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Abstract 

In this paper, a risk-based optimization methodology for a maintenance schedule considering 

Process Variables (PVs), is developed within the framework of asset integrity assessment. To 

this end, an integration of Dynamic Bayesian Network, Damage Modelling and sensitivity 

analysis are implemented to clarify the behaviour of failure probability, considering the 

exogenous undisciplinable perturbations. Discrete time case is considered through measuring 

or observing the PVs. Decision configurations and utility nodes are defined inside the network 

to represent maintenance activities and their associated costs. The regression analysis is 

considered to model the impact of perturbations on PVs for future applications. The developed 

methodology is applied to a case study of Chemical Plant (Natural Gas Regulating and 

Metering Stations). To demonstrate the applicability of the methodology, three cases of 

seasonal observations of specific PV (pressure) are considered. The proposed methodology 

could either analyse the failure based on precursor data of PVs or obtain the optimum 

maintenance schedule based on actual condition of the systems.  
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Nomenclature    

Subscripts 𝑃 Pressure (kPa) 

PV Process Variable 𝜆  expected value of smallest 

detectable perturbation 

ROCOF Rate of OCcurrence Of Failure 𝐷 Actual perturbation  

F Failure probability ℎ average ROCOF 

K State of process variables 𝑓 inflation rate of failure 

(percentage) 

𝐶𝐹 Cost of Failure  𝑟 inflation rate of replacement 

(percentage) 

𝐶𝑅 Cost of Replacement 𝑟′ inflation rate of repair 

(percentage) 

𝐶𝑅′ Cost of Repair 𝛼𝑖 perturbation parameter 

CPT  Conditional Probability Table 𝛽𝑖 perturbation parameter 

Ω Sensor uncertainty 𝐴  shape parameter 

Ɛ Perturbations  𝐵  scale parameter 
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K′ state of process variable before 

and after maintenance 

𝑃0 maximum probability of 

detection 

𝑂 Observation  𝐿𝑆 Limit state function 

M Decision alternative 𝐺 Failure function 

UF Utility of Failure (Cost 

associated with failure) 

𝐶 critical PV interval 

UM Utility of Maintenance (cost 

associated with maintenance) 

𝑃𝑅 actual PV interval 

PoD  Probability of Detection t time (sec) 

 

1. Introduction 

Since the operational fields of natural gas distribution networks extend far beyond the border 

of the above ground plant, the safety target community is not limited to the firm’s assets but 

also includes human life and the environment. Over the past few years, significant attention 

has been paid by researchers to the inclusion of these aspects in the safety and risk assessment 

of gas distribution pipelines (Dawotola et al. 2013; De Rademaeker et al. 2014; Mannan 2012; 

Pasman 2015). Up to now, many methodologies have been developed to undertake 

comprehensive risk analysis of an industrial plant. Tixier et al. (2002) identified 62 

methodologies divided into three different phases (identification, evaluation and  hierarchy). 

In order to understand their key features and to categorize them into different classes, the paper 

examines input data, utilized methods and obtained output data.  

There is also a great deal of research on asset integrity management and optimization of  

maintenance plans (Adriaan et al. 2010; Ahmed et al. 2015; Arunraj and Maiti 2007; Azadeh 



4 

 

et al. 2015; Khan et al. 2006). This has resulted in many innovative methodologies being 

developed for asset maintenance in the process industry, where the most common classification 

of the policies based on the time of application and the geographic location of an asset for 

single or multi-units, are corrective maintenance (CM), preventive maintenance (PM), 

predictive maintenance, and proactive maintenance (Barnard 2006; Iqbal et al. 2016; Khan et 

al. 2004; Moubray 1991).  

The last two categories have attracted significant attention from researchers for increasing both 

effectiveness and efficiency of integrity management (Khan and Haddara 2004). Abbassi et al. 

(2016) developed a risk-based model to integrate predictive and preventive maintenance 

strategies in an optimal way. It was concluded that the risk-based methodology developed using 

Bayesian Network (BN) maintains the desired availability and safety level while minimizing 

the maintenance cost. Bhandari et al. (2016) proposes a methodology for the design of an 

optimum maintenance program integrating a dynamic risk-based approach in BN. Their 

method is based on failure prediction and utilizes precursor information in order to revise the 

risk profile of the system. 

BN as a parametric and non-parametric probabilistic method, has been widely used for risk and 

reliability assessment of complex engineering systems (Barua et al. 2016; Kabir et al. 2015; 

Yu et al. 2017). Khakzad et al. (2013) demonstrated and compared the application of bow-tie 

and BN models in conducting quantitative risk analysis of offshore drilling operations. The 

results of their study show that BN provides more efficient potential than bow-tie models for 

probabilistic analysis, since it can consider common cause failures and conditional 

dependencies along with the ability to perform probability updating and sequential learning 

based on accident precursors data or new available evidence. 
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Dynamic Bayesian Network (DBN) is a practical extension of static BN whenever an evolving 

phenomenon must be modelled. In many cases, such as deterioration processes, capturing the 

dynamic (temporal) behaviour is an important aspect of a modelling process. Daniel Straub 

(2009) developed a methodology for stochastic modelling of degradation processes. The 

proposed framework facilitates a robust reliability analysis and Bayesian updating of the model 

with measurements, monitoring and inspection results. This makes the method highly 

applicable to near-real time condition monitoring and integrity management. 

Another extension to BNs are Influence Diagrams (IDs) which are utilized for developing 

decision support tools. Conventional graphic-based approaches to decision issues, like 

Decision Trees, suffer from a number of weaknesses including poor efficiency in representing 

decision issues with large numbers of parameters and the need for reliable prior information. 

However, ID are an alternative which are widely established in engineering applications (Abaei 

et al. 2017; Arzaghi et al. 2017; Friis-Hansen 2000; Luque and Straub 2013).  

