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Detecting vascular age
using the analysis of peripheral pulse

Michele Sorelli*, Antonia Perrella, and Leonardo Bocchi, Member, IEEE

Abstract—Vascular ageing is known to be accompanied by
arterial stiffening and vascular endothelial dysfunction, and
represents an independent factor contributing to the development
of cardiovascular disease. The microvascular pulse is affected
by the biomechanical alterations of the circulatory system, and
has been the focus of studies aiming at the development of non-
invasive methods able to extract physiologically relevant features.
Objective: proposing an approach for the assessment of vascular
ageing based on a support vector machine (SVM) learning from
features of the pulse contour. Methods: the supervised classifier
was trained and validated over 20935 models of pulse wave,
obtained with a multi-Gaussian decomposition algorithm, applied
to laser Doppler flowmetry signals of 54 healthy, non-smoker
subjects. Results: the multi-Gaussian model showed a mean R2

of 0.98 and an average normalized root mean square error of 0.90,
demonstrating the ability to reconstruct the pulse shape. Over
30 training and validation experiments, the SVM showed a mean
Pearson’s r of 0.808 between the rate of waves classified as old
and the age of the subjects, along with an average area under the
ROC curve of 0.953. Conclusion: the SVM showed the capability
to discriminate differently aged individuals. Significance: the
proposed method might detect the ageing-related modifications of
the vascular tree; furthermore, since diabetes promotes vascular
alterations comparable to ageing, this approach may be also
suitable for the screening of diabetic angiopathy.

Index Terms—Laser Doppler Flowmetry, Vascular Ageing,
Microcirculation, Pulse Decomposition Analysis, Support Vector
Machine.

I. INTRODUCTION

AGEING is deemed a major non-reversible risk factor
for cardiovascular disease, contributing per se to the

progression of vascular dysfunction and to the incidence
of hypertension, stroke, coronary heart disease, and heart
failure [1]. Vascular ageing is characterized by large artery
stiffening and has been independently correlated with endothe-
lial dysfunction [2]. The gradual accumulation of reactive
oxygen species (ROS) has been identified as an important
underlying mechanism, since it functionally inactivates the
endothelial production of nitric oxide (NO), hence impairing
the physiological NO-dependent regulation of the vascular
muscle cells tone [3]. Moreover, the ageing-related endothelial
dysfunction is fuelled by the upregulation of inflammatory
cytokines, which promote chronic low-grade inflammation,
thus favouring endothelial leakage, and further contributing
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to ROS production [4]. Several ageing processes are involved
in the reduction of arterial compliance in the elderly, namely
the thickening of the tunica media, the decrease in the elastin-
to-collagen ratio, and the increased collagen cross-linking due
to non-enzymatic glycosylation [4]. In accordance with the
Moens-Korteweg equation [5], vascular stiffening manifests
itself through an increase in pulse wave velocity (PWV); this
is usually evaluated transcutaneously by measuring the pulse
foot-to-foot transit time between the common carotid artery
and the common femoral artery, where the foot is identified
with the instant immediately preceding the steep pressure rise
during early systole. PWV is generally considered as a robust,
and reproducible method for assessing arterial stiffness and has
been related with adverse CVD prognosis [6]. Nevertheless,
the biomechanical properties of the circulatory system, in
addition to being reflected by PWV, exert in general also a
complex effect on the shape of the arterial pulse. Accordingly,
theoretical models have been devised in an attempt to quantify
the total arterial compliance and resistance, and derive the
local visco-elastic properties of the vascular tree from arterial
pressure or Doppler flow waveforms recorded in vivo [7].
Physiological information on the circulatory system can also
be obtained from the microvascular pulse contour. The analysis
of the second derivative of the photoplethysmographic digital
volume pulse (DVP), often termed acceleration photoplethys-
mogram, has been proposed as a straightforward approach to
derive indices of vascular ageing and tone, based on the ratio
of characteristic peaks [8], [9], [10], [11]. However, despite
its simplicity, this method does not offer a clear physiological
interpretation, and the reliance on the waveform second deriva-
tive makes it considerably vulnerable to noise and artefacts.
Other physiologically-motivated parameters, derived from the
analysis of the DVP first derivative, have been proposed by
Millasseau et al. [12], namely: the reflection index (RI) and
the stiffness index (SI). Specifically, the RI is defined as the
ratio of the diastolic DVP maximum or inflection point to
the amplitude of the systolic peak, and has been linked to
peripheral pressure wave reflection and small artery tone; the
SI, a marker of arterial stiffness, is instead obtained from
the ratio of subject height to the relative delay between the
systolic and diastolic DVP peaks, and has been shown to
correlate positively with age. Pulse decomposition analysis
(PDA) is another sophisticated technique for characterizing
the microvascular waveform. This approach is based on the
concept that the arterial pulse contour is mainly affected
by two major reflection sites (i.e. the juncture between the
thoracic and abdominal aorta, and the aortic bifurcation of the
common iliac arteries), which give rise to waves that counter-
propagate with respect to the forward-travelling systolic pulse
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[13]. In PDA, the pulse waveform is thus decomposed into
a varying number of basic components (generally from 3
to 5), generated from Gaussian, log-normal or Rayleigh-type
models [14], so as to separately reconstruct and characterize
the primary systolic wave and the secondary reflected (or re-
reflected) pulses. Recently, some authors have applied machine
learning algorithms which were able to classify differently
aged individuals [15] or detect high values of PWV [16], based
on features derived from the microvascular pulse waveform.
In this work, we first present a four-Gaussian model for the
extraction of physiological pulse features from the peripheral
perfusion waveform. We then report on the implementation of
a support vector machine supervised learning model which an-
alyzes the pulse feature data extracted with the PDA algorithm,
in order to detect vascular ageing patterns and discriminate
between subjects of different ages.

