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Abstract  
 
Mutations in MECP2 gene have been identified in more than 95% of patients with classic 

Rett syndrome, one of the most common neurodevelopmental disorders in females. 

Taking advantage of the breakthrough technology of genetic reprogramming, we 

investigated transcriptome changes in neurons differentiated from induced Pluripotent 

Stem Cells (iPSCs) derived from patients with different mutations. Profiling by RNA-seq 

in terminally differentiated neurons revealed a prominent GABAergic circuit disruption 

along with a perturbation of cytoskeleton dynamics. In particular, in mutated neurons we 

identified a significant decrease of acetylated α-tubulin which can be reverted by 

treatment with selective inhibitors of HDAC6, the main α-tubulin deacetylase. These 

findings contribute to shed light on Rett pathogenic mechanisms and provide hints for the 

treatment of Rett-associated epileptic behavior as well as for the definition of new 

therapeutic strategies for Rett syndrome.  

 

 

 

 

 

 

Key words: iPSC-derived neurons, RNA-seq, GABA, HDAC6, acetylated α-tubulin, 

HDAC6 inhibitors. 

 

 



4 
 

 

 

 

Introduction 

Rett syndrome (RTT; OMIM# 312750) is a severe neurodevelopmental disorder 

and one of the most common genetic causes of intellectual disability in girls with an 

estimated prevalence of about 1:10.000 {Chahrour, 2007 #586;Katz, 2016 #1168}. The 

key feature of the classic form is regression, especially in the areas of language and motor 

abilities. Rett girls present an apparent normal development for the first 6−18 months of 

life, after which ability to speak and purposeful hand movements are lost, together with a 

reduction in interpersonal contact and the appearance of autistic behavior. Typical 

features include involuntary movements with the classic 'hand-washing' stereotypic 

activities, electroencephalogram abnormalities, postnatal microcephaly and inability to 

speak and walk. Over the years, other somatic and neurologic handicaps become evident 

and patients finally develop further somatic and neurologic deterioration resulting in end-

stage spastic quadriparesis [1]. Pathogenic mutations in the X−linked Methyl−CpG-

binding Protein 2 (MECP2, Xq28) gene have been identified in the majority of classic 

RTT and in a small percentage of variant patients [2, 3]. According to the Rett Database 

Network, the most frequent mutation is p.Thr158Met followed by stop codon mutations 

in 255, 168 and 270 and p.Arg306Cys missense change 

(https://www.rettdatabasenetwork.org) [4]. MeCP2 has been originally identified as a 

factor that interacts with DNA in the context of CpG islands and works as transcriptional 

repressor through the modulation of chromatin structure [5-8]. It has been recently shown 

that transcriptional repression by MeCP2 is preferentially targeted to long genes through 

interaction with methylated CpA dinucleotides in vitro and in the mouse brain [9, 10]. 

Formattato: Evidenziato
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Recent data indicate that a higher number of genes is down-regulated rather than up-

regulated in the absence of MeCP2, suggesting a bimodal role as transcriptional activator 

or repressor depending upon binding at different loci [11].  

Despite the growing amount of knowledge on MeCP2 function, the patho-

mechanisms of RTT are still unknown leading to a consequent lack of effective 

therapeutic targets. For these reasons, at present, no cure or disease-modifying therapy is 

available and patients’ management is mainly symptomatic. Mice or other animal models 

are available; however, the potential differences in the underlying biology between 

humans and mice and the complexity of neurodevelopmental and neurodegenerative 

diseases makes the current animal models insufficient and possibly misleading to study 

disease mechanisms [12]. With the advent of the genetic reprogramming approach able to 

generate induced Pluripotent Stem Cells (iPSCs) from human fibroblasts [13], it has 

become feasible to model disease and test therapeutic strategies in human cells by 

deriving patient-specific iPSCs. iPSCs are similar to human Embryonic Stem Cells 

(hESCs) and can be differentiated in vitro into different cell types, including neurons, 

allowing to obtain an unlimited number of affected human neurons harboring the disease-

causing mutation in a patient genetic background. Previous studies have indeed shown 

that iPSC-derived neurons closely resemble human fetal brain [14-16] and a recent study 

has confirmed that even at the level of individual cells there is a marked transcriptome 

similarity to human fetal neurons [17]. 

We have previously demonstrated that it is possible to establish iPSCs from 

MECP2-mutated patients and to identify relevant molecular alterations in derived 

neurons [18-20], confirming the applicability of iPSCs technology to model RTT in vitro 

[21-23] and providing a useful tool which closely mimics patients early brain 

development. Neurons derived from MECP2-iPSCs have fewer synapses, reduced spine 
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density, smaller soma size, as well as altered calcium signaling when compared to 

controls, a phenotype consistent with that observed in mouse models and patients’ post-

mortem brain tissue [21]. 