BN is applied less for considering the impact of exogenous undisciplined perturbations as one 

of the important concepts of dynamic reliability. Other tools such as diffusion equations and 

Monte Carlo simulations etc. are widely used to solve these issues (Gao et al. 2011; Rief 1984; 

Roos et al. 2008). It should be noted that the present study does not aim at developing a fault 

detection method. Therefore, there is no specific failure event such as a leakage or crack to be 

detected by the proposed methodology.  

The present paper focuses on adopting the Process Variables (PVs) and assessing how their 

variations can be used for determining the optimum maintenance schedule. That is, what 

temperature or pressure, for instance, can change the failure rate of a component in the system 

for which a maintenance task may be essential. Among all contributors, the perturbation plays 

a pivotal role. It is the amount of deviation from expected steady state condition of normal 
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operation. A DBN is established to model the damage and the estimation of failure probability 

distribution, considering the observed trends in PVs. The DBN is then extended to an ID for 

decision making regarding the optimum maintenance interval as well as the maintenance type. 

A risk-based approach is selected for proposing the methodology and to demonstrate its 

application.  Developing a risk-based maintenance policy for a Natural Gas Reduction Station 

in Florence, Italy is considered.  

The remainder of the paper is organized as follows. In the first section the fundamentals of BNs 

are discussed.  Section 2 presents the details of the proposed methodology. Section 3 is devoted 

to the application of the methodology while the concluding remarks of the paper are presented 

in Section 4. 

1.1. Bayesian Network, Dynamic Bayesian Network and Influence Diagram  

1.1.1. Bayesian Network 

A detailed discussion on probabilistic knowledge elicitation using BN with a wide 

range of engineering applications is presented by (Barber 2012; Neapolitan 2004; Scutari 

2014). BN is a strong tool to incorporate the deterministic data into the probabilistic model 

with robust connections to graph theory. Based on the capability of including different types 

of uncertainty (aleatory and epistemic), BN is recognised as a promising method for risk 

analysis of complex systems. BN is also able to incorporate both causes and consequences of 

the failure event in a single network.  

BN is a Directed Acyclic Graph (DAG) in which the nodes (random variables) are inter-

connected with arcs that represent probabilistic dependencies among variables. For instance, 

Fig. 1 presents a schematic BN where node 𝑋3 is a child of 𝑋1 and 𝑋2; nodes 𝑋1 and 𝑋2 are 

considered as parent nodes of 𝑋3. Each node consists of a conditional probability table (CPT). 
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Based on the conditional independencies and the chain rule, BN estimates the joint probability 

distribution of a set of random variables given in Eq. (1).  

 
𝑃(𝑋₁, 𝑋₂, … , 𝑋𝑛) = ∏𝑃

𝑛

𝑖=1

(𝑋1|𝑃𝑎(𝑋1))  
(1) 

As an example, the joint probability distribution of the random variables 𝑋1, 𝑋2 and 𝑋3 shown 

in Fig. 1 is estimated by 𝑃(𝑋1, 𝑋2, 𝑋3) = 𝑃(𝑋1)𝑃(𝑋2)𝑃(𝑋3|𝑋1, 𝑋2) 

In case new information becomes available for one or more chance nodes, BN is able to update 

the joint probability distribution based on the Bayes’ theorem given in Eq. (2): 

 
𝑃(𝑋|𝐸) =

𝑃(𝑋, 𝐸)

∑ 𝑃(𝑋, 𝐸)𝑋
 

(2) 

 

 

Fig. 1. A schematic Bayesian Network 

1.1.2. Dynamic Bayesian Network 

DBN represents a stochastic process as a sequence of several time slices, each consisting of 

inter-dependent nodes. As an illustration, if the BN in Fig. 1 is expanded into multiple time 

slices t = {1, … , T } , a DBN will be constructed, as shown in Fig. 2. 
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Fig. 2. Example of Dynamic Bayesian Network 

1.1.3.  Influence Diagram 

An ID can be established by including utility nodes (diamonds) and decision nodes (rectangles) 

into a BN (see Fig. 3). A decision node consists of several decision alternatives available to the 

user. Since the parents of a decision node incorporate the required information at the time of 

the decision, the arc pointing to a decision node is an information arc, not an expression of 

probabilistic dependency. Utility nodes are the descendants of either chance nodes and/ or 

decision nodes and have no successors. The utility values (including benefits or losses) of a 

utility node are determined as the preference of the user/operator over each configuration of 

the decision alternatives and those chance nodes that are the parents of the utility node. Once 

the ID is completely formed for a decision issue, the expected utility of each decision 

alternative can be estimated. The optimal decision is the one that maximizes the total expected 

utility, in agreement with classical decision analyses.  
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Fig. 3. An Influence Diagram including utility and decision nodes (𝑋: chance nodes, 𝐷: decision node, 𝑈: utility node) 

2. Methodology 

In this study, a framework for stochastic modelling of dynamic process using DBN is 

developed. The steps of the developed methodology are illustrated in Fig. 4 and discussed in 

detail in the following sections. The model can be used in different applications for estimating 

the failure rates based on precursor data and for optimising the maintenance schedules using a 

risk-based approach. 
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Fig. 4. Developed methodology for maintenance planning based on PV behavior and impacts of exogenous perturbations 
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2.1. Function time series prediction 

The proposed methodology aims at developing a dynamic model that represents the changes in 

PVs over time. Both mathematical and statistical modelling are applied to predict the behaviour 

of PVs (more explanation is refered to in (Roffel and Betlem 2006; Tinsley and Brown 2000)). 

According to the quality and type of available data the suitable prediction tool differs.  

2.2. Failure analysis  

Consider a DBN model that describes the condition of PVs before and after applying a set of 

perturbations. Failure analysis has been developed to assess the related failures. For the purpose 

of this class, two subsections will be presented in detail. 

2.2.1. PVs Monitoring Mechanism modelling 

The generic DBN model for stochastic modelling of PVs is represented in Fig. 5. The proposed 

DBN is applied as a generalization of Markov process models. In a Markov process, the future 

is independent on the past, given the present, as given in Eq. (3). Here the Markov process is 

modelled as a chain of nodes that represent the PV. 

