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Abstract. A system made up of N interacting species is considered. Self-reaction terms are assumed of
the logistic type. Pairwise interactions take place among species according to different modalities, thus
yielding a complex asymmetric disordered graph. A mathematical procedure is introduced and tested to
stabilise the ecosystem via an ad hoc rewiring of the underlying couplings. The method implements minimal
modifications to the spectrum of the Jacobian matrix which sets the stability of the fixed point and traces
these changes back to species–species interactions. Resilience of the equilibrium state appear to be favoured
by predator-prey interactions.

1 Introduction

A vast plethora of physical phenomena occurring in
nature are due to collective dynamics, which sponta-
neously emerge at the macroscopic level in systems made
up of microscopically interacting constituents. When the
entities that compose the whole set are subject to spe-
cific self-reactions and, at the same time, diffuse across
the embedding spatial medium, the system goes under
the name of reaction–diffusion [1,2]. Examples are inva-
sion models in ecology [3], epidemic spreading [4], and
also the celebrated Turing patterns that arise, for instance,
from the dynamical interplay between reaction and diffu-
sion in a chemical system [1]. Usually, reaction–diffusion
models are defined on a regular lattice, either continu-
ous or discrete [2,5,6]. In many cases of interest, it is
however necessary to consider the units moving on a
complex network [7–12], where each node represents a
physical location; individual elements are constantly dis-
placed from one node to another following diffusion rules.
Spatial ecological systems can be schematized by resorting
to a network that exemplifies existing routes linking dif-
ferent habitats, infection spreading customarily requires
accounting for a transportation network, and also chem-
ical reactors and biological cells can be considered as
coupled through complex networks.

A reaction–diffusion model defined on a complex net-
work can display a stationary stable equilibrium. Stability
is of paramount importance as it relates to resilience, the
ability of the system to counteract external perturbations

a e-mail: giuliacencetti@gmail.com

that would tend to get away from the existing equilibrium.
It is therefore crucial to devise possible strategies aimed
at interfering with the system of interest so as to enforce
the desired stability. This can be achieved by acting on the
local dynamics or, more interestingly for what it follows,
by reshaping the underlying network of spatial connec-
tions. This latter possibility has been addressed in [13],
via a minimally invasive procedure targeted to modifying
the spectrum of the Laplacian operator which governs the
diffusive, hence linear, couplings. This, in turn, implies
rewiring the links, and consequently recalibrating the
weights, of the underlying graph of connections.

Dynamics on networks is however central to other
realms of investigation, also when the system being
examined is not made spatially extended. In this case,
long-ranged (non local) interactions, as encoded in the
structure of the assigned network, might follow non-
diffusive rules. In ecosystems inter-species interactions are
assumed to be mediated by pairwise, hence quadratic,
exchange, to some level of approximation. Each popula-
tion (species) is characterised by a self-reaction dynamics,
typically described via a suitable nonlinear function of the
concentration amounts, and different populations can be
abstractly assigned to given nodes of a virtual graph. The
network then represents the interactions between differ-
ent species and the sign of the weighted entries of the
associated adjacency matrix define the nature of coupling
(competitive, cooperative, predator-prey, etc.).

The stability of the ecosystem, or its resilience, is essen-
tial in many respects. In the past decades many efforts
have been made to understand the principles that rule
the stability of a complex ecosystem. These concepts have
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been originally addressed by May [14] in a seminal paper
that paved the way to a completely new field of inves-
tigation, still very productive and fertile. These studies
resulted in multiple attempts of providing methods to
make an ecological community structurally stable [15–22].
May [14] analysed a system described by N variables
(N interacting species) obeying a set of differential equa-
tions. The stability analysis is performed by linearising the
equations in the neighbourhood of an equilibrium point,
whose stability depends on the spectrum of the interaction
matrix. May’s analysis focuses on this latter, eventually
bearing to the challenging statement that, in short, the
more complex the more unstable is the system. Recent
work by Allesina et al. [23] provides an implementation
of May’s ecosystem accounting for well defined (non ran-
dom) interactions. These are competitive, mutualistic and
predator-prey and according to Allesina et al. play differ-
ent roles in the stability of the ecosystem. Remarkably, the
presence of predator-prey relations has a stabilizing effect.
In Coyte et al. [24] stability of a microbioma ecosystem is
obtained by allowing for sufficiently weak couplings.

Starting from these premises, in this paper we pro-
vide an alternative approach to ecological stability by
developing a self-consistent mathematical strategy which
implements a spectral control algorithm. The method
builds on the technique developed in [13] and extends its
domain of applicability, beyond diffusion mediated (lin-
ear) processes to the interesting setting where pairwise,
hence non-linear, non-local interactions are considered. In
doing so, we will contribute to identifying the key topologi-
cal features that should be possessed by a stable (resilient)
ecological network. To anticipate our findings we will show
that predator-prey interactions exert a beneficial role in
terms of stability in qualitative agreement with the results
reported in [23]. Further weak interactions tend to favour
the overall stabilization, as observed in [24].

The paper is organized as follows. In Section 2 we will
introduce the model and define the reference mathemati-
cal setting. In Section 3 the control scheme is discussed in
detail and we will also show how the spectral modifications
trace back to actual changes in the matrix of interactions.
In Section 4 the method is applied to a simple bidi-
mensional Lotka–Volterra model, while the extension to
arbitrarily large systems is discussed in Section 5. Finally,
in Section 6 we sum up and draw our conclusions. Relevant
technical material is provided in Appendices.

2 The model

We shall hereafter consider the coupled evolution of N
species and denote by xi, i = 1, . . . , N , their associated
concentrations. We will operate under the deterministic
viewpoint and deliberately omit any source of stochas-
tic disturbance, be it endogenous (demographic noise)
or exogenous (external perturbation). The evolution of
the ecosystem is hence described by the following set of
first-order differential equations:

ẋi = xi(ri − sixi) + xi
∑
j 6=i

Aijxj i, j = 1, . . . , N. (1)

The self-reaction term is here assumed logistic, for ped-
agogical reasons. We will subsequently relax this working
hypothesis and generalize the analysis so as to account
for an extended family of nonlinear reaction terms. In
the above equations, ri stands for the intrinsic growth
rate of species i, while si is inversely proportional to
the assigned carrying capacity. Matrix A, in general
asymmetric, defines the interactions among species. More
specifically, the scalar entry Aij encodes the effect exerted
by species j on species i. The magnitude of Aij weights the
strength of the interactions. The sign of Aij , respectively
Aji, defines the specific nature of the interaction between
species i and j. Adopting a wording which is inspired to
ecological applications: exploitation (+,−), competition
(−,−), cooperation (+,+), commensalism (+, 0), amen-
salism (−, 0) or null interaction (0, 0). The coupling among
species is shaped by a quadratic term, which scales like the
product of relative concentrations. This implies assuming
the interaction to be mediated by pair exchanges, as it is
customarily the case in ecology. On a more fundamental
level, the coupling term here introduced will enable us to
generalize the analysis reported in [13] beyond standard
diffusion.

