coefficient; RMSE: root-mean-square 

error). 
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6.2 Validation over India 

The section focused on the integration of multiple satellite SM products for obtaining a unique, 

superior rainfall product via SM2RAIN. The study is carried out over India and Italy, by 

considering five different satellite SM products and two different gauge-based rainfall datasets as 

benchmark. Moreover, a comparative analysis is carried out by comparing the SM-derived rainfall 

data with the Integrated Multi-satellitE Retrievals for GPM (IMERG) precipitation product 

(Huffman et al., 2014). This section is based on the publication: 

Tarpanelli, A., Massari, C., Ciabatta, L., Filippucci, P., Amarnath, G., Brocca, L. (2017). 

Exploiting a constellation of satellite soil moisture sensors for accurate rainfall estimation. 

Advances in Water Resources, 108, 249-255. 

Study area 

The study areas, India and Italy, are chosen for two main reasons. First, a dense rainfall network is 

available for the period under investigation in both countries. In India, the observed dataset is 

derived by the India Meteorological Department (IMD) that provides daily rainfall data from 1901 

to the present day. The observed rainfall dataset for Italy is obtained by the spatial interpolation of 

more than 3000 rain gauges over the territory (Ciabatta et al., 2015). Both datasets are available at 

0.25°daily spatial/temporal resolution. Second, the two countries are characterized by different 

geographic scale, varied topography and diverse climate conditions. A large part of India is located 

within the semi-arid tropics and much of the countries relies on tropical monsoon supporting 

rainforests in the southwest and the island territories (Peel et al., 2007). Differently, climate in Italy 

ranges from humid subtropical climate in the northern areas and Mediterranean climate along the 

coastal areas and southern regions (Ciabatta et al., 2015). 

Due to the detailed analysis carried out over Italy, in the following only the results obtained over 

India will be reported.  

Satellite soil moisture and rainfall products 

Five active and passive microwave satellites sensors constitutes the “constellation” from which we 

obtained the different SM products. These products are used as input into the SM2RAIN algorithm 

for the estimation of rainfall. In the following, a brief list with the main characteristics of each 

sensor is provided (see also Table 6.3): 

1) The Advanced SCATterometer (ASCAT) onboard Metop-A and Metop-B satellites is a 

scatterometer operating at C-band (5.255 GHz). It provides a SM product characterized by ~25 km 

and daily spatial-temporal resolution (Wagner et al., 2013). In this study, the SM product provided 

within the EUMETSAT H-SAF project (http://hsaf.meteoam.it/) denoted as H109 is used. 

2) The Advanced Microwave Scanning Radiometer 2 (AMSR2) onboard the Global Change 

Observation Mission for Water satellite is a radiometer operating in the microwave range 6.925-

89.0 GHz. At the bands used for SM estimation (C- and X-bands), the spatial-temporal resolution is 

~25 km and daily (Kim et al., 2015). In this study, we focused on the X-band SM product (X-band 

is found to outperform C-band, not shown for brevity) obtained by the application of the Land 

Parameter Retrieval Model to AMSR2 brightness temperature data (Parinussa et al., 2015). 

http://hsaf.meteoam.it/
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3) The Soil Moisture Active and Passive (SMAP) mission SM product is obtained by L-band 

radiometer observations (1.4 GHz) with ~36 km and 2 days spatial-temporal resolution (Entekhabi 

et al., 2010). In this study, the version 3 of the Level 3 SM retrievals are used (SMAP_L3_SM_P). 

4) The Soil Moisture and Ocean Salinity (SMOS) mission provides a SM product through a 

radiometer operating at L-band (1.4 GHz) with ~50 km of spatial resolution and 2 days of temporal 

resolution (Kerr et al., 2012). In this study, version RE04 (level 3) provided by the Centre Aval de 

Traitement des Données SMOS (CATDS) is used. 

5) RapidScat, onboard the International Space Station, is a scatterometer operating at Ku-band 

(13.4 GHz) in HH and VV polarization over the ± 50° latitude band. It provides data with ~25 km 

of spatial resolution and temporal resolution depending on the latitude varying from nearly daily in 

Italy to once every two days in southern India. It is worth to notice that RapidScat does not provide 

an official SM product. In this study, the backscatter data are used as proposed in Brocca et al. 

(2016a) for obtaining a RapidScat-based SM product. 

For the sake of simplicity, the rainfall products derived by each SM product are referred with the 

name of the sensor/mission, i.e., ASCAT, AMSR2, SMAP, SMOS, and RapidScat. 

SENSOR SATELLITE 
STARTING 

MONTH 
BAND 

SPATIAL 

RESOLUTION 

REVISIT 

TIME 

ASCAT Metop-A, Metop-B Jan 2007 C (5.255 GHz) 25 km 1 day 

AMSR2 
Global Change Observation 

Mission for Water 
Jul 2012 X (10.65 GHz) 25 km 1 day 

Radiometer 
Soil Moisture Active and 

Passive mission 
Apr 2015 L (1.4 GHz) 36 km 2 days 

MIRAS 
Soil Moisture Ocean Salinity 

Mission 
Jan 2010 L (1.4 GHz) 50 km 2 days 

RapidSCAT International Space Station Nov 2014 Ku (13.4 GHz) 25 km 1-2 days 

Table 6.3 - Main characteristics of the satellite soil moisture products employed in this study. 

 

The merging procedure is feasible if the datasets are consistent each other in terms of spatial-

temporal resolution and coverage. Therefore, all the satellite SM products are spatially resampled at 

0.25° and temporally interpolated at daily scale at 0000 UTC +3.5 hours (+1 hour) for India (Italy), 

i.e., at the spatial and temporal resolution (and sampling) of ground observations. As the satellite 

missions are characterized by different operative periods, a common time window from April to 

December 2015 is considered in which all satellite SM products are available. 

In order to assess the capabilities of the SM-based rainfall products, a comparative analysis is 

carried out with the rainfall estimates obtained by GPM mission (Hou et al., 2014). The Integrated 

Multi-satellitE Retrievals for GPM (IMERG) precipitation products, released in early 2015 

(Huffman et al., 2014), is available at 0.1° x 0.1° spatial and half-hourly temporal resolutions in 

three modes, based on latency and accuracy: “early” run (6 h after observation), “late” run (18 h 

after observation) and “final” run (four months after the observation month). The IMERG “late” run 

(hereinafter IMERG-lr) product, aggregated at 1-day and 0.25° temporal/spatial resolution, is used 

here. 
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SM2RAIN algorithm 

The SM2RAIN algorithm is applied separately to the five SM products, by considering a pixel-by-

pixel calibration and the minimization of the root mean square error (RMSE) between ground-based 

and SM2RAIN rainfall estimates as objective function. The short period of analysis (mainly due to 

the recent SMAP mission) does not allow to consider a calibration and validation period. However, 

it does not influence the concept of the study that is to demonstrate the benefit derived from 

integration of multiple SM products for rainfall estimation. For further details of SM2RAIN, the 

reader is referred to the previous sections. In the application of SM2RAIN to the five SM products, 

some differences in the processing exist and below they are specified. In the SMAP SM product 

only the descending orbits are used; therefore, SM2RAIN is simply applied to a single SM time 

series. The ASCAT SM product incorporates measurements derived by sensors onboard Metop-A 

and Metop-B satellites, ascending/descending orbits. SM2RAIN is applied to the SM time series 

integrating both sensors and orbits, as the SM time series are highly consistent. Differently, in the 

case of AMSR2 and SMOS satellites, the SM products based on ascending and descending orbits 

present some differences and, hence, SM2RAIN is applied separately to the two orbits. Similarly, 

also for RapidScat the HH and VV polarizations are considered separately. For obtaining a single 

rainfall product from each sensor, a first merging is carried out between the two rainfall products 

(two orbits or polarizations) obtained by AMSR2, SMOS and RapidScat through the merging 

procedure described below. 

Merging procedure 

The merging procedure uses a linear combination of all the satellite rainfall products derived from 

SM observations. The weights of the linear combination are constant in time and varying in space 

(pixel-by-pixel), with the constrain that the sum of the weights is equal to one. The weights are 

computed by minimizing RMSE between the observed and the estimated rainfall, i.e., the merged 

product hereinafter referred as MERGING. 