 𝑃(𝑋𝑡+1|𝑋𝑡, … , 𝑋0) = 𝑃(𝑋𝑡+1|𝑋𝑡) (3) 

In order to ensure that the DBN is homogenous with identical time slices, the arcs connecting 

nodes [Ɛ1 , … , Ɛ𝑇] are considered. The transition between these nodes are modelled with 

diagonal matrices resulting in Ɛ𝑡 =  Ɛ𝑡−1 , 𝑡 = {2, … , 𝑇} (similar assumption is implemented 

for 𝛺). This is performed to facilitate the model building process and for a better graphical 

presentation of the model. As suggested by Daniel Straub (2009), these arcs have no impact on 

the computational efficiency of the model.  

Although the model here is proposed in general, the numbers of PVs can vary based on the 

demand of application with times as: 
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 𝐾𝑗(𝑡) ∈ 𝐾𝑗 = {𝐾1
𝑗
, 𝐾2

𝑗
, … , 𝐾𝑡

𝑗
} ; 𝑗 = 1,… , 𝑛 (4) 

For instance, temperature or vibration can be the PV modelled with this method. Owing to the 

fact that updating in the light of new evidence is counted as a feature of the present model, 

observations can be adopted from each 𝐾𝑗(𝑡), as given in Eq. (5): 

 𝑂𝑗(𝑡) ∈ 𝑂𝑗 = {𝑂1
𝑗
, 𝑂2

𝑗
, … , 𝑂𝑡

𝑗
} ; 𝑗 = 1,… , 𝑛; (5) 

where 𝑗 is the number of observation and 𝑖 indicates the PV being monitored. The same condition 

is assumed for the extent and type of perturbation variables such as system perturbation and 

exogenous perturbation, see Eq. (6). 

 Ɛ𝑞; 𝑞 = 1,2, … , 𝑥 (6) 

The model has 𝑛 time slices representing the entire process time divided into discrete number of 

time steps. All the distributions of variables with continuous analytical expression are discretized 

into a number of mutually exclusive states. The univariate discretization is proposed so that the 

continuity in the probability distributions is achieved precisely. More detail of the discretization 

process of the variables is explained in the following sections.  

2.2.2. Model specification  

Each perturbation parameter has a stationary process and consequently its probability 

distribution does not change when shifted in time (Ɛ𝑡 =   Ɛ𝑡−1 = Ɛ , 𝑡 =  2, … , 𝑇). Therefore, 

the parameters of the suitable probability distribution must be estimated only once and the CPT 

of perturbation can be filled after discretization of the final distribution. It is suggested that for 

the sake of simplicity and without loss of generality, the perturbation data be fitted to a Normal 

distribution.  
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Fig. 5. Developed DBN for stochastic modeling of process of PVs under impact of exogenous perturbations. Network nodes 

are, Ɛ: perturbations, 𝐾: state of PV, 𝑂: observations, 𝛺: sensor uncertainty, 𝐹: Failure. 

To obtain the Probability Density Function (PDF) of PV elements in the first time slice, the 

historical data should be analysed. The available database contains lower and higher bounds 

and fault threshold rates. Based on the trend and the extreme values, the most suitable 

distribution for the data can be figured out by several methods such as Maximum Likelihood 

Estimation (MLE), or Least-Squares Estimation (LSE). MLE has been recommended in 

previous research (Myung 2003), since it has many features such as efficiency in the 

calculations, consistency and parameterization invariance. As a result, the MLE is adopted in 

the present study and the PDF of PVs is accordingly discretized.    

The CPT of PVs (𝑃(𝐾𝑖 | 𝐾𝑖 − 1,  Ɛ𝑖)) is defined with binary values based on the limit state 

concept. These binary values are presented in 𝑁 × 𝑁 × 𝑀 transition probabilities, where 𝑁 and 

𝑀 are the state numbers of 𝐾𝑖 and Ɛ𝑖, respectively. Limit state function is discussed further, 

later in this section. In order to fill the transitional CPTs, it is necessary to define a safe 
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operational interval for the considered PV. For instance, the interval [𝑎, 𝑏] can be chosen to 

determine whether the PV is within this interval. It is through this comparison that CPTs can 

be filled, as given in Eq. (7): 

 𝐶𝑃𝑇 =  {
𝑖𝑓 𝑎 ≤ 𝑃𝑉 ≤ 𝑏   𝑡ℎ𝑒𝑛                0
𝑒𝑙𝑠𝑒                                                 1

 
(7) 

The DBN model used in the proposed methodology provides the user with an opportunity to 

consider new evidence to update the probability distributions. Observations can be made from 

many strategies such as real time monitoring and failure monitoring. In the present study, 

inspection results are incorporated into the network and the uncertainty associated with the 

results is characterized by Probability of  Detection (𝑃𝑜𝐷), D.  Straub (2004) provides a number 

of 𝑃𝑜𝐷 functions based on empirical methods. A common approach to define the 𝑃𝑜𝐷 function 

is the one-dimensional exponential threshold model, previously used by several researchers, 

(Ambühl 2017; J. S. S. Nielsen, J. D. 2011; J. S. Nielsen and Sørensen 2017; D.  Straub 2004) 

and given by: 

 
𝑃𝑜𝐷(𝐷) = 𝑃0 [1 − exp (−

𝐷

𝜆
)] 

(8) 

where 𝐷 is as the actual perturbation, 𝑃0the maximum probability of detection and 𝜆 is the 

expected value of the smallest detectable perturbation. 