Let us denote by x∗ the fixed point of the dynamics
and assume for the sake of simplicity that all entries x∗i
are different from zero. In formulae we have:

ri − six∗i +
∑
j 6=i

Aijx
∗
j = 0 i = 1, . . . , N, (2)

which essentially defines the sole non trivial equilib-
rium eventually attained by the system under scrutiny.
As alluded to in the introductory section, we are here
concerned with the resilience of the system, namely its
inherent capability to recover from perturbations. Stated
it differently, we shall elaborate on the conditions which
make the fixed point stable, according to a linear stabil-
ity analysis. To this end, it is convenient to introduce the
rescaled variable yi ≡ xi/x∗i . In the new variables the fixed
point is homogeneous and reads y∗i = 1 ∀i. The dynamics
of system (1) can be cast in the form:

ẏi = yi(ri − s̃iyi +
∑
j 6=i

Bijyj), (3)

where s̃i = six
∗
i , Bij = Aijx

∗
j and equation (2) assumes

the form ri − s̃i +
∑
j 6=iBij = 0.

To assess the stability of the fixed point, we set
yi = 1 + vi and Taylor expand at the first order in the per-
turbation amount. This yields the following linear system
for the evolution of the imposed perturbation:

v̇i = −s̃ivi +
∑
j 6=i

Bijvj ≡
∑
j

Cijvj . (4)

The stability of the fixed point is ultimately controlled
by the eigenvalues of the matrix C obtained by adding
the elements −s̃i on the diagonal of matrix B. The sys-
tem is unstable when at least one eigenvalue of C has a
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positive real part. In the following, we will discuss a con-
trol procedure to stabilise a fixed point, that is initially
engineered to be unstable. The method builds on the tech-
nique discussed in [13] and aims at reshaping the coupling
among interacting species. As a side observation, which
will become crucial in the forthcoming analysis, we notice
that the fixed point condition (y∗i = 1 ∀i) translates into
a constraint for C: summing the elements of C relative to
row i one should recover −ri, i.e.

∑
j Cij = −ri.

3 Topological control scheme

The proposed control strategy aims at modifying an ini-
tially unstable system of the type described above to yield
an equivalent analogue which preserves the form (1) while
admitting a stable non trivial equilibrium. As it shall be
argued hereafter, we can either enforce the stability of
the original, assumed unstable, fixed point, or, alterna-
tively, steer the system towards a different equilibrium.
In the former case we shall also alter the original car-
rying capacity (a parameter which indirectly encodes for
the interaction with the surrounding environment), while
in the latter the envisaged protocol will solely impact the
network of interspecies couplings, leaving unchanged indi-
vidual reaction parameters. In both cases, the intrinsic
growth rates ri, are kept unvaried. Stable ecological net-
works display remarkable topological characteristics, as
discussed in a series of papers devoted to this topic [23,24].
Operating along this line, we will isolate and discuss a
selected gallery of features that appear to be recurrently
shared by the ecological networks stabilized as outlined in
the following.

Since, by definition, the structure of (1) is invariant
under the foreseen procedure, inspecting the linear sta-
bility of the ensuing equilibrium implies dealing with a
system of the type v̇i =

∑
j C
′
ijvj , where C ′ is obtained

from C, defined as in equation (4), via the devised con-
trol algorithm. Requiring the sought stability is, in turn,
equivalent to constrain the spectrum of C ′ in the left por-
tion of the complex plane, namely to set the real part
of the associated eigenvalues to negative values. Our goal,
pursued hereafter, is to elaborate on a rigorous mathemat-
ical procedure, which is both anchored to first principles
and potentially minimally invasive, to derive C ′ from C.
Importantly, the obtained matrix C ′ should match the
condition

∑
j C
′
ij = −ri, for the homogeneous fixed point

to exist in terms of the rescaled variables yi (recall that,
by hypothesis, ri is frozen to its original value). The effect
of the control will be then gauged by tracing the modifica-
tions back to the underlying nonlinear framework, i.e. by
evaluating the impact produced on the relevant dynamical
parameters.

As a first step in the analysis, we write the linear
equation (4) in the equivalent form:

v̇i = −rivi +
∑
j

Dijvj (5)

where the definition of D follows trivially. Recalling that∑
j Cij = −ri by virtue of the aforementioned fixed point

condition, it is immediate to conclude that D is a zero-
row-sum matrix, namely

∑
j Dij = 0. The next step is

to diagonalize matrix D. Formally, we set Φ−1DΦ = Λ,
where Φ is the matrix whose columns are the eigenvectors
ofD andΛ the diagonal matrix formed by the correspond-
ing eigenvalues. Diagonalizability of matrix D is hence a
necessary requirement for the method to hold. The idea is
now to calculate the (minimal) shifts δΛ(α), α = 1, . . . , N ,
to be applied to the eigenvalues of Λ(α) of matrix D, for
the homogeneous fixed point y∗i = 1 ∀i to prove linearly
stable. Recall that the stability of this latter fixed point
is eventually dictated by the spectrum of C (or, more
precisely, by its controlled version C′), from which the
zero-row-sum counterpart D originates. The needed cor-
rections δΛ(α) are organized in a N ×N diagonal matrix
δΛ (with δΛkk = δΛ(k)) to be added to matrix Λ. The key
point is how to choose the entries of δΛ for the control to
return an effective, moderately intrusive (in terms of the
modifications apported on the spectrum), stabilization.