Performance indices 

The capability to reproduce the observed temporal pattern of rainfall is evaluated through the 

calculation of the same performance indices used in the previous work by Brocca et at. (2016b) at 

daily time scale: Pearson coefficient of correlation, R, the mean relative error, BIAS, and the 

unbiased root mean square error, ubRMSE, computed as: 

22 BIASRMSEubRMSE                    (6.9) 

Additionally, three categorical metrics are evaluated for each point and for different rainfall 

thresholds (Chen et al., 2012; Brocca et al., 2014): POD, FAR and TS.  

Performance assessment 

Figure 6.7 shows the spatial distribution of the performance metrics R, ubRMSE and absolute 

BIAS, between observed and estimated daily rainfall in India. As expected, lower performances are 

observed in Northern India due to the complex topography, and higher accuracy is obtained in the 

arid and semi-arid parts of western India. Result are consistent with the study by Brocca et al. 

(2014) who found better performance scores in arid and semi-arid areas and lower in mountainous 

regions. Among the five SM products, AMSR2 provides the better results with median R of 0.57 



6. Appendix 1 

142 

 

and median ubRMSE of 7.7 mm/day. ASCAT and SMAP have slightly lower performances with 

median R=0.53 and 0.49, respectively. The lower accuracy of RapidScat is likely due to the impact 

of vegetation that is not properly accounted in the retrieval algorithm (Brocca et al., 2016a). For 

SMOS the radio frequency interferences that affected large parts of India in 2015 (Koster et al., 

2016) are the most likely responsible of the obtained low performances.

 
Figure 6.7 - Pearson correlation, R (upper panels), unbiased Root Mean Square Error (ubRMSE, 

middle panels) and absolute BIAS (lower panel) maps obtained from the comparison of daily 

rainfall products derived from ASCAT, SMAP, AMSR2, RapidScat, SMOS and after the merging 

procedure (MERGING) against ground-observed data at 0.25°/daily spatial/temporal resolution. 

The insets in each sub-figure show the corresponding frequency distribution. 

In terms of ubRMSE, the maps show similar spatial patterns that are mainly driven by the rainfall 

amount, i.e., higher error where it rains more. By comparing absolute BIAS and ubRMSE, it is 

evident that the random component is dominating the error (ubRMSE>>BIAS, ~30 times) in 

accordance with previous investigations in Australia (Brocca et al., 2016b). 

The large differences among the results of single SM products do not affect the integrated product, 

MERGING (see Figure 6.7). Indeed, the weaknesses of each single product are significantly 

reduced, providing high correlations (median R=0.65) and low ubRMSE (7.1 mm/day), even 

outperforming IMERG-lr product (median R / ubRMSE = 0.56 / 9.7 mm/day). The percentage 

increase in the performance of the merged product is equal to +45% (-14%) in terms of R 

(ubRMSE) with respect to the average values of single products. The analysis of the weights 

enables to evaluate the impact of each rainfall product to the final MERGING (not shown for 

brevity): on average AMSR2, ASCAT and SMAP contributes 41, 27 and 21%, respectively, 

whereas for RapidScat and SMOS the contribution is lower (11%). 

Figure 6.7 shows the performance metrics obtained by the different SM-based products, as well as 

the merged product, grouped by rainfall intensity (computed on the observed dataset). Specifically, 

we considered three type of rainfall events: drizzle (≤5 mm/day), moderate (5-15 mm/day) and 

heavy (≥15 mm/day). In terms of correlation, better performances are obtained for drizzle and 

heavy rainfall events while for the other metrics a comparison between event types is not 

appropriate (errors are lower for lower rainfall intensities).  
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Figure 6.7 - Box plot of summary statistics for 1-day rainfall estimates grouped by rainfall intensity, i.e., <5 

mm (drizzle events), 5-15 mm (moderate rainfall events), >15 mm (heavy rainfall events), computed on the 

ground observed data in India. Note that y-axis have different ranges to better visualize the differences in the 

performance between datasets. In the box plots the min/max, 25/75° percentiles and the median values are 

shown (R: Pearson correlation coefficient; ubRMSE: unbiased Root Mean Square Error, BIAS: mean error). 

The merged product (MERGING) is always outperforming the others, including IMERG-lr, except 

for the BIAS. The larger differences are observed for moderate and heavy rainfall events in terms of 

ubRMSE and for low and heavy rainfall events in terms of R. All the products overestimate low 

rainfall events (positive BIAS) and underestimate moderate and, particularly, heavy events. Indeed, 

the median BIAS for heavy events is equal to -18 and -11 mm for MERGING and IMERG-lr, 

respectively. 

Categorical scores assessment 

The capability to detect the occurrence of rainfall events is investigated through the computation of 

categorical scores. Figure 6.8 shows POD, FAR and TS for daily accumulated rainfall and for three 

rainfall thresholds (0, 5, and 15 mm/day) in order to assess the detection capability from low to high 

rainfall events. In India (Figure 6.8), by analysing TS-values, we obtained that MERGING product 

performs worse than IMERG-lr for low rainfall threshold (>0 mm/day), mainly due to the 
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overestimation of rainfall as identified by high POD and FAR values. Differently, for rainfall 

threshold >5 and >15 mm/day, MERGING product outperforms IMERG-lr. 

 

Figure 6.8 - Box plot of the categorical metrics POD (Probability of Detection), FAR (False Alarm Ratio) 

and TS (Threat Score) values, for daily rainfall estimates grouped by rainfall intensity, i.e. >0 mm, >5 mm 

and >15 mm, and computed on the ground observed data in India. In the box plots the min/max, 25°/75° 

percentiles and the median values are shown. 

 

6.3 Rainfall-runoff modelling over the Mediterranean area 

This section presented the results of a hydrological validation carried out over the Mediterranean 

area. The analysis involved both classical and SM2RAIN-derived rainfall products over 15 basins 

with different climatic and physiographic features. As benchmark, a high quality rainfall product is 

used to force a semi-distributed model in order to obtain baseline simulations. The analysis 

highlighted the needed of BIAS correction and model recalibration, underlining also the beneficial 

effect of integration between rainfall products. This section in based on the publication: 
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Camici, S., Ciabatta, L., Massari, C., Brocca L. (2018). How reliable are satellite precipitation 

estimates for driving hydrological models: a verification study over the Mediterranean area. 

Journal of Hydrology, under review. 

The study by Camici et al. (2018) analyzed 15 catchments draining into the Mediterranean Sea 

(Figure 6.9). The Mediterranean region, is characterized by complex topography ranging from the 

Alpine Mountains, the Italian and Balkan peninsulas, northern Spain, and southern France 

containing about a hundred peaks higher than 4000 meters, to the Great European Plain most of 

which lies below 152 meters in elevation. Due to the topographic complexity, the climate is 

generally characterized by hot dry summers and humid cool winters with an intricate 

spatial/temporal variability. A clear contrast exists between the rainier northern part of the study 

region (Southern Europe) and the drier southern area (North Africa, Iberian Peninsula) and between 

the western sides (rainsides) of the Iberian, Italian and Balkan peninsulas and their eastern sides 

(rainshadows). The mean annual precipitation averaged over the study area is P = 593 ± 203 mm 

year−1, but it has a strong spatial variability ranging from 20 mm year−1 (North Africa) to 1500 

mm year−1 (Alps). A significant seasonal variability exists, with the early winter and late autumn 

months (November and December) being the wettest with precipitation amounts larger than 60 mm 

month−1 (Hatzianastassiou et al., 2016).  

 

Figure 6.9 - Study basins and relative ANSE index obtained by considering E-OBS rainfall dataset in the 

calibration period. For each catchment, the related dots vary in dimension depending on the area. 

Table 6.4 summarizes the main characteristics of the study catchments, with area ranging from 100 

km2 for Rafina basin in Greece to about 5000 km2 for the Tiber river in Italy, mean basin elevation 

from 86.5 m.a.s.l. (lowland basin) to 1362 m.a.s.l. (mountainous basin) and topographic complexity 

index (i.e., the normalized standard deviation of elevation within a DEM grid cell derived from the 

GTOPO30 global digital elevation model, Wagner et al., 2013) varying from 4.8 (Algas at Batea, 

small topographic complexity) to 32.3 (Brenta at Berzizza, high topographic complexity).  

https://en.wikipedia.org/wiki/List_of_Alpine_four-thousanders
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# Study basins Country 
Area 

(km2) 

Topographic 

complexity 

index 

Mean basin 

elevation 

(m.a.s.l.) 

