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ABSTRACT
Anomaly detection algorithms aim at identifying unexpected
fluctuations in the expected behavior of target indicators,
and, when applied to intrusion detection, suspect attacks
whenever the above deviations are observed. Through years,
several of such algorithms have been proposed, evaluated
experimentally, and analyzed in qualitative and quantita-
tive surveys. However, the experimental comparison of a
comprehensive set of algorithms for anomaly-based intrusion
detection against a comprehensive set of attacks datasets
and attack types was not investigated yet. To fill such gap,
in this paper we experimentally evaluate a pool of twelve
unsupervised anomaly detection algorithms on five attacks
datasets. Results allow elaborating on a wide range of ar-
guments, from the behavior of the individual algorithm to
the suitability of the datasets to anomaly detection. We
identify the families of algorithms that are more effective
for intrusion detection, and the families that are more ro-
bust to the choice of configuration parameters. Further, we
confirm experimentally that attacks with unstable and non-
repeatable behavior are more difficult to detect, and that
datasets where anomalies are rare events usually result in
better detection scores.

Categories and Subject Descriptors
[Security and privacy]: Intrusion detection systems
; [Computer systems organization]: Dependable and
fault-tolerant systems and networks

Keywords
Anomaly Detection, Intrusion Detection, Unsupervised Al-
gorithms, Comparison, Attacks Datasets, Attack Model

1. INTRODUCTION
It is fully acknowledged that systems and networks are
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subject to cyber-attacks. Attackers may try to alter or dis-
rupt services, ultimately leading to an adverse economic or
safety impact. Amongst protection countermeasures, Intru-
sion Detection Systems (IDSs, [44]) were proposed to en-
hance network and system security. IDSs collect and an-
alyze data from networks and systems indicators to detect
malicious or unauthorized activities, based on the hypoth-
esis that an ongoing attack has distinguishable effects on
such indicators. Most of enterprise IDSs adopt signature-
based detection algorithms [44], which consist of looking for
predefined patterns (or ”signatures”) in the monitored data
in order to detect an ongoing attack. Data is usually seen
as a flow of data points, which represent observations of the
values of the indicators at a given time. Signature-based
approaches usually score high detection capabilities and low
false positive rates when experimenting known attacks [15],
but they cannot effectively adapt their behavior when sys-
tems evolve or when their configuration is modified. As an
additional consequence, they are not meant to detect zero
day attacks, which are novel attacks that cannot be matched
to any known signature [35]. Moreover, when a zero-day at-
tack that exploit newly added or undiscovered system vul-
nerabilities is identified, its signature needs to be derived
and added as a new rule to the IDS [8].

To mitigate the problem above, Anomaly-based IDSs rely
on anomaly detection algorithms, which are intended to find
patterns in data that do not conform to the expected behav-
ior of a system (or a network) [12]: these patterns are called
anomalies. Anomaly-based IDS are built on the assump-
tion that ongoing attacks will generate observable anomalies
when monitoring performance indicators of the system [13]
or network [27]. Potentially, they can adapt themselves to
suit the current context of the system and ultimately detect
novel attacks [10]. However, their detection efficacy is linked
to the ability of characterizing expected and, consequently,
anomalous behaviors. A poor characterization of the ex-
pected behavior of the system negatively impacts on the
identification of malicious anomalous activities. As a conse-
quence, anomaly-based detectors usually generate a higher
number of false alarms than signature-based methods [12].

Different anomaly detection algorithms usually exhibit dif-
ferent rates of missed (False Negatives) and wrong detec-
tions (False Positives) and, consequently, have different de-
tection capabilities. Although most of such algorithms have
a generic, context-independent formulation, they are often
more effective to detect specific attacks on specific systems
or applications. Moreover, the manifestation of the anomaly
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is usually different from attack to attack and from system to
system. In [12], anomalies are classified as i) point anomaly,
or outlier : a single data instance that is out of scope or not
compliant with the usual trend of an indicator, ii) contextual
anomaly : a data instance that is unexpected in a specific
context, and iii) collective anomaly : a collection of related
data instances that is anomalous with respect to the entire
data set. For example, when proposing angle-based algo-
rithms [26], authors state that their technique suits the de-
tection of point anomalies, rather than collective anomalies.
Consequently, selecting the correct detection algorithm rep-
resents a crucial decision when defining an anomaly-based
IDS. A wrong choice of the algorithm will decrease the at-
tack detection capabilities of the IDS, consequently reducing
the ability to secure the target system and network.

In this paper we first present a methodology for the exper-
imental quantitative comparison of anomaly detection algo-
rithms applied on multiple attacks datasets. We identify a
total of 12 unsupervised anomaly detection algorithms that
have been previously used for intrusion detection, two for
each of the six (clustering, statistical, classification, neighbour-
based, density-based and angle-based) families that are usu-
ally considered when grouping unsupervised anomaly detec-
tion algorithms [12], [21]. We adopt unsupervised anomaly
detection algorithms since they are known to be the most
suitable way to deal with evolving systems and to identify
zero-day attacks [28].