To answer this question, we proceed as if the
original eigenvalues Λ were perturbed by the finite
amount δΛ and recover a matrix D′, which displays
the modified spectrum, via the inverse transformation
D′ ≡ Φ(Λ+ δΛ)Φ−1. By construction D′ commutes
with D, as the two matrices share the same set of eigen-
vectors. Notably, the corrections δΛ can be chosen such
that matrix D′ is also zero-row-sum, as D is. This is rig-
orously proven in Appendix C, building on the derivation
reported in [13]. Moreover, D′ is real: this property is also
inherited from D, as shown again in Appendix C. We are
thus brought back to the linear problem:

v̇i = −rivi +
∑
j

D′ijvj , (6)

or, equivalently to v̇i =
∑
j C
′
ijvj , where:

C ′ij =

{
D′ij if i 6= j
D′ii − ri if i = j.

(7)

By construction
∑
j C
′
ij = −ri, since

∑
j D
′
ij =∑

j Dij = 0. This is a crucial observation which makes

it possible to interpret C ′ as the Jacobian matrix asso-
ciated to a rescaled nonlinear problem of the type (3)
where parameters r remain unchanged. The zero-row-
sum-property of matrix D′ is not a necessary condition to
obtain stability but represents a useful requirement to help
interpreting the results in terms of the original variables.

We now return to discussing the selection of the ele-
ments of the shift matrix δΛ. These latter are to be
chosen so as to constrain the spectrum of C ′ to the
left hand side of the imaginary plane, thus ensuing the
desired stability. From (7), it is clear that the eigenvalues
of D′ are positioned, in the complex plane, on the right of
those stemming from matrix C ′. The relative separation
between the two respective spectra can be somehow quan-
tified through r. To make this observation rigorous, we
recall the celebrated Gershgorin theorem [25]: the eigen-
values of a given matrix are included in disks defined by
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Fig. 1. The eigenvalues of C, (blue) plus symbols, signals an
initial instability. This is also seen at the level of the spectrum
of D, (yellow) triangles, which partially extends beyond the
critical vertical (dashed) line, located at rmin. Circles (purple)
and crosses (red) refer respectively to the eigenvalues of D′

and C′, pointing to the recovered stability.

the elements of the matrix itself. More specifically, the i-th
Gershgorin disk of matrix D′ corresponds to the relative
disk of matrix C ′, translated to the right by the scalar
quantity ri. Unfortunately, it is not trivial to relate the
index i (running on the nodes) to the eigenvalues (sorted
with the index α). To enforce stability, and assuming the
worst case scenario, we shall assign the (real) shifts δΛ(α)

so that all eigenvalues of D′ have their real part smaller
than rmin, the minimum of all the entries of vector r. In
practical terms, the imposed corrections δΛ(α) are chosen
as:

δΛ(α) =

{
R− Λ(α)

Re if Λ
(α)
Re > rmin

0 otherwise
, (8)

where the scalar quantity R has been introduced such
that R < rmin. To help visualizing the whole procedure we
report an illustrative example in Figure 1, without insist-
ing on the specific selection of the involved parameters.
The eigenvalues of the original matrix C are displayed in
the complex plane with (blue) plus symbols: the homoge-
neous fixed point of the rescaled equations (3) is therefore
unstable, as the spectrum protrudes in the right half-
plane. The eigenvalues of D are shown with (yellow)
triangles and extends on the right of the vertical dashed
line, which is traced at rmin. The (purple) circles stands
for the eigenvalues of the controlled matrix D′: as antici-
pated, they are confined on the left of the vertical dashed
line, the closer to the line the less invasive the control
imposed on the population of unstable modes. Finally,
and as predicted, the spectrum of the controlled Jacobian
C ′ is contained in the negative half-plane, thus implying
asymptotic stability.

As it should be clear from the above, the control pro-
tocol assumes dealing with constant ri parameters. Given
this constraint, two viable strategies are envisaged to re-
parametrize the original system, in light of the outcome

of the control scheme. We have in fact

D′ij =

{
ri − s′ix∗i

′ if i = j
B′ij = A′ijx

∗
j
′ if i 6= j

, (9)

which allows in principle to define the new coupling
strengths, as encoded in A′, the novel fixed point x∗′

and the modified inverse carrying capacities s′. A first
strategy to finalize the transformation suggests leaving
the parameters s unchanged, namely s′ = s. In practi-
cal terms, we assume that the reaction parameters, which
characterize the dynamics of each species when evolved
on a isolated patch, remain unchanged. The ecosystem can
achieve stabilization, by just reshaping the underlying net-
works of interlaced dependencies. From equation (9), we
have therefore:

x∗i
′ =

ri−D′ii
si

A′ij =
D′ij
x∗j
′ =

D′ijsj
rj−D′jj

.
(10)

Setting paired interactions as specified by matrix A′

guarantees the stability of the associated, and consistently
modified, fixed point x∗′. The quantities x∗i

′ should be
positive defined (at least when ecological applications are
concerned), which in turn translates into the additional
requirement

ri −D′ii > 0 ∀i. (11)

The second strategy consists of modifying the parame-
ters s, together with the matrix A, leaving unchanged the
fixed point x∗. The carrying capacity s is prone to envi-
ronmental influences, and, as such, it can be imagined to
be tunable with some degree of realism. This is opposed
to the growth parameter r, constrained, among other
factors, by species genetics, and thus assumed constant
throughout the procedure. From equation (9):

s′i =
ri −D′ii
x∗i

A′ij =
D′ij
x∗j

.

(12)

The additional condition s′i > 0 should be imposed, which
again amounts to requiring equation (11) to hold. In other
words, condition (11) is a general constraint that the con-
trol scheme is bound to verify, for the specific ecologically
inspired application, here discussed. We shall refer to con-
dition (11) as to the applicability constraint and elaborate
on its implications hereafter. The idea is to find a suitable
value for R in order to match the condition (11), and,
hence, to make the control scheme applicable. To begin,
let us assume that we are allowed to modify all eigenvalues
of the considered spectrum, and not just the limited sub-
set that triggers the system unstable. Then, it is enough to

impose δΛ(i) ≤ s̃min ∀i, which is in principle always pos-
sible, in order to automatically verify (11). The system is
therefore always controllable when all eigenvalues are to
be modified.

https://epjb.epj.org/
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Consider now the more interesting case where a subset
M of elements of the whole spectrum is the target of the
control. One has to face the following restrictions:

– if an index i exists such that
∑
j∈M ΦijΦ

−1
ji < 0 and

s̃i +
∑
j∈M ΦijΛ

(j)
ReΦ

−1
ji − rmin

∑
j∈M ΦijΦ

−1
ji < 0,

then constraint (11) is never matched and the sys-
tem is not controllable with the above discussed
technique.

