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Haemostatic System Disorders and Risk of Thrombosis in 

Autoimmunity: A Brief Introduction 

Haemostatic system is characterized by a complex interaction between platelets 

aggregation, coagulation and fibrinolysis. These processes are activated during specific 

temporal phases after vessel injury and strongly regulated in order to stop bleeding and 

promote wound healing. Physiologically, endothelial damage is the trigger factor for 

thrombin-induced fibrin clot assembly at the site of insult, that will be removed by 

plasmin-mediated fibrinolysis after tissue repair.  

Genetic alterations and environment can be involved in coagulation factors impaired 

levels or activity, fibrinogen post-translational modifications, fibrin clot structural 

architecture abnormalities, resulting in haemostatic system affection. Thrombotic or 

hemorrhagic events represent the clinical manifestations of several haemostatic system 

disorders including pulmonary hypertension, myocardial infarction, venous 

thromboembolism, preeclampsia, cirrhosis. 

However, a growing literature has recently revealed a higher risk of thrombosis also in 

autoimmunity. Indeed, autoimmune disorders are frequently characterized by thrombotic 

events, suggesting a crucial association between systemic inflammation and thrombosis 

[1,2]. Accordingly, Behçet Syndrome (BS) has been proposed as a model of 

inflammation-induced thrombosis, where therapeutic treatment with glucocorticoids and 

or immunosuppressants produced a reduction of patients’ mortality due to arterial/venous 

thrombosis unlike anticoagulant drugs, according to European League Against 

Rheumatism (EULAR) guidelines. Based on this evidence, inflammation could be 

considered a trigger event for thrombosis, together with traditional cardiovascular risk 

factors [2]. In several diseases as Rheumatoid Arthritis (RA) and Systemic Lupus 

Erythematosus (SLE), an early progression of atherosclerosis has been largely observed, 
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supported by inflammation-enhanced Reactive Oxygen Species (ROS) production in 

addition to a profile of dyslipidemia [2]. In this context, cumulative data in literature 

revealed higher ROS-mediated oxidized low-density lipoproteins (oxLDLs) levels in SLE 

patients. They induce vascular smooth cells apoptosis, monocytes recruitment and pro-

inflammatory cytokines production as well as nitric oxide (NO) reduction, promoting a 

pro-thrombotic endothelial phenotype [3,4] and the formation of atherosclerotic plaque. 

Accordingly, cardiovascular manifestations represent one of the principal causes of 

mortality in patients affected by SLE, where both traditional and disease-related 

cardiovascular risk factors are actively involved [5]. 

However, pathogenetic mechanisms of thrombosis are not completely clarified, 

suggesting the need of further investigations to better understand the increased 

cardiovascular risk in SLE patients. 
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Systemic Lupus Erythematosus (SLE) 

Introduction to SLE 

SLE is an autoimmune disease with multisystemic clinical manifestations and 

unpredictable course. SLE incidence has been estimated ranging 1-10 cases per 100 000 

persons for year and the prevalence has been reported to range between 20 and 150 cases 

every 100 000 persons [6-8]. However, SLE epidemiological data are strongly influenced 

by the considered geographical area. Based on this evidence, SLE incidence in Italy was 

assessed to be 2.6/100 000 in 2002 and prevalence has been estimated about 57.9/100 

000, according to the recent studies in others Mediterranean European countries as Greece 

and Spain [9-11]. Female predominance of SLE (9:1 female to male) and higher SLE 

incidence in Africans, Americans and native Americans, Hispanic and Asian individuals 

than Caucasians suggest the multifactorial etiology of this disorder, where both genetic 

and environmental factors could be involved [6,8]. It is traditionally accepted that SLE is 

a chronic autoimmune disorder characterized by an altered autoimmune response to self-

antigens, especially mediated by adaptive immune system (T cells and B cells), that 

results in organ and tissue injury [6,8]. However, recent studies revealed the centrality of 

innate immune system components as dendritic cells (DCs) and phagocytes in SLE 

pathogenesis, based on their susceptibility to self-antigens in the first phases of 

inflammation. Indeed, as antigen presenting cells (APCs), they are crucial in antigens 

presentation, stimulating the adaptive immune system [6]. 

 

Epidemiology  

As several epidemiologic studies revealed, lupus disorder is a rare disease where gender, 

age, racial and geographical variations have a crucial role in its development, suggesting 
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how environmental, genetic and hormonal factors could be involved in SLE pathogenesis 

[12]. 

Milder cases consideration and the higher survival of SLE patients than in the past are 

associated with an increased incidence and prevalence of the disorder observed in the last 

years [13]. As reported in table 1, SLE incidence is triplicate in USA from 1-51 per 100 

000 in the 1950-79 cohort to 5-56 per 100 000 between 1980 and 1992, as indicated by 

D’Cruz D. P et al. in 2007 (Table.1) [14]. 

 

 

Table.1 SLE incidence and prevalence in the world [14] 

 

A growing literature has recently shown the higher susceptibility to SLE in non-

Caucasian individuals including African-Americans, Hispanics and Asians compared to 

the general population. African-American women show three/four-fold higher risk to 

develop SLE rather than Caucasian ones, potentially due to genetic predisposition and 

environment exposure. These elements are also crucial in influencing SLE incidence and 

prevalence, that has been found similar in racial groups living around the world. 
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As indicated in figure 1 and 2, Afro-Caribbean population shows a higher incidence and 

prevalence of SLE: however, several factors show effects on the considered 

epidemiological parameters including population race, countries heterogeneity, 

differences in applied methods of investigation, methodological approaches and health 

management [12]. 

 

Fig.1 SLE incidence in the countries of interest [12] 

 

 

Fig.2 SLE prevalence in the countries of interest [12] 

 

Based on worldwide data, 16-50 years is indicated as the common range of SLE onset: 

SLE cases before age 16 years represent a small 10-20% whereas after the age of 50 years 

the percentage is about 8-15%. Women show lupus development with a frequency of 6-

8 times more than men, suggesting the crucial role of sex and hormonal effects [15]. 
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In this context, the Euro Lupus Project, a multicentric prospective cohort study of 1000 

patients with lupus followed up from 1991, shows that [16] 

 SLE excursus is influenced by several factors including the age at the disease 

onset, the gender and the autoantibody profile; 

 Therapeutic treatments and cases of SLE remission are frequently associated with 

the decrement of inflammatory manifestations observed during the long phase of 

disorder; 

 Abnormalities in haemostasis and vascular events are one of the principal cause 

of morbidity and mortality in SLE patients.  

All these elements contribute to distinguish SLE evolution in different racial groups 

around the world. Implementations in health care and therapeutic approaches may induce 

an enhancement in lupus patient survival, changing from 50% in 1950-60 to about 95% 

in 2000. However, mortality rate is still 2-4 fold higher in SLE compared to healthy 

subjects [17]. 
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Pathogenesis  

SLE pathogenesis is largely discussed. The majority of evidence describes lupus disorder 

as a pathological condition with a multifactorial aetiology. As shown in figure 3, genetics 

and environment, epigenetics, sex and hormonal factors as well as immune system 

deregulation seem to be actively involved. 

 

Fig.3 Overview of SLE pathogenesis [21] 

 

Genetic Factors 

The ten-fold higher risk to develop SLE in monozygotic twin than dizygotic ones and the 

increased frequency of SLE in families suggest the role of specific genetic mutations in 

lupus susceptibility [18,19]. More than 80 genetic risk factors involved in different 

immunological pathways were discovered by genome-wide association studies (GWAS). 

Particularly, immune cells processing, clearance of cellular debris, type I interferon (IFN-

I) and Toll-Like Receptor (TLR) signaling as well as lymphocyte activation seem to be 

affected [18,19]. Moreover, several genes related to IFN system, Nuclear Factor kappa-

light-chain-enhancer of activated B cells (NF-kB) signaling, DNA degradation, apoptosis, 
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phagocytosis, neutrophil, monocyte/macrophage function and signaling seem to be 

associated with the risk of SLE onset [19]. 

However, the mechanism through which they contribute to autoimmune disorders is not 

completely clarified yet. Accordingly, several single nucleotide polymorphism (SNPs) 

related to SLE occur in non-coding DNA regions of immune response-related genes 

[20,21]. 

Only a small percentage of SLE cases are due to genetic mutations following the 

mendelian inheritance. The major part of patients displays a combination of a larger 

number of genes, including some (Interferon Regulatory Factor 5-IRF5, Signal 

Transducer And Activator Of Transcription 4-STAT4, Interleukin 1 Receptor Associated 

Kinase 1-IRAK1) strongly associated with nucleic acid sensing and interferon α (IFN-α) 

production or others, central for the modulation of T-lymphocyte (Protein Tyrosine 

Phosphatase 22- PTPN22, Tumor Necrosis Factor Superfamily Member 4-TNFSF4, 

Programming Cell Death 1-PDCD1) or B cell (B Cell Scaffold Protein With Ankyrin 

Repeats 1-BANK1, B-lymphoid Tyrosine Kinase-BLK, Lck/Yes Novel Tyrosine Kinase-

LYN) activity (PTPN22 regulates lymphocyte activation). Following several 

investigations, some genes as IRF5 and STAT4 are specifically associated with the 

increased risk of SLE or others autoimmune disorders (STAT4 with RA, PTPN22 with 

RA and diabetes Type 1) [20,21]. Moreover, among genetic risk loci for SLE 

pathogenesis TNIP1, PRDM1, JAZF1, UHRF1BP1 binding protein and Interleukin-10 

(IL-10) can be underlined [20]. A great relevance in SLE development is also represented 

by mutations of genes associated with complement component 1q (C1q) as well genes 

located between MHC class I and II, affecting components of the classical complement 

system. Several polymorphisms on genes encoded for mannose-binding lectin (MBL) can 

occur in SLE, being associated with abnormalities in mannose-rich microorganisms 

opsonization as well as in macrophages and complement cascade activation [18,22]. 
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Finally, alterations in TLR (especially TLR-7, TLR -8, TLR -9) may result in their 

hyperactivation, promoting immune response progress, whereas genetic variants of the 

Fc receptor for IgG can affect immune complexes clearance, triggering autoimmune 

disorder by activation of TLR and IFN system [18,22]. 

Moreover, polymorphisms on C- reactive protein (CRP), serum amyloid genes and in the 

programmed cell death 1 gene (PDCD1) seem to be associated with autoantibody 

production and SLE development [14]. 

However, only a 15% of the SLE hereditability can be attributed to the identified loci: the 

involvement of each single gene in the entire disease process and its contribute to the 

phenotype and severity of the disease is still under debate. 

 

Environmental Factors 

As an autoimmune disorder with a multifactorial etiology, environmental factors are 

actively involved in the pathogenesis of SLE and the principal ones can be summarized 

below: 

 Exposure to silica, dust, dioxins, polycyclic aromatic hydrocarbons and dietary 

components [8]; 

 Alcohol and smoking [8]; 

 D vitamin deficiency. This condition is partly due to SLE patients’ 

photosensitivity and their lower exposition to UV lights. The role of D vitamin 

lower levels is still unclear, despite polymorphisms in its receptor and the 

relationship among 25-hydroxy vitamin D (25-OH D vitamin) and lupus disease 

activity seem to be associated with harmful effects in patients. However, 

therapeutic supplementation with D vitamin is needed for preventing 

glucocorticoid-related osteoporosis: D vitamin clinical effects are so difficult to 

understand [19]; 
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 Exposure to ultraviolet (UV) lights. The most negative effects of UV-light 

exposure are found on cutaneous tissue. Particularly, an increase in keratinocyte 

cells apoptosis is observed in addition to higher self-antigens production and 

immune complexes formation. Pro-inflammatory cytokines, including 

interleukin-1 (IL-1), interleukin- 6 (IL-6) and tumor necrosis factor- α (TNF-α), 

are produced by keratinocytes and lymphocytes promoting skin damages as well 

as activation of mast cells, fibroblasts and endothelial cells via chemokines and 

adhesion molecules release. UV lights exposure seems to be also associated with 

DCs recruitment in lesional cutaneous lupus skin and IFN-α production, leading 

to inflammatory status [18,19]; 

 Bacterial and viral infections (as Epstein-Barr virus-EBV, Cytomegalovirus-

CMV, parvovirus B19, etc). Microorganisms are implicated in the pathogenesis 

of autoimmune disorders including SLE due to molecular mimicry mechanisms. 

Indeed, the similarity between several viral or bacterial antigens and autoantigens 

may cause an autoantibodies cross reaction with self-antigens, promoting 

autoimmune response and chronic inflammatory status [19,21]. Accordingly, the 

EBV Antigen 1 (EBNA-1) shows homologous regions with the autoantigen Ro: 

B-lymphocytes activation and antibodies production result in autoantigens attack, 

suggesting how sometimes infections could be involved in autoimmunity in 

predisposed individuals [19]; 

 Therapeutic treatment with several drugs including procainamide, hydralazine 

and quinidine. Acting as DNA demethylating agents, these drugs could be 

associated with autoantibodies production and autoimmune response that resolve 

by interrupting therapeutic supplementation [18]. 
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Epigenetic factors 

Epigenetic is characterized by several molecular mechanisms as DNA methylation, post-

translational histone modifications and microRNAs (miRNAs) that act regulating genes 

expression without changes in nucleotide sequence. Alterations in epigenetic processes 

can be associated with SLE pathogenesis. Several data described an hypomethylation 

status in SLE patients, affecting pro-inflammatory cytokines production and B and T 

lymphocytes stimulation [19]. Particularly, reduced levels of DNA methylation may be 

due to environmental, dietary and lifestyle factors as well as smoking and drugs 

supplementation. These alterations can be associated with [18-20]: 

 B-cells autoantibodies production and overexpression of co-stimulatory 

molecules including CD11a, CD70, CD40 Ligand (CD40LG) and perforin 

[18,20,21]; 

 Higher levels of pro-inflammatory cytokines (IL-6 and Interleukin-4 - IL-4). 

Studies on murine animal models showed the increased pro-inflammatory 

cytokines levels as a consequence of using DNA methylation inhibitors [18] and 

accordingly, DNA methylation in B-cells is inhibited in association with increased 

IL-6 levels [20]. 