Available 

observed 

discharge data 

1 Rafina @ Fladar Greece 109 11.80 86.5 2009-2014 

2 Voltoya @ Mediana Spain 140 7.60 1116.0 2004-2011 

3 Algas @ Batea Spain 335 4.80 255.0 2002-2011 

4 Gapeau @ Hyeres Fance 451 9.80 163.0 2000-2008 

5 Kolpa @ Petrina Slovenia 460 13.40 629.0 2000-2012 

6 Arga @ Arazuri Spain 741 7.80 558.7 2001-2014 

7 Brenta @ Berzizza Italy 1506 32.30 1362.0 2010-2013 

8 Gardon @ Russan France 1530 9.70 514.4 2009-2013 

9 Aude @ Carcassonne France 1770 9.20 105.0 2000-2012 

10 Mdouar @ 

Elmakhazine 
Morocco 1800 8.90 

304.3 
2000-2011 

11 Kolpa @ Metlika Slovenia 2002 10.00 197.0 2007-2012 

12 Volturno @ Solopaca Italy 2580 14.80 610.8 2010-2013 

13 Lim @ Prijepolje Serbia 3160 17.00 612.0 2007-2010 

14 Tanaro @ Asti Italy 3230 18.90 927.4 2010-2013 

15 Tiber @ Monte Molino Italy 4820 10.80 434.7 2000-2015 

Table 6.4 - Main characteristics of the study basins. 

Note that, the topographic complexity of the Mediterranean region ranges from zeros to 40 and a 

threshold value of 10 can be assumed to exactly discern between alpine mountainous or lowland 

areas. Therefore, the selected catchments together form a representative sample of the different 

climatic and physiographic conditions of the Mediterranean. 

Datasets 

The datasets used in this study include both ground-based and satellite observation products.  

Ground-based observations 

Ground-based observations include rainfall, temperature and discharge data. As ground-based 

reference product for precipitation and mean temperature, we used the European high-resolution 
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gridded data sets, E-OBS (Haylock et al., 2008), developed as part of the EU-FP6 ENSEMBLES 

project. The rainfall and temperature provided by E-OBS are available at daily time step for the 

period 1950 up to now. Given the relatively high density of the raingauges and thermometers used 

by this product, it can be considered a reasonable reference for comparing the performance of each 

SRP within the hydrological simulations.  

Discharge data, interpolated at hourly time step, are available for all the study catchments as 

described in Table 6.4. Only 4 out of 15 catchments have a limited observation period (4 years), 

whereas for about half of the basins the length of discharge observations is greater than 8 years. 

Satellite rainfall observation products 

Four different rainfall datasets derived from satellite sensors are used (Table 6.7). Among the 

classical “top-down” satellite precipitation products, which sense the cloud properties to retrieve 

precipitation, we used TMPA 3B42RT, CMORPH, PERSIANN satellite products.  

# Satellite-only datasets Spatial/ temporal resolution Time period 

1 TMPA RT (3B42RT V7) 0.25° / 3-hour Mar 2000 – Dec 2015 

2 CMORPH 0.25° /3-hour Jan 1998 – Jan 2015 

3 PERSIANN 0.25° / 3-hour Mar 2000 – Dec 2015 

4 SM2RAINCCI (EU dataset) 0.25° / 24-hour Jan 2007 – Dec 2015 

# Large scale gauge based dataset Spatial/ temporal resolution Time period 

1 E-OBS 0.22° / 24-hour 1950– 2015 

Table 6.7 - Main characteristics of the satellite datasets used in this study. 

TMPA 3B42RT, provided by the National Aeronautics and Space Administration (NASA, 

http://disc.sci.gsfc.nasa.gov/), is available from 1997 onward with 3 h temporal resolution and a 

spatial sampling of 0.25° for the ±50° north-south latitude band. The retrieval algorithm takes 

advantages of multiple microwave sensors, i.e. the TRMM Microwave Imager (TMI), the 

Precipitation Radar (PR), the Special Sensor Microwave Imager (SSM/I), the Advanced Microwave 

Scanning Radiometer - Earth Observing System (AMSR-E) and the Advanced Microwave 

Sounding Unit B (AMSU-B). The TMPA 3B42RT estimates are obtained through a three-step 

process: (1) the passive microwave (PMW) estimates are calibrated with sensor-specific versions of 

the Goddard Profiling Algorithm (GPROF; Kummerow et al., 1996) and combined, (2) Infrared 

rainfall (IR) estimates are created using the PMW estimates for calibration, and (3) PMW and IR 

estimates are then combined. 

CMORPH is available at different spatial and temporal resolutions. Here we used the raw version 

provided by the CPC (ftp://ftp.cpc.ncep.noaa.gov) with a spatial sampling of 0.25° every 3 hours. 

The product is available from March 2000 onward on the +60°/-60° latitude and is obtained by 

using the same microwave sensors used for TMPA 3B42RT. However, unlike TMPA 3B42RT here 

the infrared data are used to propagate the rainfall estimates within the times between two 

successive microwave satellite overpasses.  

PERSIANN is provided by the Center for Hydrometeorology and Remote Sensing (CHRS, 

http://chrsdata.eng.uci.edu/) at the University of California, Irvine (UCI) with a spatial sampling of 

ftp://ftp.cpc.ncep.noaa.gov/
http://chrsdata.eng.uci.edu/
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0.25° and a 3-hourly temporal resolution. PERSIANN product uses the artificial neural network 

technique to estimate rainfall rate from geostationary infrared data with. Rainfall is estimated by 

training the infrared data to the collocated microwave estimates, when available (Hsu et al., 1997; 

Sorooshian et al. 2000).  

In addition to these classical SRPs, we used the SM2RAINCCI rainfall product (Ciabatta et al., 2018) 

obtained by applying the SM2RAIN algorithm (Brocca et al., 2014) to the ESA CCI satellite soil 

moisture products. In particular, within the ESA CCI initiative (http://www.esa-soilmoisture-

cci.org/) three different SM datasets are provided: 1) the Active (obtained by merging only active 

sensors observations), 2) the Passive (obtained by merging only passive sensors observations), and, 

3) Combined (obtained by merging the Active and Passive datasets) (Liu et al, 2011). The datasets 

are available from 1978 until 2015 at 0.25° of spatial resolution on a daily basis. Detailed 

information regarding the ESA CCI SM products can be found in Liu et al. (2011, 2012), Wagner et 

al., (2012) and in Dorigo et al., (2017). To obtain the SM2RAINCCI rainfall product only the active 

and the passive ESA CCI satellite soil moisture products are combined by a scheme developed by 

Kim et al. (2015). The product is characterized by the same temporal and spatial sampling of the 

ESA CCI products (i.e., 0.25°degrees and on a daily basis). Major details about the SM2RAINCCI 

rainfall performances can be found in Ciabatta et al. (2018). 

For sake of simplicity, hereinafter the TMPA 3B42RT, CMORPH, PERSIANN and SM2RAINCCI 

satellite-based datasets are referred to as TMPA, CMOR, PERS and SM2RCCI, respectively. 

Workflow 

The algorithms and the models applied for the purpose of hydrological validation of SRPs are 

described in details in this section. In particular, as several studies have shown that local 

adjustments of SRPs, as well as specific rainfall-runoff model calibration, are necessary steps to 

produce reliable hydrological simulation (Harris et al., 2007; Immerzeel and Droogers, 2008; 

McCabe et al., 2008; Pan et al., 2008), a bias correction approach is applied to SRPs prior to use 

them to force the hydrological model. Details about the bias correction approach are given in the 

following.  

Bias correction of satellite rainfall time series 

The quantile mapping (QM) approach is applied to bias correct the cumulative density function 

(CDF) of TMPA, CMOR, PERS, and SM2RCCI (Ciabatta et al., 2018) according to E-OBS. The 

choice of using QM approach is based on the results of Thiemig et al. (2013) who demonstrated that 

a more sophisticated QM bias-correction method is able to provide better hydrological performance 

than simpler bias-correction methods. Largely applied in hydrologic and climate impact studies, this 

method match, besides the mean and variance, all the statistical moments of SRPs (as the skewness 

and the tails of the CDF) to the observed data (Camici et al., 2014). 

