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Abstract17

Modern Autonomous Underwater Vehicles (AUVs) are currently involved in complex tasks and scenarios, and18

require accurate and robust navigation systems to estimate their position. However, since the Global Positioning19

System (GPS) cannot be exploited underwater, the AUV position is not directly measurable in real-time (unless using20

dedicated acoustic-based sensors), making the availability of a reliable navigation system even more crucial. In this21

context, the main role is played by the filter used to estimate the AUV motion, usually relying on simple kinematic22

vehicle models and equations linearization.23

A navigation strategy specifically thought for AUVs and based on the Unscented Kalman Filter (UKF) is proposed24

and experimentally validated by the authors. Preliminary tests of the developed strategy have been carried out by25

running the navigation filter on experimental data acquired during the FP7 European ARROWS project. This initial26

validation has been performed totally offline. The AUVs navigated in dead-reckoning without using navigation filters27

whereas the proposed strategy has been compared to standard Extended Kalman Filter (EKF)-based ones, highlighting28

encouraging performances.29

To further validate the proposed navigation system, suitable sea tests have been performed. The navigation filter has30

been implemented online on an AUV and the vehicle controller relied only on it to navigate. The new validation31

procedure, whose results are reported in this paper, showed again the good performance of the chosen strategy,32

yielding satisfying results in terms of accuracy of vehicle position estimation.33
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I. INTRODUCTION34

Currently, Autonomous Underwater Vehicles (AUVs) are broadly employed in several industrial appli-35

cations (especially in the Oil&Gas industry), scientific tasks (archaeological exploration and surveillance),36

military reconnaissance and patrolling missions, search and rescue duties, etc.37

An accurate, efficient and robust navigation system, including the suitable hardware and software needed to38

get a real-time estimation of the vehicle pose, is mandatory for all these kinds of applications [1], [2], [3],39

[4]. Due to the strict requirements of the modern AUV tasks, involving both single and multiple vehicles40

[5], [6], [7], [8], [9], precise motion estimation represents the key point in AUV navigation, along with a41

good trade-off between accuracy and numerical efficiency. Good performance of the navigation system is42

crucial not only for the results of the mission (e.g. position and attitude errors between desired and real43

paths, etc.) but also to georeference the experimental data coming from onboard acoustic or optical payload.44

Furthermore, the Global Positioning System (GPS) information cannot be exploited underwater, complicat-45

ing both the vehicle localization and the motion estimation, and increasing the importance of an accurate46

and robust navigation system.47

Nowadays, the Kalman Filter (KF) [10] and the Extended Kalman Filter (EKF) (nonlinear KF version)48

[11], [12], [13] are the main filters exploited for AUV motion estimation. To reach a satisfying trade-off49

between accuracy, efficiency and memory consumption and to be effectively used in real-time applications,50

this kind of filters is usually based on simplified kinematic models of the AUV.51

An alternative to the EKF is a filtering approach based on the Unscented Kalman Filter (UKF), [14], [15].52

Being it computationally affordable by today’s AUV hardware and, most of all, derivative free (characteristic53

that allows it to cope with the difficulties arising using, e.g., the EKF on nonlinear, stiff and non-differentiable54

systems such as AUVs), it theoretically represents a valid alternative to the most commonly used filters. In55

recent literature several contributions regarding the use of the UKF in the marine fields can be found. In56

[16], for example, the authors simulate the behavior of two different real world AUVs during the execution57

of an autonomous underwater task. Both vehicles are dynamically modeled, and their control loops close on58

an UKF navigation filter exploiting inertial, velocity and (acoustic) position measurements. The presented59

results suggest that the UKF may constitute a reliable strategy to estimate the state of a vehicle in the60

underwater field. In [17], instead, an UKF is used to estimate the kinematic state of an AUV in case of61

unreliability of sensor measurements. The structure of the filter is suitably modified in order to be able to62

react to faulty sensor readings, and simulations show the increased robustness of the proposed approach.63