– if an index i exists such that
∑
j∈M ΦijΦ

−1
ji > 0 and

s̃i +
∑
j∈M ΦijΛ

(j)
ReΦ

−1
ji − rmin

∑
j∈M ΦijΦ

−1
ji < 0

(suppose node indices are sorted so that such an
index i is in the subset of nodes 1, . . . , ñ with ñ < N),
than the applicability condition (11) is verified only
if the following statement holds true:

max
i∈[1,ñ]

(
rmin −

s̃i +
∑
j∈M ΦijΛ

(j)
ReΦ

−1
ji∑

j∈M ΦijΦ
−1
ji

)

≤ min
i∈[n+1,N ]

(
rmin −

s̃i +
∑
j∈M ΦijΛ

(j)
ReΦ

−1
ji∑

j∈M ΦijΦ
−1
ji

)
, (13)

where [n + 1, N ] numbers the set of indices i for
which

∑
j∈M ΦijΦ

−1
ji < 0.

The above conditions (derived in Appendix D) are to
be carefully checked before attempting to control the sys-
tem under scrutiny via the procedure that we have here
illustrated and which is ultimately aimed at recalibrating
the weights of the underlying couplings.

Before concluding this section, we briefly mention an
alternative control strategy which builds on the already
mentioned Gershgorin theorem. In the above analysis we
have reshaped the networks of contacts and altered either
the fixed point x∗ or the carrying capacity si, while pre-
serving the values of the growth factors ri. The alternative
route to stabilization that we shall hereafter discuss fol-
lows a dual path: the only parameters to be tuned are the
growth rates ri. Recalling that C ′ is real (from definition
of (7), being D′ real), it is clear that each eigenvalue has
its real part smaller than C ′ii +

∑
j 6=i |C ′ij |, which is the

rigthmost point in the complex plane of the i-th Gersh-
gorin disk for matrix C ′. To enforce stability, we could
then require that all the Gershgorin circles are included
in the left half-plane:

C ′ii +
∑
j 6=i

|C ′ij | ≤ 0⇒ D′ii − ri +
∑
j 6=i

|D′ij| ≤ 0⇒ D′ii

+
∑
j 6=i

|D′ij| ≤ ri, (14)

which implies that the Gershgorin disks computed for
matrix D′ should be contained in the semi-plane con-
strained, from the right, by the vertical line located at
ri for any selected i, or, better, at the left of rmin,
for all i. The shift of the Gershgorin disks can be per-
formed by modifying the diagonal of matrix C, which is
equivalent to changing the vector of parameters r. This

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4

Re

-0.5

0

0.5

Im

Fig. 2. Eigenvalues in the complex plane for a particular choice
of matrix C (blue plus symbols): the system is unstable as the
symbols invade the region with positive λRe. The (blue) circles
represent the associated Gershgorin disks. Red symbols stand
for the eigenvalues of matrix C′, which fall in the negative
part of the complex plane, while their corresponding circles
protrude in the positive half-plane. Green symbols refer to
the alternative control scheme (14): now the Gershgorin cir-
cles are contained in the negative half-plane. The spectrum
obtained by following this latter route to stability is well inside
the region of stability, at variance with that generated by the
former approach, which sits at the border of stability. In this
respect, the method that we have depicted, and which neces-
sitates reshaping the underlying network of contacts, can be
thought as minimally invasive.

alternative control strategy proves however more inva-
sive in terms of the perturbation that is produced on
the original spectrum. This is clearly testified in Figure 2,
where the original (unstable by construction) spectrum
is compared to those obtained applying the two control
strategies outlined above.

In the next section we will begin by applying the devel-
oped method to a simple example, where just two species
are made to evolve. This application bears pedagogical
interest and it will pave the way to inspecting the gen-
eral setting, on which we shall report in the subsequent
section.

4 Stabilizing the Lotka–Volterra dynamics

With the goal of gaining further insight on the control
scheme developed above, we will here consider a sim-
ple setting where just two species are made to mutually
interact. Hence, we will consider hereafter N = 2 and
label with x1 and x2 the mean field concentrations of the
interacting species. Equation (1) reduces therefore to:{

ẋ1 = x1(r1 − s1x1 +A12x2)
ẋ2 = x2(r2 − s2x2 +A21x1)

, (15)

a framework known in the literature as the Lotka–Volterra
competition model. To proceed in the analysis we define

https://epjb.epj.org/
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(b)

Fig. 3. (a) Existence and stability of the (non trivial) fixed point (u∗1, u
∗
2), as a function of the parameters a and b. In

particular, the fixed point does not exist in the empty (no shading) areas (negative for a > 1 ∪ b < 1 and a < 1 ∪ b > 1,
infinite for a < 0 ∪ b < 0 ∪ b < 1/a); it is unstable in the rectangular (orange) shaded region, entirely contained in the first
quadrant; it is stable in the other (cyan) colored region, which extends in all quadrants. The blue stars refer to the initial
choice of the parameters: the system is hence unstable. After the control procedure is applied, one obtains the red stars, which
are distributed inside the region associated to linear stability. These latter symbols cluster in a limited portion of the plane,
close to the threshold of instability. In this respect, the control method is minimal also in terms of the modification induced
at the level of the dynamical parameters (and not only in relation to its effects in the complex plane where the spectrum of
the Jacobian is depicted). (b) Original and modified spectrum are displayed for one representative case study among those
depicted in (a).

ui ≡ (si/ri)xi, τ ≡ r1t, and eventually get the following
governing equation in the rescaled variables u1 and u2:


du1
dτ

= u1(1− u1 + au2) ≡ f1(u1, u2)

du2
dτ

= ρu2(1− u2 + bu1) ≡ f2(u1, u2)

, (16)

where ρ = r2/r1, a ≡ −A12
r2
r1s2

and b ≡ −A21
r1
r2s1

.
It is straightforward to prove that this system admits
four equilibria: (u1, u2) = (0, 0), (u1, u2) = (0, 1),
(u1, u2) = (1, 0) and (u1, u2) = ( 1−a

1−ab ,
1−b
1−ab ) ≡ (u∗1, u

∗
2).