For the SRPs for the calibration/validation period (cal/val), the method can be written as: 

SRP𝑄𝑀,𝑘
𝑐𝑎𝑙/𝑣𝑎𝑙

= 𝐹
𝑂𝐵𝑆k

𝑐𝑎𝑙
−1  (𝐹

𝑆𝑅𝑃k
𝑐𝑎/𝑣𝑎𝑙(SRP𝑘

𝑐𝑎𝑙/𝑣𝑎𝑙
))   (6.10) 

https://link.springer.com/article/10.1007/s00704-016-2027-z#CR23
https://link.springer.com/article/10.1007/s00704-016-2027-z#CR46
http://www.esa-soilmoisture-cci.org/
http://www.esa-soilmoisture-cci.org/
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where 𝐹
𝑂𝐵𝑆k

𝑐𝑎𝑙
−1  is the inverse CDF (or quantile function) of the observations for the day k, 𝐹

𝑆𝑅𝑃k
cal is 

the CDF of the raw SRPs, both in the calibration period. As concerns the quantile function 𝐹
𝑂𝐵𝑆k

𝑐𝑎𝑙
−1  

different parametric or non-parametric transformations can be adopted (Gudmundsson et al., 2012). 

In this study a two-order polynomial function is applied in which the parameters – estimated in the 

calibration period – are then adopted also to bias correct the SRPs in the validation period. Given 

the high presence of zero values in the precipitation signal the application of the QM method can 

lead to negative rainfall values (Wang and Chen, 2014). To overcome this issue, QM is applied at 

daily time step, i.e., by considering accumulated raw SRPs and E-OBS rainfall values at daily time 

step. The daily bias-corrected values are then re-distributed to the eight 3-hourly temporal intervals 

according to their original temporal pattern. Although this expedient allows to limit significantly the 

problem of zeros rainfall values, it does not guarantee missing residual negative values in the bias-

corrected SRPs. Thus, these values were simply assumed equal to zero which results in a non-

perfect bias correction. 

Integration of SRPs  

The integration of the single rainfall datasets is implemented by using the following scheme: 

SRP1(t)+SRP2(t) = SRP1(t)+K*[ SRP2(t)-SRP1(t)]    (6.11) 

where SRP1(t)+SRP2(t) is the integrated rainfall product, SRP1 and SRP2 are two single satellite-

based rainfall products selected among the bias corrected TMPA, PERS, CMOR and SM2RCCI 

rainfall. K is the gain parameter ranging between 0.05 to 0.95 in order to assure that an integrated 

product is always obtained from Eq. 6.11. In particular, when K= 0.05 almost only the SRP1 is used, 

for K= 0.95 almost only SRP2. K is calibrated by maximizing ANSE index between observed and 

simulated discharge in the calibration period. The same K value is then applied in the validation 

period to integrate the SRPs mentioned above. 

Continuous hydrological model (MISDc) 

MISDc (Brocca et al. 2011) is a one-layer semi-distributed model that entails two main 

components: 1) a soil water balance model to simulate the soil moisture temporal pattern and 2) a 

semi-distributed event-based rainfall-runoff model for flood simulation. MISDc couples a routing 

module with a single layer soil water balance model. The soil water balance module computes the 

evapotranspiration, the percolation, the infiltration and the rainfall excess (through the Soil 

Conservation Service – Curve Number, SCS-CN, method) rates. The discharge is estimated by 

routing the surface runoff, the saturation excess and the subsurface runoff to the outlet section. The 

model uses 8 parameters, i.e., the maximum soil water capacity, the pore size distribution index, the 

saturated hydraulic conductivity, the fraction of percolated water that generates baseflow, the lag-

area relationship coefficient, a correction parameter for the evapotranspiration, the initial 

abstraction coefficient of the SCS-CN method and the coefficient of the relationship relating SM to 

the initial condition of the SCS-CN method. The model is written in MATLAB® language and is 

freely available at: http://hydrology.irpi.cnr.it/download-area/midsc-code/. 

MISDc model is successfully applied for flood simulation in many basins in Italy (Brocca et al., 

2011; 2013a, Massari et al., 2015, Masseroni et al., 2017) and Europe (Brocca et al., 2013b) and 

used within climate change impact studies (Camici et al., 2014). 

http://hydrology.irpi.cnr.it/download-area/midsc-code/
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Experimental design 

Prior to consider the hydrological evaluation of SRPs it is useful to assess the quality of SRPs 

themselves. For that, at first an intercomparison of rainfall datasets is carried out by using the daily 

E-OBS data as reference. Then, we perform discharge simulation by running the MISDc model for 

each of the considered forcing datasets (previous Datasets section). As the shorter observation 

period has a sufficient duration (4 years, see Table 6.7), for each catchment discharge data are split 

exactly in two parts: the first half period is used for calibration and the second one for validation. 

First MISDc is calibrated and validated for each catchment by using as input the mean areal E-OBS 

rainfall and temperature data. As all the analyzed catchments have a sub-daily concentration time, 

to guarantee meaningful hydrological simulations all runs are carried out at three-hourly time step, 

i.e. the maximum temporal resolution of the SRPs. For that, for each day the total E-OBS rainfall 

amount is split over eight 3-hourly temporal intervals with constant rainfall rate. 

After that, the single bias corrected SRPs and the integrated ones (see Integration of SRPs section) 

are used to drive MISDc model. In these runs the model parameter values are recalibrated 

separately for each SRPs. Having the SM2RCCI rainfall product a daily temporal resolution, it is here 

used only within the integration procedure and not used to simulate discharge time series. 

Six integrated products are considered in this study that can be divided in two main groups. The 

first group includes integration between only classical “top-down” SRPs, i.e. TMPA+CMOR; 

TMPA+PERS; CMOR+PERS; the second group considers integration between “top-down” and 

“bottom-up” SRPs, i.e., TMPA+SM2RCCI, CMOR+SM2RCCI, PERS+SM2RCCI. In particular, to 

allow the integration between the 3-hourly “top-down” products and the daily SM2RCCI product, for 

each day the total SM2RCCI rainfall amount is re-distributed over eight 3-hourly temporal intervals 

according to the temporal pattern of the partner product. 

Performance metrics 

The assessment of the different SPRs was made by calculating the Pearson correlation coefficient, 

R, the bias and the root mean square error, RMSE, between the daily E-OBS and the 

single/integrated satellite rainfall data averaged over the area of each basin. 

The suitability of the gauged-based versus single/integrated satellite-based rainfall products for 

flood modelling is evaluated by computing the modified Nash-Sutcliffe efficiency (NSE) adapted 

for high flow conditions, ANSE (Hoffmann et al., 2004), between the observed and simulated 

discharge both in the calibration and validation periods. Simulations providing ANSE values greater 

than 0.5 were reasonably assumed good in terms of reproducing observed (high-flow) discharge 

time series. Additionally, the Kling-Gupta efficiency (KGE, Gupta et al., 2009; Kling et al., 2012), 

which was found to be more robust than NSE, was considered here for assessing model 

performance for medium-flow conditions. 

Results 

This section describes the results about the assessment of the different SPRs. Then the suitability of 

SRPs for hydrological modeling is investigated. At first, MISDc is driven by E-OBS, to simulate 

benchmark discharge time series that are compared with the ones obtained by the different SRPs 

and the integrated products. 
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Rainfall assessment 

Results about rainfall scores for the calibration/validation periods are illustrated in Figure 6.10. 

Boxplot with thin/thick lines refer to calibration/validation periods, respectively. It can be noted that 

the performances of the single and integrated products are very similar each other both in 

calibration and validation period. All the considered products show daily correlation values on 

average equal to 0.6 both in calibration and validation periods and, among the integrated products, 

the TMPA+SM2RCCI and CMOR+SM2RCCI show a slightly better agreement with observed data 

(mean R=0.62).  

 

Figure 6.10. Performances in terms of ANSE (Nash–Sutcliffe efficiency for high-flow conditions) and KGE 

(Kling-Gupta efficiency, for medium flow conditions) of the different parent (a, b) and integrated (c, d) 

rainfall products in reproducing the observed discharge for all the study catchments in the calibration (thin 

boxplot) /validation period (thick boxplot). Cross symbols represent outlier values, the bold numbers 

indicate the mean values for each rainfall product. 

Relatively larger differences are obtained in terms of RMSE and bias for the single products with 

SM2RCCI having the highest RMSE and bias. Nevertheless, in terms of RMSE the first group of 

integrated products (i.e., TMPA+CMOR, TMPA+PERS, CMOR+PERS) perform worse than the 

second group (i.e., the one containing SM2RCCI) with general lower values for both groups of the 

integrated products with respect to the parent products. Conversely, the first group of integrated 

products outperforms the second one with respect to the bias likely due to the high bias of 

SM2RCCI. Note that, as mentioned in the Bias correction of satellite rainfall time series section the 

bias correction procedure adopted during the calibration period is affected by the necessity to set 
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negative rainfall values equal to zero thus the bias differences shown in Figure 6.10 should not 

surprise. R, RMSE and BIAS of the products do not show remarkable changes as a function of the 

basin area while some changes can be observed in terms of topographic complexity and mean basin 

elevation. As expected, basins over flat areas perform better than mountainous basins.  