II. MATERIALS AND METHODS

A. Subjects and experimental setup

54 healthy, non-smoking volunteers with no known history
of cardiovascular disease were enrolled for this study. Their
age distribution is shown in Fig. 1. Research activities were
carried out in accordance with the guidelines of the Dec-
laration of Helsinki of the World Medical Association. All
the included participants received detailed information on the
research protocol and its purpose, and signed an informed
consent form. Data were collected and treated anonymously
in accordance with privacy regulations.
Microvascular perfusion was recorded on the pulp of the right
hallux with a Periflux 5000 Laser Doppler Flowmetry (LDF)
system (Perimed, Sweden). The LDF measurements were
performed at rest in a temperature-controlled environment
(T ≈ 22 ◦C), following a 10-minute acclimatization period,
with the subjects lying supine in a comfortable position.
Perfusion signals were acquired with a 32 Hz sampling fre-
quency; a 0.03 s time constant was selected for the instrument
output low-pass filter, so as not to dampen the heartbeat-
related pulsatile components. The LDF system was calibrated
conforming to the manufacturer’s specifications before the
initiation of the study, using the Motility Standard and the
Zeroing Disc provided with the instrument. Calibration was
checked approximately every two weeks, as specified in the
instrument manual: no further intervention was required, as
the obtained values were always within the reference tolerance
levels (250±15 AU in Motility Standard, and 0±1 AU on the
Zeroing Disc).

B. Multi-Gaussian decomposition of the LDF pulse wave

The developed PDA algorithm is comprised of four main
sub-blocks, namely: LDF signal pre-processing, pulse detec-
tion, pulse multi-Gaussian modeling, and feature extraction.
The following paragraphs separately present the implementa-
tion details of these stages.

1) Pre-processing: A few preprocessing operations were
needed to improve the performance of the proposed multi-
Gaussian modeling algorithm. In detail, the LDF perfusion
signals were upsampled from the original 32 Hz to 128 Hz, us-
ing 8 original values to generate each sample of the expanded

Figure 1. Age distribution of the subjects.

signal; next, a low-pass FIR interpolation filter (length: 33
samples; normalized cut-off frequency: 0.5) was contextually
applied to minimize spectral distortion.