 

Additionally, alterations in histone enzyme activity seem to be linked with abnormal 

expression of genes and costimulatory molecules as CD40LG in patients affected by SLE 

[18,20]. Further studies revealed alterations in miRNA system in SLE, affecting genes 

expression as well as DNA epigenetic regulation and histone modifications [18,19]. 

 

Sex and Hormonal Factors 

The higher prevalence of SLE in female individuals suggests a great involvement of sex 

and hormonal factors in lupus pathogenesis. Indeed, increased levels of estrogens have 
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been assessed in women affected by SLE, potentially derived from alterations in sex 

hormones metabolism (an increased activity of aromatase has been observed). Moreover, 

sex chromosome influence in SLE expression [20] has been evaluated using on 

engineered mice: the expression of X chromosome seems to be strongly associated with 

a higher risk of developing SLE and with the severity of disorder [18,21]. 

Evidence in literature described several estrogen effects on T-lymphocyte cytokines 

production: up-regulation of Th2 cytokines such as IL-4, Interleukin-5 (IL-5), IL-6, IL-

10, and Transforming Growth Factor- β (TGF-β) was observed whereas Th1 cytokines 

including IL-2, TNF-α, Interferon- γ (IFN-γ) were inhibited. Estrogens also promote Bcl-

2 anti-apoptotic molecule, suggesting its involvement in cell survival, including 

autoreactive B cells. Parallel, estrogen hormone may act up-regulating the expression of 

CD40LG and estrogen receptor in T-cells of SLE patients as well as the activation and 

differentiation of DCs [23]. Additionally, recent studies revealed the estrogens’ 

involvement in modulating the Autoimmune Regulator Gene (AIRE) expression, as a new 

molecular mechanism contributing to the higher risk of autoimmunity onset in female 

gender [24]. AIRE, expressed in the thymus by the medullary thymic epithelial cells 

(mTECs) and in secondary lymphoid organs, is a transcription factor with a central role 

in immune tolerance. It promotes the synthesis of organ-specific proteins located in 

peripheral tissues and the differentiation of thymic cells into Foxp3+ regulatory T(reg) 

cells. However, it can also induce the apoptosis of autoreactive thymocytes. Based on this 

evidence, hormones can be included among AIRE expression regulating factors. If AIRE 

expression is increased by androgens and dihydrotestosterone (DHT), as shown in in vitro 

studies and in human thymic stromal cells, it appears downregulated by estrogens in 

mTECs. These results support the evidence of a major risk to develop autoimmune 

disorders in females [24]. 
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Immune System Alterations and SLE Development [19] 

It is traditionally accepted that immune system deregulation is central in SLE 

pathogenesis. Autoantibodies production and pro-inflammatory cytokines release result 

in a chronic inflammatory status, promoting tissue injury and lupus clinical 

manifestations. 

T-cells in SLE T-cells play a crucial role in lupus development, being implicated in pro-

inflammatory cytokines production, B-cells stimulation and activation as well as 

autoantibodies generation [19,22]. 

T-cells can be divided in CD4+ T cells, including Th1, Th2 and Th17 (Treg) and CD8+ T 

cells that show cytotoxic activity. Among CD4+ T cells, deregulation in cytokines 

generation is largely described: particularly, decreased IL-2 levels and higher content of 

IL-6 and Interleukin-17 (IL-17) characterize inflammatory status and promote immune 

cells recruitment including neutrophils [6,22]. Interleukin-2 (IL-2) and IL-17 are 

inversely related in SLE: low doses of IL-2 represent a biomarker of the disorder and 

promote T cells differentiation to Th17 subtype, leading to an imbalance with Treg 

lymphocytes [19].  

On the contrary, CD8+ T cells show a compromised cytotoxic capacity in SLE patients 

but further investigations are needed. Indeed, the presence of double negative T-cells 

(CD4- CD8-) has been found in particular siti of SLE subsets as kidney, where they are 

involved in cytokine synthesis (IL-1β and IL-17) as well as in autoreactive B cells 

stimulation to produce autoantibodies [20]. 

B-cells in SLE. As adaptive immune system cellular components, B-cells principally act 

in producing antibodies against different antigens like antinuclear antigens (ANAs), but 

they can be also included among APCs for T-cells stimulation. De-regulation in B-cells 

activity can be due to abnormalities in specific signaling pathways including 

phosphorylation one (as calcium flux pathway). 
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Autoreactive lymphocytes survival and autoimmunity development is encouraged by the 

higher content of B lymphocyte stimulator (BAFF/ Blys) and APRIL (A proliferation-

inducing ligand), as observed in several human and mice SLE models. Blys effects on B 

cell subsets are different. Indeed, survival of mature B cells and plasma cells is largely 

associated with Blys and APRIL whereas no effects on memory B lymphocytes have been 

reported. Additionally, leukocyte Blys mRNA expression seems to influence SLE 

activity, suggesting Blys and also APRIL as a new therapeutic targets in SLE treatment 

[6,19]. 

Moreover, innate immunity is actively involved in SLE development and tissue damages. 

Alterations in structural and functional properties of neutrophils, monocytes, 

macrophages and DCs, leading to abnormal phagocytosis and apoptosis, deficiencies in 

apoptotic debris removal, self-antigen presentation and inflammatory molecules 

production, seem to be largely implicated in autoimmunity and SLE pathogenesis [20,22]. 

DCs. DCs play a physiological role as APCs, by recognizing viral or microbiological 

antigens via Pattern Recognition Receptors (PRRs). Their activation is associated with 

inflammatory cytokines production, phagocytic activity for apoptotic debris clearance 

and T lymphocytes stimulation. Based on this evidence, alterations in DCs functioning 

can be involved in breaking self-tolerance and autoimmunity [20,22]. Particularly, TLRs 

are able to interact with apoptotic debris, DNA, RNA or nuclear proteins in subjects with 

higher susceptibility to SLE, inducing DCs activation and pro-inflammatory cytokines 

production (as IFN-1), in absence of microorganism trigger factors.  

DCs can be traditionally divided in two different subsets, based on their phenotypic and 

immunological properties, mechanisms of activity modulation and sites of action: 

myeloid DCs and plasmacytoid DCs (pDCs). pDCs produce large amounts of IFN-1, a 

pro-inflammatory cytokine with cytotoxic cellular side effects including cell apoptosis. 

The consequent release of self-antigens is one of the reasons supporting the involvement 
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of pDCs in SLE pathogenesis [22]. IFN-1 can stimulate in vivo immune response, directly 

acting on T cells: indeed, a modulation of T cell activation, proliferation, differentiation 

and survival are described. pDCs can also influence B cell functions, in antigen 

recognition and presentation phase, cellular migration, survival and differentiation, 

cytokines production and class-switch recombination as well as Blys release enhancement 

[19]. Based on those multiple sites of action, tissue IFN-1 is proposed as a potential target 

of lupus disorder therapeutic treatments [22].  

Parallel, myeloid DCs are divided into tolerogenic DCs, active in apoptotic debris 

removal and anti-inflammatory cytokines production, and immunogenic DCs, associated 

with pro-inflammatory cytokines production and self-antigens processing and 

presentation. Alterations in content and functions of both these cellular subsets have been 

found in SLE patients [22].  

T and B cells stimulation and autoantibodies synthesis occurs consequentially. 

Neutrophils. Among innate immune system cells, also neutrophils show functional 

properties alterations in lupus disorder. Particularly, a reduced phagocytic and lysosomal 

activity, an increase in adhesion molecules (as intercellular adhesion molecule- ICAM-1, 

vascular cell adhesion molecule-VCAM-1) levels and in cellular aggregation are 

observed, together with an in vivo intravascular activation [22]. A reduced apoptotic 

debris removal as well as higher production of oxidant molecules, hydrolytic enzymes 

and inflammatory mediators represent further evidence of abnormalities in neutrophils 

biological activity, suggesting their involvement in adaptive immune system activation 

and tissue injury, particularly lupus nephritis [22]. In addition to the traditional 

neutrophilic pro-inflammatory mechanisms of action, Neutrophil Extracellular Traps 

(NETs) production by NETosis represents a great mediator in immune system response 

against microorganisms and self-antigens. NETs release can be also induced by dendritic 
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cells-mediated interferon stimulation, reciprocally substantiating inflammatory 

stimulation and representing a IFN-1 production [22].  

Monocytes/Macrophages. The involvement of monocytes/macrophages in SLE 

pathogenesis is due to alterations in their physiological phagocytic activity and apoptotic 

debris elimination. These alterations are associated with immune tolerance break, 

promoting autoimmunity [22].  

 

Based on these findings, a complex interaction among environmental and genetic factors 

is evident in the development of SLE. Defective mechanisms of apoptotic debris 

clearance are crucial in innate immune system stimulation, followed by an overproduction 

of pro-inflammatory cytokines as IFNs (type I and II) and BAFF/Blys, promoting T and 

B cells activation. Increased autoantibodies and IFN-1 levels are observed in SLE patients 

and a positive correlation between cells activation and pro-inflammatory mediator 

production is described, yielding to a chronic inflammatory and autoimmune status [19]. 

Epigenetic modulation, affecting IL-2 and IL-17 levels, have been also greatly described.  

In this context, anti-blood cell antibodies, anti-double stranded DNA (anti-dsDNA) and 

anti-phospholipid (aPLs) antibodies play a central role in tissue injury and lupus clinical 

manifestations via immune complex formation, leading to cytopenia, nephritis and 

cardiovascular affection. A great relevance in disease onset is also represented by pro-

inflammatory cytokines as IL-6, Blys, IL-17, IFN-1, TNF-α, Interleukin-18 (IL-18), due 

to their implication in immune system de-regulation and inflammation support [19,22]. 
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Clinical Manifestations 

SLE clinical manifestations involve multiple organs and tissues and the age of onset can 

influence clinical and laboratory profile: constitutional symptoms (fever, weight loss, 

fatigue) together with malar rash, discoid and subacute cutaneous lesions, 

photosensitivity, oral ulcers, arthritis, serositis, myositis, nephropathy, 

cardiovascular/neurologic changes, abdominal pain, hepatosplenomegaly, normochromic 

normocytic or hemolytic anemia, leukopenia and thrombocytopenia are the principal 

characteristic signs [25]. Several observational studies underlined that SLE clinical 

phenotype is not so different among male and female gender. However, if the principal 

cause of mortality in SLE patients aged 20-39 years is musculoskeletal and lupus-related 

causes, malignancy and cardiovascular manifestations represent the main cause of death 

in patients aged over 40 years old [7].  

 

Mucocutaneous Manifestations [26] 

Cutaneous manifestations (cutaneous lupus erythematosus-CLE) occur in most patients 

with SLE in the early phase of the disease course. Particularly, a distinction among acute 

CLE (photosensitive malar and macular rash), subacute and chronic CLE can be 

established. Cutaneous vasculitis, urticarial vasculitis, livedo reticularis, Raynaud 

syndrome, periungueal telangiectasias, erythema multiforme and calcinosis can be also 

considered manifestations of lupus disorder but not strictly specific of it. Moreover, UV 

exposure and smoking represent trigger factors for CLE. 

Topical or oral steroids, antimalarials and other immunosuppressive drugs are suggested 

as therapeutic approach for active CLE. 
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Musculoskeletal Manifestations [26] 

Arthralgia and arthritis are frequently found in SLE patients, often occurring in hand and 

knee joints. Therapeutic treatment with nonsteroidal anti-inflammatory drugs, 

antimalarials, corticosteroids or immunosuppressive therapy are proposed. A deforming 

arthropathy called Jaccoud arthropathy can be found in a small subset of SLE patients 

causing ligamentous laxity and lower joint subluxation. Immunosuppressed patients or 

corticosteroids taking for long periods seem to be associated with avascular necrosis and 

joint pain and osteoporosis.  

 

Hematological Manifestations 

Hematological alterations have been described in SLE patients: leukopenia, 

thrombocytopenia and autoimmune hemolytic anemia are considered for the diagnosis of 

the disorder. Among these clinical abnormalities, lymphopenia is one of the most 

common hematological complication in SLE, also due to therapeutic treatment with 

steroids and immunosuppressive drugs. Mechanisms involved in leukopenia are not 

completely discovered yet, however anti-lymphocyte antibodies and impaired apoptosis 

seem to be largely associated with this condition. Lymphopenia can be also used as a 

marker of disease activity and strictly connected with opportunistic infections in SLE 

patients as well as neutropenia. Lupus thrombocytopenia can be derived from peripheral 

destruction, sequestration and decreased production of platelets and it is generally 

associated with neuropsychiatric lupus, lupus nephritis, Antiphospholipid Antibody 

Syndrome (APS) and hemolytic anemia [26]. The severity of thrombocytopenia may give 

clinicians important information about survival and response to treatment [7]. 

Younger patients are frequently characterized by hemolytic anemia [26]. 
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Neuropsychiatric Manifestations 

Pathogenesis, assessment and treatment of Central Nervous System (CNS) disease is still 

unclear [14]. It is traditionally accepted that the pathogenesis of neuropsychiatric lupus is 

multifactorial, varying between human subjects and involving autoantibodies, immune 

complexes and cytokines. Several autoantibodies can be measured in serum and 

cerebrospinal fluid of CNS lupus and divided in brain specific and systemic 

autoantibodies. Among brain specific autoantibodies those binding neuronal, brain 

reactive autoantibodies (BRAA), N-methyl-d-aspartate receptor (NMDA) subunits NR2a 

and NR2b, ganglioside, microtubule-associated protein 2 (MAP-2), neurofilament and 

glial fibrillary acidic proteins need to be mentioned [13]. Particularly, NR2 subunit 

receptor anti-DNA antibodies may induce neuronal apoptosis and its higher levels can be 

found in cerebrospinal fluid from patients with SLE and cognitive decline [14].  

aPLs (and anti-cardiolipin in particular) are the most common in neuropsychiatric SLE 

patients, related to cognitive impairment, depression, psychosis, chorea, seizure and 

migraine [13]. 