Discharge simulation with E-OBS rainfall data 

We test the reliability of MISDc by using E-OBS ground-based rainfall. Figure 6.9 illustrates the 

related performances in terms of ANSE obtained for all the study catchments over the calibration 

period while Table 6.8 reports the ANSE values both for calibration/validation periods. Overall 

MISDc model provides relatively good performances with ANSE values greater than 0.5. 

Exceptions are represented by the Rafina basin, probably due to the low E-OBS raingauge density 

in the investigated period, and by Kolpa Metlika and Brenta mountainous catchments for which the 

snowmelt process, not simulated by MISDc, may play an important role in the flood formation. 

Based on that, we can reasonably state that the geomorphological characteristics of the basins have 

a negligible effect on the model performance while raingauge density and model structure errors 

might play an important role. 

# 
Study 

basins  

CALIBRATION PERIOD VALIDATION PERIOD 

E-OBS TMPA CMOR PERS E-OBS TMPA CMOR PERS 

1 Rafina  0.22 0.18 0.14 0.07 -0.01 0.76 0.19 0.06 

2 Voltoya  0.79 0.64 0.30 0.38 0.75 0.25 0.37 0.12 

3 Algas  0.80 0.39 0.20 0.20 0.12 -0.05 0.08 0.05 

4 Gapeau  0.90 0.35 0.21 0.22 0.84 0.16 0.08 0.07 

5 Kolpa  0.65 0.16 0.01 -0.01 0.52 0.01 0.04 0.00 

6 Arga  0.55 0.07 0.01 0.04 0.58 0.10 0.01 -0.03 

7 Brenta  0.22 0.20 -0.11 -0.28 0.40 0.18 -0.29 -0.34 

8 Gardon  0.75 0.46 0.04 0.04 0.72 -0.09 0.07 0.06 

9 Aude  0.48 0.21 0.26 0.07 0.67 0.22 0.07 -0.02 

10 Mdouar  0.57 0.42 0.22 0.47 0.55 0.23 0.21 0.29 

11 Kolpa  0.38 0.03 0.00 -0.01 0.32 0.07 -0.03 0.08 

12 Volturno  0.68 0.28 0.39 0.33 0.44 0.16 0.11 0.10 

13 Lim  0.53 0.30 0.05 0.19 0.29 0.07 -0.16 -0.28 

14 Tanaro  0.51 0.75 0.45 0.62 0.48 0.17 0.08 0.03 

15 Tiber  0.73 0.54 0.14 0.28 0.39 0.38 0.20 0.34 

Average  0.58 0.33 0.15 0.18 0.47 0.18 0.07 0.04 

Table 6.8 - ANSE index obtained by forcing MISDc hydrological model with E-OBS and satellite (TMPA, CMOR, PERS) 

rainfall data during the calibration and the validation periods. In bold font the best performances score for each 

basin are reported while the scores are in italic font if better than those obtained with ground observed data (E-

OBS). 
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The results above are confirmed also in the validation period as summarized in Table 6.8. Indeed, 

ANSE index shows only slight reductions for all the study catchments except for Rafina, Algas and 

Tiber basins where the performances significantly worsen. This is likely due to the sensitivity of 

ANSE index in reproducing high flood events that could differ in magnitude between calibration 

and validation period. In general, the mean ANSE value in the validation period decreases on 

average of about 18% over the study area. These outcomes demonstrating the suitability of E-OBS 

rainfall dataset for discharge simulation, hence it will be hereinafter assumed as a baseline to 

compare the simulations that use SRPs. 

Discharge simulation with single SRPs 

The performances in terms of ANSE and KGE of the different rainfall products in reproducing the 

observed discharge data over the entire study area are illustrated in Figure 6.11a, b, both in the 

calibration and validation periods (ANSE values of each basin are detailed in Table 6.8). 

 

Figure 6.11 Performances in terms of ANSE (Nash–Sutcliffe efficiency for high-flow conditions) and KGE 

(Kling-Gupta efficiency, for medium flow conditions) of the different parent (a, b) and integrated (c, d) 

rainfall products in reproducing the observed discharge for all the study catchments in the calibration (thin 

boxplot) /validation period (thick boxplot). Cross symbols represent outlier values, the bold numbers 

indicate the mean values for each rainfall product. 
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From Table 6.8 it can be noted that with respect to E-OBS, satellite rainfall data perform worst both 

in calibration and validation periods. Mean ANSE value are equal to 0.33, 0.15, 0.18, for TMPA, 

CMOR, PERS, respectively, in the calibration period and to 0.18, 0.07, 0.04, respectively, in the 

validation period. Among all the products, TMPA works better both in calibration and validation 

periods even though, as already highlighted, for some basins unreliable simulation characterized by 

ANSE values lower than zero are obtained. Similar considerations can be drawn from the analysis 

of KGE-values (Figure 6.11b). Here, E-OBS performs satisfactorily both in calibration (mean 

KGE=0.57) and validation (0.46) whereas SRPs significantly worse.  

This is mainly due to the difficult in using SRPs for smaller basins (e.g., KGE-values equal to -1.14, 

-0.38, -2.62, -0.44 are obtained through TMPA in calibration for Rafina, Voltoya, Algas and 

Gapeau, respectively) whereas the performances increase for larger basins (e.g. TMPA provides 

KGE equal to 0.58 in calibration for Tiber basin). The relatively low performance in terms of KGE 

can be partly explained by the choice of the cost function (i.e., ANSE) within the calibration step, 

which favors a better reproduction of high flows but does not guarantee the same optimality in 

terms of medium flow and bias. 

In general, these outcomes prove that for using SRPs in hydrological modelling, bias correction and 

model recalibration are not always sufficient to achieve satisfactory performances mainly in smaller 

basins which represent the main target for flood modelling in the Mediterranean area. 

Discharge simulation with integrated SRPs 

The parent SRPs are integrated according to group 1 (TMPA+CMOR; TMPA+PERS; 

CMOR+PERS) and group 2 (TMPA+SM2RCCI, CMOR+SM2RCCI, PERS+SM2RCCI) and results 

are summarized for the entire study area in Figure 6.11c and Table 6.9 in terms of ANSE values 

and in Figure 6.11d in terms of KGE index. Although on average E-OBS dataset remain the best 

performing rainfall products, the added-value of the integrated products against single SRPs is 

noticeable. For the group 1, the performances of integrated products are closely linked to the ones 

of the parent rainfall datasets. Lower performances are found for CMOR+PERS whereas the 

integrated products that consider TMPA show greater ANSE indexes. In particular, the best results 

are obtained by considering the integration between TMPA and CMOR with mean ANSE values 

equal to 0.38 and 0.22 in calibration and validation, respectively. The performances significantly 

increase by considering the group 2, i.e., the integration with SM2RCCI. Indeed, ANSE values are 

greater than zeros for all the study catchments and, above all for TMPA+SM2RCCI, they become 

closer to the ones obtained with the E-OBS rainfall data with mean ANSE values of 0.49 and 0.33 

in calibration and validation periods, respectively. The performances drop when medium-flow 

conditions are analyzed for all the integrated products except for the TMPA+SM2RCCI product. This 

outcome is quite expected being the hydrological model calibrated to reproduce high flood events. 