Then, we identify 5 attacks datasets, namely KDD-CUP
99 [36], NSL-KDD [43], ADFA-LD [14], ISCX2012 [39], and
UNSW-NB15 [32]. Since the datasets contain attacks la-
beled according to different nomenclatures, we categorize
the attacks of the datasets in a unified attack model. Ex-
ercising the selected algorithms on the five datasets allows
comparing the behaviour of the algorithms (both individu-
ally and as families) with respect to the datasets and the
attacks of our attack model. Finally, we observe how an ad-
equate distribution of expected and anomalous data points
in the datasets helps improving detection scores, because it
allows algorithms to properly define the expected behavior.

This paper is structured as follows: Section II presents a
literature review of works on the comparison of anomaly
detection algorithms for intrusion detection. Section III
presents our methodology and inputs including the selec-
tion of the algorithms, the datasets, the attack model and
the metrics that will be used for the experimental evalu-
ation. Section IV presents the implementation of the algo-
rithms and the setup of our experimental campaign. Section
V discusses results. Lastly, Section VI concludes the paper.

2. RELATED WORKS AND MOTIVATION
Generally, the vast majority of research works on anomaly

detection, and on anomaly-based IDSs, propose a novel tech-
nique for intrusion detection and then compare it with a
small set of different algorithms executing on a single dataset.
Valuable examples are cited throughout this paper, espe-
cially [26], [20], [23]. This structure is very effective in pre-
senting a novel algorithm and showing how it performs com-
pared to a few existing ones. However, the experimental
comparison of the target algorithm with algorithms from the
state of the art is often limited to proof-of-concept samples
or few target datasets. A question that is often left open
is if an algorithm that is proven effective for a given case
study or dataset has a similar behaviour when applied to a

different - although similar - context, or when it is evaluated
using a different metric.

We believe that an extensive evaluation of algorithms by
considering different categories of attacks, target systems
(datasets), and scoring metrics would be beneficial. Being
aware that the ”silver bullet” algorithm, or rather an algo-
rithm which always performs better than others, does not ex-
ist (yet?), we think that a deep comparison among anomaly
detection algorithms for intrusion detection is needed to un-
derstand which (family of) algorithm is recommended when
dealing with a specific class of attacks and systems.

2.1 On Comparing Anomaly Detectors
The authors of [25] used 7 algorithms on a single propri-

etary dataset containing HTTP traffic, providing an open-
source IDS testing framework. Similarly, in [19] authors
evaluate 4 algorithms on a single dataset, focusing more
on feature selection. Instead, in [28], authors presented a
comparative study for intrusion detectors where k-Nearest
Neighbors (kNN), Mahalanobis-based, Local Outlier Factor
(LOF) and one-class Support Vector Machines (SVM) were
evaluated using only the DARPA 98 dataset [29] and real
network data (for a total of 2 datasets). Similarly, in [17]
authors compared three unsupervised anomaly detection al-
gorithms for intrusion detection: Cluster-based Estimation,
kNN and one-class SVM using network records stored in
the KDD Cup 99 dataset and system call traces from the
1999 Lincoln Labs DARPA evaluation. Four algorithms are
evaluated in [16], which presents a review of novelty detec-
tion methods that are classified into semi-supervised and
unsupervised categories. The algorithms are exercised on
10 different datasets regarding medical and general-purpose
data. Some of these datasets were used also in [21], where
authors presented a comparison of anomaly detection algo-
rithms for multivariate data points. In this case, 19 anomaly
detection methods were evaluated in 10 different datasets
from different domains, ranging from brain cancer to satel-
lite activity; however, the only attacks dataset is the KDD
Cup 99. Lastly, in [24] the authors compared six super-
vised and unsupervised algorithms for system log analysis
using two datasets: the HDFS logs from Amazon EC2 plat-
form and the BGL BlueGene/L supercomputer system at
Lawrence Livermore National Labs (LLNL). In [25] seven
anomaly detectors for IDSs are tested on HTTP traffic us-
ing a proprietary dataset.

2.2 Motivations
Summarizing, there are no extensive comparisons of (un-

supervised) anomaly detection algorithms for intrusion de-
tection. The works [21] and [16] considered multiple aspects
that are also in this paper, but they do not focus on security
and intrusion detection: in fact, they used datasets from
multiple domains. Moreover, in [25] the authors considered
a single proprietary dataset, while the work in [28] uses two
datasets and four algorithms, without taking into account
all the main families of algorithms defined in [12] and re-
fined in [21]. Similarly, in [17] the authors used 3 algorithms
on 2 datasets, while, [24] uses 3 unsupervised algorithms on
2 datasets. As a final remark, none of the reviewed papers
organizes the results according to a unified attack model,
that categorizes attacks from the different datasets.

To fill this gap, in this work we i) define a pool of 12
algorithms, selected from the 6 families of unsupervised al-
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Figure 1: Classification of the 12 selected unsupervised anomaly detection algorithms from 6 families.

gorithms identified in [12], [21], ii) select a total of 5 publicly
available attacks datasets, iii) define an unified attack model
which categorizes attacks from the datasets above, iv) adopt
the most used scoring metrics [34], and v) present our re-
sults, which are publicly available at [5] and constitute a
baseline for comparing anomaly-based IDSs.