In order to complete the 𝑃𝑜𝐷 model, probability distributions are discretized into 𝐸 states. It 

should be noted that the number of states for node 𝑂 should be the same as the states of node 

𝐾. The discretized probabilities are set in the first column of the 𝑁 × 𝐸 (𝑁 = 𝐸)  matrix. The 

perturbation in the former states of PV cannot be detected as damage in the latter states of 

inspection (for example the perturbation value in 𝐾1is not detectable in 𝑂2 or 𝑂3). So, the final 

CPT of 𝑃(𝑂𝑖 | 𝐾𝑖) is as follows: 
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[
 
 
 
 
 
 
 
𝑃𝑜𝐷1          0              0            … .              0             0     
𝑃𝑜𝐷2        𝑃𝑜𝐷2        0            … .              0             0     
.                .                .               ….                .               .   
.                .                .               ….                .               .   
.                .                .               ….                .               .   
.                .                .               ….                .               .   

𝑃𝑜𝐷𝑁−1  𝑃𝑜𝐷𝑁−1  𝑃𝑜𝐷𝑁−1   ….          𝑃𝑜𝐷𝑁−1     0     
𝑃𝑜𝐷𝑁      𝑃𝑜𝐷𝑁      𝑃𝑜𝐷𝑁        ….          𝑃𝑜𝐷𝑁         1     ]

 
 
 
 
 
 
 

 

 

(9) 

The method for estimating 𝑃𝑜𝐷 in other time slices (from the second time slice onwards) is 

different from the first, since these nodes have an extra parent node which is the node 

incorporating the uncertainty of sensors. Although 𝑃𝑜𝐷 function is applied to model the 

reliability of inspection, the uncertainty of sensor values can be represented in three forms, 

from no attention to uncertainty at all, to the highest resolution of uncertainty information: 

point uncertainty, interval uncertainty and probabilistic uncertainty (Cheng 2003). In the 

present paper, probabilistic uncertainty approaches are adopted.  

Considering 𝛺𝑖, the model reflects the reliability of sensors as well. As a general concept of 

this work (as done for perturbation), normal distribution is proposed as the suitable probability 

distribution being fitted to uncertainty of sensors, however, other distributions can be adopted 

based on the available data and characteristics of sensors. This parameter is time-invariant, so, 

the calculation of PDF and discretized value of probability must be done only once for the 

whole process. 

Assuming that 𝑁 and 𝐸 are the state numbers of 𝑂𝑖 and 𝐾𝑖 subsequently, and 𝐿 is the number 

of states (S) in node 𝛺𝑖, the final CPT of 𝑃(𝑂𝑖| 𝐾𝑖 , 𝛺𝑖) is shown in Eq. (10) in the form of 

[𝑁 × 𝐸] × [𝐿] :   
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[
 
 
 
 
 
 
 
 
 
 
 
  1 −

1

𝑁
Ω         0                0                … .                    0                0 

  0             1 −
2

𝑁
Ω           0                … .                    0                0 

   0                    0          1 −
3

𝑁
Ω          … .                    0                0  

  .                    .                   .                  ….                     .                 .  
  .                    .                   .                  ….                     .                 .  
  .                    .                   .                  ….                     .                 .  

   0                     0                 0              … .         1 −
𝑁 − 1

𝑁
Ω       0  

  
1

𝑁
Ω               

2

𝑁
Ω           

3

𝑁
Ω            ….               

𝑁 − 1

𝑁
Ω        1  ]

 
 
 
 
 
 
 
 
 
 
 
 

× [𝑆1, 𝑆2, … , 𝑆𝐿] 

 

 

(10) 

Failure probability is assessed using limit state function (Kamphuis 2000). This approach is 

adopted as follows here:  

   𝐺 =  𝐶 –  𝑃𝑅 (11) 

where 𝐺 is  failure function, 𝐶 is critical PV interval and 𝑃𝑅 is the actual PV interval. 

Consequently, the conditional probability of failure 𝑃(𝐹𝑖 | 𝐾𝑖) in the DBN is expressed with 

two states of Safe and Fail, 1 (fail) if 𝐺 ≤  0 and 0 (safe) when 𝐺 > 0.  

2.3. Decision making support tool 

The next stage of the methodology is to develop an ID for optimising the maintenance. The ID 

developed in this paper (see Fig. 6) incorporates the socio-economic aspects including 

operation and maintenance costs into the decision-making process. As discussed in section 

1.1.3, two additional node types, utility and decision nodes, are added to the DBN for 

constructing the ID. 

The decision node (𝑀𝑖) characterizes different decision alternatives (repair, replace, continue 

without any maintenance actions). It is made based on the results of inspections and 

subsequently it affects its descendent including the chance node (𝐾′(𝑡)). The nodes 𝐾′(𝑡) are 

introduced into the network for discriminating between the status of the PV before and after a 
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decision regarding maintenance. In case the decision is made to continue without any 

maintenance actions, the CPTs of 𝐾′(𝑡) nodes are identical to that of 𝐾(𝑡) node from the same 

time slice. This is while the CPTs vary if maintenance (repair or replace) is carried out in the 

previous time slice.  

It should be noted that if a decision is made for repairing or replacing the system, the state of 

PV will be recovered to its initial time steps. The value of recovery is directly depending on 

the norms and practices in the industry of interest.   

 

Fig. 6. The ID of the multi-criteria decision-making model developed for maintenance planning of a stochastic process. 

Network nodes are, Ɛ: perturbations, 𝐾: PVs condition, 𝐾’: PVs condition after maintenance, 𝑂: observations, 𝛺: device 

uncertainty, 𝐹: Failure, 𝑀: Maintenance, 𝑈𝑀: utility of maintenance, 𝑈𝐹: Utility of Failure 
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The costs associated with system failure are accounted for using the utility of failure (𝑈𝐹𝑖 node) 

in the network. The initial time slices can be filled based on the amount of collected data from 

the structure. The inevitable cost of failure in the future periods of operation is given by (Usher 

et al. 1998): 

 𝐶𝐹𝑗 = 𝐶𝐹.̅̅̅̅̅ ℎ𝑗̅(1 + 𝑓)𝑗 (12) 

Where cost of failure (𝐶𝐹) in period (𝑗) is estimated by a simple Rate of OCcurrence Of Failures 

(ROCOF) constant, 𝐶𝐹̅̅̅̅  (in units of $/unit-failure-rate) multiplied by the average ROCOF, (ℎ̅). 