A more in-depth analysis is carried out in order to investigate the advantages of using integrated 

SRPs, also in relation with the topographic basin characteristics. The scatterplots on the first column 

of Figure 6.12 show the added value of satellite rainfall integration with respect to the use of single 

rainfall products. For all the study catchments, small benefits are gained from the integration of 

CMOR with TMPA (Figure 6.12a). Due to the lower CMOR performances, the ANSE values 

obtained by considering TMPA alone are very similar to the ones obtained by considering the 

integrated product and ANSE values are aligned along the bisector line both for the calibration and 

validation period. 
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# 
Study 

basins  

CALIBRATION PERIOD VALIDATION PERIOD 

TMPA+ 

CMOR 

TMPA+ 

PERS 

CMOR+

PERS 

TMPA+ 

SM2RCCI 

CMOR+

SM2RCCI 

PERS+ 

SM2RCCI 

TMPA+ 

CMOR 

TMPA+ 

PERS 

CMOR+

PERS 

TMPA+ 

SM2RCCI 

CMOR+

SM2RCCI 

PERS+ 

SM2RCCI 

1 Rafina  0.46 0.12 0.14 0.27 0.26 0.25 0.79 0.32 0.45 0.40 0.09 0.09 

2 Voltoya  0.67 0.67 0.58 0.70 0.76 0.77 0.33 0.28 0.16 0.45 0.47 0.41 

3 Algas  0.40 0.38 0.20 0.80 0.62 0.58 -0.06 -0.05 0.05 0.12 0.10 0.18 

4 Gapeau  0.35 0.35 0.22 0.40 0.43 0.43 0.16 0.16 0.07 0.09 0.03 0.03 

5 Kolpa  0.15 0.16 0.01 0.24 0.14 0.13 0.02 0.03 0.03 0.16 0.30 0.29 

6 Arga  0.07 0.13 0.04 0.22 0.16 0.15 0.10 0.16 -0.03 0.25 0.34 0.32 

7 Brenta  0.18 0.19 -0.27 0.43 0.38 0.35 0.19 0.19 -0.38 0.26 0.14 0.16 

8 Gardon  0.58 0.51 0.36 0.63 0.62 0.61 0.25 0.28 0.33 0.57 0.30 0.30 

9 Aude  0.43 0.21 0.29 0.21 0.38 0.13 0.38 0.22 0.07 0.22 0.21 0.15 

10 Mdouar  0.41 0.48 0.46 0.42 0.29 0.48 0.23 0.26 0.28 0.26 0.34 0.31 

11 Kolpa  0.03 0.03 0.00 0.34 0.33 0.41 0.06 0.07 -0.02 0.31 0.28 0.35 

12 Volturno  0.38 0.33 0.39 0.49 0.53 0.48 0.11 0.11 0.11 0.57 0.37 0.57 

13 Lim  0.29 0.34 0.19 0.72 0.48 0.63 0.06 -0.01 -0.27 0.53 0.54 0.54 

14 Tanaro  0.74 0.75 0.61 0.75 0.48 0.62 0.31 0.38 0.05 0.25 0.26 0.08 

15 Tiber  0.53 0.54 0.28 0.71 0.43 0.40 0.43 0.45 0.34 0.54 0.46 0.54 

Average  0.38 0.34 0.23 0.49 0.42 0.43 0.22 0.19 0.08 0.33 0.28 0.29 

Table 6.9 - ANSE index obtained by forcing MISDc hydrological model with integrated satellite rainfall data during the 

calibration and the validation periods. In bold font the best performances score for each basin are reported while 

the scores are in italic font if better than those obtained with ground observed data (E-OBS). 

Conversely, the added-value of SM2RCCI is noticeable for almost all the basins: ANSE values are 

spread above the bisector line both for TMPA+SM2RCCI (Figure 6.12c) and CMOR+SM2RCCI 

(Figure 6.12e). These outcomes are very important as they demonstrate the potential of the 

integration between top-down and bottom-up satellite precipitation products. In particular, it can be 

noted that TMPA works better than TMPA+SM2RCCI only for the smaller basins in the study area, 

Rafina and Gapeau characterized by similar topographic complexity and mean basin elevation 

(Table 1) whereas the added-value of the TMPA+SM2RCCI product is particular evident for Algas, 

Brenta, Kolpa at Metlika, Voltuno and Lim basins. By analysing these results in terms of the basins 

characteristics (as listed in Table 6.6) we did not observe any influence of either the basin area, nor 

the topographic complexity or the mean elevation of the basin. For instance, the small and 

mountainous Voltoya basin (#2 in Table 6.6) or the large lowland Tiber river basin (#15 in Table 

6.6) are opposite cases where it is proved that integrated satellite rainfall data can be useful tools for 

flood modelling. Similar conclusions can be drawn by inspecting the scatterplot of Figure 6.12e: 

for 9 out of 15 basins, ANSE values obtained by considering the integrated product are doubled 
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with respect to the ones obtained by considering CMOR alone, while no connections between basin 

characteristics and performances can be found. 

 

Figure 6.12 - Comparison in terms of ANSE index: performances of integrated versus parent satellite 

rainfall products/E-OBS data (first column/ second column) in reproducing observed discharge data. Blue 

dots and the red diamonds refer to calibration/validation periods, numbers indicate the basins as listed in 

Table 6.9. 

These findings highlight that the basin characteristics exert a small influence on the hydrological 

performance and that the connection between the rainfall quality and the performance in 

hydrological modelling is not straightforward due the potential interactions between the model and 

the specific SRP (as also demonstrated by Qi et al., 2015). For instance, products characterized by a 

low bias such as those of group 1 (i.e., those obtained by integrating between the classical SRPs, see 

Figure 6.12), provide worse simulation results with respect to the ones of group 2 (those integrated 

products using SM2RCCI). This raises the interesting issue whether bias and correlations (and 

RMSE) are useful scores to indicate potentially good or worse hydrological performance and 

whether the basin characteristics can condition the choice of the specific rainfall source to use. This 

topic, that is beyond the scope of the paper, will be further investigated in the future. An additional 

analysis is carried out to display the relative performance of the integrated SRPs with respect to E-

OBS in flood simulation (Figure 6.12b, d, f). Especially through TMPA+SM2RCCI product (Figure 

6.12d), in calibration (validation period), for 7 (6) out 15 of the investigated basins ANSE indexes 
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are equal or even higher than the ones obtained through E-OBS rainfall data. This suggests that 

integrated SRPs can be potentially used in place of ground observed rainfall data for flood 

modelling over poorly gauged areas (e.g., Rafina) and for lowland large basins (i.e., Volturno, Lim 

and Tiber basins) in the Mediterranean area. To clearly support this statement, Figure 6.13 shows 

observed and simulated discharge time series obtained by forcing MISDc model through TMPA, 

TMPA+SM2RCCI, and E-OBS rainfall data for four basins representative of the topographic 

characteristics of the study area: Algas at Batea, Brenta at Berzizza, Kolpa at Metlika and Tiber at 

Monte Molino river basins.  

 

Figure 6.13 - Discharge time series for some study catchments obtained by forcing MISDc model through E-

OBS, TMPA and TMPA+SM2RCCI rainfall products. For sake of visualization, for each basin only short 

time windows on the validation period are shown. 

 

For sake of visualization, for each basin only short time windows on the validation period are 

displayed. Here, we can see that TMPA product alone does not provide reasonable reproduction of 

the observed discharges for Algas and Kolpa but when the latter is integrated with SM2RCCI we can 

obtain even better simulations than those obtained with E-OBS (e.g., see Tiber basin). These results 

support those showed by Ciabatta et al., (2016) for four basins over Italy, i.e. better hydrological 

performances were obtained by forcing MISDc model with integrated rainfall products instead of 

ground data.  
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6.4 Use of satellite rainfall data with empirical rainfall thresholds 

Besides the use of satellite rainfall data within a physically-based methodology, this source of 

information is used to test the capabilities in landslide risk assessment by means of empirical 

rainfall threshold. Classical and SM2RAIN-derived satellite rainfall products are used to identify 

rainfall thresholds for the possible occurrence of landslides in Italy. This section reported the results 

showed in the publication: 

Brunetti, M.T., Melillo, M., Peruccacci, S., Ciabatta, L., Brocca, L. (2018). How far are we from 

the use of satellite rainfall products in the prediction of landslides? Remote Sensing of 

Environment, under review. 

Study area 

Italy is a boot-shaped peninsula that extends for about 300,000 km2 in the Mediterranean Sea 

including the major islands of Sicily and Sardinia (Figure 6.14). Given its location and latitude, 

climate varies largely from northern to southern Italy. The coldest period occurs in December and 

January, the hottest in July and August. In the northern part of Italy, which includes the Po River 

Valley and the Alps mountain range, the climate is typically cold in winter and warm in summer 

with abundant rain. Snowfalls are common in autumn and spring over 1500 m on the Alps.  

 

Figure 6.14 - Map of Italy showing the distribution of the rainfall-induced landslides in the period 2008-

2014 (white dots). 
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Along the peninsula and in the islands the climate is temperate, with cold winters and dry summers 

with mean temperature increasing going southward. Mean annual precipitation ranges from less 

than 400 mm in Sicily and Sardinia, to more than 2000 mm in the northern Apennines and the 

eastern Alps. Generally, November is the wettest and July the driest month (Desiato et al., 2015). 