3. INPUTS FOR EXPERIMENTS
Our process is built on the methodology that is described

in Section 4. Such methodology needs the following inputs:
the anomaly detection algorithms (and their families), the
selected datasets, a comprehensive attack model, and the
metric(s) used for presenting results. These elements are
expanded below.

3.1 Selection of the Algorithms
Several unsupervised anomaly detection algorithms were

identified during our survey activity. A total of 12 unsuper-
vised algorithms, reported in Figure 1, were selected that
match the following criteria:

• the algorithms should not adopt (semi)supervised learn-
ing schemes, which are not adequate for adaptive sys-
tems and for identifying zero-day attacks. So we limit
our analysis to unsupervised algorithms.

• for completeness, the set of algorithms should cover
main families of unsupervised algorithms: clustering,
angle-based, statistical, neighbour-based, density-based,
classification-based.

• the algorithms should already have been successfully
applied for intrusion detection.

The selected algorithms are mapped in Figure 1, accord-
ing to their families from [12], [21]. It is worth noticing
that algorithms families may have some unavoidable seman-
tic overlap; as example, neighbour-based strategies are often
used as a way to improve the detection capabilities of algo-
rithms such as the angle-based FastABOD [26] algorithm.

Clustering
K-means Clustering (K-Means) [38] is a popular clus-
tering algorithm that groups data points into k clusters by

their feature values. First, the k cluster centroids are ran-
domly initialized. Then, each data record is assigned to the
cluster with the nearest centroid, and the centroids of the
modified clusters are re-calculated. This process stops when
the centroids are not changing anymore. Data points are
put in the same cluster when they have similar feature val-
ues according to a given distance function. Finally, scores
of each data point inside a cluster are calculated as the dis-
tance to its centroid. Data points which are far from the
centroid of their clusters are labeled as anomalies.

Local Density Cluster-based Outlier Factor (LD-
COF) [6] estimates the density of clusters generated by us-
ing the K-means clustering algorithm, which are separated
into small and large groups following the procedure of [24].
For each cluster, the average distance of all its data points
to the centroid is calculated, normalized by the average dis-
tance of the data points of this cluster to its centroid, and
used as anomaly score. Therefore, expected data points re-
sult in smaller scores i.e., close to 1.0, because their densities
are as big as the densities of their cluster neighbors. Instead,
anomalies will result in larger scores, since their densities are
smaller than the densities of their neighbors.

Neighbor-Based
Kth-Nearest Neighbor (kNN) [35] is a neighbour-based
method which was primarily designed to identify outliers.
For each data point, the whole set of data points is examined
to extract the k items that have the most similar feature
values: these are the k nearest neighbors (NN). Then, the
data point is classified as anomalous if the majority of NN
was previously classified as anomalous. Note that while the
nearest neighbours are gathered in an unsupervised manner,
the final classification needs some labels in the training set.

Outlier Detection using Indegree Number (ODIN)
[23] stems from kNN, which examines the whole dataset to
determine their feature distances to the given point. This
allows isolating NN, creating the kNN graph. Differently
from kNN, ODIN defines as anomalies the data points that
have a low number of in-adjacent edges in the kNN graph.

Density-Based
Local Outlier Factor (LOF) [9] is a density-based method
designed to find local anomalies. For each data point, the
NN are computed. Then, using the computed neighbor-
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hood, the local density is computed as the Local Reachabil-
ity Density (LRD). Finally, the LOF score is computed by
comparing the LRD of a data point with the LRD of the pre-
viously computed NN. As LDCOF, data points classified as
expected by LOF will have smaller scores, close to 1.0, and
data points classified as anomalies will have larger scores.

Following the approach of local density, Connectivity-
based Outlier Factor (COF) [41] differs from LOF in the
computation of the density of the data points, since it also
considers links between data points. To such extent, this
method adopts a shortest-path approach that calculates a
chaining distance, using a minimum spanning tree [10].

Statistical
The Histogram-based Outlier Score (HBOS) is a sta-
tistical approach [20] that generates an histogram for each
independent feature of the given dataset. The values of the
features of all the available data points are first used to build
histograms; at a later stage, for each data point, the anomaly
score is calculated as the multiplication of the inverse heights
of the columns in which each of its features falls.

Robust Principal Component Analysis (rPCA) [27]
is based on the Principal Component Analysis (PCA), that
is used for dimensionality reduction. PCA is used to detect
subspaces in a dataset and has been applied to anomaly de-
tection to identify deviations from the ’expected’ subspaces,
which may indicate anomalous data points. The principal
components of PCA are the eigenvectors of the covariance
matrix, which is computed twice to improve robustness.

Angle-Based
Angle-Based Outlier Detection (ABOD) [26] relates
data to high-dimensional spaces, using the variance in the
angles between a data point to the other points as anomaly
score. Each data point in the dataset is used as the middle
point p2 of a polygonal chain (p1, p2, p3), while p1 and p3 are
any two different data points of the dataset, p1 6= p2 6= p3.
Then, all the angles p1p̂2p3 are measured, and their variance
is used to calculate the Angle-Based Outlier Factor (ABOF).
Ultimately, anomalies typically result in very small variance
in the angles from couples of points.