 To shed light on the molecular signature of RTT patients’ neurons underlying the 

phenotypic changes, we performed transcriptome profiling of iPSC-derived MECP2-

mutated neurons. Our findings strongly support GABAergic neurons impairment in Rett 

pathogenesis. Moreover, we show an alteration of Histone Deacetylase 6 (HDAC6) in 

RTT neurons and demonstrate that selective inhibitors can correct the abnormal reduction 

in acetylated α-tubulin resulting from HDAC6 overexpression. Notably, these findings 

provide a real possibility of an efficacious treatment for RTT with either repurposed 

drugs or newly developed compounds specifically targeting the identified altered 

pathways.  

 

Materials and Methods 

iPSCs and iPSC-derived neurons  

Fibroblasts from a female patient attending the Medical Genetics Unit in Siena 

and harboring a p.Thr158Met mutation on the MECP2 gene were used to derive and 

characterize three iPSC clones: two expressing the mutated (2271#1 = P0; 2271#22 = P1) 

and one expressing the normal MECP2 allele (2271#2 = C1) due to X-chromosome 

inactivation. The latter was used as partial isogenic control being autosomal and 

pseudoautosomal gene expression identical. An iPSC line from a second MECP2-

mutated female patient (p.Arg306Cys) was obtained from James Ellis (University of 
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Toronto) (clone R306C = P2) [24]. As a second control we used an available iPSC clone 

derived from a healthy newborn male (BJ = C0), commonly used as control in autism 

spectrum disorders [23]. A third control iPSC derived from a healthy female child (01-04 

= C2) was used during the validation process. All iPSC lines were derived using the 

Yamanaka’s retroviral approach [13] and characterized according to standard criteria [15, 

18, 25]. Neurons were differentiated from mutated and control iPSC lines as previously 

reported [20]. Isolation of neurons for quantitative analyses was performed by immuno-

magnetic sorting using anti-CD24 antibodies [19]. 

 Immunofluorescence and RNAseq analysis on control clones confirmed that the 

cells differentiate as expected giving rise mainly to glutamatergic neurons with a smaller 

proportion of GABAergic neurons (Fig. S1). Indeed, RNAseq analysis showed that 

terminally differentiated neurons express different cortical layer markers, indicative of 

both upper layers (II, III, IV) differentiation, such as CUX1 and KITLG, and lower layer 

differentiation, namely TLE4, FOXP2 and ETV1 (Fig. S1b). A lower expression for other 

layer-specific markers was also observed (OPN3, UNC5D, NEFH and RELN) (Fig. S1b) 

[26]. The majority of neurons obtained with our differentiation protocol is expected to be 

glutamatergic. Accordingly, we detected a high expression of the glutamatergic vesicular 

transporter SLC17A6 (VGLUT2) and GRIA1 and GRIA3 AMPA receptor subunits (Fig. 

S1b), and highly variable levels of other AMPA receptor subunits (GRIA2, GRIA4). The 

NMDA (GRIN1, GRIN2A, GRIN2B, GRIN2D, GRIN3A) and Kainate subunit genes 

(GRIK1, GRIK3 and GRIK5) were also present (Fig. S1b). GABAergic neurons 

assemble functional GABAA pentameric receptors composed by 2 Alpha, 2 Beta and 1 

Gamma subunit. Subunits expression in our cells supports the presence of GABAA 

receptors composed by alpha2/3, beta2/3 and gamma3 subunits (Fig. S1b). In addition, 

both subunits of GABAB receptors, GABAB1 and GABAB2, are expressed, although at 
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very different levels (Fig. S1b). The cells also expressed GAD1 and SLC31A1 (Fig. 

S1b). In contrast with markers for glutamatergic and GABAergic neurons, markers of 

other neuronal subtypes are scarcely represented, with only TH, the rate-limiting enzyme 

in Dopamine biosynthesis, DRD2 and DRD4 Dopamine receptors and HTR2C and 

HTR7P1 Serotonin receptors displaying appreciable expression (FPKM≥1), although 

with high inter-sample variability (Fig. S1b). 

 

 

RNA-seq sampling  

RNA-seq analysis was performed on iPSC-derived terminally differentiated 

neurons. Three clones from two different MECP2 mutated patients (P0-P2, the two 

independent clones from the p.Thr158Met patient and one clone from the p.Arg306Cys 

mutated patient) and 2 control iPSC clones (C0 and C1, the male control and the female 

partial isogenic clone derived from the p.Thr158Met mutated patient but expressing the 

normal allele) were used. 

RNA isolation and library preparation. Total RNA was extracted using the Nucleospin 

RNA kit (Machery-Nagel). The ribodepletion was performed using "RiboMinus™ 

Eukaryote Kit v2" (ThermoFisher Scientific), according to manufacturer’s instructions. 