Neuropsychiatric manifestations are included in the 1997 American College of 

Rheumatology (ACR) and Systemic Lupus International Collaborating Clinics (SLICC) 

criteria for diagnosis of SLE [27,28]. CNS lupus diagnosis is clinical and based on 

autoantibodies detection and advanced techniques as magnetic resonance spectroscopy 

[14]. Other neurologic criteria can be found in myelitis, cranial neuropathy, mononeuritis 

multiplex, peripheral neuropathy and acute confusional state. Neuropsychiatric SLE do 

not show a high frequency due to non-specific symptomatology [26,29]. 

 

Renal Manifestations 

Lupus nephritis (LN) is considered one of the most relevant complications of SLE and 

the major predictor of poor prognosis. The formation of immune complexes may affect 



Introduction 

 

24 

 

renal physiological functioning and causes glomerulonephritis, classified as Class I-IV 

according to the location and the amount of immune complex deposition [7,26].  

LN often develops during the first years after SLE diagnosis where persistent proteinuria 

greater than 0.5g per day or 3 + on dipstick and/or red blood cells, hemoglobin, granular, 

tubular or mixed casts on urine examination are considered as ACR criteria to define SLE 

[26]. However, the gold standard for LN diagnosis is a renal biopsy evaluating 

inflammatory interstitial infiltrates, interstitial fibrosis, tubulitis and tubular atrophy. 

Tubular atrophy appears strictly connected with interstitial fibrosis suggesting a central 

involvement in a worse outcome for patient [7]. 

Glucocorticoids and cyclophosphamide (CYC) represent the principal actors in 

therapeutic treatment of LN according to ACR and EULAR. Therapeutic approach with 

mycophenolate mofetil (MMF) has been introduced in specific human populations as 

African-Americans [30]. Guidelines indicate the use of the renin-angiotensin-aldosterone 

system (RAAS) blockers and hydroxychloroquine (HCQ) in presence of proteinuria and 

hypertension. Azathioprine is recommended for maintenance of remission after induction 

treatment with CYC or MMF or in milder cases of SLE. Rituximab can be considered in 

refractory patients or when other immunosuppressants are contraindicated [13]. 

 

Gastrointestinal Manifestations 

SLE gastrointestinal involvement is partly due to vasculitis at the level of visceral smooth 

muscles and it is associated with poor prognosis for patients. Among clinical 

manifestations, intestinal pseudo obstruction (IPO) is considered an uncommon 

complication of SLE with a difficult diagnosis and delayed treatment [7]. 
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Pleuropulmonary Manifestations [26] 

Among pleuropulmonary affection, pleuritis, acute pneumonitis, interstitial lung disease 

(ILD), shrinking lung syndrome (SLS), pulmonary embolism, pulmonary arterial 

hypertension (PAH) and diffuse alveolar hemorrhage (DAH) are the principal clinical 

manifestations. 

Pleuritis has higher prevalence, occurring in about 14% of SLE patients: chest pain, 

cough, shortness of breath and fever may represent the characteristic traits. ILD occurs in 

3-13% of SLE patients and it is characterized by a reduced lung diffusion capacity. Acute 

pneumonitis is less frequent and difficult to differentiate from infection or drug-induced 

pneumonitis. For this reason, therapeutic treatment (based on high-dose steroids and 

treatment of infection simultaneously) may be delayed and mortality can reach 50%. 

Among less common pleuropulmonary manifestations, also DAH can be included as a 

consequence of capillaritis and it generally occurs in SLE patients with high disease 

activity.  

PAH can be secondary in SLE patients and related to autoantibodies-mediated endothelial 

dysfunction and increased cardiovascular risk. Vasodilatory and immunosuppressive 

therapies can be beneficial. SLS is another uncommon complication of lupus disorder 

where dyspnea, small lung volumes and a reduced pulmonary functionality are the 

principal clinical signs. The lack of a standardized therapeutic treatment is due to the 

rarity of this manifestations.  

Moreover, a higher risk of pulmonary embolism occurs in patients affected by SLE and 

it is associated with increased risk of thrombotic events in antiphospholipid antibodies 

positive patients.  
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Cardiovascular Manifestations 

Patients with SLE are characterized by higher frequency of cardiovascular diseases 

(CVD) compared to the general population [31]. Several observational studies revealed 

that among immune-mediated inflammatory disorders, SLE shows the highest CVD 

standardized prevalence also after adjustment for demographic and traditional 

cardiovascular risk factors. It is generally accepted that inflammation has a central role in 

CVD, promoting endothelial dysfunction and atherosclerosis progression by cytokines 

and inflammatory mediators’ production as well as white blood cells, platelets and 

coagulation factors recruitment. CVD represent one of the principal causes of mortality 

for several autoimmune disorders (RA, BS, vasculitis, psoriatic arthritis, psoriasis etc) but 

particularly for SLE, suggesting the involvement of traditional risk factors, chronic 

inflammation, SLE disease activity, SLE-related immunological factors and SLE-related 

medications in increasing cardiovascular risk [32,33]. 

As shown in figure 4, the mortality pattern is bimodal in SLE. As reported by Urowitz et 

al. in 1976 [34], after a long-term systematic analysis of 81 patients followed for five 

years at the University of Toronto Rheumatic Disease Unit and by Rubin LA et al. in 

1985 [35], death seems to be firstly associated with infections, glomerulonephritis and 

CNS lupus in patients with early duration of disorder where SLE is active and therapeutic 

treatment with steroids is largely employed. On the contrary, the principal cause of 

mortality in SLE patients with long duration of disorder is represented by CVD 

(particularly myocardial infarction). 
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Fig.4 The bimodal pattern of mortality in SLE patients [34,35] 

 

The major part of cardiac structures can be affected: pericardium, endocardium, 

myocardium, coronary arteries and conduction tissue. Commonly, immune complexes 

are at the base of pericarditis, one of the most characteristic cardiovascular manifestations 

and included in the ACR classification criteria for SLE [27]. Valvular abnormalities are 

observed in several cases of SLE, suggesting a role of aPL and anti-endothelial antibodies 

and immune complexes deposition as the main pathogenetic mechanisms. 

Among CVD, myocarditis is a common manifestation: myocardial dysfunction is largely 

due to premature atherosclerosis-induced coronary artery disease (CAD), hypertension, 

renal failure, valvular disease and toxic effects of medications as CYC and chloroquine 

[36]. Several reports in literature show the early atherosclerosis in SLE and its association 

with the majority of CAD cases in affected [36,37]. 

Traditional and disease-related risk factors for CVD in SLE are summarized in figure 5. 

 

 

Fig.5 Cardiovascular risk factors in SLE [5] 
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Traditional CVD Risk Factors in SLE 

Hypertension. With its prevalence of 17-52% in SLE patients and higher levels in 

females, hypertension may contribute to plaque formation and arterial stiffening [37,38]. 

Dyslipidemia. SLE patients are characterized by an atherogenic lipid profile with high 

levels of total cholesterol, triglycerides (TG), low-density lipoproteins (LDL), very low-

density lipoproteins (VLDL) and Lipoprotein(a)-Lp(a) as well as lower levels of high-

density lipoprotein (HDL) cholesterol [5], suggesting their involvement in atherosclerotic 

plaque formation via ROS-induced lipid oxidation. Moreover, circulating lipoprotein 

remnant particles seem to be a trigger factor for complement system activation and 

inflammatory response [37]. Additionally, alterations in HDL function were found in SLE 

patients. If HDL cholesterol has an anti-inflammatory and anti-atherogenic role in healthy 

subjects, preventing oxLDLs and foam cells formation, a pro-inflammatory HDL subtype 

(piHDL) has been displayed in SLE [5,37]. Indeed, piHDL generates from chronic 

inflammation–induced structural HDL changes that reduce HDL cholesterol ability to 

reverse cholesterol transport and clear oxLDL from the subendothelial space [37]. piHDL 

higher levels were found in SLE patients with CVD than those without [5]. 

Additionally, an altered activity of paraoxonase 1 (PON1), an antioxidant component of 

HDL able to prevent lipoprotein oxidation, has been described in lupus disorder and 

associated with cardiovascular and cerebrovascular events. It is probably due to auto-

antibodies against PON-1: SLE patients with IgG anticardiolipin (aCL) show reduced 

levels of apoA-1, one of the major anti-inflammatory and atheroprotective component of 

HDL [5, 39]. The presence of anti-oxLDL antibodies associated with the increased risk 

of atherosclerosis is also displayed in [39]. 

Besides these factors, other contributors to the increased cardiovascular risk in SLE derive 

from Framingham heart studies [5,37,38]: 

 



Introduction 

 

29 

 

1. Advanced age  

2. Sex 

3. Coronary artery disease and myocardial infarction 

4. Diabetes mellitus,  

5. Obesity  

6. Smoking  

 

Pathogenesis of Atherosclerosis 

Atherosclerosis is recognized as a condition strictly connected with the increased 

cardiovascular risk in SLE patients. Cumulative evidence in literature underlines the 

multiple contribute of immune system de-regulation, inflammation, traditional 

cardiovascular risk factors, aberrant endothelial cell functions and repair mechanisms 

(lower levels of endothelial progenitor cells, EPCs, has been observed in SLE patients) 

as well as SLE-related determinants in atherosclerosis development and progression [39]. 

Atherosclerosis is a chronic inflammatory disease occurring in the arterial wall. It is due 

to the progressive accumulation and oxidation of LDL in the subendothelial space, 

promoting endothelial activation and consequent inflammatory responses involved in 

atherosclerotic plaque formation [39-41]. Several cellular and non-cellular components 

play a central role in atherosclerotic process. 

Briefly, shear-stress or inflammation-mediated endothelial injury promotes the 

upregulation of adhesion molecules as VCAM-1, intercellular adhesion molecule 1 

(ICAM-1), E-selectin and P-selectin, cytokines and chemokines as monocyte chemotactic 

protein-1 (MCP-1), IL-6, TNF-α and also the generation of ROS. Additionally, a decrease 

in NO production is observed. This condition results in the activation and dysfunction of 

endothelium that undergoes a pro-thrombotic and pro-atherogenic phenotype. As shown 

in figure 6, blood flow cells (monocytes, T-cells and also platelets) are recruited to the 
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endothelium, migrating in the subendothelial space together with plasma lipids (LDL, 

VLDL) that are oxidized by ROS and converted to ox-LDL. In the subendothelial space, 

monocytes-macrophages engulf ox-LDL (via interaction between ox-LDL and TLR4 and 

CD14 on macrophages) becoming foam cells, the basis of plaque lesion development 

[39]. Mechanical stimulating factors may induce macrophages and platelets secretion of 

pro-inflammatory cytokines that amplify inflammatory response and promote 

proliferation and recruitment of smooth cells in the arterial intima. Despite the production 

of growth factors for endothelial cells and pro-inflammatory cytokines, smooth cells 

secrete cellular matrix components leading to the formation of a fibrous plaque, composed 

of a lipid core surrounded by smooth cells and connective tissue fibers [41]. Activated 

macrophages expose metalloproteinases (MMPs) that mediate the fibrous cap proteolytic 

degradation and the release of pro-thrombotic molecules promoting thrombosis [39,41]. 

 

Fig.6 Process of Atherosclerosis [42] 

 

Disease-related CVD Risk Factors in SLE 

Demographics/Clinical Features. Male sex, advanced age, aPLs, renal function 

alterations and previous vascular events, together with chronic organ damage (according 

to SLICC damage index and SLEDAI (Systemic Lupus Erythematosus Disease Activity 

Index) are crucial in SLE cardiovascular manifestation development [37]. 
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Particularly, aPLs antibodies are found in about 30-40% of SLE patients, suggesting how 

SLE could be considered the most common secondary form of Antiphospholipid 

Syndrome (APS) [5]. aPLs act against membrane phospholipids and proteins of several 

blood cells inducing platelet aggregation and improving thrombosis risk. Indeed, aPLs 

positivity predispose to valvular disease, arterial and venous thrombosis and pulmonary 

hypertension [38]. 

Moreover, lupus nephritis and renal disease are some of the most representative indicators 

of disease activity. Renal involvement is recognized in about 50% of patients with SLE. 

Lupus nephritis can lead to acute renal failure or chronic kidney disease and it is strongly 

associated with increased risk of myocardial infarction in SLE patients [38]. 

SLE Therapy. Therapeutic treatment with glucocorticoids reveals a double effect in 

affected individuals. Indeed, it shows positive results on clinical symptomatology of 

patients but also harmful effects, altering blood pressure, glucose and lipid profile and 

corporal weigh [5]. Longer duration and high cumulative dose of glucocorticoids or 

azathioprine are associated with increased atherosclerosis and cardiovascular risk in SLE 

patients. On the contrary, HCQ, cyclophosphamide, MMF, antimalarial drugs seem to 

have protective effects against atherosclerosis [37,38]. Many studies showed that HQC is 

able to inhibit aPLs-induced platelet aggregation, reducing the risk of thrombotic events 

[5]. 

Genetics. Despite data in literature are still lacking, some study displayed an involvement 

of genetic contributors in the pathogenetic mechanisms of atherosclerosis in SLE patients, 

leading to an increased CVD risk. Particularly, some specific genetic variants of STAT4 

and BAFF has been associated with higher risk of arterial events and ischemic 

cerebrovascular disease in SLE [37]. 

Inflammatory/non-traditional risk factors. As a chronic inflammatory and autoimmune 

disorder, SLE is characterized by an overproduction of several inflammatory mediators 
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as cytokines, ROS and Reactive Nitrogen Species (RNS) that are strongly associated with 

endothelial dysfunction, atherosclerosis progression and CVD risk. Beside oxidative 

stress, increased levels of IFN-1 can induce EPCs depletion affecting endothelial repair 

mechanisms, proangiogenic IL-1 transcriptional pathways inhibition, macrophages 

recruitment to atherosclerotic lesions and foam cell formation as well as plaque instability 

promotion and platelets activation [37]. In this context, also NETs are actively involved 

in SLE vascular events, interacting with blood cells, coagulation factors and pro-

inflammatory signaling pathways (IFN-I) and participating as molecular scaffold for 

thrombus formation [37].  