The Fast Angle-Based Outlier Detection (FastA-
BOD) [26], similarly to ABOD, detects anomalous data
points depending on the variance of angles between pairs of
distance vectors to other points. However, it works in sub-
quadratic time by considering only angles between pairs of
neighbours. For each data point, the algorithm first calcu-
lates the ABOF to its k-nearest neighbor as the normalized
scalar product of the difference vectors of any pair of neigh-
bors. Then, FastABOD ranks the data points according to
their ABOF. The smaller the ABOF, the bigger the proba-
bility that the data point is anomalous.

Classification-Based
The One-class Support Vector Machine (one-class
SVM) [7] algorithm aims at learning a decision boundary
to group the data points [37]. Therefore it can be used for
unsupervised anomaly detection, despite at first supervised
support vector machines (SVMs) were used only for semi-
supervised anomaly detection [12]. The one-class SVM is
trained with the dataset and then each data point is clas-
sified considering the normalized distance of the data point
from the determined decision boundary [7].

Table 1: Selected Data sets
Dataset Size Attacks % Attacks Features

KDD Cup 99 (KC) 311,028 223,298 71.79 41

NSL-KDD (NK) 22,542 12,832 48.05 42

ISCX2012 (IX) 571,698 66,813 11.68 17

ADFA-LD (AL) 2,122,085 238,160 11.22 1

UNSW-NB15 (UN) 175,341 119,341 68.06 46

Isolation Forest (IF) [30] structures data points as nodes
of an isolation tree, assuming that anomalies are rare events
with feature values that differ a lot from expected data
points. Therefore, anomalies are more susceptible to iso-
lation than the expected data points, since they are isolated
closer to the root of the tree instead of the leaves. It fol-
lows that a data point can be isolated and then classified
according to its distance from the root of the tree.

3.2 Selection of the Datasets
The datasets are selected to match the following criteria:

• They shall contain enough data points to ensure sta-
tistical evidence when evaluating the algorithms, e.g.,
DARPA 1999 dataset [29] was discarded since it con-
tains only 201 data points related to attacks.

• They shall be labeled correctly, i.e., all and only at-
tacks that occurred should appear. Consequently, we
disregard datasets as MAWI [18], CAIDA [39] or DE-
FCON [39], that are constituted of sniffed data that is
labeled applying detection algorithms: consequently,
the labeling may include false positives and negatives.

• Data points should be complete for all the features in
the datasets, to do not apply feature recovery strate-
gies that may inficiate results.

Table 1 summarizes the 5 datasets we selected according
to these criteria. These datasets are shortly described below
by ascending publication date. We match each dataset to
an acronym that will be used in the rest of the paper. We
also remark that filtering or refinement of datasets is usually
algorithm-specific [12], (e.g., filtering massive amounts of
subsequent outliers [38], or incomplete data points [17], [41]);
therefore we do not modify the datasets in any way. As a
side note, during our selection process we also found two
datasets, Kyoto2006+ [40] and NGIDS-DS [22], which we
discarded since the amount of data was too huge to be pro-
cessed in a meaningful percentage.

KC KDD Cup 99 (1999) [36]. This is the most popular
dataset in the anomaly-based intrusion detection area,
being used in recent experiments and surveys [10], [21]
and works prior the release of the updated NSL-KDD
[23]. Fore this reason, we could not ignore it despite
being almost 20-years-old. The dataset contains the
following attacks: DoS (Denial of Service), R2L (unau-
thorized access from a remote machine), U2R (unau-
thorized access to superuser or root functions) and
Probing (gather information about a network).

NK NSL-KDD (2009) [43]. This dataset was created to
solve problems in the KDD Cup 99 dataset as i) the
presence of redundant records in train sets, and ii) du-
plicates in test sets. The attacks are the same as KC.
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Table 2: The Unified Attack Model developed to categorize attacks from the five datasets.

Category Description Mapping of (Dataset) Attack

Communication -
Passive

Attacks which targets the communication channel to
gather information without active damage

(KD - NK) Probing, (IX) Infiltration, (UN)
Reconnaissance, (UN) Analysis

Communication -
Active

Attacks conducted through the communication
channel to actively damage the system

(IX) Bruteforce, (KD - NK - IX - UN) DoS, (IX)
DDoS, (UN) Fuzzers, (UN) Backdoor

Host
Attacks which targets a given host by installing

malicious code into it
(KD - NK) U2R, (KD - NK) R2L, (UN) Worms,

(UN) Shellcode, (UN) Malware

Application
Attacks which targets a given application aiming at
executing malicious code by penetrating interfaces

(UN) Exploits, (UN) Generic, (AL) AddUser (AL)
Java, (AL) Meterpreter, (AL) Web, (AL) Hydra

IX ISCX (2012) [39]. It is generated in a controlled envi-
ronment based on a realistic network and traffic, to de-
pict the real effects of attacks over the network and the
corresponding responses of workstations. Four differ-
ent attack scenarios are simulated: infiltration, HTTP
denial of service, a distributed denial of service by us-
ing an IRC botnet, and SSH bruteforce login attempts.

AL ADFA-LD (2013) [14]. Released by the Australian De-
fence Force Academy, this dataset contains expected
and anomalous Linux system call traces generated by
emulation. The occurrence of AddUser, Java, Meter-
preter, Hydra SSH-FTP, and Web attacks is labelled,
although not detailed.