2) Detection: Pulse segmentation represents the first ma-
jor stage of the multi-Gaussian decomposition algorithm. A
local maxima detector is initially applied to find the systolic
perfusion peaks, imposing a maximum theoretical heart rate
of 150 bpm in order to limit the amount of false positives,
associated with secondary ripples. Next, the algorithm detects
the end-diastolic perfusion troughs as the absolute minima
between consecutive peaks. These preliminary time references
are employed for the elimination of false cardiac cycles,
exploiting the observation that the amplitude of the pulse wave
is not subject to rapid cycle-to-cycle changes; specifically,
only candidate pulses whose valley-to-peak excursion exceeds
50% of the previous ones’ are preserved at this stage. A
further refinement step is needed to improve the accuracy of
the original detections, as true primary systolic peaks and
end-diastolic depressions do not always correspond to the
absolute maxima and minima of the separate cardiac cycle
time windows. Regarding the systolic references, the algorithm
searches for any maxima preceding the original solution,
whose prominence with respect to the corresponding valley
does not fall below 80% of the original peak amplitude; on the
other hand, the existing end-diastolic references are changed
for possible local minima within the original trough-to-peak
time interval, if their amplitude is lower than 20% of the local
peak excursion. Besides the aforementioned feature points, the
proposed pulse modeling method employs the identification
of an incisura on the descending limb of the pulse, with
the purpose of separating the forward-travelling systolic wave
from the diastolic phase of the pulse, generally associated with
delayed components that are reflected in the arterial tree due
to vascular impedance mismatch. As a preliminary step, LDF
perfusion signals are detrended by subtracting a cubic spline
interpolant fitted to the end-diastolic detections, thus isolating
the cardiac pulse wave. The identification of the pulse incisura
is based on the analysis of the contour’s first derivative, p′(t),
obtained by means of a 3-point differentiator:

p′(t) =
p(t+ 1)− p(t− 1)

2
(1)

where p(t) represents the LDF perfusion signal at discrete time
t; a 7-point moving average filter is subsequently applied to
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Figure 2. LDF pulse detection and reference points identification.

p′(t), so as to attenuate the undesired effect of local spurious
fluctuations. Fig. 2 schematizes the approach followed for the
determination of the incisura: within each cardiac cycle, the
algorithm first searches for the earliest negative-to-positive
zero crossing of p′(t) following the systolic reference (if none
are detected, the end-diastolic valley is selected instead); then,
the time span between this point and the systolic peak is
analyzed for the presence of local p′(t) maxima exceeding
the average pulse slope in the same interval: if detected, the
earliest of them is adopted as the incisura reference, otherwise
the original p′(t) zero crossing is chosen. This method proved
to be effective for the distinction of the systolic primary
wave from the other diastolic components, even when their
partial temporal superposition produces only a slight notch in
the pulse contour, but still without introducing an excessive
sensitivity to minor p′(t) variations.

3) Modeling: Following the identification of these feature
points, a four-Gaussian model is fitted to each detected pulse:

Gpulse(t) =

4∑
i=1

gi =

4∑
i=1

αi · e
− (t−µi)

2

2σi
2 (2)

where the g1 component is related to the systolic ventricular
ejection, while g2, g3, and g4 are introduced to represent
the pulse reflections within the circulatory tree (and hence
constrained to either side of the incisura, accordingly). Model
identification was performed with the Levenberg-Marquardt
optimization algorithm for non-linear least squares curve fit-
ting problems [17]. In general, upon optimization, the model
parameters are properly tuned with respect to specific proper-
ties of each separate pulse, in order to move the optimization
starting point close to the ideal solution, and limit the search
hypervolume, thus improving the stability of the algorithm.
As detailed in Table I, the amplitude of the four Gaussians
is initialized and constrained on the basis of the maximum
excursion of the pulse, while their standard deviations are
configured by bounding the corresponding full width at half
maximum (FWHM) to the span of the systolic and diastolic
phases, according to the following relation:

FWHM = 2σ
√

2 log(2) ⇒ σ =
FWHM

2
√

2 log(2)
(3)

It must be noted that, despite the means of the three reflection
Gaussians being initialized so as to be progressively distributed
along the diastolic portion of the pulse, their original order
is not necessarily retained after optimization. Therefore, the
algorithm rearranges them so as to keep the inequality con-
straint µ2<µ3<µ4 always satisfied. After model identification
is completed, a series of exclusion criteria is imposed in order
to reduce the impact of misfitted pulses. In detail, the algorithm
discards potential movement artefacts by setting a 3-σ upper
limit on the systolic α1 amplitude. Furthermore, spuriously
merged cardiac cycles are removed on the basis of an analo-
gous upper boundary enforced on the pulse duration, Tp. On
the other hand, the simultaneous detection of small 3-σ outlier
values of Tp and α1 is associated with the presence of spurious
split pulses. Finally, the conjoint detection of large σ1 and R2

outliers is adopted to identify the potential mis-reconstruction
of the systolic pulse component. On the whole, N = 20935
waveform models were thus extracted from the dataset of LDF
perfusion signals. The qualitative performance of the proposed
multi-Gaussian modeling algorithm is displayed in Fig. 3.