We shall hereafter refer to the latter equilibrium, the only
one to guarantee non trivial asymptotic concentrations for
both species. Notice that this is admissible only if u∗1 and
u∗2 are positive and finite, which, in turn, implies that the
parameter space (a, b) is restricted to the colored region
of Figure 3, i.e.

– a > 1, b > 1.
– a < 1, b < 1, b < 1/a.

The stability of the selected fixed point is determined
by the Jacobian matrix

J(u∗1 ,u∗2) =
1

1− ab

(
a− 1 a(a− 1)

ρb(b− 1) ρ(b− 1)

)
, (17)

whose eigenvalues are

λ± =
1

2(1− ab)

[
(b− 1)(1 + ρ)

±
√

(a− 1)2(1 + ρ)2 − 4ρ(1− ab)(a− 1)(b− 1)

]
. (18)

The sign of λ± implies that the fixed point (u∗1, u
∗
2)

is unstable for a > 1 and b > 1 and stable in the
complementary domain, as depicted in Figure 3.

Working in this simplified setting, it is therefore
straightforward to implement, and graphically illustrate,
the stabilization protocol, as addressed in the preceding
section. Starting from an unstable system corresponds to
setting the parameters a and b in the (orange) shaded
sub-portion of the first quadrant of Figure 3. When imple-
menting the control, panel (b) of Figure 3, the rescaled
parameters (a, b) are consequently moved to the other
(cyan) shaded domain displayed in Figure 3a, i.e. the
region deputed to stability. Different symbols, as depicted
in Figure 3a, refers to distinct choices of the initial model
parameters. In all cases, the stabilization is successfully
produced and, more importantly, the modified parameters
(a, b) tend to cluster in a limited portion of the stability
domain, close to the boundary of instability. This obser-
vation suggests again that the devised control acts by
producing a somehow minimal perturbation to the origi-
nal model. Following the alternative control recipe based
on the Gershgorin theorem produces much more invasive
changes (here not shown).

The controlled matrix of interaction, as well as the novel
set of dynamical parameters, can be readily obtained from
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the modified quantities a′ and b′, following one of the
interpretative scenarios discussed with reference to the
N -dimensional case. Both strategies require altering
the matrix of couplingsA to eventually obtain its modified
counterpart here denoted with A′. More specifically:

– Changing the fixed point x∗. The parameters r and
s stay unchanged. Hence:

A′12 = −a′ r1s2
r2

, (19)

A′21 = −b′ r2s1
r1

. (20)

The new fixed point (x∗1)′ , (x∗2)′ is obtained by
solving the self-consistent equations:

r1 − s1(x∗1)′ +A′12(x∗2)′ = 0, (21)

r2 − s2(x∗2)′ +A′21(x∗1)′ = 0. (22)

– Modifying the parameters s. The fixed point and r
are not varied. One gets:

a′ = −A′12
r2
r1s′2

b′ = −A′21
r1
r2s′1

, (23)

which, together with the fixed point condition:{
r1 − s′1x∗1 +A′12x

∗
2 = 0

r2 − s′2x∗2 +A′21x
∗
1 = 0.

(24)

allows one to obtain the entries of the matrix A′ and
the controlled parameters s.

In the first case we have to make sure that the new
fixed point is admissible, which amounts to meeting the
conditions (x∗1)′ > 0 and (x∗2)′ > 0. In the second case, one
has to impose s′1 > 0 and s′2 > 0. It is straightforward to
prove that these constraints are always satisfied when a′

and b′ fall, as they do by definition, in the stability region
(1−a′ > 0, 1− b′ > 0 and 1−a′b′ > 0). In the next section
we move on to considering the general setting by working
with an arbitrarily large ecological system consisting of N
interacting populations.

5 The general case

Let us now consider the general setting where an arbitrar-
ily large number of species is made to interact. The initial
coupling strengths which exemplify the interaction among
distinct populations, as encoded in the elements of matrix
A, are initially assigned in such a way that a non trivial
fixed point exists and is linearly unstable. This is achieved
by generating the random entries Aij , according to a spe-
cific distribution that we discussed in the Appendix and
exploiting again the Gershgorin theorem. In the following,
we will set N = 100 and illustrate the results which are
obtained when allowing for the fixed point to be modified
by the control procedure. The alternative control strategy,

-4 -2 0 2 4 6
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0.6

Im

Fig. 4. Eigenvalues in the complex plane, before, along and
after the control procedure. The symbols are assigned as
described in the caption of Figure 1. The elements Aij are
assigned following the scheme discussed in the Appendix. Here,
N = 100.

which leaves the original fixed point unchanged, is also
analyzed and the results reported in the Appendix. As
an interesting outcome, we will show that predator-prey
interactions exert a stabilizing effect, as already pointed
out in [23].

In Figure 4, the original and modified spectrum are
displayed in the complex plane, for one representative real-
ization of matrix A. The symbols are chosen following the
same convention adopted in Figure 1. The stabilization
produced by the control is clearly demonstrated.

To help visualizing how the control shapes the examined
ecosystem, we extract from the matrix A′ the number of
pairs that belong to the different classes, categorized in
five six large classes, here recalled for the sake of complete-
ness: exploitation (+,−), competition (−,−), cooperation
(+,+), commensalism (+, 0), amensalism (−, 0) or null
interaction (0, 0). The frequency of appearance of different
classes is investigated in Figure 5. The red plus symbols
point to the uncontrolled setting, and reflect the specific
rule chosen for generating matrix A and its associated,
unstable fixed point (see Appendix A). For the controlled
matrix, only three bins are populated, see Figure 5a:
interaction modalities that envisage a one directional cou-
pling, or stated differently, a zero entry in matrix A, are
absent in the controlled scenario. The topological control
activates in fact all pairwise connections, albeit often by a
tiny amount. It is then interesting to silence, a posteriori,
in the controlled adjacency matrix A′, the links that are
associated to a weight (in absolute value) smaller than a
given cutoff. For a sufficiently small cutoff the stability of
the controlled system is preserved: the number of newly
added links can be hence considerably reduced, by eradi-
cating from the collection those that bear no relevance in
light of the modest exerted coupling. The effect of the cut
off is visible in Figure 5b: the final distribution of pairs
resembles very closely the one generated at the beginning.
Recovering, at least partially, the original sparsity of
the interaction matrix is an important byproduct of the
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Fig. 5. Abundances of different types of couplings between species. (Red) plus symbols refer to the uncontrolled matrix of
interaction (analytically computed in Appendix A). (a) The (blue) bars report on the relative abundances of different classes, as
obtained after the control has been applied. Results refer to just one realization of the process. Quantitatively similar conclusions
are obtained for different realizations and/or averaging over a large ensemble of them. (b) The frequency of appearance of different
classes is plotted after a cut-off has been applied (see main text). Here the cut off is set to 0.005.