UN UNSW-NB15 (2015) [32]. As ADFA-LD, this dataset
was released by the Australian Defence Force Academy
in the University of New South Wale. Authors simu-
late: i) Exploits, the attacker exploits a generic vulner-
ability, ii) DoS, a (Distributed) Denial of Service, iii)
Worms, a script that replicates itself to spread to other
networked computers, iv) Generic, a technique that
works against all block-ciphers, with a given block and
key size, v) Reconnaissance, attack that aim at gath-
ering information, vi) Shellcode, a code used as the
payload in exploits, and vii) Backdoors, that stealthily
bypass security mechanisms to access data.

3.3 Unified Attack Model
Each of the datasets above uses inconsistent naming and

grouping of categories of attacks: consequently, to perform
cross-datasets comparisons, we have to define an attack model
that includes all the attacks in the different datasets. To
such extent, we classify the attacks of the different datasets
according to a unified attack model that we derived after
examining several standards [42], [11], open source libraries
[3], and research articles [33], [31] providing taxonomies of
cyber-attacks that are largely adopted by topic-related stud-
ies. Noticeably, in [33] the authors partition the attacks
defined in the NIST 800-53 [42] standard into i) Commu-
nication: attacks directed to network interfaces, ii) Host :
malware or malicious code injected in a target host exploit-
ing vulnerabilities of the operating system, iii) Application:
attacks that exploits vulnerabilities of (web)services, and iv)
Generic, everything that is not related to the first three cat-
egories. The work [33] provides a simplified abstraction of
the existing NIST attack list, which we can use as a starting
point to build our unified attack model.

After an in-depth revision of the attack models adopted
by each dataset, we can observe that none of the specific

attacks falls in the Generic category of [33], which is con-
sequently discarded. However, the datasets contain data
related to attacks that mainly involve the communication
channel with different means and purposes. To differentiate
among these attacks, we split the Communication category
defined in [33] into two separate categories (see row 1 and 2
of Table 2). Namely, the subcategories are i) communication
passive, that represents attacks directed to gather or steal
data through the passive observation of the communication
channel, and ii) communication active, which represents at-
tacks which use the communication channel as a way to send
malicious data / requests to the target system. This ulti-
mately results in an attack model composed of 4 categories,
and that is shown in Table 2. The last column of Table
2 maps all the different attacks referenced in the datasets
to our attack categories. As example, Exploits attacks of
UNSW-15 fall into the Application category, as it can be
observed at the bottom right cell of the table. Attacks with
different labels, or reported in different datasets, that resem-
ble the same attack are merged into a unique attack, e.g.,
DoS, which can be found in both NK and IX datasets.

3.4 Selection of the Metrics
We list here the metrics described in [34] that were used

more frequently in the surveyed studies. These metrics are
mainly based on boolean anomaly/expected labels assigned
to a given data point. However, when providing an output,
algorithms may not provide a boolean answer: instead, they
usually provide a numeric anomaly score, which indicates
how anomalous a data point is in relation to the others. In
our study, we define such thresholds relying on the Interquar-
tile Range, that is the difference of the two quantiles Q3 and
Q1 that was extensively studied in [45], and adopted as a
recommended practise when dealing with numerical data, as
in [27]. In addition, we do not account for time-related met-
rics as the execution time and the detection time, because
they are usually dependent on the hardware resources avail-
able for a given system and on the specific implementation
of the algorithm.

• Precision (P). Considering TP (true positives) as the
amount of detected anomalies that correspond to man-
ifestations of attacks, and FP (false positives) as the
amount of detected anomalies that do not, Precision
is defined as the fraction of TPs among the union of
FPs and TPs.

• Recall (R). Recall is usually presented together with
P. It is defined as the ratio of TP over the union of TP
and the undetected anomalies (false negatives, FN).
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• F-Score (Fβ) and F-Measure. The F − Score(β)
metric combines both P and R by using a parameter
β: when β > 1, R is weighted more than P. Instead, F-
Measure, or rather F1, is defined as the balanced mean
of P and R [34] and is adopted when data analysts
evaluate FPs and FNs as equally undesired.

• Accuracy (ACC). Accuracy is defined as the ra-
tio of correct detections (both true positives and true
negatives) among the total amount of examined data
points. This allows aggregating the positive and neg-
ative scores into a unique metric.

• Area Under ROC curve (AUC). ROC curve is a
graphical plot that represents the performance of bi-
nary classifiers when their discrimination thresholds
vary: the curve is depicted by plotting R against the
false positive rate. An high value of the area underly-
ing the ROC curve usually indicates that the identified
algorithm suits the target dataset.

4. METHODOLOGY, IMPLEMENTATION
AND EXECUTION

Before executing the experiments, we partition each dataset
to create sub-datasets isolating single types of attacks. Then,
we apply the 12 algorithms on each sub-dataset separately.
The execution of each algorithm on each sub-dataset is re-
peated by combining the parameters of the algorithm itself:
such parameters are algorithm-specific, and require an ini-
tial setup to effectively run the algorithm. Boolean results
of algorithms can be immediately used to calculate the met-
rics, while numeric scores have to be transformed by us-
ing adequate thresholds. Metric scores are then stored in
a database and aggregated to extract average, median and
standard deviation scores depending on different dimensions
of analysis, namely: algorithm, algorithm family, attack, at-
tack category, and dataset. To present aggregated results,
we mostly use the format median ± standard deviation.