4) Feature extraction: A set of waveform descriptors was
defined in order to characterize each LDF pulse model and
generate the input dataset of the SVM classifier. To this end,
we referred to recent literature on the analysis of digital
plethysmographic pulse, and took the stiffness and reflection
indexes into consideration. However, in the present study
the original definitions of SI and RI were adapted to the
framework of the LDF pulse multi-Gaussian decomposition
algorithm. A modified SI was thus derived from the time
span between the forward wave and the centroid of the three
diastolic Gaussians (Fig. 4a), and then normalized to the
overall pulse duration (SInorm). The original concept of RI was
instead modified by computing the RI as the percentage ratio
of the areas beneath the diastolic (Ad) and systolic (As) pulse
models (Fig. 4a). As performed in [16], the crest time (CT),
i.e. the duration of systolic pulse ascent, was also evaluated
(Fig. 4a) since increased CT values have been observed in
subjects with hypertension or atherosclerosis [18]; as for the
SI, the CT was normalized to the pulse duration (CTnorm).
Additionally, these three physiological waveform properties
were integrated with the percentage amplitude ratios α2/α1,
α3/α1, α4/α1 and the delays ∆t1−2, ∆t1−3, ∆t1−4 of the
diastolic components relative to the systolic forward wave
(Fig. 4b). In summary, the study dataset included N input
vectors xi of the form:

xi =
(

SInorm,i, RIi, CTnorm,i,
α2,i

α1,i
,
α3,i

α1,i
,
α4,i

α1,i
, ...

...∆t1−2,i, ∆t1−3,i, ∆t1−4,i

)
i = 1, ..., N.

C. Support Vector Machines for binary classification

Support vector machines (SVM) are a category of efficient
linear supervised learning systems for binary classification
problems, first introduced by Vapnik [19]. The following
section covers a brief overview of SVM mathematical theory,
before moving on to deal with the implementation details
of the vascular ageing SVM classifier. For an exhaustive
treatment, please refer to [20], [21].
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Table I
CONFIGURATION OF THE LEVENBERG-MARQUARDT OPTIMIZATION ALGORITHM.

COMPONENT LOWER BOUND STARTING POINT UPPER BOUND

a1 0.5 · ∆p 0.8 · ∆p ∆p

µ1 tP start tP start + 0.5 · ∆tsys tincg1

σ1 0.5 · ∆tsys/2
√

2 log(2) ∆tsys/2
√

2 log(2) 1.5 · ∆tsys/2
√

2 log(2)

a2 0 0.4 · ∆p 0.6 · ∆p

µ2 tinc tinc tP endg2

σ2 0.1 · ∆tdia/2
√

2 log(2) 0.25 · ∆tdia/2
√

2 log(2) 0.33 · ∆tdia/2
√

2 log(2)

a3 0 0.4 · ∆p 0.6 · ∆p

µ3 tinc tinc + 0.33 · ∆tdia tP endg3

σ3 0.1 · ∆tdia/2
√

2 log(2) 0.25 · ∆tdia/2
√

2 log(2) 0.33 · ∆tdia/2
√

2 log(2)

a4 0 0.4 · ∆p 0.6 · ∆p

µ4 tinc tinc + 0.67 · ∆tdia tP endg4

σ4 0.1 · ∆tdia/2
√

2 log(2) 0.25 · ∆tdia/2
√

2 log(2) 0.33 · ∆tdia/2
√

2 log(2)

tP start , tP end: left and right time boundaries of the pulse (corresponding to the end-diastolic valleys);
tinc : incisura;
∆tsys , ∆tdia: systolic and diastolic time spans;
∆p: maximum amplitude excursion of the pulse.