After ribodepletion, retrotranscription and library preparation were performed using "Ion 

Total RNA-Seq Kit v2" (ThermoFisher Scientific), following manufacturer’s protocol. 

Libraries were run in duplex on the Ion proton Torrent system.  

Mapping and data analysis. RNA-seq reads were trimmed of any adapter sequences 

with the Cutadapt-Toolkit (version 1.10) [27], and then aligned to the GRCh38/hg38 

reference genome using Tophat [28] with novel splice discovery disabled. An average of 

4x107 mapped reads per sample of total RNAs were obtained. For some of the 
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downstream analyses, Samtools (version 0.1.19) was used to remove reads with multiple 

mapping locations from the aligned files. Reads per exon were grouped, from which 

FPKM (Fragments Per Kilobase per Million mapped reads) [29] values were calculated 

using Cufflinks [30]. Only genes with FPKM >1 were included in further analyses. This 

normalized value was used for visualization on a genome browser 

(http://genome.ucsc.edu/) [31], as well as to compare read coverage between and 

throughout different genes. Cuffdiff tool from Cufflinks was used to identify 

differentially expressed genes [32], comparing the log ratio of a gene's expression in 

mutation bearing samples against that of controls. Significantly affected genes were 

considered those with a Fold Change (FC)> 2 and a p-value ≤0.05. To identify relevant 

altered pathways, GO analysis was performed with DAVID software with an FDR (false 

discovery rate) of 0.05 using the Benjamini- Hochberg correction for multiple-testing. 

 

Real-time qRT-PCR  

One µg of total RNA was reverse transcribed with the QuantiTect Reverse 

transcription kit (Qiagen) according to manufacturer’s instructions. Quantitative PCR was 

carried out in single-plex reactions in a 96-well optical plate with FastStart SYBR Green 

Master Mix (Roche) on an ABI Prism 7700 Sequence Detection System (Applied 

Biosystems). Experiments were performed in triplicate in a final volume of 20 uL with 

25-100 ng of cDNA and 150nM of each primer, following the SYBR Green protocol. 

Standard thermal cycling conditions were employed (Applied Biosystems): 2 minutes at 

50 °C and 10 minutes at 95 °C followed by 40 cycles at 95 °C for 15 s and 60 °C for 1 

min. Results were analyzed using the comparative Ct method. GraphPad software was 

employed for statistical analysis. Unpaired Student’s t-test with a significance level of 

95% was used for the identification of statistically significant differences in expression 

http://genome.ucsc.edu/
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levels. 

 To establish the reliability of RNA-seq expression data, we compared expression 

levels established by RNA-seq and real time qRT-PCR for a set of randomly selected 

genes in one control and one MECP2-mutated clone. To this aim, the Log2 values of FC 

from RNA-seq data were plotted against the Log2 values of FC derived from qRT-PCR 

(Fig. S2). 

 

Western Blot 

Proteins from iPSC-derived neurons were extracted with RIPA buffer (Tris-HCl 

50 mM, Triton X-100 1%, SDS 0.1%, NaCl 150 mM, EDTA 5 mM, pH 7.4, DTT 1 mM, 

PMSF 1 mM, Na-Fluoride 10 mM and Na-orthovanadate 1 mM) supplemented with 1X 

Protease inhibitors cocktail (SIGMA). Protein concentration was measured with Bradford 

Assay (BioRad). A total of 25 μg of protein was used in each lane for immunoblotting. 

Immunosignals were detected by autoradiography using multiple exposures to ensure that 

signals were in the linear range. Signals were quantified through densitometry using 

ImageJ. The following antibodies were employed for analysis: anti-GAD67 (GAD1) 

(Millipore, #MAB5406); anti-GABRA1 (Neuromab, #N95/35); anti-α-Tubulin (SIGMA, 

#T9026); anti-Acetylated-Tubulin (SIGMA, # T7451) and anti-GAPDH (Millipore, 

#AB2302). 

 

Electrophysiology 

Control and MECP2-mutated neurons at day 60 of terminal differentiation were 

transferred to the recording chamber and superfused with oxygenated ACSF containing 

126mM NaCl, 2.5mM KCl, 1mM MgCl2, 2mM CaCl2, 1.2mM NaH2PO4, 15mM 

NaHCO3, 10mM HEPES and 10mM Glucose, pH 7.4. Somatic whole-cell recordings 
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were obtained from cells visualized under a phase contrast microscope. Intracellular 

solution contained 130mM KCl, 10mM K-Gluconate, 10mM KCl, 10mM Hepes, 1mM 

EGTA, 0.3mM CaCl2, 1mM MgCl2, 4mM MgATP, 0.3mM NaGTP, pH 7.3. Cells were 

voltage-clamped at -80 mV, and IPSCs were isolated by 10 µM DNQX. 20µM 

bicuculline was used to block GABA receptors after the experiment, to confirm the 