Then, we retrieve available public implementations of the
selected algorithms. KMeans, kNN, ODIN, LOF, COF, ABOD,
FastABOD and OneClass SVM are extracted from the ELKI
framework [1]. The other implementations of algorithms
come from RapidMiner [4]. The 5 datasets are processed
by converting - where needed - nominal variables to nu-
merical to increase the amount of usable features, with-
out affecting the semantics of the datasets. Parameters
tuning is employed to find an optimal setup of each algo-
rithm. Tuning is performed by i) first, running different
combinations of parameters; ii) then, comparing results for
the different parameters. For example, we run KNN and
KNN-dependent algorithms, i.e., ODIN, FastABOD, with
k ∈ {1, 2, 3, 5, 10, 20, 50, 100}. The discussion in the follow-
ing sections will also elaborate on the relevance of the choice
of parameters.

The metric scores generated by the execution of the al-
gorithms was initially stored in CSV files, and successively
in a MongoDB [2] database for fast analytics, such as com-
paring and aggregating scores. Ultimately, we plot ROC
curves, and calculate the Area under the Curve (AUC). The
algorithms, the database and the Mongo analytics are ex-
ecuted on a cluster of three Intel Core i7, 32GB of RAM
and 256GB of SSD storage servers. Overall, running all
the algorithms on all the datasets required approximately

Figure 2: Results on all the datasets and all the
attacks, grouped by algorithms families. Columns
report median scores, while error bars depict the
standard deviation

one month of 24H execution. As pointed out by authors
of angle-based algorithms [26], due to known computational
complexity problems ABOD and FastABOD algorithms can
be ran only on a portion of the datasets. We choose the
portions considering the biggest subset of the dataset that
do not escalate in heap memory errors, i.e., 4% for KC, 53%
for NK, 24% for AL, 5% for IX, 6% for UN. All the metric
scores are publicly available on our website [5].

5. RESULTS AND DISCUSSION
We present our analysis by answering 4 research questions.

Each research question is discussed and substantiated by
referring to the results we obtained during our experimental
campaign. A complete view of the collected data cannot be
presented here for brevity: however, the MongoDB archive
complemented with Excel files we used to derive graphs are
available at [5].

5.1 RQ1: Is there an algorithm (or a family)
that performs better than the others?

Table 3 shows the results we obtained by running all the
12 algorithms in our 5 datasets, ranked by F1 scores. We re-
port the median and the standard deviation scores for each
metric, and we aggregate the data by considering each algo-
rithm on all the attacks and all the datasets separately. We
observe that the first two algorithms belong to the classifi-
cation family. In fact, both Isolation Forest and OneClass
SVM show good scores for anomaly detection: Precision,
Recall and Accuracy scores are above 96%. Opposed to clas-
sification algorithms, angle-based algorithms show poor re-
sults for the F1 scores on our datasets. This may be partially
explained considering that training of such algorithms was
performed by using just a portion of the datasets, negatively
affecting their ability to characterize an expected behavior
and - consequently - highlight anomalies.

Another interesting observation is represented in Figure
2, where we aggregate and plot the results related to each
family. Results are again ordered by F1 score, in descend-
ing order. The classification family is the most effective,
while statistical and density-based families show very similar
scores. Moreover, it is worth noticing that neighbour-based
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Table 3: Metric scores (median± std) for the 12 algorithms, ordered by F1 score

Algorithm # Combinations Family AUC Precision Recall Accuracy F1

Isolation Forest [30] 8 Classification 37.2 ± 0.4 99.9 ± 0.3 99.3 ± 0.4 99.7 ± 0.3 99.6 ± 0.3

One-Class SVM [7] 1 Classification 53.4 ± 2.9 96.6 ± 3.2 99.3 ± 0.0 96.2 ± 3.2 98.0 ± 1.9

COF [41] 8 Density-Based 48.8 ± 1.7 93.6 ± 3.4 97.8 ± 0.1 91.7 ± 3.1 95.7 ± 2.0

ODIN [23] 8 Neighbour-Based 49.9 ± 1.7 96.6 ± 2.4 99.9 ± 0.4 89.8 ± 1.6 94.6 ± 1.1

HBOS [20] 1 Statistical 57.8 ± 5.5 92.6 ± 5.8 99.5 ± 4.3 89.2 ± 4.7 94.3 ± 4.8

rPCA [27] 1 Statistical 55.0 ± 4.0 97.5 ± 3.4 95.0 ± 1.0 83.1 ± 3.2 90.6 ± 2.0

LOF [9] 8 Density-Based 50.0 ± 1.3 96.6 ± 3.5 88.0 ± 1.1 81.3 ± 3.1 89.6 ± 2.1

LDCOF [4] 8 Clustering 49.9 ± 2.3 82.4 ± 1.8 94.4 ± 0.2 77.9 ± 1.5 87.4 ± 0.7

KNN [35] 8 Neighbour-Based 35.9 ± 6.7 91.9 ± 5.8 75.1 ± 3.4 71.4 ± 4.0 82.8 ± 4.3