In a two-class learning problem, the training dataset consists
in general of a number of example vectors xi, each associated
to a label yi ∈ (−1,+1) which identifies the corresponding
class. A linear classifier is based on the definition of a linear
discriminant function of form:

f(x) = wTx + b, (4)

where x : f(x) = 0 identify a decision hyperplane, which
virtually divides the input space I into two separate parts. In
these regions f(x), which is proportional to the signed distance
to the hyperplane, is either positive or negative; therefore, a
classification rule can be directly derived from:

R(x) = sign(wTx + b). (5)

The simplest formulation of a SVM model is the so-called
maximal margin classifier, i.e. the classifier which maximizes
the geometric margin between two linearly separable classes.
Consider the points x+ and x−, within the positive and
negative regions, which are closest to a given hyperplane
f(x) = 0. By assuming they are equidistant from the decision
boundary, the following relations hold:

f(x+) = wTx+ + b = c,

f(x−) = wTx− + b = −c.
(6)

The expression of the geometric margin Mf can then be
derived from the equations:

wTx+ + b− c = 0,

wTx− + b+ c = 0,
(7)

which define the corresponding hyperplanes parallel to the
decision boundary, whose reciprocal distance (i.e. the margin)
can then be expressed as:

Mf =
2c

‖w‖
. (8)

Based on this formulation, the hyperplane which determines
the widest separation between the classes can be obtained by
maximizing 1/‖w‖ or, equivalently, by minimizing 1

2‖w‖
2,

thus leading to the following optimization problem:

min
w,b

1

2
‖w‖2

subject to yi(wTx + b) ≥ 1 i = 1, ..., N. (9)

However, in real-world classification problems, datasets cannot
often be separated by a linear decision boundary, as classes
may significantly overlap in the input space domain. This
observation is the basis for the formulation of the soft margin
classifier, in which the constraint of the maximal hard margin
classifier (Eq.9) is relaxed so as to allow the presence of
misclassified instances:

min
w,b

1

2
‖w‖2 + C

N∑
i=1

ξi

subject to yi(wTx + b) ≥ 1− ξi i = 1, ..., N (10)

where ξ ∈ R0
+ are slack variables which allow a number

of observations to fall either within the margin (0 ≤ ξ ≤ 1)
or on the wrong side of the decision boundary (ξ > 1). The
cost term C (C ∈ R0

+) represents a key hyperparameter of
the soft margin SVM, in that it determines the relative impor-
tance between margin maximization and training accuracy. As
explained later on, C must be properly tuned.
The above optimization problem is generally solved using the
dual formulation obtained through the method of Lagrange
multipliers:

max
α

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

yiyjαiαjxiTxj
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Figure 3. Multi-Gaussian decomposition of the LDF pulse wave: single components (top) and general model (bottom).
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Figure 4. LDF pulse feature extraction for vascular ageing classification.

subject to

{ ∑N
i=1 yiαi = 0 i = 1, ..., N

0 ≤ αi ≤ C
(11)

The dual optimization problem leads to the following form for
the hyperplane weight vectors:

ŵ =
N∑
i=1

α̂iyixi. (12)

where only those input examples xi associated to non-zero α̂i
coefficients lie on or within the soft margin. These instances
are the so-called support vectors, as the solution ŵ depends
only on them. In the present work, the above optimization
problem was solved with Platt’s Sequential Minimal Optimiza-
tion algorithm for fast SVM training [22].
In general, SVM classifiers can achieve higher flexibility and
training accuracy if the original input space I is mapped into a

new feature space F = {φ(x)|x ∈ I} according to a non-linear
transformation, so as to allow the linear learning system to
generate complex non-linear decision boundaries. As a result,
the discriminant hyperplane becomes:

f(x) = ŵTφ(x) + b =

N∑
i=1

α̂iyi〈φ(xi) · φ(x)〉+ b, (13)

while the Lagrange dual function gets the form:

L =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

yiyj〈φ(xi) · φ(xj)〉. (14)

In the above formulation, the feature map φ : I → F appears
only through inner products; as a consequence, the knowledge
of the kernel function:

K(xi, xj) = 〈φ(xi) · φ(xj)〉 (15)

is sufficient to train the SVM in F , without an explicit
calculation of the underlying feature map φ(x). The widely
used radial basis function kernel was selected in the present
study:

K(xi, xj) = e−γ‖xi−xj‖2 , (16)

where the kernel scale γ represents, along with the soft
margin constant C, a hyperparameter which directly affects
the flexibility of the resulting SVM and, accordingly, needs
careful configuration. More specifically, when the kernel scale
is small, a given example xi will be associated to a non-
zero K(xi, xj) with respect to any other input data, which
will thus affect the f(x) solution, favouring the generation
of a smooth classification boundary. On the other hand, high
γ values will make the kernel function decay faster to a
value of 0 for increasing ‖xi − xj‖ distances; therefore,
the discriminant function f(x) will be influenced only by
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the closest training examples, leading to a higher degree of
curvature and boundary flexibility.
Analogous considerations can be made for the C hyperpa-
rameter, whose role is to weigh the penalty assigned to mis-
classified examples: high values will increasingly discourage
the admission of any misclassified training instances, thus
inducing narrow, sinuous margins, whereas a small constant
will in turn lead to lower 1/‖w‖ values (Eq. 10) and then to
a wider separation.

D. Vascular ageing classification

In the present study, LDF pulse feature data were standard-
ized (by subtracting their mean and dividing by their standard
deviation) so as to scale them to a similar range. The binary
classes of the SVM model were defined on the basis of a cut-
off age of 40 years: each property vector xi extracted from
the LDF signal of a given subject was labelled accordingly.
Fig. 5 shows the waveform feature distributions for the young
(i.e. age < 40 years) and old (i.e. age ≥ 40 years) groups.
In the remainder of the article, the latter will be referred
to as the positive class. K-fold cross-validation was used to
assess the SVM classifier performance, combining the results
of K rounds of separate training, and validation splits of the
original set of input data [21]. For every fold, dataset partition
was conducted so as not to place part of the xi vectors of
a given subject into both training and validation sets, thus
avoiding any potential bias due to similarity within the same
subject. In detail, a rounded 10% of the subjects (and their
associated xi examples) was used to make up the validation set
of each fold; this scheme resulted in 11 folds comprehending
mutually exclusive validation sets of 5 subjects (reduced to
4 in the last fold). The following set of scores was adopted
for characterizing the classification capability of the SVM
model: the classifier sensitivity or true positive rate (TPR); the
specificity or true negative rate (TNR); the F1 measure (i.e.
the harmonic mean of sensitivity and precision, ranging from
0 to 1) [23]; and the Matthews Correlation Coefficient (MCC)
[24], which assumes a value of 0 when the performance of the
classifier is equivalent to a random guess, reaching a maximum
value of +1 for a perfect prediction, while falling to −1 in case
of a total disagreement between predictions and true classes.
These metrics were averaged over the 11 iterations, so as to
derive a global evaluation of the classifier.
For the sake of completeness, their definitions are reported
below:

TPR =
TP

TP + FN
,

TNR =
TN

TN + FP
, (17)

F 1 =
2 · TP

2 · TP + FP + FN
,

MCC =
TP · TN − FP · FN√

(TP + FP ) · (TP + FN) · (TN + FP ) · (TN + FN)
,

where TP and FP namely indicate true and false positive
classifications, while TN and FN represent true and false
negatives, respectively.
As stated in the previous section, the soft margin constant

C and the kernel scale γ carry a significant impact on the
behaviour of the SVM classifier, and hence require proper
tuning. This model selection was performed separately within
each of the 11 folds, through a grid search over the values
Cgrid ∈ (101, 101.5, 102) and γgrid ∈ (100, 100.5, 101); the
optimal pair of hyperparameters was identified on the basis of
a nested 3-fold validation over the training set, by maximizing
the average geometric mean of TPR and TNR over the result-
ing three validation subsets. This parameter was adopted so as
to take the dataset unbalance into account and avoid producing
SVM models that behaved poorly on the contextual minority
class, specifically the age ≥ 40 group. Higher (Cgrid,γgrid)
solutions were not systematically searched, as preliminary tests
associated them with significant over-fitting regimes.