GABAergic nature of the recorded synaptic currents. Glass pipette electrodes (4 to 6 MΩ 

resistance) were pulled from borosilicate capillaries (World Precision Instruments) by 

using a Sutter P97 Flame Brown Puller (Sutter Instruments). Data acquisition was 

performed with Clampex 8.2 and analyses were conducted by using Clampfit 10.3 

(Molecular Devices). Currents were acquired by a Multiclamp 700A computer-controlled 

amplifier (Molecular Devices) at 10 kHz and low-pass filtered at 2 kHz. To 

assess neuronal excitability spiking activity was recorded in current-clamp mode using a 

depolarizing step protocol. In order to compensate for variations in the membrane 

resistance (Rm) on the input-output curve, the amplitude of the injected current was 

calculated as a function of Rm using the Ohm law ( I= V/Rm). The calculated injected 

current produced a shift of 10 mV in the membrane potential compared to the previous 

step, starting at a resting potential of -70 mV. The lenght of the step was of 250 ms; 

immature spikes were included only when they were clearly distinguishble and reached a 

maximum depolarization of at least -20 mV. 

 

 

Drug treatment 

To inhibit HDAC6 activity, control and mutated neurons were treated with 

different concentrations of either compound #1 or ACY-1215 dissolved in sterile water 

with 1% DMSO at day 26 and 29 of terminal differentiation (Fig. 4b). To exclude 
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nonspecific effects, two control and two mutated clones were treated in parallel with 

vehicle only (sterile water with 1% DMSO) and no difference was observed compared to 

untreated neurons (not shown). At day 30, neurons were isolated as described above to 

obtain proteins for Western blot analysis. 

 

Immunofluorescence 

Cells were fixed with 4% PFA in 1X PBS for 10 min, rinsed 3×5 min in PBS and 

permeabilized with Triton-X100 0.1% for 15 min, blocked for 2 hr in Blocking Solution 

(2% Fetal calf serum, 2% BSA, 0.2% Fish skin gelatin and 1X PBS), and incubated for 

one hour at room temperature, with the following antibodies: Anti-OCT4 (Abcam, 

#ab19857); Anti-TRA-1-60 (Abcam, #ab16288); anti-SOX1 (R&D Systems, #AF3369), 

anti-Nestin (Millipore, #MAB5326), anti-VGLUT1 (Synaptic Systems, #135303), anti-

TuJ1 (Millipore, #MAB1637). Cells were then washed 3×5 min in PBS-T (1X PBS with 

0.1% Tween-20) and incubated for 1 hr with Alexa Fluor 568 goat anti-mouse IgG or 

Alexa Fluor 488 goat anti-rabbit IgG secondary antibody (Invitrogen). Nuclei were 

counterstained with DAPI. Slides were rinsed 3×5 min in PBS-T and mounted with 

Mowiol (DABCO). Images were acquired on an Axioscop 40FL Microscope (ZEISS). 
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Results 

RNA-seq analysis 

RNA-seq analysis on neurons differentiated from three clones from 2 different 

MECP2 mutated patients and 2 control iPSC clones revealed that about 17,000 transcripts 

are significantly expressed (FPKM≥1) both in controls and MECP2-mutated samples. 

The distribution of reads corresponding to coding sequences (CDS), 5’UTRs, 3’UTRs, 

introns and intergenic regions did not show a statistically significant difference between 

control and mutated samples. Differentially expressed genes were identified comparing 

the log ratio of gene's expression (FPKM value) in mutation bearing samples against that 

of controls. We identified about 900 deregulated genes, with the proportion of down-

regulated genes being almost double the amount of up-regulated transcripts (Fig. 1; Table 

S1). A direct or indirect effect of MeCP2 on the expression level for some of the 

identified deregulated genes (BDNF, RELN, TNR, NEFL, NRXN1, NRXN3, ID1-3 and 

EGR2) (Table S1) has been previously reported, confirming the reliability of our disease 

model [10, 33-36].  

To clarify MECP2 function in directly regulating the identified altered genes, 

given its role as transcriptional regulator, we investigated a possible action through 

binding at the promoter regions. Thus, we interrogated published MeCP2-ChIP-chip data. 