It is also assumed that the cost of a failure taking a place in future will be subjected to inflation 

at a rate of 𝑓 percent in the considered period of 𝑗. For the sake of simplification, it is suggested  

a linear approximation be considered for the average of ROCOF (Referred to Usher et al. 

(1998)  for more explanations). 

The utility values developed for maintenance alternatives are suggested to be evaluated in detail 

separately for each configuration. The cost of replacement of the equipment is estimated as: 

 𝐶𝑅𝑗 = 𝐶𝑅̅̅ ̅̅ (1 + 𝑟)𝑗 (13) 

where 𝐶𝑅 is a constant cost for replacing the equipment. In the present paper, the values for 

𝐶𝑅 are adopted from historical data. Similar to the case of failure, a separate inflation rate (𝑟) 

is considered for replacements over the period 𝑗. 

Finally, if the system requires a repair, the regular cost for this activity (𝐶𝑅’) will be affected 

by an inflation rate of 𝑟’ percent per period, therefore the cost of repair is given by Equation 

14. 

 𝐶𝑅′𝑗 = 𝐶𝑅′̅̅ ̅̅̅(1 + 𝑟′)𝑗 (14) 
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3. Application of developed methodology: Case study 

An example of Natural Gas Regulating and Metering Stations (NGRMS) is given to show how 

the application of developed ID in risk-based maintenance can be applied. GeNie software is 

used as a tool for modelling the ID. A detailed discussion on application of each step of the 

developed methodology in the case study is discussed in the following sections.    

3.1. Scenario development  

NGRMS are established in the gas distribution networks to reduce the Natural Gas outlet 

pressure to a setting value. To handle the process, there are two regulating streams with two 

regulators arranged in a series for each line.  One is the main regulator and the other is used as 

a control/slam shut valve. Through the normal operation, one line is working while the other 

line is on stand-by. If main and slam regulator (both) fail, the other standby line starts to work. 

As illustrated in Fig. 7, the standard configurations of lines in NGRMS are made up of control 

valve, pressure regulator-passive controller, main pressure regulator with a built-in slam-shut 

valve and filters.  
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Fig. 7. Simple System Architecture of NGRM stations 

The requirements for particular characteristics of delivered gas, including gas specification, 

odorisation and pressure are specified in both local and international regulations. (see (UNI 

2009a, 2009b, 2012)). Such regulations are issued to obtain smooth operations with the lowest 

possible number of maintenance interruptions, failure losses and accidental damages. In the 

present study, the pressure is applied as PV to analyse the deterioration process and to finally 

achieve the optimal time schedule of maintenance.   

3.2. Function prediction  

To set up the decision making process, the pressure values during 36 months of process 

operation were taken into account. The time series predictions are depicted in Fig. 8 along with 

historical and validation data. The historical data is predicted by different regression tools to 

find the most suitable one based on their predictive performance. In this study, the competitive 

evaluation of models summed up and selected Fourier as the suitable one due to stable results 

across samples with below representation (see Eq.((15)).  

 

𝑃(𝑡) = 𝛼0 + ∑(𝛼𝑖 cos
𝑖𝜋𝑡

𝐿
+ 𝛽𝑖 sin

𝑖𝜋𝑡

𝐿
)

∞

𝑖=1

 

 

  (15) 

Where first term of Fourier equation (𝛼0) is actually the expected amount of observed pressure 

since it is defined by Equation 16.  

 
𝛼0 =

1

𝑇
∫ 𝑃(𝑡)

𝑇

0

= 𝑃̅ 
(16) 

Based on historical data, it can be reckoned that although the process engineering gives 

protection for pressure behaviours against perturbations, there are nevertheless a wide range of 

perturbations in the pressure. These perturbations can be modelled by regression tools of 
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pressure through time. As a result, 𝛼𝑖  and 𝛽𝑖 are considered as independent perturbation 

parameters and follow from: 

 Ɛ =  {𝛼𝑖, 𝛽𝑖;  𝑖 = 0, 1… ,6}    (17) 
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1
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(18) 
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1
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𝐿

𝑇

0

 
(19) 

By taking pressure (including perturbation) into account, the condition of pressure is predicted 

in time based on its initial treatments. Each 𝛼 and 𝛽 in the model experienced a normal 

distribution with specific mean (𝜇) and standard deviation (𝜎2). So Eq. (15) can be represented 

as:  

 

𝑃(𝑡) = 𝑃̅ + ∑(
1

√2𝜋𝜎𝑖
2
𝑒

−
(𝛼𝑖−𝜇𝑖)
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2 cos
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1
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2
𝑒

−
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2 sin
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𝐿
)

∞
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(20) 
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Fig. 8.  Time series ahead prediction of Pressure treatment 

3.3. Pressure monitoring model  

To demonstrate the time dependent stochastic modelling of a PV (pressure), a DBN model is 

developed (see Fig. 9). For the purpose of this study, the model is simplified by analysing the 

pressure behaviour for a period of four seasons (each season representing a time slice; 

𝑃0, 𝑃1, … , 𝑃4) with influence of exogenous perturbations on it. Although in reality, the system 

will often be maintained (repaired or replaced) at a fixed time, especially after detection of 

failure, in the method presented in section 2.2, it is assumed that the system has not been 

maintained for three years.  