K-Means [38] 8 Clustering 54.4 ± 8.9 95.7 ± 5.3 68.5 ± 2.8 65.6 ± 3.4 78.3 ± 3.5

ABOD [26] 8 Angle-Based 90.5 ± 7.8 69.2 ± 8.1 92.4 ± 8.3 90.0 ± 1.8 75.5 ± 10.2

FastABOD [26] 15 Angle-Based 86.4 ± 9.2 90.6 ± 7.8 77.4 ± 5.3 67.6 ± 3.2 74.7 ± 6.1

scores are a bit lower than the previously mentioned fami-
lies, but with a higher standard deviation. In fact, it can be
observed that there is a big difference of scores between the
two neighbour-based algorithms: KNN is significantly worse
than ODIN, which instead shows a remarkably high recall
score. At first, this result surprised us, but it can be ex-
plained by the fact that ODIN is based on the KNN graph
with some ’indegree score’. This semi-density score which
is added on the top of the KNN query provides a decisive
support to improve the detection scores, as also was antici-
pated in [23]. A similar situation can be observed also in the
clustering family: the KMeans algorithm is used as a base-
line for the LDCOF strategy, which shows far better scores
on our datasets. Our last observation is on Accuracy scores.
Here we can see how angle-based algorithms, which overall
showed the worst F1 scores, have higher Accuracy values
than the neighbour-based and clustering families. This can
be motivated as follows: F1 score is based on Precision and
Recall, which do not account for true negatives. As a result,
higher Accuracy scores for angle-based algorithms compared
to the corresponding F1 scores highlight that the percentage
of true negatives is higher than the others.

5.2 RQ2: Is there an algorithm (or a family)
that is less dependent on the choice of pa-
rameters?

This RQ is related to the choice of the optimal parameters
of the algorithms, and it can be explained with the aid of
Table 3 and Figure 2. In particular, the scores we used to
build the table and to plot the graph refer to the median
scores related to the best parameter setup for a given algo-
rithm. Each algorithm has its own parameters, e.g., the size
of neighbourhood k in KNN, ODIN and FastABOD. Such
parameters have to be explored to find an optimal setup,
in order to use the algorithms at the best of their detec-
tion capability. To evaluate the impact of such parameters,
our methodology in Section 4 repeats the experiments using
the same algorithm, but with different parameters values.
The number of combinations of acceptable parameters val-
ues are reported in Table 3. These combinations are used
to build the ROC Curve and, consequently, the AUC score.
As expected, such score is low for classification algorithms
(see Figure 2), which have several configurable parameters.

This has strong consequences on our analysis: despite these
algorithms show a very low number of FPs and FNs, i.e.,
accuracy and F1 are almost perfect,classification algorithms
strongly depend on their parameters values, and therefore
cannot be always considered as an optimal solution.

Surprisingly, it turns out that angle-based scores are not
heavily influenced by the choice of such parameters, showing
very high AUC scores, i.e., median over 85%, compared to
the others which are instead mostly around 50%. This re-
markable difference can be explained as a combination of two
factors. First, and more important, such algorithms have
few configurable parameters, and the way the ABOF is cal-
culated makes them structurally robust to a wrong choice.
Second, such big difference could also be linked to the se-
lection of possible thresholds and parameters values: the
AUC scores is high if changing such values does not signif-
icantly impact on the outcome of the analysis. Indeed, we
remark that we selected the combinations of parameters and
thresholds following the same methodology - analyze what
authors wrote on parameters selection when presenting their
algorithms - for all the algorithms.

5.3 RQ3: Is there an attack (or a category
of attacks) that is more difficult to detect
than the others?

We consider the attacks, or the attack categories, as di-
mensions of the analysis. This allows discussing the median
scores of our 12 algorithms, for the anomalies generated by
each specific attack and category.

5.3.1 Attack Analysis
Figure 3 shows P, R, ACC and F1 scores related to each

of the attacks in the considered datasets. From left to right
of Figure 3, it is possible to observe attacks with decreasing
F1 scores. On the right of the figure, we depict the attacks
that turned out to be tricky to detect, and that generated
the highest amount of FPs and FNs. More in detail, it is
possible to observe that anomalies generated by the generic
and exploits attacks are difficult to detect. In fact, these
attacks have heterogeneous characteristics: it is not trivial
to define an expected behaviour, and consequently it is diffi-
cult to define what is not expected, i.e., anomalous. Another
interesting observation regards DoS and DDoS attacks: Fig-
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Figure 3: Median metric scores for all the datasets and algorithms, grouped by attacks.

ure 3 shows that median scores for DDoS are higher than
DoS, implying that the anomalies generated by DDoS at-
tacks are detected with higher probability. When multiple
malicious hosts are trying to flood the target system with
network packets, the packets arrival rate raises significantly,
and therefore it is noticeably different from the expected
rate. On the other side, anomalies due to Meterpreter, Ad-
dUser, Web and Java attacks are detected with excellent R
scores (100%), implying that no false negatives were gener-
ated. We can conclude that most of the Application attacks
are on average easily detected by the algorithms we consid-
ered in our study, while it is more difficult to detect generic
and exploit attacks, probably because they introduce min-
imal - and not homogeneous - perturbations of the system
and network behaviour.