III. RESULTS

The proposed model demonstrated the ability to fit and char-
acterize the microvascular LDF pulse, showing a coefficient of
determination R2 of 0.98± 0.03 (mean±σ) over the N pulse
waves. Goodness of fit was additionally evaluated on the basis
of a normalized root mean square error (NRMSE), defined as:

NRMSE = 1− ‖p(t)−G(t)‖
‖p(t)− p‖

(18)

where p(t) and G(t) are respectively the LDF signal and the
multi-Gaussian model, while p represents the mean perfusion.
Based on this formulation, a NRMSE = 1 would theoretically
correspond to a perfect data fit, whereas a value of 0 would
imply that the multi-Gaussian model does not perform better
than a straight line. An average NRMSE score of 0.90± 0.03
was obtained on the set of 54 LDF perfusion signals, markedly
exceeding the performance shown by a previous version of the
modeling algorithm, presented in [25].
For each of the N pulse waves composing the study dataset, the
fitting procedure was repeated 100 times, applying a random
initialization of the multi-Gaussian model; at each iteration,
the starting parameter values were extracted from a uniform
probability distribution, within the respective lower and upper
boundaries listed in Table I. Then, the normalized interquartile
range of the nine morphological features, IQRnorm (defined as
the interquartile range, divided by the median), was estimated
for each wave so as to assess their sensitivity to the initial
fitting conditions. The results (median, IQR), obtained for
each waveform descriptor, are the following: SInorm: 0.21%
(0.00%, 7.81%); RI: 0.05% (0.00%, 3.15%); CTnorm: 0.01%
(0.00%, 0.84%); α2/α1: 0.58% (0.00%, 17.64%); α3/α1:
1.16% (0.00%, 31.30%); α4/α1: 0.73% (0.01%, 35.28%);
∆t1−2: 0.14% (0.00%, 13.74%); ∆t1−3: 0.29% (0.00%,
22.60%); ∆t1−4: 0.17% (0.00%, 10.73%). These outcome
values highlight the stability of the proposed multi-Gaussian
modeling algorithm. Regarding the presence of relatively
wide IQR ranges, it is relevant to recall how the original
reconstruction method finely tunes the initial conditions of
the Levenberg-Marquardt optimizer on the basis of specific
characteristics of each detected pulse, thus contributing to its
stability. However, in the present test, parameter initialization
was random and not fully driven by a priori information on
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Figure 5. Microvascular feature probability density functions (PDF) for the young (i.e. age<40 years) and old (i.e. age≥40 years) classes.

the pulse profile, and this might have had a detrimental effect
on the overall performance.
The evaluation of the SVM pulse classifier, based on the
approach detailed in the previous paragraph, was repeated over
30 successive experiments, so as to consider the variability
linked to the different partition of the input data for K-fold
cross-validation. Concerning the classification of the single
modeled pulse waves, the resulting average TNR and TPR
(95% CI) were respectively 0.902 (0.896, 0.907) and 0.646
(0.636, 0.657); a mean F1 score of 0.678 (0.668, 0.688) was
obtained, along with a MCC of 0.550 (0.539, 0.561). The box
plots of the fold-wise mean performance scores are shown in
Fig. 6.
Although these results indicate the presence of a relevant
fraction of false negatives, given the predefined age threshold
of 40 years, a different perspective can be obtained if we
shift the focus from pulse to subject classification (Figs. 7
and 8). A high correlation between the actual age of the
subjects (from the 11 validation sets) and the rate of waves
classified as Old-Pulse is indeed observed, reflected by a
mean Pearson’s correlation coefficient of 0.808 (0.803, 0.812).
Therefore, this Old-Pulse Rate (OPR) was adopted as a
criterion to discriminate between young and old individuals.
For each experiment, a receiver operating characteristic (ROC)
curve was thus generated by varying the OPR threshold, and
evaluating the subject true/false positive predictions on all
folds. The overall average area under the curve (AUC), hence
obtained from the entire set of experiments, was 0.953 (0.951,
0.956), which is indicative of a very good discrimination
performance. Table II summarizes these global results.

IV. DISCUSSION

In order to derive an indication on the qualitative aspect
of the old and young LDF pulses, as predicted by the SVM
classifier, the input feature vectors corresponding to the cen-
troids of the true positive and true negative clusters were
identified. These samples were then adopted to reconstruct

Table II
PERFORMANCE METRICS FOR VASCULAR AGEING CLASSIFICATION.