  

Fig. 9.  Developed DBN model including exogenous perturbations for four seasons. Network nodes are,  

{𝛼0, 𝛼1, … , 𝛼6, 𝛽1, 𝛽2, … , 𝛽6}:perturbations, 𝑃0: Initial Pressure condition, 𝑃: Pressure condition, 𝑂: observations, 

𝐺: device uncertainty, 𝐹: Failure 

The parameter 𝑃0 accounts for the initial pressure (historical data of pressure) and has a Weibull 

distribution with scale and shape parameters of 𝐴 and 𝐵 respectively. It is assumed that both 

parameters have negligible deviation and a constant rate of 𝐴 = 4.455 and 𝐵 = 10.244. On 
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the contrary, other parameters applied in the model are normally distributed. The distribution 

of each parameter mentioned in Table 1 is split into a specific number of intervals. In addition 

to these parameters, the observation node is similarly discretised using 10 intervals while 

avoiding round-off errors by using MATLAB software (see Fig. 10).  

It should be mentioned that pressure size in the following time slices are discretized using the 

same uniform interval lengths as 𝑃0. A detailed discussion of the sequence of filling the CPTs 

for all parameters (pressure size 𝑃 (𝑃𝑖 | 𝑃𝑖−1, Ɛ𝑖  ), observation 𝑃 (𝑂𝑖 | 𝑃𝑖, 𝛺𝑖  ), and failure 

𝑃 (𝐹𝑖 | 𝑃𝑖)) is stated in section 2.2.2.  

 

Table 1: Parameters of stochastic modelling of pressure with perturbations variables 

Variable Description Distribution 

(discretized interval) 

Mean  Standard 

deviation 

𝜶𝟎 1st Perturbation parameter Normal (5) 4.885 3.118 

𝜷𝟏 2nd Perturbation parameter Normal (5) -0.638 3.031 

𝜶𝟏 3rd Perturbation parameter Normal (5) -0.6945 2.8985 

𝜷𝟐 4th Perturbation parameter Normal (5) -0.11 0.3829 

𝜶𝟐 5th Perturbation parameter Normal (5) -0.7374 5.6264 

𝜷𝟑 6th Perturbation parameter Normal (5) 0.2462 1.7332 

𝜶𝟑 7th Perturbation parameter Normal (5) -0.2168 2.5258 

𝜷𝟒 8th Perturbation parameter Normal (5) 0.0346 3.5336 

𝜶𝟒 9th Perturbation parameter Normal (5) -0.0044 0.9305 
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𝜷𝟓 10th Perturbation parameter Normal (5) 0.1719 1.1268 

𝜶𝟓 11th Perturbation parameter Normal (5) 0.0515 0.6279 

𝜷𝟔 12th Perturbation parameter Normal (5) 0.1096 0.561 

𝜶𝟔 13th Perturbation parameter Normal (5) -0.0989 2.4919 

Ω Devices uncertainty Normal (3) 0.0002 0.05 

 

 

Fig. 10.  Discretized Weibull Distribution of initial pressure size 

3.4. Utility efficiency     

Recognizing the optimal maintenance strategies and times are  conducted by an extension of 

DBN into ID (see Fig. 11; due to space limitation nodes 𝑃0 to 𝑃2 of the decision model are only 

depicted). To evaluate the effect of maintenance on process, the maintenance alternatives are 

defined consequently in three actions including continue, repair and replace. The elements of 

drawn ID were previously introduced in section 2.3   

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

3
,6

2

3
,7

8

3
,9

3

4
,0

9

4
,2

4

4
,4

0

4
,5

5

4
,7

1

4
,8

6

5
,0

1
P

ro
b

ab
ili

ty
 

Pressure intervals



25 

 

 

Fig. 11.  Developed Influence Diagram for maintenance planning considering exogenous perturbations.  Network 

nodes are {𝛼0, 𝛼1, … , 𝛼6, 𝛽1, 𝛽2, … , 𝛽6}:perturbations, 𝑃0: Initial Pressure condition, 𝑃: Pressure condition, 𝑂: 

observations, 𝐺: device uncertainty, 𝐹: Failure 𝑀: Maintenance, 𝑈𝐹: Utility of Failure 𝑈𝑀: Utility of Maintenance 

Iqbal et al. (2016) presented a comprehensive review on inspection and maintenance policies 

for oil and gas pipelines. They defined the repair of a unit as Imperfect maintenance after which, 

although the unit is not taken into account as new, it is supposed to be younger than before. 

The replacement is also assumed to be established either at complete failure or after fixed 

number of failures. To improve the effectiveness of the decision making process, the hybrid 

policies have been examined with mentioned decision alternatives later.   

Based on aforementioned assumptions and Eq.(13) and Eq. (14), the costs associated with 

repair and replacement are compared and depicted in Fig. 12. The line graph illustrates the 

repair value and bar chart represents the replacement expenses for the  entire domain of 

pressure (as illustrated in Fig. 10.  the pressure variable is discretised in 10 intervals). Units are 

measured in Euros.  
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Overall, the expected cost is changing through different intervals for repair, while experiencing 

constant rate for replacement. It is proved again that the most desired pressure value is starting 

from the third and finishing at the fifth interval as the repair costs decline and rise significantly 

before and after these intervals. Additionally, it is necessary to note that steady rate of 

replacement cost does not mean that for any conditions of pressure in any time of replacement, 

the expected cost would be the same. This will be explained in detail in the following section 

by considering different occasions.  

 

Fig. 12.  Utility value of maintenance alternatives, repair and replace, for each interval of pressure   

3.5. Influence Diagram application: results 

To assess the advantage of the developed methodology, three different seasonal inspection 

cases were considered. To make clear reported data in Table 2, in case B, the observations are 

made with a pressure in state 2 followed by state 7 of pressure intervals in the third season. The 

health of the system is not monitored for the second and last seasons.  
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Table 2: Observations of pressure size in the NGRM station. Three cases of different monitoring results were 

considered. Note: the cells with dashes illustrate times where monitoring is not performed. 

Month 3 6 9 12 

Case A State 1 State 6 State 8 - 

Case B State 2 - State 7 - 

Case C State 8 - - - 

 

The line graphs in Fig. 13, Fig. 14 and Fig. 15 depict the Expected Utility (EU) for three 

maintenance alternatives (repair, replace and continue) based on inspection results reported in 

Table 2 over a period of one year.   