Among the 937 genes deregulated in our dataset, 38 genes were reported to be modulated 

by MeCP2 binding at their promoters in human cells [34] (Table 1). Evaluation of the 

significance of this overlap by Hypergeometric probability, indicates that it is statistically 

significant (p<0.0001). Then, to further investigate a possible role of MeCP2 as 

transcriptional repressor through the binding to non-promoter genomic regions, we 
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surveyed the few MeCP2 ChIP-seq available datasets from studies of Mecp2-mutant 

mice, asking if genes up-regulated in our MECP2-mutated cell lines have been previously 

described as direct Mecp2 targets. Among the up-regulated genes identified by Gabel and 

colleagues, we identified 17 transcripts previously shown to be repressed by Mecp2 

binding to methylated CA sites (Table 2) [10]. Hypergeometric probability analysis 

indicates that this overlap is not statistically significant (p=…).The fact that many 

dysregulated genes in our dataset may not be directly regulated by MeCP2 binding at 

promoter and non-promoter regions suggests that MECP2 regulates gene expression by 

both direct and indirect mechanisms. 

 

GABAergic circuits up-regulation   

GO analysis revealed a statistically significant enrichment among up-regulated 

transcripts for genes related to neuron development/differentiation, synaptic transmission 

axonogenesis and dendrite development (Table 3). Further inspection of these genes 

revealed a substantial number of GABA pathway genes including GABA receptors and 

other GABA circuits related genes as represented by the heatmap in Fig. 2a. A trend 

toward up-regulation was noticed also for GAD1, the rate-limiting enzyme the production 

of GABA from L-glutamic acid. The up-regulation was confirmed by Real-Time qRT-

PCR and western blot analyses on neurons from independent differentiation experiments 

(Fig. 2b). Furthermore, we found a significant increase in mRNA levels of NRG1 and 

NRG3 that encode proteins expressed mainly in interneurons controlling the development 

of GABAergic circuits and promoting the formation of excitatory synapses onto the 

dendrites of GABAergic interneurons [37-39]. Specifically, NRG1 signaling can affect 

Formattato: Evidenziato

Formattato: Evidenziato
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NMDA receptor activity by acting on the NR2 subunit of the receptor. We thus surveyed 

our RNA-seq data for the expression levels of GRIN2B, the gene encoding for the NR2B 

subunit of NMDA receptors, and found a trend toward an up-regulation (Fig. 2a); Real 

Time qRT-PCR analysis on cDNAs from an independent differentiation experiment 

confirmed the up-regulation of GRIN2B (Fig. 2c). A statistically significant up-regulation 

was also detected for Neurexin1 (NRXN1) and Neurexin3 (NRXN3), transcripts essential 

for modulating GABAergic transmission by direct binding to GABAA-receptors [40] and 

important for their concurrent role in axon path-finding.  

 

Functional studies reveal altered GABAergic transmission and increased excitability 

of mutant cells 

To investigate the functional consequences of MeCP2 mutation in iPSC-derived 

patient neurons we first assessed general biophysical neuronal parameters  such as resting 

potential (Fig. 3a), membrane capacitance (Fig. 3b), membrane resistance (Fig. 3c). None 

of these parameters was significantly different between control and mutant neurons. 

Then, we studied neuronal excitability by measuring the peak of the V-gated Na current 

and depolarization evoked firing (Fig. 3d-e). Evoked firing resulted to be significantly 

affected by MeCP2 mutation. Indeed, mutants cells produced more action potentials than 

wt cells in response to different depolarizing steps. No difference was present in Na 

current peaks.  

To explore the functional differences in GABAergic transmission caused by 

MeCP2 mutations, we recorded spontaneous GABAergic currents using patch-clamp in 
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whole cell configuration in the presence of 6,7-dinitroquinoxaline-2,3-dione (DNQX) to 

inhibit excitatory glutamatergic transmission. Spontaneous currents were abolished by 

bicuculline confirming the GABAergic nature of the recorded currents (Fig. 3f-g). We 

found that spontaneous current amplitude (Fig. 3h) and frequency (fig. 3i) were 

significantly lower in MeCP2 cells (187 cells, ) with respect to control cells (28 cells).  

No significant difference was present in current decay time  (Fig. 3j). These data indicate 

at functional level that alterations in  the GABAergic transmission are present in MECP2-

mutated neurons and report enhanced excitability of mutant neurons. 

 

Microtubules system impairment, selective over-expression of HDAC6 and increase 

of acetylated α-tubulin levels after iHDAC6 treatment 

Intriguingly, RNA-seq data analysis revealed an over-expression of the histone 

deacetylase 6 (HDAC6) gene, encoding for a cytoplasmic deacetylase whose main 

substrate is acetylated α-tubulin, in MECP2-mutated neurons (Table S1). Western blot 

analysis revealed a significant reduction in acetylated α-tubulin in MECP2-mutated 

neurons compared to controls, likely as a consequence of the increase in HDAC6 activity 

(p-value <0.05) (Fig. 4a). The levels of acetylated tubulin are of fundamental relevance 

for many functions in neuronal cells, including vesicle trafficking, neuronal migration 

and axon polarization and elongation [41]. Therefore, this finding indicates that an 

impairment of the microtubule network together with a reduction of acetylated α-tubulin 

mediated by HDAC6 overexpression could be reflected in axonogenesis alterations.  