CLASSIFICATION METRIC MEAN 95% CI

TNR 0.902 (0.896, 0.907)

TPR 0.646 (0.636, 0.657)

F1 0.678 (0.668, 0.688)
LDF Pulse

MCC 0.550 (0.539, 0.561)

Pearson’s r 0.808 (0.803, 0.812)Subjects
ROC AUC 0.953 (0.951, 0.956)

TNR TPR F
1

MCC
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Figure 6. Pulse ageing classification: box plots of the fold-wise mean
performance scores achieved over the 30 cross-validation experiments.

two representative pulse models (normalized to the amplitude
of the systolic component, α1, for the sake of comparison).
Their shape, shown in Fig. 9, is in accordance with the
observations made by Millasseau et al. [26], which report
a reduction in the DVP incisura with ageing. The authors
contextually referred to the findings of Dawber and Lax, which
state that DVP waveforms with no inflection along the descent
of the systolic wave or without any dicrotic local minima are
more prevalent in older healthy individuals or in subjects with
CVD [27], or arteriosclerosis [28]. The general physiological
interpretation is that the ageing-related stiffening of the large
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Figure 8. Subject ageing classification: box plots of the Pearson’s correlation
coefficients and the ROC AUC estimates obtained from the 30 experimental
iterations.

conduit arteries determines a faster back-propagation of the
pressure waves reflected by the peripheral circulation, and thus
a higher degree of temporal superposition with the forward-
travelling systolic pulse. This hypothesis is in fact reflected
by the lower SInorm index of the Old-Pulse model, and by its
higher systolic peak value. Other salient evidence is the larger
RI (107.7%), compared to the Young-Pulse model (65.1%):
this may be indicative of an elevated impedance mismatch
in the peripheral resistance vessels, due to an altered level
of smooth muscle cells tone. Nevertheless, caution should
be used while interpreting the LDF waveform and its quan-
titative descriptors through the same theoretical framework
established for the analysis of the plethysmographic pulse,
as these techniques have different underlying measurands.
Indeed, LDF provides a non-absolute measurement of tissue
perfusion which, under a series of assumptions, scales with
the local concentration of red blood cells and their average
velocity [29]. On the other hand, photoplethysmography is
sensible to local blood volumetric changes; under pulsatile
conditions these are indirectly related to perfusion, as the
local variation in blood concentration is determined by the
difference between the inflow and outflow of blood from the
measurement volume. Mizeva et al. have recently demon-
strated a significant correlation between the oscillations of
digital plethysmographic and LDF signals within the low
frequency intervals associated with endothelial, myogenic and
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Figure 9. LDF pulse models generated from the centroids of the true negative
(top) and true positive (bottom) feature clusters.

neurogenic vasomotion mechanisms [30]. However, to the au-
thors’ knowledge a thorough comparison of the DVP and LDF
microvascular pulse contours is lacking and further work is
needed for the characterization of the LDF waveform changes
in response to physiological and pharmacological stimuli, or to
specific pathological conditions. This would be highly relevant
for the identification of specific LDF pulse descriptors which
are suitable for physiological interpretation. Furthermore, the
performance of the vascular ageing classifier may be generally
improved through the preliminary removal of redundant input
variables with limited discriminant capability in this specific
classification task. A feature subset selection approach, such
as the minimum-redundancy-maximum-relevance algorithm
proposed by Peng [31], may therefore be adopted in future
implementation of the SVM classifier.
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V. CONCLUSION

This paper presented an approach for the automated as-
sessment of vascular ageing based on the modeling of the
microvascular cardiac waveform. The multi-Gaussian decom-
position algorithm developed for feature extraction demon-
strated to be suitable for reconstructing the shape of the
LDF pulses. Moreover, the SVM supervised classifier achieved
overall good performance in the discrimination of Young and
Old-Pulse models, with respect to the arbitrary 40 years
threshold adopted for the generation of the binary classes.
More interestingly, a high correlation between the rate of
Old-Pulse predictions and the underlying age of the test
subjects was observed, and very high ROC AUC values
were obtained, by adopting this rate as a criterion value
for discriminating differently aged individuals. Therefore, the
presented methodology may have the underlying capability to
detect the progressive ageing of the vascular system. Since
diabetic angiopathy is known to be characterized by vascular
alterations comparable to ageing [32], this approach may also
be suitable for the screening of diabetic patients. We thus aim
to investigate the possibility of implementing this supervised
learning methodology for discriminating between diabetic and
control perfusion pulse waves.
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