In addition, in [18], a comparison between the EKF and the UKF is proposed: both filters are used to64

estimate online the state of a kinematic and dynamic model of an AUV. The state of the system is then65

augmented to include the unknown hydrodynamic coefficients of the vehicle. Simulation results show that66

the UKF performs better in estimating both the kinematic state of the vehicle and the unknown coefficients,67

highlighting the problems faced by the EKF in case of highly nonlinear systems.68

Despite the encouraging simulation results documented in literature (e.g. the above-mentioned references),69

to the authors’ knowledge, UKF-based approaches have not yet been extensively exploited in practical70

applications in the underwater field. This led the authors to propose an UKF-based navigation filter specif-71

ically developed for AUVs. The algorithm relies on the information coming from sensors usually available72

onboard AUVs (as for instance linear velocity, and depth sensors [19], [20]) and on a mixed kinematic73

and dynamic AUV model suitably developed and validated, able to provide accurate results if used in74

conjunction with estimation filters, but not too heavy from a computational viewpoint [21], [22].75

In previous works, preliminary tests of the UKF-based approach have been carried out by the authors by76

running the navigation filter on experimental data acquired during the FP7 European ARROWS project [23],77

[24]. This initial validation has been performed completely offline: sensor data have been used to perform78

a comparison between an EKF-based navigation filter and the proposed UKF-based one, highlighting the79

better performance of the latter, especially under critical operating conditions (for instance, with a reduced80

set of available sensors) [21], [22]. For the sake of clarity, the authors published, till now, intermediate81

research steps that have been fundamental to reach the actual use in real time of the UKF strategy, which82

is the achieved final research step described and reported in the present paper. The manuscript is thus not83

intended to provide a performance comparison with algorithms proposed in the works previously published84

by the same authors. The navigation strategy here presented is the updated one with a reduced state vector:85

this is the scheme implemented on board the AUV. The paper is intended as an experimental validation of86

a navigation system that exploits, as fundamental constituent elements, the most important results achieved87

and demonstrated in the previous works.88

After the encouraging results obtained during the first phase of offline validation, subsequent sea tests have89

been executed in order to validate the proposed approach in a realistic scenario. Different sea test campaigns90

have been carried out in order to evaluate the performance of the UKF-based navigation filter online: the91

controller of the vehicle relied only on the filter to navigate. In particular, the results obtained during two92

sea test campaigns are reported in this paper.93



After a description of a state-space model of the vehicle given in the following Section, the results obtained94

during the two above-mentioned sea test campaigns, which took place in Sicily, Italy, in June 2015 and in95

La Spezia, Italy, in November 2015, are presented in the final Section.96

II. NAVIGATION FILTER97

In order to exploit a recursive discrete estimation filter, a suitable discrete state-space formulation of a98

model of the vehicle must be derived in the form:99 
xk = fk−1(xk−1,uk−1) + wk−1

yk = hk(xk) + vk
, (1)

in which xk is the state vector at the k-th instant, uk and yk are the system inputs and outputs, and wk100

and vk are additive process and measurement noises, respectively. The first equation in (1) is the system101

evolution equation while the second one is the measurement equation.102

The starting point is the complete 6 DOFs dynamic vehicle model proposed by [1]. Then, in a previously103

published work by the authors [22], this model has been suitably simplified, taking into account only104

longitudinal dynamics, to derive a mixed kinematic and dynamic model; this model would constitute a105

convenient trade-off between accuracy and computational load. In [22], the state vector was a twelve-106

dimensional vector including all the kinematic variables of the AUV (pose and velocity, both linear and107

angular).108

At the same time, the authors developed an efficient attitude estimation filter [25], which is able to estimate109

the orientation of the vehicle even in presence of magnetic disturbances, hence removing the need of110

estimating the attitude and the angular velocity of the AUV within its navigation filter. For this reason,111

the authors decided to reduce the dimension of the state vector with respect to [22], considering attitude a112

time-varying input instead of a state component; i.e. in the real scheme implemented on board the AUV,113