To validate the direct correlation between HDAC6 overexpression and acetylated 
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tubulin reduction, we treated mutated neurons with a new potent and selective 

heterocyclic inhibitor of HDAC6 (compound #1, HDAC1/HDAC6 IC50 ratio = 47). 

Specifically, differentiating neurons were treated for 5 days with 40 𝜇M drug 

concentration (Fig. 4b). Western blot analyses on mutated and control neurons showed 

that the treatment significantly increases acetylated α-tubulin levels (Fig. 4c). A literature 

search for commercial HDAC6 inhibitors revealed a molecule, ACY-1215 

(HDAC1/HDAC6 IC50 ratio = 12), presently under evaluation for Multiple Myeloma 

treatment [42]. We thus decided to test also this second molecule for its ability to 

modulate acetylated α-tubulin levels in our model. Since the selected dose for inhibitor 

#1 resulted in a significant increase in acetylated α-tubulin also in control cells, for ACY-

1215 we evaluated lower drug doses (20 𝜇M and 40 𝜇M). This treatment also resulted in 

a marked increase in the levels of acetylated α-tubulin (Fig. 4c), confirming the direct 

link between HDAC6 activity and microtubule network status.   
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Discussion 

 Our gene expression analysis of MECP2-mutated neurons revealed key 

developmental abnormalities including an overexpression of GABAergic gene products 

and dysregulated cytoskeletal proteins. The comparison of MECP2-mutated cell lines 

with two controls, including an partial isogenic control (p.Thr158Met), allowed us to 

partially overcome the limitation of the genetic background and to study transcriptome 

perturbations linked to RTT rather than background-specific effects.  

Our RNA-sequencing analysis, together with functional studies, reveals that the fine-

tuning of GABAergic circuits represents one of the main perturbed pathways in MECP2-

related RTT. It has been indeed demonstrated that the selective depletion of Mecp2 from 

GABAergic neurons results in a severe RTT-like phenotype [43] while restoring Mecp2 

expression only in GABAergic neurons of Mecp2 null mice results in a significant, 

although not complete, rescue [44]. Differently from what found in our cells, in these 

mice Mecp2 ablation results in the reduction of Gad1 levels and GABAergic circuits 

activity. It must be however noticed that Chao and colleagues analyzed adult brain 

tissues, while our cells are closer to embryonic brain neurons, as indicated by previous 

studies [14] and as confirmed by a predominance of GABAA receptor alpha-3 and alpha-

2 subunits (Fig. S1b) whose expression, higher in the embryo and at birth, gradually 

decreases as alpha-1 subunit takes over [45]. In our recent publication modeling FOXG1-

related RTT variants, we found that, although GABAergic markers are upregulated in the 

embryonic Foxg1+/- mouse brain at a gestational age corresponding to iPSC-derived 

neurons, the same markers are down-regulated in adult Foxg1+/- brain, suggesting an 

age-dependent effect [20]. MECP2 deficiency might result in a similar phenomenon, with 

excessive GABAergic markers expression during brain development and depression of 

both GABA and glutamate circuits later in life. Surprisingly, in spite of excessive 
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expression og GABAergic markers, functional characterization of our neurons revealed 

reduced amplitude and frequency of spontaneous GABAergic currents and neurons 

hyper-excitability (Fig. 3). The identification of neuronal hyper-excitability is in line with 

literature data that reported the same finding in different mouse and cellular models of 

RTT (REF: Calfa G et al, Hippocampus. 2015: Excitation/inhibition imbalance and 

impaired synaptic inhibition in hippocampal area CA3 of Mecp2 knockout mice; Zhong 

W et al, Physiol Rep. 2017 Jan;5(2): Effects of early-life exposure to THIP on brainstem 

neuronal excitability in the Mecp2-null mouse model of Rett syndrome before and after 

drug withdrawal.; Marchetto M et al, Cell 2010: A Model for Neural Development and 

Treatment of Rett Syndrome using human induced Pluripotent Stem Cells). It must be 

however noticed that opposite results, with reduced excitability or reduction of both 

excitation and inhibition have been reported, suggesting a complex spatial and temporal 

modulation of electophysiological alterations in RTT neurons (REF: Dani VS et al, Proc 

Natl Acad Sci U S A. 2005 Aug 30;102(35):12560-5: Reduced cortical activity due to a 

shift in the balance between excitation and inhibition in a mouse model of Rett syndrome; 

El-Khoury R et al, PLoS One 2014: GABA and glutamate pathways are spatially and 

developmentally affected in the brain of Mecp2-deficient mice; Banerjee A et al, PNAS 