Several pro-inflammatory cytokines and chemokines including MCP-1, interleukin-8 (IL-

8), TNF- α and IL-6 are increased in SLE patients together with adhesion molecules as 

VCAM-1, ICAM-1 and E-selectin that promote blood cells recruitment [37]. Both TNF-

α and IL-1 stimulate monocyte differentiation into macrophages/foam cells, promoting 

arterial inflammation and endothelial dysfunction [39]. Evidence in literature suggests 

the role of IL-17 in stimulating atherosclerosis in autoimmune patients as well as 

alterations in Treg activity seem to be strictly associated with atherosclerotic plaque 

formation [39]. 

Another relevant risk factor for cardiovascular events is represented by homocysteine 

(Hcy), based on the evidence that SLE patients show higher levels of Hcy compared to 

general population, probably due to macrophage activation [37]. Hyperhomocysteinemia 

is potentially involved in atherosclerosis and thrombotic risk by mediating endothelial 

dysfunction, proliferation of smooth muscle cells, platelet activation and atherosclerotic 

plaque assembly as well as inhibiting NO production [5,37].  

Finally, elevated levels of circulating ox-LDL, as a consequence of reduced antioxidant 

HDL levels or PON1 activity, higher piHDL content or systemic oxidative stress status 
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in SLE [37], represent themselves a system of endothelial insult, triggering a local 

immune response.  

 

  

Table.2 SLE-specific cardiovascular risk factors [5] 
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SLE Diagnosis 

General Diagnostic Criteria and Molecular Markers 

SLE is characterized by a great variability in symptomatology as well as in clinical and 

serological profile. These elements suggested the elaboration of more specific and 

accurate diagnostic criteria especially during the early phase of the disorder when the 

clinical features are still quite evident [43]. 

The ACR revealed the most used classification criteria for SLE diagnosis in 1971, that 

underwent in changes and innovation in 1982 and 1997, yielding more sensitivity and 

specificity. According to these, SLE diagnosis was performed if at least 4 of the 11 criteria 

were recognized, simultaneously present or not [27]. However, based on ACR criteria, 

several SLE patients in early phase or limited disease were not included and the exclusion 

of some cutaneous (as maculopapular or polycyclic rash), neurological (as myelitis) and 

immunological manifestations represent an important limitation. Additionally, the lack of 

inclusion of low serum complement components levels in ACR criteria compromise the 

diagnosis for patients without any immunological criteria [15]. 

In 2012, the SLICC, an international group focused on SLE clinical research [28] added 

some variations to ACR classification criteria being more sensitive by less specific than 

the ACR criteria [25].  

New guidelines were elaborated and used for SLE diagnosis still now (as shown in table 

3). On the contrary to the ACR criteria, clinical and immunological criteria were divided 

and SLE diagnosis were based on lupus nephritis in the presence/absence of ANAs or 

anti-dsDNA antibodies or the positivity to four criteria (including at least one clinical 

criterion and one immunological criterion) [15,44]. In SLICC criteria, a classification of 

cutaneous manifestations in acute and chronic one is reported, excluding photosensitivity 

because of the difficult distinction with discoid rash. Articular involvement is accepted in 

presence of pain affecting at least two joints, whereas neurological manifestations are 
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evaluated according to several clinical treats reported in “ACR neuropsychiatric case 

definitions” of 1999 [44]. Further, SLICC criteria also updated proteinuria cut off values, 

including the presence of a ratio between urinary proteins and creatinine obtained in 8-24 

hours comparable to 500mg of proteins in 24 hours [44]. 

Among immunological treats, anti-ds DNA, anti-Smith (anti-Sm) antibodies, 

antiphospholipid (anti-β2 glycoprotein) antibodies are considered, together with low 

complement levels (based on C3, C4, CH50 or total hemolytic complement levels) and 

the positivity to Coombs test, not in case of hemolytic anemia [15,44]. 

 

 

Table.3 Diagnostic criteria for SLE [26] 

 

 

SLE pathogenesis is greatly driven by immune system dysfunction and autoantibodies 

production, actively involved in tissue injury and systemic clinical manifestations. Based 

on these data, detecting the presence of antibodies against self-antigens in biological 

fluids is included in the clinical practice for SLE diagnosis. 
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ANA antibodies, directed against nuclear components, belong to IgG class and represent 

the most common autoantibodies found in SLE patients but not specific for the disorder 

[15]. Anti-dsDNA autoantibodies, assessed in 50-60% of affected, are more specific for 

SLE, showing a great relevance in clinical practice. Indeed, antibodies against 

nucleosomes are significantly related to renal failure and disease activity. Among 

Extractable Nuclear Antigens (ENA) antibodies, anti-Sm, anti-nRNP (against 

ribonucleoproteins and also found in Sjögren Syndrome and Mixed Connective Tissue 

Disease-MCTD), anti-SSA/Ro and anti-SSB/La (against cytosolic or nuclear antigens, 

associated with photosensibility and cutaneous lesions and also found in Sjögren 

Syndrome and MCTD) antibodies play a central role in SLE disease. Other classes of 

autoantibodies can be involved in SLE pathogenesis, including those against red blood 

cells (associated with autoimmune hemolytic anemia), platelets (associated with 

autoimmune piastrinopenia) and lymphocytes (associated with lymphocytopenia) 

[45,46]. aPLs antibodies are an heterogenous group of autoantibodies against cellular 

membrane phospholipids, plasmatic proteins with high affinity for membrane 

phospholipids or protein-phospholipids complexes. Among this class of antibodies, aCL, 

anti-β2 glycoprotein and anti-phospholipid-thrombin complex represent the principal 

constituents. The Lupus Anticoagulant (LAC) is an immunoglobulin against cellular 

membrane proteins and phospholipids, found with higher percentage in SLE patients than 

in healthy subjects. However, patients do not necessarily develop LAC. About 30-40% 

of patients affected by SLE are positive for aPLs antibodies, associated with platelets 

aggregation and arterial/venous thrombotic events [46]. The positivity to aPLs antibodies 

does not necessarily lead to APS but when it happens, an increased cardiovascular risk is 

observed. Several data in literature reported a progression of atheroma in presence of APS 

as well as more damages to vascular and cardiovascular system [14]. 
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As a chronic inflammatory and immune-mediated disorder, an activation of complement 

system is reported in SLE, suggesting the assessment of C3 and C4 complement serum 

fractions for diagnosis and clinical monitoring. Lower levels of complement components 

and higher anti-dsDNA levels are used for the evaluation of disease activity. 

An increase in total blood immunoglobulin amount, together with other pro-inflammatory 

markers (as velocity of erythrocyte sedimentation and rheumatoid factor) is also 

described [46]. 

Among novel biomarkers, an upregulation of IFN-I genes is observed [15]. 

Finally, imaging tests as well as biochemical analysis on urinary samples and renal biopsy 

are employed in order to evaluate renal, cardiac, pulmonary, neurological and articular 

involvement. In particular, proliferative lupus nephritis is described by higher levels of 

urinary B cell activating factor (uBAFF), urinary proliferation-inducing ligand (uAPRIL) 

and urinary osteoprotegerin (uOPG) levels than controls or SLE patients without nephritis 

[7]. Other urinary markers are emerging as indicators of disease activity. Urinary 

podocyte excretion, urine progranulin (uPGRN) and pentraxin 3 (uPTX3) levels are 

useful for disease progression: several data reported the significantly increase in these 

parameters in active lupus nephritis patients when compared to those in remission or 

healthy controls. Additionally, serum TNF-like weak inducer of apoptosis (TWEAK) and 

serum insulin-like growth factor binding protein-2 (IGFBP-2) levels seem to be 

associated with renal involvement and clinical activity [7]. 

 

The variability of SLE clinical manifestations led to the elaboration of disease activity 

index scores to better evaluate severity, prognosis and therapeutic response of SLE. The 

principal disease indexes are represented by The Systemic Lupus Activity Measure 

(SLAM) Index, the SLEDAI Index, The European Consensus Lupus Activity 

Measurement (ECLAM) and The British Isles Lupus Assessment Group (BILAG). 
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Among them, BILAG score is used to evaluate damages to organs whereas SLEDAI is 

associated with disease activity status [45]. These indexes are principally needed in 

research but they are also used for the disease clinical monitoring. 

 

BILAG Index 

BILAG Index was proposed for the first time in 1988 and the updated (BILAG 2004) in 

2005 (table 4).  

 

 

Table.4 BILAG 2004 Index 



Introduction 

 

39 

 

According to the new version, it is an organ-specific 86-question assessment based on the 

principle of the doctor’s intent to treat, which requires an assessment of improved (1), the 

same (2), worse (3), or new (4) over the last month.  Within each organ system, multiple 

manifestations and laboratory tests are combined into a single score for that organ.   

The resulting scores for each organ can be A through E. Grade A represents very active 

disease where immunosuppressive drugs and/or a prednisolone (or equivalent) dose of 

>20 mg daily or high-dose anticoagulation are needed. Grade B indicates moderate 

disease activity, suggesting lower doses of corticosteroids, topical steroids, topical 

immunosuppressive drugs, antimalarials, or nonsteroidal anti-inflammatory drugs. Grade 

C is referred to mild stable disease as well as for patients previously affected but without 

disease activity whereas grade E is used for cases with no disease activity.  

The BILAG 2004 index susceptibility to changes in SLE disease activity legitimate its 

use not only for research, but also for evaluating positive or negative evolutions of the 

disorder. Particularly, it is useful to monitor disease outcome and treatment protocols. 

This score is simple to obtain and minimally influenced by the operator. 

To facilitate comparisons with global indexes, a numerical scoring system has been 

associated with the BILAG 2004 index. The optimal method is to convert the assessments 

so that an “A” = 12 points, “B” = 8 points, “C” = 1 point, and “D/E” = 0 points [47]. 
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SLEDAI Index 

 SLEDAI Index, firstly proposed in 1985, is an index to evaluate disease activity in 

patients affected SLE; modifications performed in 2002 included cases of persistent 

active disease (SLEDAI-2K) and are reported in table 5. 

 

 

Table.5 SLEDAI-2K Index 

 

It is a list of 24 items, 16 of which are clinical items such as seizure, psychosis, organic 

brain syndrome, visual disturbance, other neurological problems, hair loss, new rash, 

muscle weakness, arthritis, blood vessel inflammation, mouth sores, chest pain worse 



Introduction 

 

41 

 

with deep breathing and manifestations of pleurisy and/or pericarditis and fever.  Eight 

of the 24 items are laboratory results such as urinalysis testing, blood complement levels, 

increased anti-DNA antibody levels, low platelets, and low white blood cell count.  These 

items are scored based on whether these manifestations are present or absent in the 

previous 10 days.   

Organ involvement is weighted; for example, joint pain and kidney disease are each 

multiplied by four, but central nervous system neurological involvement is multiplied by 

eight.  The weighted organ manifestations are then summed into a final score, which can 

range from zero to 105.  Scores greater than 20 are rare.  A SLEDAI of 6 or more has 

been shown to be consistent with active disease requiring therapy.  A clinically 

meaningful difference has been reported to be an improvement of 6 points or worsening 

of 8 points.   

The SLEDAI was modified in the Safety of Estrogens in Lupus Erythematosus National 

Assessment (SELENA) trial; this modification is known as the SELENA-SLEDAI 

system.  The SELENA-SLEDAI adds some clarity to some of the definitions of activity 

in the individual items, but does not change the basic scoring system. 

SLEDAI score defined the activity categories: A SLEDAI score >5 is associated with a 

probability of initiating therapy in >50% of cases [47]. 
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Current and Future Therapies  

Current guidelines suggest the use of antimalarial drugs, glucocorticoids (GCs), non-

steroidal anti-inflammatory drugs (NSAIDs) for the treatment of SLE constitutional 

symptoms and mild cases. On the contrary, methotrexate, azathioprine, CYC and MMF 

are recommended for patients with severe lupus [25, 48]. Intravenous immunoglobulin 

(natural polyclonal antibodies-mainly IgG fraction, pooled from sera of donors) are 

considered in case of active disorder, but numerous are the contraindications and 

limitations for its use [13]. 

Lupus patient therapeutic treatment is also driven by D vitamin, calcium supplements and 

antiresorptive agents for osteoporosis prevention, antihypertensive agents and statins in 

order to mitigate systemic clinical alterations [48].  

The principal drugs used for SLE treatment are summarized in table 6 [13]: 

 Steroids. As immunosuppressive molecules, they induce anti-inflammatory 

cytokines (IL-10, IL-1Ra and annexin-1) and decrease adhesion molecules 

expression and pro-inflammatory cytokines (IL-2, IL-6, TNF) levels. They can 

also modulate lymphocyte activation by inhibiting APCs process as well as cyclo-

oxygenase 2 (COX 2) and nitric oxide synthase (NOS) activity; 

 Hydroxychloroquine. HCQ is a molecule with immune-modulative characteristics 

but without immunosuppressive effects. It plays a role in modulating APCs 

process and TLR- 9 signaling pathway. It is used in case of arthritis, skin rashes 

and fatigue but it has also revealed antithrombotic properties; 

 Cyclophosphamide. CYC prevents cell division by cross-linking DNA and 

suppressing DNA synthesis. It is recommended for lupus nephritis and severe 

SLE; 
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 Azathioprine. As a purine analogue, azathioprine suppresses DNA synthesis by 

inhibiting xanthylic and adenylic acids assembly. Used for systemic clinical 

features of lupus erythematosus and for maintenance therapy of lupus nephritis, it 

can also help to reduce steroid requirement; 

 Methotrexate. Methotrexate is a folate antimetabolite used in cancer therapy for 

its role in inhibiting DNA synthesis. Its involvement in decreased purine synthesis 

and cell proliferation suggests the employment of methotrexate also in SLE 

treatment, particularly in case of skin and joints manifestations; 

 Mycophenolate mofetil. MMF (mycophenolic acid as active metabolite) avoids T 

and B cells proliferation by interfering with nucleotides synthesis and inhibiting 

monophosphate dehydrogenase. It is suggested in cases of lupus nephritis and in 

moderate to severe SLE. 