Starting with case A, the deterioration is mapped through the gradual increase of pressure from 

its 1st state to 6th and lastly 8th state. Although at the beginning of the considered period, 

continuing the operation is the most beneficial option, the subsequent drop of EU in this line 

at the second season implies that this is not an appropriate alternative after six months. Based 

on results depicted in Fig. 13 , it is deduced that the optimal strategy is continuing at the first 

season, followed by repairing at the second stage. The utility of all three options for the final 

season is predicted to be approximately equal. Ultimately, according to the model, the 

maximum benefits are achieved if in the 3rd and 4th seasons replace and continue alternatives 

are applied respectively, where the EU reaches a peak of 12000 and 1000 Euros. 
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Fig. 13 Expected utilities of three decision alternatives: Replace, Repair and Continue operation for case (A) with different 

pressure size incidents as detailed in table 2 

In case B, continuing the operation is considered as the best configuration of maintenance 

decision in the first 2 seasons. As can be seen in Fig. 14, since the pressure experienced its 7th 

interval at the end of the  9th month, it is proposed that the system must undergo a repair process 

at the third season to recover its healthy state. This action has the maximum EU of 

approximately 15000 € at 3rd season NGRMS. Similar to case A, it is predicted that conducting 

the suitable maintenance policy optimizes the EU in the upcoming season. 

 

Fig. 14. Expected utilities of three decision alternatives: Replace, Repair and Continue operation for case (B) with different 

pressure size incidents as detailed in table 2 
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Considering Case C (illustrated in Fig. 15), the EU of continue option, deviates noticeably over 

the period given, while for the other two alternatives it changes minimally. Considering the 

status of pressure in the first season, the model assesses the EU of replace as the optimal 

alternative where it reaches a peak of about 4000 Euros. Executing this decision configuration 

will result in a surge in EU of other options in the future, this trend can be seen chiefly through 

continue to the end of studied time. 

 

Fig. 15. Expected utilities of three decision alternatives: Replace, Repair and Continue operation for case (C) with different 

pressure size incidents as detailed in table 2 

4. Conclusion  

A novel methodology using Markov degradation model as an underlying principle of decision 

making is developed to estimate the optimal maintenance time schedule. The treatment of PVs 

under the influence of perturbations in time series has been analysed applying DBN and ID. 

Furthermore, the proposed approach enables investigating uncertainty related to parameters, 

models and historical data through limit state function. The failure mode has also been 

explained in a limit state equation. The model has been enabled to update the probability based 

on new observation of system. The reliability of inspection has been characterized by 𝑃𝑜𝐷 

through one-dimensional exponential threshold model. In addition to model the reliability of 

-35000

-30000

-25000

-20000

-15000

-10000

-5000

0

0 3 6 9 12

Ex
p

ec
te

d
 U

ti
lit

y

Month

Continue Repair Replace



30 

 

inspection, the uncertainty of sensor values is also represented.  The expected cost associated 

with failures and maintenances is estimated considering inflation. The study has been 

implemented on actual examples of stochastic deterioration process of Natural Gas Regulating 

and Metering Stations (NGRMS) in order to validate the proposed method using real field data. 

The pressure has been taken into account as PV. The Fourier series is used as the regression 

tool to predict the trend of pressure considering perturbation parameters in time. To examine 

the method, three different seasonal inspection cases have been introduced into the network to 

determine the optimum maintenance times and strategies. Present risk-based maintenance 

method has the capability of improving the maintenance schedule considering different PVs, 

however it can be integrated with other reliability models leading to reduct the uncertainty of 

final results.  

5. References 

 

Abaei, Mohammad Mahdi, et al. (2017), 'Developing a novel risk-based methodology for 

multi-criteria decision making in marine renewable energy applications', Renewable 

Energy, 102, 341-48. 

Abbassi, A., et al. (2016), 'Developing a Quantitative Risk-based Methodology for 

Maintenance Scheduling Using Bayesian Network', CHEMICAL ENGINEERING 

TRANSACTIONS, 48, 6. 

Adriaan, V. H., Liliane, P., and Peter, M. (2010), 'Maintenance optimization models and 

criteria', International Journal of System Assurance Engineering and Management, 1 

(3), 12. 

Ahmed, Qadeer, et al. (2015), 'A multi-constrained maintenance scheduling optimization 

model for a hydrocarbon processing facility', Proceedings of the Institution of 

Mechanical Engineers, Part O: Journal of Risk and Reliability, 229 (2), 151-68. 



31 

 

Ambühl, S.; Sørensen, J.D. (2017), 'On Different Maintenance Strategies for Casted 

Components of Offshore Wind Turbines;' DCE (222: Aalborg: Department of Civil 

Engineering, Aalborg University). 

Arunraj, N. S. and Maiti, J. (2007), 'Risk-based maintenance--techniques and applications', J 

Hazard Mater, 142 (3), 653-61. 

Arzaghi, Ehsan, et al. (2017), 'Risk-based maintenance planning of subsea pipelines through 

fatigue crack growth monitoring', Engineering Failure Analysis, 79, 928-39. 

Azadeh, A., et al. (2015), 'Selection of optimum maintenance policy using an integrated multi-

criteria Taguchi modeling approach by considering resilience engineering', The 

International Journal of Advanced Manufacturing Technology. 

Barber, D. (2012), Bayesian Reasoning and Machine Learning (Cambridge University Press). 

Barnard, I. ( 2006), Asset management – An insurance perspective (Engineering Asset 

Management: Springer.). 

Barua, Shubharthi, et al. (2016), 'Bayesian network based dynamic operational risk 

assessment', Journal of Loss Prevention in the Process Industries, 41, 399-410. 

Bhandari, Jyoti, et al. (2016), 'Dynamic risk-based maintenance for offshore processing 

facility', Process Safety Progress, 35 (4), 399-406. 

Cheng, R. & Prabhakar, S. (2003), 'Managing uncertainty in sensor databases. ', SIGMOD 

Record issue on Sensor Technology. 