2016: Jointly reduced inhibition and excitation underlies circuit-wide changes in cortical 

processing in Rett syndrome; Bedogni F et al, Cereb Cortex. 2016 Jun;26(6):2517-2529: 

Defects During Mecp2 Null Embryonic Cortex Development Precede the Onset of Overt 

Neurological Symptoms). In this scenario, the increased expression of GABAergic circuit 

markers might represent an attempt of the neuronal network to compensate the increased 

excitatory response of mutated neurons………Moreover, GABA neurons are excitatory 

during early stages of neurodevelopment as a result of a higher intracellular chloride 

concentration [Cl-](i) [46], and undergo a switch towards an inhibitory function later in 

https://www.ncbi.nlm.nih.gov/pubmed/25209930
https://www.ncbi.nlm.nih.gov/pubmed/16116096
https://www.ncbi.nlm.nih.gov/pubmed/16116096
https://www.ncbi.nlm.nih.gov/pubmed/?term=Banerjee%20A%5BAuthor%5D&cauthor=true&cauthor_uid=27803317
https://www.ncbi.nlm.nih.gov/pubmed/25979088
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life [46]. According to a recent work neurons differentiated from iPSCs derived from 

RTT patients show a KCC2-mediated delayed GABA functional switch from excitatory 

to inhibitory [47]. We did not detect statistically significant changes in KCC2 transcript 

levels in our cells, likely due to a mutation-dependent effect. Our electrophysiological 

experiments were performed with conventional whole-cell recordings that perturb 

chloride gradients, therefore they cannot be used to assess the timing of the switch of 

GABAergic currents from excitatory to inhibitory; however, our data support the idea 

that the excessive expression of GABAA receptor in MECP2-mutated neurons could 

result in hyper-excitability in a critical time window during brain development which 

might be responsible for triggering epilepsy, a RTT disease feature, leading to additional 

neuronal damage and thus causing the subsequent depletion of both GABAergic and 

glutamatergic markers. Further investigations using perforated patch clamp recordings at 

different time points are needed to clarify this issue.    

The identified alteration of GABAergic circuits has important implications for the 

therapy currently adopted for RTT, raising some concerns on the pertinence of the use of 

Benzodiazepines in Rett children, since GABAA receptor agonists such as Clonazepam, 

potentiating neurons hyper-excitability, could have a paradoxical effect, increasing 

anxiety and aggression, in line with literature data [48] and with our personal clinical 

observations (unpublished data). Our analyses rather open up the possibility of new 

therapeutic approaches, such as the investigation of the therapeutic outcome of 

Flumazenil (Ro 15-1788), a GABAA receptor antagonist approved for Benzodiazepine 

over-dosage treatment, that is well-tolerated both systemically and locally with no 

significant adverse effects [48]. Finally, these results, together with our previously 

published data in FOXG1-mutated iPSC-derived neurons and in embryonic Foxg1+/- 

mouse brain [20, 49], strongly support the idea that common molecular pathways 
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underlie the overlapping phenotype observed for Rett spectrum disorders and open up the 

possibility of a shared therapeutic approach.  

Notably, functional annotation revealed that deregulated genes are enriched for 

neuron development, neuron projection morphogenesis, axonogenesis and cytoskeleton 

dynamic transcripts. Accordingly, we identified an upregulation of Histone Deacetylase 6 

(HDAC6) enzyme. HDAC6 is a cytoplasmic Histone Deacetylase (HDAC) that regulates 

the acetylation of α-tubulin, playing a key role in maintaining typical distribution of 

acetylated microtubules in cells. A role of HDAC6 and its regulation of acetylated tubulin 

levels in RTT has already been identified in patients-derived fibroblasts [50]. In 

accordance with these data, we indeed found a significant reduction in the levels of 

acetylated α-tubulin in MECP2-mutated iPSC-derived patient neurons compared to 

control ones. This reduction is reverted following treatment with two selective HDAC6 

inhibitors (compound #1 and ACY-1215), confirming the direct link between HDAC6 

overexpression and reduced acetylated α-tubulin. This result might have fundamental 

implications for the design of a therapeutic approach for RTT. Indeed, HDAC6 plays 

relevant roles in many processes altered in RTT, including axon path-finding, vesicular 

and mitochondrial trafficking, oxidative stress responses, neuronal migration and 

differentiation [51], suggesting that its modulation might impact on different 

pathologically relevant alterations. In this respect, both tested drugs selectively act on 

HDAC6, thus significantly reducing the risk of off-target effects usually associated to the 

use of pan-HDAC inhibitors. Moreover, one of these drugs (ACY-1215) recently passed 

a phase 1b trial for Multiple myeloma [42] and it is thus close to clinical application. As a 

consequence, if its relevance to RTT will be confirmed, its repurposing might 

significantly reduce the time to a clinical trial in patients. 