Fig. 6. The distribution of the predator-prey interactions is
displayed: blue bars refers to one realization of the initial
system (averaging over many realizations yields the ana-
lytic profile represented by the blue line and obtained after
Eq. (A.1)). Red bars photograph the distribution of couplings
obtained once the control has been applied.

analysis: stable ecosystem are in fact expected to be
preferentially sparse so as to enhance explorability [26].
The fact that the control scheme yields an initial fully
connected matrix is not deeply rooted in the concept of
stability, but rather intrinsic to the mathematical proce-
dure being implemented. It is also remarkable that, after
the a posteriori pruning, the original connectivity of the
interaction matrix is approximately recovered. Moreover,
the number of predator-prey interactions grows at the
detriment of the last column of the histogram, implying
that the new interactions that are to be established
for stability to hold belong to this class, in qualitative
agreement with the analysis by Allesina et al. [23].

0 20 40 60 80 100
node index
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15
x

*

Fig. 7. The equilibrium solution of the controlled system (red
diamonds) is different from the trivial (uncoupled) fixed point
(black plus symbols) obtained by setting x∗i

′ = ri/si. The index
reported in the horizontal axis identifies the species.

A different view on the effect of the control method can
be gained by looking at Figure 6. Here, the distribution
of the weights associated to predator-prey interactions is
plotted before (blue bars and continuum profile) and after
(orange histogram) application of the control. While con-
sidering the control procedure which allows the fixed point
to change, it is clear that reducing the strength of the
couplings proves beneficial for the system stabilization,
in agreement with [24]. The same observation holds for
the other classes of interactions (data not shown). As a
final check, we show in Figure 7 the new fixed points as
obtained with the stabilized matrix A′, compared to the
trivial fixed point obtained when the matrix of couplings
is switched off, i.e. assuming that each species is bound to
evolve on a isolated niche. The method here devised yields
a genuinely complex stable equilibrium, which appears
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to be shaped by the couplings established among inter-
acting units, despite the global tendency to reduce their
associated strengths, as revealed in Figure 6.

6 Conclusion

In ecological systems, species interact in pairs and accord-
ing to well-defined modalities, as e.g. predator-prey,
mutualistic or competitive. The dynamics of an ecosys-
tem can be ideally modeled by resorting to a collection
of ordinary differential equations for the evolution of
the associated mean-field concentrations. This amounts
to operating under the deterministic approximation, by
deliberately neglecting the role played by finite size fluctu-
ations and disregarding spatial variability. Each governing
differential equation combines two distinct contributions:
(i) local terms, also called reactions, forged to mimic the
self-dynamics of the examined species and (ii) non local
terms, which stem from the couplings among species.
The matrix of interactions is a table where all existing
pairwise interactions are stored and categorized. Given a
specific ecosystem, the reaction parameters of the model
and the associated network of inter-species couplings, it
is interesting to speculate on the conditions that allow for
the existence of a stable equilibrium. Stability relates to
resilience, the ability of the system to withstand changes
that would alter its dynamical equilibrium. Working in
this context, we here contributed with a novel approach,
mathematically grounded on first principles, to help iden-
tifying the topological features that should be possessed
by a generic ecological network so as to ensure stabil-
ity, hence resilience. To this end we consider a system
made up of N interacting species and assume the reac-
tion dynamics to be of the logistic type. We then generate
a network of interactions, encoded in a weighted adja-
cency matrix, which is prone to instability. By rewiring the
assigned links, and their associated weights, we can drive
the system stable, via two alternative strategies which pre-
serve, or not, the initial fixed point. The method consists
of a generalized version of the topological control scheme
designed in [13], where diffusive (hence, linear) couplings
were instead assumed to drive the exchanges between
species. The technique here developed implements mini-
mal modifications to the spectrum of the Jacobian matrix
responsible for the stability of the underlying equilibrium
and trace these changes back to species–species inter-
actions. The analysis carried out within this operating
framework, suggests that predator-prey interactions exert
a stabilizing effects, in qualitative agreement with the con-
clusion reached in [23]. Furthermore, it has been found
that a preponderance of weak interactions is beneficial to
stability [24].

Appendix A: Couplings in the original system

We shall here briefly discuss the algorithm that we have
employed to generate the initial matrix of interactions A.
For each pair i, j (with i and j running from 1 to N) we
draw a random number p from a uniform distribution in

Fig. A.1. The amount of pairs of the different kinds are shown.
Red crosses are analytically computed after equation (A.1).
Blue bars are numerically obtained following one individual
realization of the scheme discussed above for generating A.
Here, N = 100, a = 0.38, p0 = 0.5, c0 = 0.9. The agreement
between the analytic calculation and the numerical imple-
mentation is already satisfying (for just one realization) for
N = 100. This observation justifies assuming the analytic
abundances as a reference stand for the controlled matrices of
interactions (of the same dimension N = 100) to be compared
with.

the interval [0, 1]. If p > p0 a link that goes from j to i
is established. Here 0 < p0 < 1 is a free parameter. The
strength of the link, namely the element Aij of matrix
A, is assigned as follows: we extract a random number
from a uniform distribution defined in the compact inter-
val [−c0, 1 − c0], with c0 > 0, and multiply the selected
number by a scalar amplitude factor a. It is immediate
to prove, that increasing c0 makes the system progres-
sively more unstable. This follows a direct application of
the Gershgorin theorem, mentioned in the main body of
the paper. The relative abundance of the pairs, typified as
in the main text, can be on average computed and shown
to be related to the choices of p0 and c0. The percentage
of null entries (no links) of A will be 1 − p0, the per-
centage of negative entries p0c0, while the percentage of
positive entries is p0(1− c0). Building on this observation,
we obtain the following estimate for f(·,·), the frequencies
of occurrence of the different classes:

f(0,0) = (1− p0)2

f(0,−) = 2p0(1− p0)c0

f(0,+) = 2p0(1− p0)(1− c0)

f(+,−) = 2p20c0(1− c0)

f(+,+) = p20(1− c0)2

f(−,−) = p20c
2
0. (A.1)