 
 

Table.6 Conventional drugs for SLE treatment [13] 

 

Therapeutic supplementation with conventional and novel immunosuppressive drugs 

improved 5-year survival rate of SLE patients from about 50-70% in the 1950s to over 
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90% in the 1990s and later [25,48]. However, SLE mortality remains higher if compared 

to the general population, largely due to CVD and renal failure, infections and tumors. 

Additionally, several adverse effects have been found in association with conventional 

drugs use, including weight gain, osteoporosis, immunodepression, glucose intolerance 

and hypertension, myopathy, delayed wound healing and behavior changes [25]. 

Based on this evidence, in the last years new therapeutic approaches have been developed 

in order to improve SLE management, increase survival rate and reduce side effects and 

GCs administration. 

As shown in table 7, these therapeutic agents can be classified in different categories 

according to their specific mechanism of action and molecular targets [13,25]: 

1. B-cell targeting agents 

1.1. B-cell depleting therapy: rituximab. 

1.2. Inhibition of B-cell survival: belimumab, atacicept. 

1.3. B-cell modulating therapy: epratuzumab. 

1.4. Other potential B-cell (plasma cell) targeting strategies. 

2. T-cell/costimulatory targeting agents 

2.1. Inhibition of T-cell function: abatacept, ruplizumab, toralizumab, lupuzor. 

3. Cytokine/innate immunity targeting agents 

3.1. Anti-IL-6 agents: tocilizumab. 

3.2. Anti- TNF-α agents: infliximab, etanercept. 

3.3. Anti- IFN-1 agents: sifalimumab, rontalizumab. 

3.4. Complement inhibitors: eculizumab. 
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Table.7 Biological treatments for SLE [13] 

 

 

1.1 Rituximab  

Rituximab is a chimeric murine/human monoclonal antibody (mAb) projected against 

CD20, a transmembrane protein crucial in the modulation of cell-cycle and differentiation 

of B cellular lineage. CD20 is found on mature B cells and their precursor but not on stem 

cells, pro-B or plasma cells [13,14,25]. Rituximab is traditionally used and well tolerated 

in the treatment of non-Hodgkin’s lymphoma and RA. However, cumulative evidence in 

literature has recently displayed its recommendation also for SLE patients, in case of 

unresponsiveness to conventional and novel immunosuppressive agents as MMF [14,25]. 

Humans therapeutic treatment with rituximab leads to circulating B cells elimination by 

complement and antibody dependent cytotoxicity, resulting in decreased autoantibodies 

production. Beside the simple B-cells depletion, also different CD4 regulatory T cells and 

increased T-cells apoptosis were observed after 30 days of rituximab supplementation, 

suggesting a role of this therapeutic agent in modulating regulatory T cells and B cells 

interaction [14]. 
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Several clinical trials are now active in order to evaluate properties and beneficial effects 

of therapeutic treatment with Rituximab, but results are still controversial. The 

EXPLORER trial assessed rituximab in 257 patients with moderate and severe non-renal 

SLE and undergoing conventional drugs, evaluating the presence and maintenance of 

clinical response (according to BILAG score) as primary endpoint. Positive effects were 

observed in African-American and Hispanic patients [49]. On the contrary, the LUNAR 

trial, a randomized double-blind, placebo controlled trial and performed on 144 patients 

class III or IV lupus nephritis, reported that the primary endpoint (rituximab superiority) 

was not achieved [13,50]. 

Despite the results of these two trials that failed to demonstrate the superiority of 

rituximab over placebo, several other clinical studies are in progress, revealing beneficial 

effects derived from rituximab treatment. In cases of active lupus nephritis with no 

response to conventional therapies, Rituximab is suggested by ACR and EULAR 

guidelines [13]. 

 

1.2 Belimumab 

Belimumab is a BLys inhibitor suggested for patients with autoantibody-positive active 

SLE under standard therapy. Belimumab administration is generally well tolerated, it 

avoids flares, increases serological activity, and allows to reduce corticosteroids exposure 

[51]. Based on this evidence, in 2011 Belimumab was approved by the Food and Drug 

Administration in the USA and by the European Commission for SLE treatment. BLys 

(also known as BAFF), is a 285 amino acids cytokine with a central role in B-cell 

homeostasis and survival. It belongs to the TNF family together with its related 

homologue APRIL and it is expressed by several cell types including innate immune cells 

(neutrophils, dendritic cells, monocytes and macrophages), T and B lymphocytes [51].  
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The proteolytic cleavage of Blys from cellular membrane activates the molecule and 

promotes its interaction with three different receptors involved in NF-kB signaling 

pathway activation: BR3 (BAFF receptor 3), TACI (transmembrane activator and 

calcium modulator and cyclophilin ligand interactor) and BCMA (B-cell maturation 

antigen).  As shown in figure 7, BLys interaction with its receptor inhibits B-cells 

apoptosis, promoting B-cell proliferation and differentiation into immunoglobulin (Ig) 

producing plasma cells [51].  

Belimumab is a fully human Ig G1λ monoclonal antibody obtained using recombinant 

DNA technology in a mammalian cell expression system. It shows high affinity for 

soluble BLys, avoiding its interaction with specific receptors and the consequent 

signaling pathway described before. B-cell proliferation and differentiation are inhibited, 

apoptosis of autoreactive B-cells induced and autoantibodies circulating levels reduced 

[51]. 

 
 

Fig. 7 Belimumab mechanism of action [51] 

 

 

The pre-clinical trials and phase I trials were performed as early as 2000-2001 showing 

great results in terms of B lymphocytes and anti-dsDNA antibody reduction. This 

evidence encouraged further trials, suggesting the role of Belimumab as a new option for 

treatment and management of SLE [51]. 
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Following favorable results of Belimumab in phase II trials, two important phase III trials 

(BLISS-52 and BLISS-76 trials) were performed in order to assess the effect of 

Belimumab against placebo in autoantibody-positive active SLE patients under standard 

therapy, evaluating the Systemic Lupus Erythematosus Responder Index (SRI) at week 

52 as primary endpoint [44]. 

BLISS-52 enrolled 865 patients from South America, Asia and Eastern Europe [54] while 

BLISS-76 recruited 819 patients from North America, Europe and Israel [53]. Both the 

studies reported a significantly increase in SRI rate in SLE patients after 52 weeks of 

supplementation with belimumab when compared to placebo group and no more adverse 

events were described. Consequently, these two clinical trials were essential in 

developing new therapeutic strategies for SLE treatment, underlying the safety profile 

and efficacy of belimumab in controlling SLE in a specific cohort of patients [54]. 

Further studies are needed to investigate the long-term safety, efficacy and tolerability 

and its effects on CNS, renal, lung and heart clinical complications. Data about 

belimumab pharmacokinetics, safety in pregnancy or in co-administration with 

corticosteroids as well as in combination therapies (Belimumab and Rituximab) are not 

completely reported [51,52]. At the same time, combined therapy with belimumab, 

reliable clinical biomarkers to predict positive/negative response to the pharmacological 

treatment and the potential existence of anti-drug antibodies associated to the loss of 

therapeutic efficacy represent essential future aims [55]. 

In addition to Belimumab, other agents with high affinity for BLys/BAFF pathway exist 

as Atacicept, a fusion protein between TACI and the Fc portion of IgG, is able to bind 

both BLys and APRIL. However, several clinical trials failed because of the excessive 

reduction in B cells number and serum immunoglobulin levels [6].  
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Redox Status in Biological Systems 

Redox Homeostasis and Oxidative Stress: General Details 

Oxygen has a central role in life mechanisms showing both beneficial and harmful effects 

on biological systems. The principal oxygen involvement is in adenosine-5-triphosphate 

(ATP) generation via mitochondrial oxidative phosphorylation [56]. Together with 

several others cellular redox processes, this reaction is also implicated in the production 

of ROS as well as RNS [57]. 

Free radicals are physiologically produced during normal cellular metabolism. A free 

radical can be defined as an atom or molecule containing one or more unpaired electrons 

in valency shell or outer orbit and capable of independent existence. These aspects 

determine its instability, short life and high reactivity that is described as the capacity of 

electron abstraction from other compounds to be more stable. Thus, the attacked molecule 

loses its electron and becomes a free radical itself, inducing chain reactions cascade which 

finally damages living cells [58]. 

At physiological levels, ROS/RNS play an important role in immune function (defence 

against pathogenic microorganisms) and in many intracellular signaling pathways, in 

mitogen response and in redox regulation as secondary intracellular messengers (figure 

8) [8,58]. At higher concentrations, they can be responsible of molecular damages on 

proteins, lipids and nucleic acids (DNA, RNA) and a complex system of antioxidant 

defences has been evolved to maintain a redox balance and avoid biological system injury 

[56]. However, environmental factors, deficiencies in antioxidants, immune system 

dysfunctions, chronic disorders, etc can alter the balance between oxidant molecules and 

antioxidants, leading to a condition called oxidative stress or nitrosative stress 

respectively [59]. Indeed, if minor disturbances on the redox balance are likely to induce 

homeostatic adaptations in response to environmental changes, more major perturbations 
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may cause irreparable damages and cellular death [56]. Accordingly, oxidative stress is 

recognised to have a pathological involvement in several disorders including 

inflammation, atherosclerosis and cardiovascular diseases, autoimmune disorders, 

neurodegeneration, respiratory diseases, cancer as well as aging process [56,57,60]. 

 

 

Fig.8 ROS sources and antioxidant systems [69] 

 

ROS Classification 

As shown in figure 9, the most important free radicals produced during metabolic 

reactions are represented by oxygen derived radicals or ROS. These elements can derive 

from endogenous sources as mitochondria, peroxisomes, endoplasmic reticulum but also 

from exogenous ones as cigarette smoke, hypoxia/hyperoxia status, ionizing radiations, 

heavy mental ions. Some pathophysiological processes as immune cell activation, 

inflammation, infection, aging, ischemia, excessive exercise and mental stress can be also 

included in ROS production [60]. 

Among ROS, Superoxide Ion Radical (O2
∙-), Hydroxyl Radical (OH.), Peroxyl Radical 

(ROO.) have been largely described. The non-radical species can be identified in 
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Hydrogen Peroxide (H2O2), Singlet Oxygen (1O2
-) and Hypochlorous Acid (HOCl): 

these molecules are not free radicals but they can easily lead to oxidative reactions in 

living organisms [58,60].    

 

 

Fig.9 Free radical generation and their catabolism [120] 

 

Superoxide Ion Radical. O2
∙- is one of the most important ROS formed by enzymatic 

processes, auto-oxidation reactions and by a non-enzymatic electron transfer reactions in 

which an electron is transferred to molecular oxygen. Mitochondria are considered the 

principal source of O2
∙-: electrons transfer along the enzymes belonged to the respiratory 

chain is not totally efficient and leakage of electrons on to molecular oxygen, in particular 

from complexes I and III, results in the generation of O2
∙- [56]. O2

∙- rate formation is 

determined by the number of present electrons on the chain and so is elevated under 

conditions of hyperoxia and raised glucose, as in diabetes. Paradoxically, it is also 

increased under hypoxia status, when the reduced availability of oxygen to act as the final 

electron acceptor for complex IV causes accumulation of electrons [56]. O2
∙- can be also 

generated from the shorter transport chain within endoplasmic reticulum (ER). Other 

sources of O2
∙- include NADPH (Nicotinamide Adenine Dinucleotide Phosphate 

Hydrogen) oxidase, found in polymorphonuclear leukocytes, monocytes and 

macrophages, cytochrome P450 and several oxide-reductase enzymes as xanthine 
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oxidase, lipoxygenase, cyclo-oxygenase. Various growth factors, drugs and toxins are 

also involved in ROS generation [56,58].   

Superoxide ion is not able to come across intracellular membranes and its molecular 

damages are only evident in the compartment of generation. It is detoxified by the 

superoxide dismutase enzyme (SOD) which convert it to H2O2.     

Hydrogen Peroxide. H2O2 it is not a free radical and so less reactive than O2
∙-, but it is 

considered a reactive specie because of its involvement in free radical generation and 

detoxification [56]. It can easily diffuse through cellular and organelle membranes but 

any direct effect on DNA has been described. However, H2O2 can damage nucleic acid 

by producing OH. in the presence of transition metal ions (Haber- Weiss reaction) and 

for this reason, the conversion of H2O2 to water, catalyzed by antioxidant enzymes as 

catalase (CAT) and glutathione peroxidase (GPx), is central in biological systems [56,58].  

Xanthine oxidase, amino acid oxidase, NADPH oxidase and peroxisomes are important 

sources of H2O2 generation and particularly, granulocytic enzymes can expand the 

reactivity of H2O2 via eosinophil peroxidase and myeloperoxidase (MPO).  

Additionally, H2O2 can biochemically react with chloride ion producing HOCl, a highly 

oxidative molecule and central in immune system response for pathogens killing. It can 

also react with DNA and proteins, inducing their oxidation [60]. 

Hydroxyl Radical. OH. is the most dangerous among ROS, able to react with any 

biological molecule as proteins, lipids, carbohydrates and DNA causing severe damages 

to cells and consequently apoptosis. It derives from Fenton Reaction in which H2O2 react 

with metal ions (Fe2+ or Cu+), given from different proteins such as ferritin (an 

intracellular protein of iron stocking) and ceruloplasmin (plasma copper carrying protein) 

or other molecules. Moreover, OH. can be also generated during Haber-Weiss Reaction, 

where O2
∙-, reacts with H2O2 [56,58,60] following the mechanism reported below.               
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Fenton Reaction: H2O2 + Fe2+→ Fe3+ + OH∙ + OH- 

              Haber-Weiss Reaction: O2
- + H2O2 → OH + OH- + O2 

 

Peroxyl Radical. The simplest form of ROO.  is Perhydroxyl Radical (HOO.), derived 

from the protonation of superoxide anion. Many studies underlined the role of ROO. in 

fatty acids peroxidation and cancer development [58]. 