the authors use algorithms dedicated to the estimation of the vehicle orientation and this is the reason why114

it is possible to use the AUV angles as inputs for the UKF-based position estimation. The UKF position115

estimation algorithm is a good choice for the non-linear behaviour of the AUV. The used orientation116

estimator [25] is useful during real missions at sea because it is able to face the quite common magnetic117

disturbances present in the environment. From the application point of view, the authors thus believe that118

both algorithms (UKF and attitude estimation algorithm) are important for high performance navigation119

systems.120



Taking into account the above-mentioned considerations, and using SNAME notation [1], the resulting state121

vector can be properly defined as:122

x =

η1

ν1

 . (2)

where the state vector x is composed of Earth-fixed position η1 and body-fixed linear velocity ν1 of the123

AUV. The discrete-time system state evolution equation is given by:124 η1

ν1


k

=

η1
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
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+ wk−1 ,

(3)

125

where RN
B (η2), function of the orientation of the vehicle η2, is the rotation matrix from a fixed North-East-126

Down (NED) frame N to the body-fixed frame B, τ1x (ν,u) is the force acting on the vehicle longitudinal127

axis as a nonlinear function of its velocity and of the rotating speeds of its propellers u, m is the mass of128

the vehicle, ∆T is the fixed filter sampling time, and F1 (ν) is the hydrodynamic damping force acting on129

the longitudinal degree of freedom, given by:130

F1(νk−1) = −
AfCuρ (ν1x)

2
k−1 sgn(ν1x)k−1

2
, (4)

being Af and Cu the “reference frontal area” of the AUV and the longitudinal drag coefficient [26].131

For a detailed derivation of the terms of (3), including the propulsion system modeling, please refer to [22],132

[27].133

For what concerns the measurement equation, the available physical quantities are the sensors outputs:134

yk =
[
ηGPS1x ηGPS1y ηDS1z

(
νDV L1

)T ]T
k
, (5)

where the GPS (on surface) and the depth sensor (DS) are used to measure η1, while the Doppler Velocity135

Logger (DVL) is used to measure ν1. Please refer to table I for the main characteristics of the considered136

vehicle, including a sensor list.137



(5) highlights that the measurement equation is affine. More particularly, the measurement function hk(·)138

can be expressed through a matrix Hk containing only 1 or 0 elements:139

yk = Hkxk + vk . (6)

The size of the matrix Hk may vary over the time. In fact, the vehicle sensors are characterized by different140

working frequencies but the filter sample time ∆T is fixed. Consequently, since each sensor is queried for141

a new measurement at each sampling period, if such measurement is not available, the corresponding rows142

of Hk must be deleted. In the proposed navigation strategy, the GPS is used for the correction step each143

time it is available. I.e. GPS data are always used for the correction when the vehicle is on surface, while144

instead they are not available when the AUV is navigating underwater.145

Considering Equations (3)-(4), the resulting vehicle model is highly nonlinear and non-differentiable; for146

this reason, linear filters, such as the standard Kalman Filter [10], cannot be used to estimate the state of147

the vehicle. Additionally, even strategies based on the Extended Kalman Filter [11], [12], [13] could lead148

to important accuracy problems. These reasons motivated the authors to investigate alternative estimation149

strategies. A navigation filter based on the Unscented Kalman Filter [11], [14], [15] has then been chosen,150

since it is completely derivative free and the hardware which is today present on AUVs is able to efficiently151

handle the required computational load. However, despite the above-mentioned advantages, the authors could152

not find in literature extensive sources of its exploitation in practical underwater operations; for instance,153

taking into account the state of the art of the last years, analyzed in the Introduction, only completely154

simulated results or offline simulations exploiting experimental sensor data can be found.155