Except for the Po River Valley and narrow coastal belts, the Italian mainland is generally hilly and 

mountainous. The topography causes widespread and frequent landslides, actually more than half a 

million recognized and mapped (Trigila et al., 2015). Most of the failures occur after intense or 

prolonged rainfall (Guzzetti et al., 1994; Guzzetti and Tonelli, 2004). 

Landslide and rainfall data 

Landslide information was obtained from a catalogue of rainfall events responsible for failures in 

Italy collected by Peruccacci et al. (2017). We used a subset of 1414 rainfall-induced landslides in 

the 7-year period between 2008 and 2014 that matches the time interval of reliable rainfall 

information available from satellite estimates (Ciabatta et al., 2015). 

Landslide information was derived from digital and printed newspapers, blogs, technical 

documents, and landslide event reports. The documented rainfall-induced landslides were mapped 

as single points, using Google Earth™ (white dots in Figure 6.14).  

Each landslide in the catalogue has a temporal accuracy in three classes. The first class contains 

failures for which the exact time (hourly) of occurrence is known, while the second and the third 

classes include landslides for which the part of the day or the day of occurrence was inferred, 

respectively. 

As mentioned above, we used here one rain gauge and four satellite-based rainfall data sets. The 

rain gauge based product, hereinafter OBS, is obtained from the Italian Civil Protection Department 

meteorological monitoring network. This data set is obtained by interpolating via an advanced 

kriging technique the data from about 3000 rain gauges available throughout the Italian territory 

(Pignone et al., 2010). The data set provides hourly rainfall observations over a grid with spacing of 

10 km (Ciabatta et al. 2017). The daily rainfall estimates are obtained by simply summing the 24 

hourly data within each day., although this source of information is impacted by spatial 

representation issues, here, we consider OBS data set as “ground-truth”.   

The TMPA 3B42-RT product (Huffman et al., 2007, hereinafter 3B42-RT), version 7 

(http://trmm.gsfc.nasa.gov), is obtained by combining rainfall estimates from various satellite 

sensors. The multisatellite platform uses the TRMM Microwave Imager (TMI), the Special Sensor 

Microwave Imager (SSM/I) on board the Defense Meteorological Satellite Program (DMSP) 

satellites, the Advanced Microwave Scanning Radiometer EOS, AMSR-E, and the Advanced 

Microwave Sounding Unit-B (AMSU-B) on board the National Oceanic and Atmospheric 

Administration (NOAA) satellite series. In addition, the 3B42-RT product also uses Geostationary 

(GEO) Infrared data, characterized by higher spatial and temporal resolution than the microwave 

data, through a constellation of GEO satellites. The 3B42-RT product is provided by the National 

Aeronautics and Space Administration (NASA) with a temporal resolution of 3 hours and a spatial 

resolution of 0.25° for the ±50° north–south latitude band with a latency of about 8 hours. The 

product is interpolated over the 10 km grid by using the nearest neighbor approach.  

The SM2RASC product is obtained through the application of the SM2RAIN (Brocca et al., 2013, 

2014) algorithm to the ASCAT SM data set. The SM data are obtained from the Metop-A and –B 

http://trmm.gsfc.nasa.gov/
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satellite, and they are characterized by a spatial resolution of 25 km, enhanced to 12.5 after 

observation resampling, and a daily temporal resolution. The SM2RASC product is specifically 

developed for Italy during the period 2008-2015 over the 12.5 km grid with daily temporal 

resolution. More in details, the algorithm is applied to the H109 product provided by the H SAF 

project (http://hsaf.meteoam.it/) and is calibrated during the period 2013-2014 against ground-based 

observations. Due to the temporal resolution of SM2RASC, the product shows limitations in the 

definitions of shorter precipitation events (at sub-daily). The algorithm also is not able to estimate 

rainfall where the soil is close to saturation, as in such conditions, no variation of the soil water 

content can be observed during a rainfall event. Finally, the quality of rainfall estimation is strictly 

related to the quality of SM input data. SM retrievals over complex topography or densely vegetated 

areas are characterized by low quality and should be used carefully. Nevertheless, the product 

showed good capabilities in identify rainfall at daily temporal resolution, as shown in Ciabatta et al. 

(2015; 2017). 

PERSIANN (Hsu et al., 1997) data set uses the artificial neural network technique to estimate 

rainfall rate from geostationary infrared data at each 0.25° pixel at different time steps, for the ± 60° 

latitude band. In this work, the 3-hour time step was chosen. Rainfall estimation is carried out by 

training the infrared data to the collocated microwave estimates, when available The product is 

developed by the Center for Hydrometeorology and Remote Sensing of University of California, 

Irvine, and it is available since March 2000 (http://chrsdata.eng.uci.edu/) about 2 days after 

observations. 

CMORPH rainfall estimates are obtained by exploiting the same microwave sensors used for 3B42-

RT rainfall product, while the infrared data are used to fill the gap at the times between two 

successive microwave satellite overpasses, through morphing technique. The product is provided by 

the Climate Prediction Center (CPC) of the National Oceanic and Atmospheric Administration 

(NOAA) at the spatial resolutions of 0.25° and 8 km on a daily, 3-hourly or 30 minutes basis for the 

± 60° latitude band. Here we used the high resolution product (8 km at the equator every 30 

minutes) obtained via interpolation of the coarser resolution product. For further details regarding 

CMORPH rainfall product, the readers are referred to Joyce et al. (2004). The product is provided 

about 18 hours after observation. 

The accuracy of the 3B42-RT, PERSIANN and CMORPH depends mostly on the quality of the 

passive microwave precipitation retrievals, and particularly on the availability of frequent satellite 

overpasses over the region of interest (Nijssen and Lettenmaier, 2004). If the overpasses frequency 

is not sufficiently high, a rainfall event could me underestimated or completely missed. 

Algorithm for rainfall event reconstruction 

The algorithm proposed by Melillo et al. (2015) was exploited to calculate the rainfall responsible 

for the observed landslides. For the purpose, the algorithm analyzed the daily rainfall obtained from 

ground-based stations and satellite sensors, and reconstructed distinct rainfall events (RE) in terms 

of their duration D (in h) and cumulated rainfall E (in mm), i.e. (D, E) pairs. In particular, to 

separate two consecutive rainfall events the algorithm requires a minimum dry period (i.e., a period 

without rainfall or with a negligible amount of rainfall). The length of the dry period varies 

depending on the local seasonal and climatic conditions. Specifically, dry periods of 48 h (two 

days) and 96 h (four days) were used to identify rainfall events in the warm and in the cold season, 

http://hsaf.meteoam.it/
http://chrsdata.eng.uci.edu/
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respectively (Peruccacci et al., 2017). After reconstructing RE, and with the information on the 

occurrence day of each landslide and on the rainfall of the pixel containing the landslide, the 

algorithm identified the rainfall events responsible for each failure (RE*). Note, that when the 

landslide occurs after the end of the event the corresponding RE* is equivalent to RE. Otherwise, 

the duration of RE* is shorter than that of RE, and the cumulated rainfall is lower (Melillo et al., 

2015). For each data set, we discarded RE* having a delay between the rainfall ending time and the 

landslide occurrence time longer than 48 h. This should prevent the use of wrong information (i.e., 

incorrectly dated landslides) in the definition of the thresholds. 

The reconstructed RE* for OBS, SM2RASC, 3B42-RT, and MERGED data sets were analyzed to 

define empirical rainfall thresholds for the possible initiation of landslides in Italy. Note that the 

number of RE* is less than the number of landslides since in some cases the rainfall measured 

before the failure was null. 

Method for calculation and selection of ED rainfall thresholds 

To calculate the empirical cumulated event rainfall-rainfall duration (ED) thresholds for the four 

data sets, we adopted the well-established frequentist method proposed by Brunetti et al. (2010), 

and modified by Peruccacci et al. (2012). The method assumes in a Cartesian plane the threshold 

curve of the form:  

)()(   DE                                                    (6.12) 

where E is the cumulated rainfall (in mm), D the rainfall duration (in hours), χ is a scaling constant 

(the intercept), ε is the shape parameter (that defines the slope of the power law curve), and Δχ and 

Δε represent the uncertainties of χ and ε, respectively. The method determines thresholds for any 

exceedance probability level, e.g., a threshold at 5% probability level leaves 5% of the (D, E) pairs 

with landslides below the curve.  