Singlet Oxygen. 1O2 is an electronically high excited state of molecular oxygen, in vivo 

produced by the activation of neutrophils and eosinophils. Some enzymatic reactions 

catalyzed by lipoxygenases, dioxygenases and lactoperoxidase are involved in 1O2 

generation. 1O2 is a highly reactive molecule associated with DNA and tissue damage 

[58]. 

Hypochlorosus Acid. HOCl is a non-radical specie that originates from H2O2 oxidation 

of Cl- ion catalyzed by MPO. HOCl has important microbial characteristics due to its 

ability of proteins, lipids and DNA chemical alterations. It can react with methionine and 

cysteine amino residues, leading to methione sulfoxide and disulfides involved in cross-

reactions between proteins and protein-DNA. Several HOCl-mediated DNA mutations 

are detected as well as mono and di-chloroamines, able to come across hydrophobic 

microbial membranes affecting intracellular targets. Furthermore, HOCl is an important 

trigger factor for NETs production and release during inflammatory response [61]. 

 

NO and RNS: Classification and Sources of Production 

NO is an important biological molecule with vasodilatory activity and a central role as a 

regulator of many cellular events as apoptosis. It acts as an intracellular second 

messenger, stimulating guanylate cyclase (resulting in the activation of several signaling 

pathways as protein kinase G (PKG) that induces phosphorylation of several intracellular 

proteins including calcium ion -Ca2+ channels) [62] and protein kinases and it is involved 



Introduction 

 

54 

 

in many biological activities like blood pressure regulation, smooth muscle cells 

relaxation, neurotransmission, leukocytes adhesion, platelets aggregation, angiogenesis 

and thrombosis, defence mechanisms and immune system modulation [58,63]. NO is 

generated in tissue by different NOS enzymes, that catalyze NO formation from 

molecular oxygen (O2) and L-arginine using NADPH as an electron donor (the molecular 

reaction is reported below).  

L-Arginine + O2 + NADPH → L-Citrulline + NO. + NADP+ 

Three different isoforms of NOS have been found. Neuronal NOS (nNOS) and 

endothelial NOS (eNOS) are involved in NO production for the regulation of physiologic 

functions, whereas inducible NOS (iNOS) is firstly activated in macrophages and 

activated in response to inflammatory stimuli [63-65]. 

Under physiological conditions, NO is generated by eNOS, constitutively expressed in 

endothelium, in response to shear stress or agonist factors (as acetylcholine, bradykinin 

and thrombin) promoting endothelial homeostasis to environment changes and stimuli. 

eNOS-derived NO acts in inducing vasodilatation via NO-sensitive guanylyl cyclase 

activation in smooth muscle cells. Platelets adhesion to endothelium and aggregation, 

leukocytes adhesion as well as LDL oxidation and smooth muscle cells proliferation are 

consequently prevented, suggesting a role of NO in an anti-thrombotic and anti-

atherogenic endothelial phenotype [66]. On the contrary, endothelial dysfunction is a non-

physiological condition where inflammatory molecules and cytokines may induce iNOS 

upregulation and alterations of eNOS expression/activity [63]. eNOS seems to be 

involved in vascular dysfunction according to eNOS uncoupling process: indeed, eNOS 

switches from a NO-producing enzyme to another one able to release superoxide anion, 

leading to a peroxynitrite (ONOO-) overproduction [63] via the reaction 

NO + O2
∙- + → ONOO- 
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eNOS uncoupling is recognized a central mechanism in atherogenesis development, 

reducing NO production and promoting oxidative stress [66]. 

Among RNS, ONOO- is one of the most important components together with NO and 

nitrogen dioxide (NO2) and non-reactive species as nitrosamines. RNS excessive levels 

seem to be involved in oxidative molecular damages, particularly causing protein 

structure and function affection, alterations in catalytic enzyme activity and cytoskeletal 

organization as well as abnormalities in cell signaling transduction [64]. ONOO- is a high 

reactive cytotoxic molecule able to diffuse through cellular membrane and react with 

lipids, proteins (methionine and tyrosine) and DNA, leading to cellular membrane 

lipoxidation, DNA damage and cell apoptosis [65]. 

 

ROS Sources of Production 

ROS and RNS can be generated by cellular enzymatic and non-enzymatic reactions 

based on chemical bonds breaks, radical cleavage to give another radical and via redox 

reactions [57]. Mitochondrial respiratory chain, phagocytosis, prostaglandin synthesis, 

cytochrome P450 system, NADPH oxidase, xanthine oxidase and peroxidase activity 

include several enzymatic processes generating free radicals [57]. On the contrary, 

ionizing radiations-induced oxygen reactions with organic compounds or mitochondrial 

oxidative phosphorylation represent non-enzymatic processes of free radicals’ generation 

[57].  

 

Mitochondria 

Under physiological conditions, mitochondria and mitochondrial oxidative 

phosphorylation are one of the major sources of ROS production [67]. Superoxide anion 

is the most common oxygen free radical generated during the electrons transfer along 

complex I (NADH dehydrogenase) and complex III (ubiquinone cytochrome c reductase) 
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of the mitochondrial respiratory chain [56,58,69].  O2
∙- generation is particularly increased 

under hyperoxia or raised glucose conditions, due to the higher metabolic rate, but also 

during hypoxia status when the lack of oxygen as final electron acceptor for mitochondrial 

complex IV leads to electrons accumulation [56]. 

 

NADPH oxidase [61,66] 

NADPH oxidase is a membrane-bound enzyme complex located in the extracellular space 

and it exists in four isoforms as NOX1, NOX2, NOX3 and NOX4. NOX2 is considered 

“the primary-source of immune-active ROS in neutrophils” in response to a “priming 

signal”, as inflammatory cytokines or lipolysaccaride (LPS)[61]. 

Particularly, NADPH oxidase generates superoxide anion by electrons transfer across 

the membrane  from cytosolic NADPH to extracellular molecular oxygen, according to 

the reaction reported below. 

NADPH + 2O2  NADP+ + 2O2
- + H+ 

 

Xanthine Oxidase 

Xanthine oxidase is a form of xanthine oxido-reductase involved in the production of 

several ROS. This enzyme catalyzes the oxidation of hypoxanthine to xanthine, 

generating hydrogen peroxide as the molecular reaction here described [57]. 

hypoxanthine + H2O + O2   xanthine + H2O2 

Moreover, xanthine oxidase can oxidize xanthine to uric acid as indicated below. 

xanthine + H2O + O2   uric acid + H2O2 

Xanthine oxidase seems to be also involved in purines, pterins and aldheydes metabolism. 

 

 

https://en.wikipedia.org/wiki/Cell_membrane
https://en.wikipedia.org/wiki/Oxygen
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Myeloperoxidase 

MPO is a peroxidase expressed in neutrophil granulocytes and involved in HOCl 

production via H2O2-mediated oxidation of halides (Cl-, Br-) and thiocyanate (SCN-) [61]. 

MPO is a lysosomal protein located in azurophilic granules of neutrophils; it is released 

into the extracellular space via degranulation. Many authors have recently described an 

important association between high levels of MPO and the severity of coronary artery 

diseases as well as the pathophysiological involvement of MPO deficiency in immune 

system defenses alterations. 

 

An additional classification among endogenous and exogenous ROS/RNS sources can be 

reported. Biological systems can be exposed to environmental changes and other 

exogenous factors which may induce reactive species production affecting redox 

homeostasis. Cigarette smoke, alcohol and drugs assumption, ozone exposure, 

hyperoxia/hypoxia, ionizing radiation and heavy metal ions can trigger oxidative 

reactions and free radical production. Particularly, iron and copper metals are involved in 

superoxide ion and hydrogen peroxide generation by Haber-Weiss/Fenton reaction 

yielding OH. [57,60]. Moreover, as several studies showed, immune cell activation, 

inflammation and infections, aging, ischemia, cancer and aging seem to be 

pathophysiologically involved in free radical generation. 
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Antioxidant Defence Mechanisms 

Antioxidant defense mechanisms are needed for the maintenance of redox homeostasis in 

biological systems, preventing ROS/RNS-induced oxidative damages on several 

molecules. They can act interrupting oxidative reactions or decreasing the rate of their 

onset and promote the generation of inactive products [57].  

Among antioxidants species, two categories can be identified: enzymatic and non-

enzymatic molecules.  

 

Enzymatic Antioxidants [56,60,65] 

Enzymatic defenses are characterized by the presence of a transition metal in their core, 

central in electrons transport during the detoxification processes. Among enzymatic 

antioxidants, SOD, CAT and GPx are some of the most important molecules. 

SOD exists in three isoforms. Firstly, copper-zinc containing SOD (Cu, Zn-SOD or 

SOD1) is a dimeric protein located both in the cytoplasm and in the mitochondrial 

intermembrane space. Manganese containing SOD (Mn-SOD or SOD2) is a homo-

tetrameric protein restricted to the mitochondrial matrix, whereas SOD3 (EC-SOD) is 

found in extracellular matrix, on cellular surface and in extracellular fluids [66]. SOD 

plays a central role in the control of O2
∙- production by catalyzing the conversion of O2

∙- 

to H2O2 as the reaction below [56,65]. 

                            O2
∙-+ O2

∙-+ 2H+ → H2O2 + O2 

Several authors revealed the anti-atherosclerotic role of SOD enzymes inhibiting 

oxidative damages mediated by superoxide anion O2
∙- and preventing inactivation of NO 

[66]. However, the functional role of SOD in atherosclerosis development is still unclear. 

CAT is described as a tetramer composed of 4 identical monomers each of which contains 

a heme group in the active site. It is located in eukaryotic peroxisomes, catalyzing the 

detoxification of H2O2 to water as reported below [56,60]. 
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                               2H2O2 ⇄ O2 + 2H2O 

H2O2 conversion to water is also catalyzed by GPx enzyme. 

GPx is a family of enzymes divided in selenium (Se)-independent and Se-dependent 

groups and located in mitochondria and in cytoplasm. They are involved in the conversion 

of H2O2 to water according to the reaction here described [65]. 

2GSH + H2O2 ⇄ GS-SG + 2H2O 

Gpx is present in 4 isoforms. The first isoform is a great scavenger for hydrogen peroxide 

whereas the fourth isoform is more active against lipid hydroperoxides [66]. The activity 

of GPx depends on the presence of reduced glutathione (GSH), a hydrogen donor, 

promoted by glutathione reductase and glutathione S-transferase enzymes. GSH is 

synthesized in cytosol from L-glutamate, L-cysteine and glycine and involved in sensing 

and buffering cellular redox conditions because of the thiol (SH) group. GSH participates 

in several detoxifying reactions forming glutathione disulfide (GS-SG), which is then 

converted back to the reduced form (GSH) by the action of NADPH dependent 

Glutathione Reductase [56]. 

Glutatione S-transferase acts against lipid peroxides and in the liver site where drugs 

detoxification processes can lead to free radical production. 

 

Non-Enzymatic Antioxidants  

Non-enzymatic antioxidants help enzymatic ones to neutralize free radicals improving 

redox status in biological systems. They are generally introduced with diet, suggesting 

the role of decreased antioxidants consumption in redox homeostasis alterations and 

several chronic and degenerative pathologies [57]. Non-enzymatic antioxidants include 

water-soluble molecules, able to react against oxidants in cellular cytosol or plasma and 

fat-soluble molecules, with a central role in membrane lipids protection from lipid 

peroxidation processes.   
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Vitamin C (or Ascorbic Acid) is a water-soluble molecule that improves intracellular and 

extracellular antioxidant capacity by scavenging oxygen free radicals [60]. It is converted 

in Ascorbil Radical during redox reactions, showing an anti-oxidant, anti-atherogenic, 

anti-carcinogenic and immunomodulator activity [57]. Particularly, C vitamin role in 

endothelial function is due to its ability in reducing vascular resistance and leukocytes 

adhesion [63]. However, at higher levels the ascorbil radical may display pro-oxidant 

activity due to its nature, suggesting that results about beneficial effects of C vitamin 

therapeutic supplementation could be controversial [68]. 

GSH is one of the major soluble antioxidant molecules thanks to its thiol group (SH) as 

a hydrogen donor and GSH/GSSG ratio is an important indicator of oxidative stress. GSH 

is involved in hydrogen peroxide conversion to water during a GPx-catalyzed reaction. 

Based on its structural features, GSH antioxidant activity can be observed in membrane 

lipids protection from oxidation, in converting vitamin C and E back to their active forms 

and in apoptosis cells prevention by modulating several pro-apoptotic and anti-apoptotic 

signaling pathways. Indeed, different transcription factors including Activator Protein 1 

(AP-1), Nf-kB and Specificity Protein Factor 1 (Sp-1) are regulated by GSH in their 

active/inactive status [60].  

Vitamin E is a fat-soluble molecule and a chiral compound with eight stereoisomers of 

which -tocopherol is the most bioactive for humans. Due of its hydrophobic nature, E 

vitamin is mostly involved in cellular membrane protection against lipid peroxidation 

[57]. Moreover, it seems to have beneficial effects on vascular dysfunction, promoting 

the release of prostacyclin as a potent vasodilator and inhibitor of platelets aggregation 

[63].  

Vitamin A converted to retinol, lycopene as well as flavonoids, omega-3 and omega-6 

fatty acids, coenzyme Q-10, melatonin and iron-copper binding proteins represent other 



Introduction 

 

61 

 

important molecules with antioxidants activity and a central role in biological systems 

protection from oxidative damages and cell apoptosis [57]. 

 

ROS/RNS Physiological Involvement 

Physiological moderate ROS/RNS levels are crucial for the regulation of several signal 

transduction pathways (as described in figure 10), resulting in a mechanism for cellular 

adaptation to environmental stimulus (growth factors, cytokines, stress signals) and 

changes [65]. Particularly, ROS/RNS signaling is involved in the modulation of different 

cellular functions as metabolic processes, vascular tone, oxygen sensing, growth-factor 

and cytokine genes expression, cell cycle progression, cytoskeletal organization, antigen 

processing, cell proliferation, differentiation, migration and apoptosis and inflammatory 

response [62,66]. ROS/RNS signaling is based on the reversible oxidation/nitration-

mediated activity regulation of redox-sensitive and catalytic enzymes, intracellular 

effectors of signal transduction factors and transcription modulators [62].  