At first, after developing the vehicle model described in [22], the authors performed an offline comparison156

between the proposed UKF-based strategy and an EKF-based navigation filter (exploiting real sensor data157

acquired during experimental missions), highlighting the advantages of the UKF, especially when the sensor158

set is reduced. The results of such tests can be found in [21], [22]. The positive outcomes of this preliminary159

comparison encouraged the authors to test the UKF-based strategy online, simplifying the original vehicle160

model as described at the beginning of this Section and implementing the filter onboard. Then, suitable161

experimental tests have been carried out in order to evaluate the online performance of the proposed solution162

in a real scenario. The obtained results at sea are reported in the following Section.163



III. EXPERIMENTAL TESTS AND VALIDATION164

This Section reports the results obtained during two different test campaigns, which took place, respec-165

tively, in June 2015 and in November 2015. The UKF-based navigation filter described in the previous166

Section has been integrated within the control architecture of the vehicle, which is based on ROS (Robot167

Operating System); the performed tests aimed at validating online the proposed strategy.168

The used vehicle is the Typhoon AUV, developed and built by the Department of Industrial Engineering of169

the University of Florence (DIEF) during the THESAURUS Tuscany Region project [28] and the European170

ARROWS project [23] (Figure 1). The main features of the vehicle are given in Table I. Both the missions171

presented in the paper, starting from the first waypoints WP1, are performed underwater (the AUV is at a172

certain depth); thus, GPS data are not available from WP1 till the end of each mission - final resurfacing173

(no other resurfacings are present) - and cannot be used for the correction step. In the remaining of this

Fig. 1: Typhoon AUV

Typhoon AUV main characteristics
Size [mm] 3600×350 (diameter) approx.
Mass [kg] 130-180 (dep. on payload)
Max speed [kn] 5-6
Max depth [m] 300
Autonomy [h] 8

Navigation sensors GPS, IMU, FOG, DVL,
depth sensor, acoustic modem

Payload cameras, 2D forward-looking sonar, side-scan sonar

TABLE I: Typhoon AUV physical data, payload and performance

174

Section, the results obtained during the two test campaigns are analyzed in details.175



A. Sicily, Italy, June 2015 test campaign176

This experimental campaign was performed near the Cala Minnola wreck (Levanzo, Aegadian Islands,177

Sicily, Italy) during the first final demonstration of the ARROWS project (May 25 - June 5, 2015, [23], [24]).178

Typhoon AUV was required to autonomously follow the transept-shaped path shown in Figure 2. The path179

consisted of 16 waypoints (from WP1 to WP16) and its sizes were about 27 m per 55 m (total length equal180

to about 464 m); the GPS coordinates of the point WP1 are 37.9891◦ N and 12.3547◦ E. The AUV navigated181

underwater at a depth of about 25 m and at a constant altitude of 2 m from the seabottom whereas the182

longitudinal speed was controlled at 0.5 m/s. A non-negligible sea current was present during the test day,183

approximately directed in North-South direction. An Ultra Short BaseLine (USBL) transducer was mounted

Fig. 2: The transept-shaped path followed by the Typhoon AUV during the sea tests near the Cala Minnola
wreck (Levanzo, Aegadian Islands, Sicily, Italy)

184

on a support ship near the planned path, as shown in Figure 2, and was used for mission monitoring. The185

measured AUV position, not used as a correction term within the filter, can be considered the ground truth.186

The position of Typhoon was measured through such sensor and its data were made available to Typhoon187

through acoustic communication. It is worth noting that thus the USBL orientation was not constant and188

this may affect the localization measurement accuracy. For the sake of clarity, this measurement system189

suffers from a certain error due to the combination of: the intrinsic measurement error of the USBL device190

itself, the measurement error of the GPS and the measurement error of the IMU mounted on the buoy, the191

possible synchronization error of these onboard (on the buoy) data, [29]. Nevertheless its outputs, given192

in Figure 5, were consistent with similar results reported in literature (see for example [30]). In Figure 3,193

the vehicle position estimated by the navigation algorithm
[
ηUKF1x ηUKF1y

]T is reported and compared to the194



ideal vehicle position based on the predefined waypoints
[
ηID1x ηID1y

]T . Although the disturbance due to the195

sea current is visible during the first legs of the transept and no current estimators are exploited into the196

navigation filter, the results are quite encouraging and highlight the goodness of the proposed approach.197