5.3.2 Categories of Attacks
This result is confirmed by Figure 4(a) and 4(b), which

plot R and ACC median scores for each combination of the
4 attack categories and the 6 algorithms families. The two
scatter plots depict the same 24 combinations of attack cat-
egories and algorithms families. To elaborate on attacks,
in Figure 4(a) 4 different symbols are assigned to each at-
tack category, while Figure 4(b) contains 6 different series
of symbols that help examining algorithms families. The
application attacks (the red circles in Figure 4(a)) are on
average very close to the right border, meaning that high
R scores were reported for all the algorithms families. Fig-
ure 4(a) highlights the good performances of classification
algorithms we already discussed in RQ1. In addition, we
point out that algorithms belonging to the statistical, clas-
sification and density-based families have high R scores for
each algorithm, i.e., crosses, segments and diamonds are po-
sitioned on the right side of Figure 4(b), in the 10th best
percentile. Moreover, we can observe how ACC is always
over 70%, except for host attacks (see Figure 4(a)) with
angle-based algorithms (bottom left of Figure 4(b)).

5.4 RQ4: Is there a dataset that offers better
detection scores than others?

The question is mostly related to the intrinsic difficulties
of correctly defining an expected behaviour relying on the
available data points of a given dataset. Since anomalies are

Table 4: Metric scores (median±std) for each dataset

Dataset AUC Recall Precision Accuracy F1

KC [36] 44.1± 8.2 95.3± 11.4 86.2± 4.9 80.0± 7.2 88.8± 8.4

NK [43] 48.7± 8.6 87.6± 3.2 88.2± 2.5 75.3± 2.6 84.6± 2.2

IX [39] 45.8± 3.4 97.4± 0.5 88.6± 1.5 86.0± 1.4 92.4± 0.7

AD [14] 49.9± 1.4 97.6± 1.0 99.4± 0.7 97.5± 1.4 98.8± 0.5

UN [32] 49.8± 3.2 84.8± 3.5 90.2± 3.1 74.0± 3.3 84.5± 2.6

supposed to be rare events, our conjecture is that in datasets
with a low ratio of attacks it should be easier to define the
expected behaviour and, consequently, to detect anomalies.

Table 4 aggregates the results of all the algorithms for
all the attacks contained in each dataset, partially confirm-
ing this conjecture. From the top of the table, we can see
that the higher F1 scores are related to the AL and the
IX datasets: according to Table 1, these contain respec-
tively 11.22% and 11.68% of attacks. However, this reason-
ing does not apply to the KC and NK datasets: KC has
an higher ratio of attacks than NK, but it has better scores
than NK. This may also be related to the specific attacks in
the datasets: some of them may be easier to detect, because
they generate point anomalies that significantly differ from
the expectations. In addition, it is worth noticing that the
AUC resulted in very similar and poor scores (between 40%
and 50%) across all the datasets, meaning that thresholds
and parameters of the algorithms should be tuned carefully
before conducting anomaly detection on the datasets we se-
lected for this study.

6. CONCLUSIONS AND FUTURE WORKS
This paper aims at providing a baseline reference for quan-

titative comparison of anomaly-based intrusion detectors for
critical distributed systems, which may be used by researchers
and practitioners when designing and assessing anomaly-
based IDSs. We compared 12 anomaly detection algorithms
belonging to 6 families and 5 attacks datasets. Assuming
that ongoing attacks manifest unstable performances of sys-
tem resources and processes, we exercised each algorithm on
each dataset, collecting a database of metric results which is
publicly available at [5]. We aggregated, presented and dis-
cussed our results by means of research questions. Main find-
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(a) Algorithms Families and Attack Categories. The
graph shows 4 series, one for each attack category.

(b) Algorithms Families and Attack Categories. The graph
shows 6 series, one for each algorithms family.

Figure 4: Median scores of Recall and Accuracy metrics for algorithms families and attacks categories. The
graphs contain 24 items, each of them maps the scores of a given algorithms family to a specific attack
category

ings are that algorithms belonging to the classification fam-
ily showed overall better scores on the 5 selected datasets,
while angle-based algorithms turned out to be more robust
to the choice of the initial parameters. We also highlighted
how the majority of attacks in the application category were
detected easier than others, and how an adequate distribu-
tion of expected and anomalous data points in the datasets
generally helps improving detection scores.

The results above suggest that many works may be built
on this baseline, contributing to anomaly-based intrusion de-
tection. In particular, our current and future works aim at
understanding if some algorithms may cover large sets of
attacks, while the uncovered attacks may be detected by us-
ing other algorithms in conjunction with the primary strat-
egy. Then, we will investigate if specific algorithms or algo-
rithms families are particularly effective in detecting either
point, contextual or collective anomalies. The analysis may
be complemented by deriving which kind of anomaly our
(category of) attacks are more likely to generate. As a final
result, a link between attacks and algorithms would be ob-
viously defined, consolidating the selection of unsupervised
algorithms for IDSs, also for complex systems [46].
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