 

 
 

Fig. 10 ROS redox signaling [69] 
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ROS and Hypoxia-inducible Factors (HIFs) 

HIFs are regulated by oxygen concentration and cellular ROS levels [64]. HIF-1, one of 

the major O2 homeostasis regulator, is a heterodimeric molecule composed of two 

subunits: HIF-1α and HIF-1β. Under normoxic conditions, HIF-1α is degraded by the 

proteasome whereas under hypoxic conditions HIF-1α is stabilized leading to the 

formation of a stable heterodimer. It is able to translocate into the nucleus, modulating 

expression of central genes for cellular adaptation to lower O2 concentrations (as 

transcriptional activation of erythropoietin, vascular endothelial growth factor, glucose 

transporter 1 and glycolytic enzymes) [65].  

 

ROS and Nf-kB Signaling Pathway 

Nf-Kb is an eukaryotic transcription factor involved in the regulation of immune and 

inflammatory responses, cellular adhesion, proliferation and differentiation, anti-

apoptotic response and also in anti-inflammatory mechanisms. Recently, many studies 

underlined the double cytoprotective and cytotoxic role of Nf-kB in acute and chronic 

pathological heart remodeling, triggered by hypoxia or ischemic myocardial injury [70]. 

Microbial products, stress or pro-inflammatory cytokines (IL-1β and TNF) [64] can 

induce canonical Nf-kB activation by inhibitory subunit IkB phosphorylation and 

ubiquitination. Nf-kB moves into the nucleus where it activates the transcription of target 

genes [71]. Oxidative stress condition can alter Nf-kB activation: indeed, ROS-mediated 

phosphorylation of Nf-kB inhibitory subunit IkB, phosphorylation of IkB-kinase (IKK) 

or abnormalities in ubiquitination and degradation of IkB may induce Nf-kB activation 

[71]. Increased tissue levels of enzyme COX-2, IL-1, TNF-) and other inflammatory 

mediators are observed in response to ROS-mediated Nf-kB activation. 
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ROS and Phosphoinositide-3-kinase- (PI3K) Akt Signaling Pathway [71] 

PI3K-Akt pathway has a central role in several cellular functions, particularly protein 

synthesis, cell cycle progression, proliferation, apoptosis, autophagy and drug resistance. 

Growth factors (Epithelial Growth Factor-EGF, Platelet-Derived Growth Factor-PDGF, 

Nerve Growth Factor-NGF and Vascular Endothelial Growth factor-VEGF), hormones 

(prostaglandin, PGE2) and cytokines (IL-17, IL-2, IL-2) are some of the principal trigger 

factors for the PI3K-Akt signaling pathway activation and transcription of their target 

genes (Glycogen Synthase Kinase 3-GSK3, Forkhead Box Protein-FOXO, Bcl2 

Associated Agonist of Cell Death-BAD, Mammaliann Target of Rapamicin-mTOR1 and 

p53). In this context, ROS show a double role in PI3K-Akt pathway regulation: it is 

directly involved both in PI3K activation band inactivation. Indeed, ROS avoid the 

synthesis of phosphatidylinositol 3,4,5 triphosphate (PIP3) and also inhibit the activation 

of Akt oxidizing cysteine residues in the enzymatic active center. 

 

ROS and MAPKs (Mitogen-Activated Protein Kinase) Signaling Pathway  

The MAPK cascades is composed by Extracellular Signal-related Kinases 1 and 2 

(ERK1/2), c-Jun N-terminal kinases (JNK), p38 kinases (p38) and MAP Kinase 1 

(BMK1/ERK5) pathways. MAPK pathways is central in several processes as cellular 

growth, differentiation, cell cycle, survival and cell death. Their signaling cascades are 

regulated by phosphorylation/dephosphorilation of serine and/or threonine amino 

residues on tyrosine kinases receptor as well as cytokines and growth factors receptors 

[62,64] In this context, oxidative stress can influence the physiological effects of these 

signaling-cascade pathways [64]. Particularly, ROS are able to stimulate EGF and PDGF 

receptors, which can activate Ras and the related ERK pathway. Similarly, also JNK, p53 

and p38 pathways are susceptible to oxidative stress signals besides inflammatory 

cytokines, leading to the activation of all signal cascade [71]. In general ERK, PI(3)K/Akt 
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and Nf-kB signaling pathways show a pro-survival effect during oxidative injury whereas 

activation of p53, p38 and JNK are more commonly associated with apoptosis [69]. 

 

ROS and Kealch-like ECH-associated protein 1 (Keap1), Nuclear Factor Erythroid 

2-related Factor 2 (Nrf2) and Antioxidant Response Elements (ARE) Signaling 

Pathway 

Keap1, Nrf2 and ARE compose a complex signal pathway involved in the maintenance 

of cellular redox balance and adaptive response to oxidative stress. Moreover, it can lead 

to several inflammatory disorders as cancer, Alzheimer’s disease, Parkinson’s disease 

and diabetes [71]. If Nrf2 is physiologically inhibited by the association with Keap1, 

higher ROS levels can induce Keap1-Nrf2 dissociation, promoting Nfr2 translocation into 

the cellular nucleus and its binding to ARE. Antioxidant enzymes gene expression is 

promoted [71]. 

 

ROS and Mitochondrial Permeability Transition Pore (mPTP) 

Several data in literature describe the role of mPTP, an unspecific channel on internal and 

external mitochondrial membrane, in permeability changes that influence mitochondrial-

driven health. In this context, ROS can modulate mPTP opening by oxidation of different 

cysteine (Cys) amino residues but also increasing mitochondrial Ca2+ concentration [71]. 

 

ROS and Protein Kinase [71] 

Several protein kinases, including protein kinase A (PKA), protein kinase C (PKC), 

protein kinase D (PKD), receptor tyrosine kinase (RTK) and Ca/calmodulin independent 

protein kinase II (CaMKII), represent molecular target for ROS that modulate enzymatic 

activation state by oxidizing sulfhydryl (SH) groups of cysteine amino residues. The 
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activated protein kinases then phosphorylate their target proteins involved in different 

cellular signaling mechanisms. 

However, not only ROS may influence PKA phosphorylation, but also phosphorylated 

PKA shows an important effect on ROS homeostasis. Indeed, cAMP/PKA signaling 

pathway modulates the expression, assembly and catalytic activity of mitochondrial 

respiratory chain complex I, a physiological site of ROS production. 

Referring to PKC and PKD activity, ROS acts influencing catalytic enzyme activation. 

Particularly, cysteine-rich regions in regulatory and catalytic domains of PKC are 

susceptible to ROS-mediated oxidation: accordingly, ROS stimulate PKC activity at 

moderate levels whereas higher levels of oxidants result in enzymatic inhibition. 

 

ROS and Ubiquitination/proteasome System (UPS) [71] 

Ubiquitination/Proteasome System (UPS) is composed by four components including 

proteasome, ubiquitin, the ubiquitination machinery and the deubiquitinase and it is 

central in different biological processes as cell cycle regulation, inflammatory and 

immune response, protein misfolding and endoplasmic reticulum-associated degradation 

of proteins. As many authors reported in their studies, an interaction between ROS and 

UPS seems to exist.  Firstly, UPP is sensible to oxidative stress due to the presence of 

cysteine amino residues in E1, E2, E3 enzyme subunits that can be oxidized leading to 

mixed disulfide bonds which blocks their binding to ubiquitin. Furthermore, UPS can 

regulate cellular redox status by inducing Nrf2 degradation and Nf-kB activation, both 

involving in the regulation of ROS levels and also by modulating mitochondrial processes 

(oxidative phosphorylation, tricarboxylic acid (TCA) cycle and mitochondrial dynamics). 
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ROS/RNS Harmful Effects 

The increase in ROS levels leads to an imbalance with antioxidant defense mechanisms, 

inducing oxidative stress condition generally associated with molecular damages on 

lipids, proteins and nucleic acids (figure 11) [66]. This evidence suggests oxidative stress 

pathophysiological involvement in several disorders as inflammation and tumors, 

cardiovascular and autoimmune diseases, neurodegeneration and in some female 

reproductive system disorders in addition to aging [69,72].  Moreover, the increase in 

ROS content is also associated with several cardiovascular risk factors as hypertension, 

hypercholesterolemia, diabetes mellitus, cigarette smoking as well as cardiovascular 

disease itself [66]. 

 

 

Fig.11 ROS harmful effects [121] 

 

ROS and Ca2+ Signaling Systems 

Ca2+ is an important signal molecule involved in regulating and controlling several 

cellular processes and functions in eukaryotic cells, as contraction and secretion 

mechanisms, metabolism, gene expression, cell survival and death [71]. Cytosolic Ca2+ is 

determined by a dynamic balance between import mechanisms as Ca2+ influx from 
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extracellular compartment or endoplasmic reticulum (ER) / sarcoplasmic reticulum (SR), 

resulting in higher cytosolic Ca2+ concentration and export mechanisms, as Ca2+ efflux 

across plasma membrane and sequestration into the mitochondria. 

ROS and Ca2+ signaling pathways are strongly related, influencing each other in multiple 

ways. Accordingly, Ca2+ levels can regulate both ROS production and clearance 

processes, affecting cellular redox status. The principal Ca2+ mediated effects on ROS 

physiology are reported below [71]: 

 ATP synthesis and mitochondria ROS generation triggering Krebs cycle enzymes 

and oxidative phosphorylation; 

 Activity modulation of several ROS generating enzymes, as NOX and NOS, in 

pathological/physiological conditions; 

  Regulation of antioxidant defense mechanisms for ROS clearance. Particularly, 

Ca2+ can directly activate antioxidants (CAT, glutathione reductase), increase 

SOD levels and induce mitochondrial GSH release. Moreover, Ca2+ can act 

indirectly by calmodulin (CAM)-mediated activation of catalase and 

downregulation of hydrogen peroxide levels.  

 

On the other hand, ROS play a central role in altering intracellular Ca2+ homeostasis. The 

oxidation of free cysteine residues in several membrane-bound Ca2+ channels and 

receptors (SERCA pump or others sarco/endoplasmatic reticulum calcium ATPase 

enzymes) compromise their activity, resulting in a decreased Ca2+ influx from cytoplasm 

to ER and SR [56, 71]. The increased cytosolic Ca2+ levels are involved in the activation 

of several calcium sensitive signaling pathways but also it can affect chaperone activity, 

leading to the accumulation of misfolded proteins and further generation of ROS. 

Misfolding is strictly connected with the stimulation of unfolded protein response (UPR) 

that can represent a source of cell damage and apoptosis [56]. 
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Higher Ca2+ cytosolic content can also affect mitochondrial function due to oxidative 

damages of membrane lipids and proteins altering membrane permeability. It results in 

mitochondrial membrane potential and ATP synthesis affection leading to lower ATP 

levels, loss of ionic homeostasis and consequently cell apoptosis [56]. 

 

DNA oxidation 

Among biological molecules, DNA is one of the ROS molecular target. Several 

modifications such as degradation of bases, single/double stranded DNA breaks, purine, 

pyrimidine or sugar-bound alterations, mutations, deletions or translocations and also 

protein cross-links can be identified, suggesting the oxidative stress involvement in aging, 

cardiovascular, neurodegenerative and autoimmune disorders and also in carcinogenesis 

[60]. 

DNA is vulnerable to OH. activity, generating several products that can be measured 

biochemically as biomarkers of oxidative stress. OH. can react with guanine to produce 

8-hydroxy-2’-deoxyguanosine (8-OH-G), an important marker of DNA oxidative 

damage detectable immunohistochemically in several biological samples [56]. For 

example, many studies revealed increased concentration of 8-OH-G in follicular fluid of 

unfertile women describing a condition of altered redox homeostasis in the follicular fluid 

microenvironment of those patients and suggesting cell apoptosis [73]. DNA oxidation, 

involving DNA bases or deoxyribose sugars, can result in nucleic acids strand breaks: 

chromatin structure, DNA repair and transcription mechanisms can be affected as well as 

mutations and alterations in gene expression can be identified [56]. Indeed, 8-OH-G is 

relevant in promoter regions of genes containing consensus sequences for transcription 

factors GC-rich. Oxidation of guanosine can alter the mechanism of binding of 

transcription factor affecting related genes expression [60]. Moreover, oxidative stress 
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can compromise DNA methylation, an important epigenetic mechanism in regulating 

gene expression, with harmful effects on DNA repair activity [60]. 

Mitochondrial DNA seems to be more susceptible to oxidative damage than nuclear 

DNA. Indeed, mitochondria are one of the major sources of ROS and the lack of histone  

protection as well as lower DNA repair systems, may legitimate the higher rate of 

mutations (5-10 fold higher) found in mitochondrial DNA than in nuclear one, affecting 

essential proteins for mitochondrial activity and electrons transport chain [56,69,74]. 

Alterations in mitochondrial integrity and function further stimulate ROS production, 

causing oxidative damages on to the principal cellular structures and cell apoptosis [69]. 

 

Lipid peroxidation 

Plasma and membrane lipids, especially poly-unsatured fatty acids (PUFA), are 

vulnerable to free radicals derived oxidation. Lipid peroxidation is strictly associated with 

fluidity and permeability membrane alterations, inhibition of membrane-bound enzymes 

and receptors and activation of apoptotic cascade, suggesting a pathophysiological 

involvement of the process in several disorders as inflammation, cardiovascular and 

neurodegenerative diseases, autoimmunity, female reproductive system disorders as well 

as aging [58,74].  

As shown in figure 12, lipid peroxidation is generally triggered by free radical attack and 

abstraction of hydrogen from the hydrocarbon side-chain of a fatty acid, yielding to a 

carbon-centered lipid radical (L·) as reported below. 

L-H + OH·→ H2O + L· 

Lipid radical interaction with O2 produces a lipid peroxyl radical (LOO·), able to react 

with an adjacent fatty acid propagating the process and its internal molecular 

rearrangements with conjugated dienes and hydroperoxides generation [56,58,75,76].  
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The entire process ends with the formation of more stable lipid peroxidation products as 

malondialdehyde (MDA), 4-hydroxy-2-nonenal (HNE), isoprostanes. In the last years 

a growing interest on biochemically and immunochemically detection of these molecules 

in several biological samples (plasma, urine, follicular/peritoneal/seminal fluid) 

developed, appearing useful biomarkers for the evaluation of disease progression, 

effectiveness of therapeutics supplementation with antioxidants [77]. 