The good estimation of the vehicle position provided by the navigation algorithm allowed, among the other

Fig. 3: Comparison between the vehicle position estimated by the navigation algorithm
[
ηUKF1x ηUKF1y

]T and
the ideal vehicle position based on the predefined waypoints

[
ηID1x ηID1y

]T
198

benefits, the accurate mapping and reconstruction of the archeological site of the Cala Minnola wreck ([23],199

[24]). As an example, an optical frame captured by the vehicle during the mission is reported in Figure 4.200

Some of the obtained 3D reconstructions are available on the ARROWS project website [23].201

From a quantitative point of view, the estimation errors ||ηUKF1 − ηUSBL1 || between the vehicle position202

estimated by the navigation algorithm and the vehicle position provided by the USBL are summarized203

in Figure 5, in correspondence of the USBL fixes. The USBL fixes are quite numerous and uniformly204

distributed in time, allowing a reliable assessment of the performance of the navigation algorithm. The205

error trend here reported is associated with the vehicle navigating underwater; i.e. the origin of the time206

line of Figure 5 coincides with the AUV immersion phase. Thus as concerns the time slot of the error207

trend, GPS data are not available (the AUV is at depth) and cannot be used for the correction step. Despite208



Fig. 4: An optical frame captured during the mapping of the archeological site of the Cala Minnola wreck
(Levanzo, Aegadian Islands, Sicily, Italy)

the uncertainty affecting the USBL measurements, the error caused by the USBL sensor (see for example209

[30]) and the effect of the sea currents, the global estimation error is limited (less than 5 m), highlighting210

the good performance of the navigation algorithm.211

B. La Spezia, Italy, November 2015 test campaign212

The second test campaign presented in this paper was carried out on November 19, 2015 in a sea basin213

in the harbor of La Spezia, Italy. During the mission, Typhoon autonomously performed the transept-shaped214

path shown in Figure 6. The ideal trajectory was composed of 8 different waypoints (from WP1 to WP8)215

and its sizes were about 10 m per 80 m (total length equal to about 350 m); the GPS coordinates of216

the point WP1 are 44.09468695◦ N and 9.862218645◦ E. While executing its task, Typhoon navigated217

underwater (depth of about 3 m) at a fixed desired longitudinal speed equal to 0.5 m/s. Close to the mission218

path, a fixed reference buoy (Figure 6) equipped with an USBL transducer, an Inertial Measurement Unit219

(IMU) and a GPS (to estimate its own pose) was placed on the water surface. The buoy (GPS coordinates220

44.09506073◦ N and 9.86148400◦ E) transmitted the data needed for mission monitoring directly to the221

shore through a proper a WiFi access point. The USBL sensor allowed to determine the AUV position at222



Fig. 5: Estimation errors ||ηUKF1 − ηUSBL1 || between the vehicle position estimated by the navigation
algorithm and the vehicle position provided by the USBL (in correspondence of the USBL fixes)

high rate and sent an acoustic ping after each vehicle localization. Thanks to the USBL, the trajectory of223

the AUV was measured according to the accuracy of the sensor. Similarly to the previous test campaign,224

such measurement was then exploited as ground truth to investigate the performance of the UKF navigation225

algorithm implemented into the AUV motion controller.226

It is important to point out that the USBL pose was not exactly constant. This may negatively influence the227

accuracy of the USBL measurements; however, the quality of the data provided by the USBL during the228

experimental campaign (see Figure 9) turned out to be numerically similar to those of other studies present229

in literature [30].230

The AUV position provided by the navigation filter
[
ηUKF1x ηUKF1y

]T and the reference AUV trajectory231

obtained connecting the desired waypoints
[
ηID1x ηID1y

]T are compared in Figure 7. A specific zoom of the232

estimated and ideal vehicle positions
[
ηUKF1x ηUKF1y

]T ,
[
ηID1x ηID1y

]T near to the waypoints WP6 and WP7233

is highlighted in Figure 8. As for the first test campaign, even if the system is characterized by several234

sources of uncertainty (e.g. error on the USBL sensor positioning due to residual motions of the reference235

buoy and the intrinsic error of the USBL sensor), the resulting online AUV position estimation error is236