 In conclusion, we demonstrate here for the first time that reduced levels of 
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acetylated tubulin are present in human patient-derived neurons, the most disease-

relevant human cells. This alteration, together with GABAergic circuit impairment, 

represent a signature of MECP2-related RTT. Both pathways are amenable to treatment 

with drugs currently approved or under evaluation for use in patients, thus foreseeing a 

fast progression to clinical trials to evaluate the therapeutic relevance of their modulation 

for RTT therapy.    
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Legend to Figures 

Fig. 1 RNAseq data analysis. a) Scatter plot of log2 transformed RNAseq expression 

level (FPKM) of MECP2-derived cells (P0, P1, P2) versus controls (C0, C1) in 

terminally differentiated neurons (day 30 is) shown. Red and green spots indicate 

significantly (p<0.05) up-regulated and down-regulated genes, respectively. 

 

Fig. 2 Up regulation of GABAergic axis. a) HeatMap of GABAergic pathway genes; 

for each gene, log ratio and related p-values are shown. b) Validation of RNAseq data on 

neurons from and independent differentiation experiment demonstrate a significant 

upregulation of GAD1 mRNA and protein levels and of GABA-R receptor alpha 1 

(GABA-AR) protein in MECP2-mutated neurons compared to controls. GAPDH was 

used as loading control for western blot analysis. n= 3. c) Upregulation of GRIN2B 

mRNA in neurons from the 3 MECP2-mutated clones respect to neurons from the partial 

isogenic control clone (2271#2). Statistical significance was determined using unpaired 

student’s t test (*p<0.05; **p<0.001; ***p<0.0001). 

 

Fig. 3 Altered functional properties of MeCP2 mutant neurons. a) Membrane resting 

potential (mV). Student t test: p = 0.093,  n wt = 32, n ko = 22. b) Membrance 

capacitance (pF), p = 0.063, n wt = 48, n ko = 24. c) Membrane resistance (MΩ). Student 

t test: p = 0.31, n wt = 43, n ko = 24. d) Maximum peak of Na current recorded in voltage 

clamp. Student t test: p = 0.373, n wt = 33, n ko = 23. e) Firing: number of action 

potentials evoked by +10 mV steps of the membrane potential starting from -70 mV. Two 

way ANOVA, * p < 0.05, n wt = 27, n ko = 20. f) Example of traces for control and 

MECP2 mutated cells; traces from the same cell in the presence of bicuculine are shown 
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on the right.  g) Average sIPSCs in a control (CNT) and a mutant cell. h) Cumulative 

distribution of sIPSC amplitude (pA). Mann-Whitney: p <0.001; wt median: 47.0, 25th-

75th percentile = 30.0-87.0; ko median: 40.1, 25th-75th percentile = 24.5- 73.0. i) 

Cumulative distribution of sIPSCs inter-event interval (ms). Mann-Whitney: p <0.001; wt 

median: 56.4, 25th-75th percentile: 263.5-1494.6; ko median: 895.0, 25th-75th percentile 

392.6-1764.0. j) Whisker plot of sIPSC decay kinetics (90-10% decay time). Mann-

Whitney: p = 0.078; wt: median: 28.6, 25th-75th percentile 18.6-37.7; ko median: 25.3, 

25th-75th percentile 15.2-41.8. Measurements for h, i and j were collected from 28 control 

neurons and 18 MECP2-mutated neurons. Data are reported as mean ± SEM. Each circle 

in a-d represents a cell. 

Fig. 4. Reduction in acetylated α-tubulin levels and treatment with selective HDAC6 

inhibitors. a) A reduction in acetylated α-tubulin levels was observed by Western Blot 

analysis in MECP2-derived neurons (n=3 clones) compared to control ones (n=2 clones). 

* p<0.05.  b) Overview of the neuronal differentiation protocol with critical time-points 

indicated below the time lane. Cells were differentiated in Terminal Differentiation 

medium for 30 days; differentiating cells were treated twice (arrowheads) with either the 

selective inhibitor (Compound #1 or ACY-1215) or vehicle and then neurons were 

isolated (arrow) by immunomagnetic sorting with anti-CD24 antibodies for further 

analyses. c) Treatment with compound #1 (40uM) or ACY-1215 (ACY 20uM or ACY 

40uM) resulted in a significant increase in acetylated α-tubulin levels in both MECP2-

mutated and control neurons. Data are expressed as the mean + SEM from 3 independent 

experiments performed on 3 control and 3 MECP2-mutated clones. *p<0.05 between 

mutated and control neurons; §p<0.0001 and §§p<0.005 compared to the corresponding 

untreated neurons. Statistical significance was determined using unpaired student’s t test. 
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