Dawotola, Alex W., et al. (2013), 'Risk-Based Maintenance of a Cross-Country Petroleum 

Pipeline System', Journal of Pipeline Systems Engineering and Practice, 4 (3), 141-48. 

De Rademaeker, Eddy, et al. (2014), 'A review of the past, present and future of the European 

loss prevention and safety promotion in the process industries', Process Safety and 

Environmental Protection, 92 (4), 280-91. 



32 

 

Friis-Hansen, A. (2000), 'Bayesian Belief Networks Bayesian Belief Networks Application', 

(Technical University of Denmark). 

Gao, Wei, et al. (2011), 'Hybrid probabilistic interval analysis of bar structures with uncertainty 

using a mixed perturbation Monte-Carlo method', Finite Elements in Analysis and 

Design, 47 (7), 643-52. 

Iqbal, Hassan, et al. (2016), 'Inspection and maintenance of oil & gas pipelines: a review of 

policies', Structure and Infrastructure Engineering, 13 (6), 794-815. 

Kabir, Golam, Sadiq, Rehan, and Tesfamariam, Solomon (2015), 'A fuzzy Bayesian belief 

network for safety assessment of oil and gas pipelines', Structure and Infrastructure 

Engineering, 12 (8), 874-89. 

Kamphuis, J. William (2000), Introduction to Coastal Engineeirng and Management ed. Philip 

L- F Liu (Cornell University) (ADVANCED SERIES ON OCEAN ENGINEERING: 

World Scientific Publishing Co. Pte. Ltd.). 

Khakzad, Nima, Khan, Faisal, and Amyotte, Paul (2013), 'Quantitative risk analysis of offshore 

drilling operations: A Bayesian approach', Safety Science, 57, 108-17. 

Khan, F. I. and Haddara, Mahmoud (2004), 'Risk-based maintenance (RBM): A new approach 

for process plant inspection and maintenance', Process Safety Progress, 23 (4), 252-65. 

Khan, F. I., Sadiq, R., and Haddara, M. M. (2004), 'Risk-Based Inspection and Maintenance 

(RBIM)', Process Safety and Environmental Protection, 82 (6), 398-411. 

Khan, F. I., Haddara, M. M., and Bhattacharya, S. K. (2006), 'Risk-based integrity and 

inspection modeling (RBIIM) of process components/system', Risk Anal, 26 (1), 203-

21. 

Luque, J. and Straub, D. (2013), 'Algorithms for optimal risk-based planning of inspections 

using influence diagrams', 11th International Probabilistic Workshop IPW11 (Brno 

University of Technology, Brno, Czech Republic.). 



33 

 

Mannan, S. (2012), Lees' Loss Prevention in the Process Industries (Fourth Edition) (Oxford: 

Butterworth-Heinemann). 

Moubray, J., & Lanthier, J. (1991), reliability centered maintenance ii (Oxford: Butterworth-

Heinemann). 

Myung, In Jae (2003), 'Tutorial on maximum likelihood estimation', Journal of Mathematical 

Psychology, 47 (1), 90-100. 

Neapolitan, R.E. (2004), Learning Bayesian Networks (Pearson) 674. 

Nielsen, J. S. & Sørensen, J. D. (2011), 'On risk-based operation and maintenance of offshore 

wind turbine components', Reliab. Eng. Syst. Saf., 96, 9. 

Nielsen, Jannie S and Sørensen, John D (2017), 'Bayesian estimation of remaining useful life 

for wind turbine blades', Energies, 10 (5), 664. 

Pasman, Hans (2015), 'Loss Prevention History and Developed Methods and Tools', 79-184. 

Rief, Herbert (1984), 'Generalized Monte Carlo perturbation algorithms for correlated 

sampling and a second-order Taylor series approach', Annals of nuclear energy, 11 (9), 

455-76. 

Roffel, B.; and Betlem, B. (2006), Process Dynamics and Control Modeling for Control and 

Prediction (Wiley). 

Roos, Hans-Görg, Stynes, Martin, and Tobiska, Lutz (2008), Robust numerical methods for 

singularly perturbed differential equations: convection-diffusion-reaction and flow 

problems (24: Springer Science & Business Media). 

Scutari, M. (2014), Bayesian Network Structure Learning, Parameter Learning and Inference  

Straub, D. (2004), 'Generic Approaches to Risk-Based Inspection Planning for Steel 

Structures.', (Swiss Federal Institute of Technology—ETH Zurich: Zurich, 

Switzerland). 



34 

 

Straub, Daniel (2009), 'Stochastic Modeling of Deterioration Processes through Dynamic 

Bayesian Networks', Journal of Engineering Mechanics, 135 (10), 1089-99. 

Tinsley, ; and Brown, S. D. (2000), Handbook of Applied Multivariate Statistics and 

Mathematical Modeling (Elsevier) 721. 

Tixier, J., et al. (2002), 'Review of 62 risk analysis methodologies of industrial plants', Journal 

of Loss Prevention in the Process Industries, 15, 14. 

UNI (2009a), 'Impianti di ricezione, prima riduzione e misura del gas naturale. 

progettazione,costruzione,collaudo', UNI 9167 ; 2009. 

--- (2009b), 'UNI EN 334 2009_Regolatori di pressione del gas per pressioni di entrata fino a 

100 bar ', UNI EN 334 ; 2009. 

--- (2012), 'infrustrutture del gas Condotte con pressione massima di esercizio non maggiore di 

16 bar, part 1  ', UNI EN 12007-1. 

Usher, John S., Kamal, Ahmed H., and Syed, Wasim Hashmi (1998), 'Cost optimal preventive 

maintenance and replacement scheduling', IIE Transactions, 30 (12), 1121-28. 

Yu, H., Khan, F., and Veitch, B. (2017), 'A Flexible Hierarchical Bayesian Modeling 

Technique for Risk Analysis of Major Accidents', Risk Anal. 

 

 