Fig. 6: The transept-shaped path followed by the Typhoon AUV during the sea tests in La Spezia, Italy

quite limited, confirming the satisfying performance of the proposed navigation filter shown in previous237

tests.238

Finally, the authors would like to highlight that in the two missions proposed in the paper (error results239

given in Figures 5 and 9) it is hard to appreciate the increase in the position error drift, even if present240

for sure. This is due not only to the adopted ground truth but also because the strategy/system illustrated241

in the paper exploits a quite performing sensor set, e.g. a DVL and a FOG on board (please refer e.g. to242

[31] to see that with good sensors the error can be very limited even with just a dead reckoning navigation243

strategy); the error thus does not grow quickly during time. If the error grows slowly it is not simple to244

appreciate its drift in the time slots related to the experimental campaigns at sea made here in Italy and245

reported in the paper. However, the slowly growing error achieved in both the mission is a good point246

because the AUV is not obliged to perform frequent resurfacings to get the position reset. These results247

have the aim to validate the UKF navigation strategy, not too much widespread in the underwater robotics248

field nowadays, and considering this aim they are consistent and satisfying.249

IV. CONCLUSION250

In this paper, the authors studied and validated an UKF-based navigation algorithm especially developed251

for AUVs. The navigation algorithm has been experimentally tested directly online on the Typhoon AUV,252

developed and built by the University of Florence in the framework of the Tuscany Region THESAURUS253



Fig. 7: Comparison between the vehicle position estimated by the navigation algorithm
[
ηUKF1x ηUKF1y

]T and
the ideal vehicle position based on the predefined waypoints

[
ηID1x ηID1y

]T (the GPS coordinates of the point
WP1 are 44.09468695◦ N and 9.862218645◦ E)

project [28] and of the FP7 European ARROWS project [23], [24]. Suitable experimental tests have been254

carried out to validate online the proposed strategy, and this paper reports the results obtained during two255

of these test campaigns.256

This first online validation of the navigation system yielded satisfying results. The navigation algorithm257

showed good accuracy in estimating the vehicle position, even in presence of environmental disturbances258

such as sea currents which may deeply influence the navigation system accuracy. The complete navigation259

algorithm performs a real-time (the algorithm here proposed is implemented online within the motion260

control loop) pose (both position and orientation) estimation that contemporarily exploits the positive results261

achieved in previous works by the same authors, and till now validated only singularly and off-line through262

post-processing analysis of data logged in various experiments of the past. In addition, it is worth pointing263

out that the results presented in this manuscript did not highlight discrepancies with respect to what was264

obtained in the previous works; on the contrary, the online experimental validation of the proposed algorithm,265

that combines the approaches of position and orientation estimation within a whole strategy (based on the266



Fig. 8: Zoom of the estimated and ideal vehicle positions
[
ηUKF1x ηUKF1y

]T ,
[
ηID1x ηID1y

]T near to the waypoints
WP6 and WP7

Fig. 9: Estimation errors ||ηUKF1 − ηUSBL1 || between the vehicle position estimated by the navigation
algorithm and the vehicle position provided by the USBL in correspondence of the USBL fixes

described new, modified version of UKF), provided results coherent with them. The navigation algorithm267

allowed the vehicle to navigate underwater without problems related to its own pose estimation.268

As regards the further developments of this research activity, the UKF-based navigation filter will be269



validated again on different AUVs belonging to the University of Florence in more complex tasks. This270

way, the reliability of the proposed navigation strategy will be better investigated. Subsequently, sea current271

estimators will be studied and implemented on the AUVs and tested online to further improve the filter272

robustness and to better understand the influence of the sea currents on the AUV dynamics.273
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