Each quantity is to be multiplied for a factor (N2 −N)/2
to obtain the abundances of elements, which are numeri-
cally tested in Figure A.1. The red crosses depicted in the
Figures enclosed in the main body of the paper refer to
equation (A.1).

https://epjb.epj.org/


Page 10 of 13 Eur. Phys. J. B (2018) 91: 264

Appendix B: Extending the analysis
to account for a generalized nonlinear
reaction term

The control scheme developed in this paper can also be
applied to a more general reaction model. Assume that
the logistic dynamics is replaced by a generic nonlinear
function f(xi, ri):

ẋi = f(xi, ri) + xi
∑
j 6=i

Aijxj , (B.1)

where ri identifies an arbitrary set of constant parameters.
The associated fixed point is obtained by solving:

f(xi, ri) + xi
∑
j 6=i

Aijxj = 0. (B.2)

By performing the change of variables yi ≡ xi/x
∗
i and

Bij = Aijx
∗
j we obtain:

ẏi =
1

x∗i
f(yix

∗
i , ri) + yi

∑
j 6=i

Bijyj . (B.3)

In the new variables, the fixed point equation takes the
form:

1

x∗i
f(x∗i , ri) +

∑
j 6=i

Bij = 0, (B.4)

where use has been made of the condition y∗i = 1.
The stability analysis requires introducing a modest

perturbation vi around the fixed point y∗i = 1, which
amounts to writing yi = 1 + vi. The inhomogeneous
perturbation vi will evolve according to:

v̇i = vi

[
1

x∗i

∂f

∂yi
(yix

∗
i , ri)

∣∣∣∣
yi=1

+
∑
j 6=i

Bij

]
+
∑
j 6=i

Bijvj

≡
∑
j

Cijvj (B.5)

where the matrix C is defined as

Cij ≡


Bij if i 6= j∑
k 6=iBik + 1

x∗i

∂f
∂yi

(yix
∗
i , ri)

∣∣∣∣
yi=1

if i = j,

(B.6)
and the stability of the fixed point is ultimately controlled
by the sign of the real part of the eigenvalues of C. In
analogy with the procedure described in the main text,
we then define D as

Dij ≡
{
Bij if i 6= j
1
x∗i
f(x∗i , ri) if i = j, (B.7)

which is a zero-row-sum matrix, because of the fixed point
condition,

∑
j Dij =

∑
j 6=iBij + 1

x∗i
f(x∗i , ri) = 0.

We can then modify the matrix D, which hence trans-
forms into D′, so as to enforce the desired stability, fol-
lowing the recipe outlined in the main body of the paper.
The implemented changes can be interpreted as follows:

– for the off-diagonal entries (i 6= j) we impose
D′ij = B′ij = A′ijx

∗
j
′ which enables to calculate the

elements of the controlled interaction matrix. As
usual, we can decide to freeze the fixed point to
its original value or modify it consistently, while
assuming constant the parameters of the model.

– for the diagonal entries (i = j) we impose D′ii =
1
x∗i
′ f(x∗i

′, r′i) where r′i is the new vector of param-

eters of the stabilized system. This latter can be
readily obtained by inverting the above equation
(f need therefore to be invertible, with respect to r).
Notice that, in general, only a subset of the elements
of ri, need to be adjusted. As remarked above, it
is alternatively possible to leave the parameters ri
unchanged, and modify x∗

Appendix C: The controlled matrix D′ is real
and zero-row-sum as D

Recall the definition of D′:

D′ = D +Φ(δΛ)Φ−1 ≡D + δD, (C.1)

where Φ is the matrix whose columns are the eigenvectors
(φ(1), . . . ,φ(N)) of D. Observe that since D is real and
zero-row-sum, it is sufficient for our purposes to prove that
δD exhibits the same properties.

The elements of D′ are real. Consider the generic
entries of δD:

(δD)il =
∑
j

ΦijδΛ
(j)(Φ−1)jl. (C.2)

Isolate the real and imaginary parts of every element in
equation (C.2). It is immediate to see that, being δΛ(j)

real ∀j, the imaginary part of (δD)il reads:

(δDIm)il =
∑
j

δΛ
(j)
Re[(ΦRe)ij(Φ

−1
Im)jl + (ΦIm)ij(Φ

−1
Re)jl].

(C.3)
To match condition (δDIm)il = 0, the term on the

right hand side of equation (C.3) should be zero. To
prove this, let us first recall that the eigenvalues of a real
matrix are either real or complex and come in conjugate
pairs. Consider a complex eigenvalue Λ(α), by definition

Dφ(α) = Λ(α)φ(α). Taking the complex conjugate yields

D(φ(α))∗ = (Λ(α))∗(φ(α))∗ where (·)∗ stands for the com-
plex conjugate and where we have used the condition
D = D∗. Let the indexes α and β to be defined by the
relation (Λ(α))∗ = Λ(β). We can immediately conclude

that φ(β) = (φ(α))∗. Hence

(ΦRe)iα = (ΦRe)iβ
(ΦIm)iα = −(ΦIm)iβ ,

(C.4)
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for each node index i and every pair (α, β) of complex
conjugate eigenvalues. Consider now the equation

(φ−1)(α)D = Λ(α)(φ−1)(α), (C.5)

with (φ−1)(α) left eigenvector of D, corresponding to the
α-th row of Φ−1. Proceeding in analogy with the above,
one eventually gets:

(Φ−1Re)αl = (Φ−1Re)βl

(Φ−1Im)αl = −(Φ−1Im)βl.
(C.6)

Return now to equation (C.3). By performing the sum-
mation on j = α and j = β, using equations (C.4) and
(C.6) and the fact that the corrections δΛ(α) and δΛ(β)

are complex conjugated like the original eigenvalues Λ(α)

and Λ(β), we finally conclude that the terms of the sums
in equation (C.3) cancel in pairs relative to complex
conjugate eigenvalues.