In order to determine the threshold exceedance probability providing the best performance in 

landslide forecasting we used the following validation procedure. For each rainfall data set (OBS, 

SM2RASC, 3B42-RT, CMORPH, and PERSIANN), we constructed synthetic series randomly 

selecting 85% of rainfall events with landslides (RE*). Then, we used the remaining 15% of RE* to 

assess the threshold performance. For the purpose, rainfall thresholds were used as binary classifiers 

of rainfall events that triggered (RE*) or did not trigger landslides. In a DE plane, a RE* located 

above the threshold is a true positive (TP), and below the threshold is a false negative (FN). 

Analogously, a rainfall event without landslides above the threshold is a false positive (FP), and 

below is a true negative (TN). We repeated 100 times the random selection of rainfall events, and 

we got a contingency table with the mean values of TP, FN, FP and TN.  

As the threshold exceedance probability rises, the number of FN increases, and the number of TP 

decreases correspondingly. Conversely, when using thresholds at low exceedance probability, the 

number of FP increases and the number of TN decreases. When using the thresholds in a landslide 

warning system, FP results in “false alarms” and FN in “missed alarms”. It is worth noting that FP 

can be overrated by the lack of information on landslide occurrence i.e., landslides may have 

occurred but not reported. Consequently, even the number of TN can be overestimated (Gariano et 

al., 2015). 
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In addition, we would notice that the validation of the rainfall thresholds for the possible occurrence 

of slope failures is a complicated issue; at first glance, the occurrence of a rainfall-induced landslide 

is a stochastic mechanism, i.e. the same rainfall conditions may trigger a landslide in an area and 

may not in a different place. The prediction of rainfall-induced landslide does not depend 

exclusively upon correct rainfall forecasts (and measurements), it is instead largely influenced by 

the local characteristics of the terrain (slope, soil type, soil moisture, etc.), which are mostly 

unknown for large areas.  

From the contingency table, we obtained, the POD (Probability Of Detection) and the POFD 

(Probability Of False Detection skill scores: 

FNTP

TP
POD


                                                       (6.13) 

TNFP

FP
POFD


                                                       (6.14) 

More specifically, POD (or Hit Rate) is the fraction of RE* above the threshold, i.e. predicted 

correctly, and POFD (or False Alarm Rate) is the fraction of RE above the threshold, i.e. predicted 

incorrectly. We used POD and POFD to draw the receiver operating characteristic (ROC) curves 

(Fawcett, 2006) and to calculate the HK (POD-POFD) skill score (Hanssen and Kuiper, 1965). The 

quality of the satellite-based rainfall products is evaluated comparing the ROC curves and the HK 

skill score whose optimal value is 1. 

Results 

In the following, we assessed the capability of the satellite-based rainfall products to forecast 

rainfall-induced landslides using the ground-based rainfall product as a reference. Based on the 

statistical criteria described above, we compared the performances of SM2RASC, 3B42-RT, 

CMORPH, and PERSIANN data sets. In addition, we evaluated the best performing threshold for 

each product simulating their use in a landslide warning system. As a preliminary analysis, we 

investigated the performance of the three satellite rainfall products against ground observations for 

the whole period of analysis. Specifically, we computed the temporal Pearson correlation between 

OBS and satellite-based daily rainfall for each pixel (Figure 6.15). The correlation maps clearly 

show that the SM2RASC product (Figure 6.15a) has improved performances with respect to the 

other products when compared with ground observations.  
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Figure 6.15 - Maps of Pearson correlation between ground-based rainfall observations and (a) SM2RASC, 

(b) 3B42-RT, (c) CMORPH and (d) PERSIANN satellite rainfall products. 

Figure 6.16 shows the empirical cumulative distribution functions (ECDF) of the duration D 

(Figures 6.16a and 6.16b) and of the cumulated rainfall E (Figures 6.16 and 6.16d) for RE and RE* 

calculated using the ground-based and satellite-based data sets.  

Inspection of Figures 6.16a and 6.16b reveals that OBS and SM2RASC rainfall events (RE and 

RE*) exhibit a similar distribution of D, whereas 3B42-RT, CMORPH and PERSIANN rainfall 

events have a shorter duration. As expected, the duration of RE* is generally longer than that of RE 

(as shown by quantile values in the inset tables), since the cumulated rainfall in short duration 

precipitation events is usually not adequate to trigger a landslide. The ECDF curves of the 

cumulated rainfall E for the three satellite products (Figures 6.16c and 6.16d) are higher than that 

of OBS. This means that rainfall events are characterized by lower E values as shown also by the 

quantile values (see inset tables in Figures 6.16c and 6.16d). The ECDF curve of SM2RASC is the 

closest to the OBS one, whereas those of 3B42-RT, CMORPH and PERSIANN are characterized 

by lower E values. As expected, satellite products underestimate the rainfall measured by the 

ground-based observations. 
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Figure 6.16 - Empirical cumulative distribution function (ECDF) of (a) the rainfall duration D and (b) the 

cumulated rainfall E of the reconstructed rainfall events for OBS (green curves), SM2RASC (red curves), 

3B42-RT (blue curves), CMORPH (magenta curves) and PERSIANN (black curves) data sets. Inset tables 

list relevant quantile values of D and E. 

Using the frequentist method on the synthetic series on 85% of the reconstructed RE*, we calculated 

the mean ED rainfall thresholds at different exceedance probabilities for the four data sets. An 

example of thresholds for the OBS data set is shown in Figure 6.17. 

 

Figure 6.17 - Example of ED rainfall thresholds calculated using RE* at exceeding probabilities from 1% 

(T1) to 50% (T50) for the OBS data set. Grey dots are the (D, E) pairs. 
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Using 15% of the remaining RE*, we simulated the application of the thresholds in a virtual 

landslide warning system. Figure 6.18 portrays, as an example, the classification of rainfall events 

in the four contingencies (TP, FP, FN and TN) based on the 50% rainfall thresholds for the four 

data sets. Each graph in Figure 6.18 represents one out of 100 synthetic series. We applied the 

classification illustrated in Figure 6.18 to the different exceedance probability levels shown in 

Figure 6.17 and built the corresponding ROC curves. For civil protection purposes, the priority is 

to minimize the number of missed alarms (FN) and secondary to limit false alarms (FP), which 

implies maximizing POD and minimizing POFD skill scores. 

  

  

 

 

Figure 6.18 - Rainfall duration vs. cumulated event rainfall conditions in Italy in the period 2008-2014, 

compared with thresholds at 50% (T50%) exceedance probability level (dashed black lines) for (a) OBS, (b) 

SM2RASC, (c) 3B42-RT, (d) CMORPH and (e) PERSIANN. Legend: TP, True Positives; TN, True Negative; 

FP, False Positive; FN, False Negative. 
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Applying the classification illustrated in Figure 6.18 to the different non-exceedance probability 

levels shown in Figure 6.17, we found POD and POFD skill scores. For civil protection purposes, 

the priority is to minimize the number of missed alarms (FN) and secondary to limit false alarms 

(FP), which implies maximizing POD and minimizing POFD skill scores, i.e. maximizing HK. 

Figure 6.19 shows for each data set the POD, POFD and HK values at different non-exceedance 

probability. 

 

Figure 6.19 -  Values of the POD, POFD and HK skill scores at varying the threshold non-exceedance probability for the 

five data sets. Values in red are those which maximize HK. 

Following this criterion for each data set we selected the threshold probability level that maximizes 

the HK skill score. For OBS and the satellite-based data sets 3B42-RT and CMORPH, the highest 

HK was obtained with the threshold at 15% non-exceedance probability that also maximize POD 

values. Using the same criteria, for SM2RASC the most suitable threshold is at 25%, and for 

PERSIANN is at 10%. Using POD and POFD, we also built the ROC. Figure 6.20 shows the 

comparison of the ROC curves for the five data sets. As expected, OBS gives the best performance 

at all the non-exceedance probability levels. Among the curves of satellite-based rainfall data, 

3B42-RT is performing better for non-exceedance probability higher than 4%, while PERSIANN is 

the worst above 7%.  
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Figure 6.20 - ROC curves built by skill scores obtained varying the threshold exceedance probability for 

OBS (green), SM2RASC (red), 3B42-RT (blue), CMORPH (magenta) and PERSIANN (black) data sets. 

Horizontal and vertical bars represent the range of variation of POFD and POD for the 100 runs in which 

RE* are randomly selected. 

 

This results highlighted that satellite rainfall products considered here are able to satisfactorily 

predict landslide occurrence in Italy, and the lower performance with respect to ground observations 

are due to the high-quality of OBS data set (based on ~3000 rain gauges). Due to the low latency 

associated with satellite rainfall products, this source of information could be applied with 

beneficial effect in real-time early warning system. 
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