The remaining terms in the summation correspond
to real eigenvalues. Without loss of generality, we can
always consider the relative left and right eigenvectors
to be real, up to a constant scaling factor. In detail, if
Λ(γ) ∈ R, (ΦIm)iγ and (Φ−1Im)γl can always be set equal
to zero ∀i, l. This implies that all the remaining terms in
equation (C.3) disappear, one by one. Then, summing up,
(δDIm)il = 0 ∀i, l.
D′ is a zero-row-sum matrix. Matrix D zero-row-

sum. Hence, the vector 1 (with all entries equal to one) is
the right eigenvector of D corresponding to Λ(1) = 0:∑

j

Dij = 0 ⇐⇒ D1 = 0. (C.7)

Recall that the proposed approach, implies a modification
of the eigenvalues of matrixD, while keeping the eigenvec-
tors unchanged. As a consequence, vector 1 is still solution
of the eigenvalue problem. Moreover, the zero eigenvalue
is not responsible for the instability and it is therefore
preserved upon application of the control scheme. Hence:

D′1 = 0 ⇐⇒
∑
j

(D′)ij = 0, (C.8)

which proves the claim.

Appendix D: On the conditions of
controllability

As explained in the main text, the proposed control
method is based on shifting the eigenvalues of a zero-row-
sum matrix in the complex plane by applying to their
values a real and negative correction (which is identically
equal to zero, for the subset of eigenvalues which should
be preserved). The goal of this Appendix is to single out
the conditions which allow for the control procedure to be
effectively implemented.

Denote by M the set of indices corresponding to the
eigenvalues which are responsible for the instability and

which should be modified by the controller. Denote by δΛi,
i ∈M, the (real) shift imposed to the selected ensemble of
eigenvalues for stabilization. In the sequel, we will assume
that the translation takes the interested eigenvalues to
a constant value, R, smaller than rmin (other strategies
can clearly be adopted, consequently altering the analysis
reported below):

(ΛRe)i + δΛi = R < rmin. (D.1)

In choosing the constant R we must ensure that the
applicability constraint (11) is satisfied:

s̃i −
∑
j

ΦijδΛjΦ
−1
ji ≥ 0 ∀i. (D.2)

Imposing condition (D.1), one gets:

s̃i −R
∑
j∈M

ΦijΦ
−1
ji +

∑
j∈M

Φij(ΛRe)jΦ
−1
ji

≡ ki −R
∑
j∈M

ΦijΦ
−1
ji ≥ 0 ∀i. (D.3)

where we defined ki = s̃i +
∑
j∈M Φij(ΛRe)jΦ

−1
ji .

If ki− rmin

∑
j∈M ΦijΦ

−1
ji is positive, for each index i ∈

[1, N ], then it is sufficient to set R = rmin for achieving
stabilization. The complementary situation, in which the
above quantity turns out to be negative for some i, is more
intricate, as we shall clarify hereafter.

First, it is convenient to sort the node indices in such a
way that for indices i ∈ [1, n], with n < N , the quantity∑
j∈M ΦijΦ

−1
ji is positive, while it takes negative values

for the remaining indices of the collection, i ∈ [n+ 1, N ].
Recalling that R is bound to be smaller than rmin, the
following inequalities hold:

ki −R
∑
j∈M

ΦijΦ
−1
ji ≤ ki − rmin

∑
j∈M

ΦijΦ
−1
ji ∀i ∈ [n+ 1, N ],

(D.4)

ki −R
∑
j∈M

ΦijΦ
−1
ji ≥ ki − rmin

∑
j∈M

ΦijΦ
−1
ji ∀i ∈ [1, n],

(D.5)
where R is chosen so as to make the term on the left hand
side positive. The inequality (D.4) is obviously violated if
the expression on the right hand side is negative for at
least one i in the interval [n+ 1, N ]. In this case, the sys-
tem cannot be controlled, using the recipe here discussed
(which amounts, among the other specificities, to select
a constant R). For what concerns the other inequality
(D.5), the righthand term is instead allowed to be neg-
ative. Suppose that this happens for indices i ∈ [1, ñ] with
ñ ≤ n (the indices are imagined to be properly sorted).
Then, the constant R must be smaller than rmin, let us
say R = rmin− ε, with ε > 0. Substituting it into (D.3) we
obtain a lower bound for ε:

ε ≥ max
i∈[1,ñ]

(
rmin −

ki∑
j∈M ΦijΦ

−1
ji

)
. (D.6)
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Fig. E.1. Abundances of different types of couplings between species, as explained in caption of Figure 5. Here the blue bars
refer to the system controlled upon application of the strategy which leaves the fixed point to its original value, while the
parameters s are modified. The Figure in panel (b) reports the coupling abundances after a cut-off of 0.05 has been applied.

Recall again that R is (our choice) constant. Assuming
R = rmin − ε, one could eventually loose the controlla-
bility condition for indices i ∈ [n + 1, N ]. The following
additional condition needs therefore to be considered:

ki − rmin

∑
j∈M

ΦijΦ
−1
ji + εmin

∑
j∈M

ΦijΦ
−1
ji ≥ 0, (D.7)

thus resulting in an upper bound for ε:

ε ≤ min
i∈[n+1,N ]

(
rmin −

ki∑
j∈M ΦijΦ

−1
ji

)
. (D.8)

Another necessary condition for controllability is then
found by imposing that the upper bound for ε is larger
than the lower bound (both positive):

0 < max
i∈[1,ñ]

(
rmin −

ki∑
j∈M ΦijΦ

−1
ji

)
≤ min
i∈[n+1,N ]

(
rmin −

ki∑
j∈M ΦijΦ

−1
ji

)
, (D.9)

which coincides with the equations reported in the main
body of the paper.

Appendix E: Controlling without modifying
the fixed point

The Figures appearing in this Appendix illustrate the
results obtained for the control strategy where the fixed

Fig. E.2. Distribution of predator-prey interactions: the blue
bars and the blue line refer to one realization of the initial
system, as explained in the caption of Figure 6. Yellow bars
represent the different couplings in matrix A′ as obtained from
controlling the system leaving the fixed point unchanged. In
this case, strong predator-prey links are generated and the
distribution of positive vs. negative weights symmetrized.

point is kept unchanged while the inverse carrying capac-
ity vector s is modified together with the weights of
the interaction matrix. Figures E.1–E.3 and represent
the analogue of Figures, respectively (5), (6) and (7),
already discussed in the main body of the paper, which
are obtained with the alternative control strategy.
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Fig. E.3. In analogy with Figure 7, the fixed point of the
controlled system is reported with (blue) crosses and compared
with the fixed point, (black) squares, that one would obtain for
the uncoupled dynamics (x∗i = ri/s

′
i).
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