 

 

Fig.12 Lipid peroxidation process [121] 

 

Moreover, lipid peroxidation products can also react with proteins, DNA and 

phospholipids generating end products involved in cellular dysfunction and disorders 

development. Particularly, the interaction of lipid peroxidation products with amino 

residues can result in protein oxidation affecting its structural and functional features 

[74,77]. 
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Malondialdehyde  

MDA is physiologic ketoaldehyde and one of the most common products of unsatured 

lipids oxidation. At abundant levels, it is able to interact with specific amino residues 

including Lys, generating MDA-modified protein characterized by a great immunogenic 

potential. As well as ox-LDL, MDA plays a central role in inflammatory process and 

atherosclerosis, suggesting a pathophysiologically involvement in coronary artery disease 

and stroke [74]. 

Despite criticisms, MDA and TBARS (Thiobarbituric Reactive Substances) Assays are 

the most used methods for lipid peroxidation products detection in biological samples 

[75,77,78]. 

 

4-hydroxy-2-nonenal  

Among lipid peroxidation products, also HNE plays an important role in biological 

processes. At moderate and physiological levels, this molecule is involved in the 

regulation of oxidative stress-induced apoptosis, cellular proliferation and signaling 

pathways. On the contrary, excessive content of HNE can be detected biochemically as a 

marker of redox status alterations [74]. 

 

Isoprostanes  

Arachidonic acid independent cyclooxygenase oxidation generates isoprostanes, 

prostaglandin-like compounds and clinically reliable indicators of oxidative stress in 

several pathological acute and chronic conditions [74,77].
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Protein Oxidation  

Among post-translational modifications, amino acids oxidation represents a cellular 

response mechanism to environmental changes. Several ROS/RNS as O2
∙-, OH., H2O2, 

1O2
-, HOCl and ONOO- can mediate reversible and irreversible protein oxidative 

modifications [56,58,79]. Many studies described the harmful effects induced by protein 

oxidative damages. Oxidation of amino residue side chains, peptide bonds cleavage and 

formation of protein-protein cross linkages may cause protein structural and functional 

features affection, alterations in enzyme activity, receptors and transport proteins 

function, becoming central in aging and diseases, particularly cardiovascular disorders 

and neurodegeneration [58,79-81]. However, the physiological role of ROS/RNS as 

secondary messengers also suggests beneficial effects of protein oxidation for several 

cellular functions. Indeed, in many cases variations of redox homeostasis represent 

positive stress conditions that stimulate and reprogram cell survival mechanisms [79]. 

Several factors are involved in determining the extent of damage to biological targets, 

such as the concentration and location of molecular target, the nature of oxidative 

reactions and its side effects and the presence of antioxidant defense mechanisms [82]. 

Based on this evidence, ROS/RNS-mediated hydrogen atom abstraction from the α-

carbon of amino acids represents the first step in protein oxidation mechanism (figure 

13). Under normoxia, the generated radical is rapidly converted to peroxyl radical able to 

react with amino residues of the same/different polypeptide chain, leading to peptide bond 

cleavage. In case of hypoxia, the α carbon-centered radical can react with another carbon-

centered radical producing protein-protein cross linkages [81,83]. 
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Fig.13 Free radical-mediated oxidation of the protein polypeptide backbone [81] 

 

Protein oxidation can be mediated by several mechanism and it can occur on several 

different amino acyl side chains. Protein oxidative modification subset is various and 

parallel and some post-translational protein modifications could diverge in the target 

oxidized amino residue and in the generated product. On the contrary, others oxidative 

modifications can affect multiple residues and may lead to several end products [84]. In 

order to evaluate oxidative stress status in healthy subjects and patients, protein oxidation 

products are considered good biomarkers due to its stability [58,84].  

The principal protein oxidative modifications are reported below. 

 

Protein Carbonylation 

Oxidation of several amino acids residues as cysteine and methionine, lysine, arginine, 

proline and threonine leads to the formation of carbonyl derivatives, one of the major 

used biomarkers for oxidative stress assessment in aging and pathological conditions [79]. 

Carbonyl groups generation can be induced by different ROS/RNS or by reactions with 

lipid peroxidation products (aldehydes) or derivatives of lysine glycation/glycoxidation 

reactions and it can occur at different sites and by different mechanisms [83]. 

Carbonylated amino acid residues, except proline, show higher hydrophobicity, resulting 
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in protein aggregation and cell death if not eliminated and parallel, this change in 

biochemical features causes a reduced interaction with chaperons [72].  

Carbonylation may induce protein structural alterations and alter biological activity 

leading to enzyme inactivation and abnormalities in binding activities. Moreover, changes 

in protein susceptibility to proteolytic degradation can be considered among side effects 

of carbonyl groups introduction in protein side chains. The presence of carbonyl groups 

on amino residues (as proline and arginine) located in the cleavage site of thrombin or 

peptide bonds by oxidation of glutamyl residues has been found in several pathological  

conditions including post-AMI and BS patients, where a reduced fibrin clotting ability 

and a decreased fibrin susceptibility to plasmin digestion was described [1,85].  

In redox status evaluation, the use of protein carbonyl group as a biomarker of oxidative 

stress is largely spread and advantageous because of its early formation and stability in 

comparison with lipid peroxidation products; several fluorometric and spettrophotometric 

assays are available at the moment [72,74,84]. 

 

Oxidation of cysteine and methionine 

Cysteine residues play a central role in buffering and sensing systemic redox homeostasis 

variations due to the presence of reactive thiol group as an electron donor. Cysteine is 

crucial in regulating protein activity: indeed, it often characterizes the catalytic and 

regulatory site of several enzymes as well as actors and modulators of several signaling 

pathways [62]. Cysteine oxidation products can be summarized in disulfide formation (S-

S), S-glutathionylation (protein-SSG), S-nitrosylation (-SNO), sulfenic acid formation (-

SOH, or S-sulfenation) with effects on protein functions [79]. Both harmful and beneficial 

side effects of cysteine oxidation have been described: these oxidative modifications 

protect target proteins from further modifications and regulate redox signaling cascades 

inducing cellular responses to environmental changes [62,79]. 
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As well as cysteine, also methionine shows an antioxidant role and acts regulating cellular 

metabolism. ROS/RNS-induced methionine oxidation results in methionine sulfoxide, a 

reversible modification central in modulating biological activity of protein especially in 

vascular physiology [81,86]. Methionine sulfoxide can also undergo a second oxidation 

generating methionine sulfone, an irreversible post-translational modification. 

Methionine oxidation appears as a regulation mechanism of protein interactions, enzyme  

activity and cellular function. Many studies revealed the presence of methionine residues 

in several proteins involved in haemostatic system, suggesting a central role of 

methionine oxidation in vascular biology as well as in pathogenesis of vascular diseases 

due to some evidence of protein loss of function as a consequence of specific protein 

methionine residues oxidation [86]. Particularly, CaMKII, apolipoprotein A-I, 

thrombomodulin, von Willebrand factor (vWF) expose some methionine residues 

susceptible to oxidation. Among plasma proteins, fibrinogen contains three methionine 

residues (Met78, Met367, Met476) sensible to ROS-mediated oxidation (especially by 

HOCl), resulting in fibrin structural and dynamic features affection [87] and parallel, 

plasminogen activator inhibitor-1 (PAI-1), coagulation factor VII, antithrombin and α-2-

antiplasmin can be regulated in their biological function by methionine residues 

oxidation.  

 

S-nitrosylation, S-glutathionylation and S-persufidation  

Both NO֗ and ONOO- can react with proteins causing S-nitrosylation (formation of –SNO 

group) on cysteine residues, due to the nucleophilic –SH thiol group but also on tyrosine, 

serine or threonine residues. S-nitrosylation is functionally similar to protein 

phosphorylation/dephosphorylation; a proper enzymatic system of nitrosylation and 

denitrosylation is lacking though the existence of denitrosylases have been reported 

[62,79]. Cysteine nitrosylation is implicated in the regulation of several physiological and 
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pathophysiological processes affecting protein activity, translocation and function 

[70,79].  

S-glutathionylation, the formation of mixed disulfide with GSH, also occurs in proteins 

and peptides especially on cysteine residues [62,74]. As S-nitrosylation, this oxidative 

modification acts in regulating protein stability and activity, cytoskeletal remodeling, 

energy metabolism and redox homeostasis [62]. Protein S-S-G is associated with harmful 

effects on protein function; however, it can also prevent irreversible damages on target 

proteins, suggesting the importance of modulating protein activity as a consequence of 

redox homeostasis changes under physiological and pathological conditions [79]. 

Cysteine oxidation can also result in S-persulfidation (sulfhydration) where –SH group is 

converted to persulfide (-SSH) through interaction with hydrogen sulfide H2S. Together 

with S-nitrosylation, protein phosphorylation and tyrosine nitration reactions, S-

persulfidation is a relevant protein oxidative modification, able to influence cellular 

metabolism regulation, cell survival (or apoptosis), proliferation and differentiation, 

mitochondrial bioenergetics and blood pressure [62]. R-SSH has stronger nucleophilic 

and reductant properties than a thiol group, so its presence is associated to the increase in 

chemical reactivity of protein cysteine residues [62]. 

 

Oxidation and Nitration of Tyrosine and Tryptophan  

Tyrosine residue is susceptible to oxidation generating 3-hydroxytyrosine, 3-

nitrotyrosine, halogenated tyrosine and tyrosine cross-links as principal derivatives with 

different effects on cellular functions [62].  

The mechanism of dityrosine formation is shown in figure 14. Particularly, ROS-

mediated tyrosine attack generates tyrosyl radical, able to react with other tyrosine residue 

and promotes tyrosine dimerization and formation of 3,3-dityrosine, leading to inter-intra 

molecular protein cross links [62,89]. 3,3-dityrosine can be found as a product of UV 
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irradiation, γ-irradiation, aging, oxidative and nitrative stress, detectable by fluorometric 

assays or mass-spectrometry (LC/MS/MS) approach [89-91]. Based on this evidence, 

dityrosine can be used as a reliable biomarker of redox homeostasis variations. 

Tryptophan is also susceptible to ROS-induced oxidation, especially by hydroxyl radical, 

producing tryptophanyl radicals. Moreover, both tyrosine and tryptophan residues can 

undergo nitration by ·NO2 and ONOO-, forming 3-nitrotyrosine and 6-nitrotryptophan 

respectively. Particularly, tryptophan is characterized by multiple reactive carbons than 

tyrosine, leading to more possible oxidative modifications [62].  

Several proteins, as mitochondrial proteins and redox signaling enzymes, are vulnerable 

to nitration, resulting in changes of structural and functional protein features and 

alterations of cell signaling pathways. 

Finally, as several others oxidative stress bio-products, also oxidized tyrosine seems to 

be associated with diseases progression due to the presence of 3-nitrotyrosine in human 

atherosclerotic lesions and plaques [62,90].  

 

 

Fig.14 Mechanism of dityrosine formation [89] 
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Protein Disulfides  

Under physiological conditions, intra polypeptide chain disulfide bond formation is 

needed for protein folding and catalyzed by disulfide isomerase into the endoplasmic 

reticulum and the mitochondrial intermembrane space [79]. Oxidative stress can induce 

disulfide bonds formation between free cysteine residues, changing protein structural and 

functional characteristics and regulating its stability [79]. Disulfide bonds can also occur 

between two different polypeptides: this represents a molecular mechanism for protein- 

protein cross linkage as well as the direct interaction among two carbon-centered radicals 

or two tyrosine radicals and the interactions of carbonyl groups or lipid peroxidation 

products with amino acid residues of different proteins [81]. 

 

Chlorination reactions 

Under oxidative stress conditions, MPO-derived HOCl, is implicated in protein 

chlorination as an additional protein post-translational modification. Particularly, HOCl 

is considered a strong oxidant molecule whose side effects on amino residues can be 

summarized below: methionine oxidation and tyrosine chlorination, chloramine 

derivatives of lysine residues formation, sulfhydrilic groups oxidation to sulfenic acid 

derivatives and lysine residues oxidation to carbonyl derivatives [81]. 

 

Endogenous proteins are highly susceptible to ROS and RNS induced oxidation. This 

process generally results in the loss of protein biological activity, characterizing the 

development and progression of aging and several disorders as 

neurodegenerative/cardiovascular/autoimmune diseases as well as cancer. However, 

protein oxidation also represents a mechanism to induce cell signaling reprogramming in 

response to environmental changes [80-83]. 
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In order to preserve a moderate intracellular level of oxidized proteins, antioxidant 

molecules and also a proper system of protein degradation are crucial. However, in aging 

and pathological conditions a decrease in protein turnover modulation by proteasome 

system is described, inducing oxidized proteins accumulation and tissue physiology 

affection [80-83]. 
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The Role of Fibrinogen in Haemostasis 

Fibrinogen is a soluble blood plasma protein synthesized primarily in the hepatocytes. It 

is a dimeric glycoprotein that represents the third most abundant protein in plasma with 

an average concentration of 150-400 mg/dl. Fibrinogen plays an essential role in blood 

coagulation, being a critical molecule for clot formation and fibrinolysis (figure 15), but 

also in inflammatory response (as an acute phase protein), cellular and matrix 

interactions, wound healing and neoplasia. Fibrinogen involvement in several 

pathophysiological processes is due to the presence of interactive sites on protein, 

generally available as a consequence of intramolecular rearrangements during fibrinogen 

polymerization to fibrin [92,94]. Fibrinogen polypeptide chains are encoded in three 

genes. Despite molecular processes for the regulation of genes expression are still not 

completely determined, single nucleotide polymorphisms in fibrinogen genes seem to be 

involved in alterations of gene expression and signaling pathways [94]. 

 

 

Fig 15. Fibrinogen synthesis and expression [94] 
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Fibrinogen Structural and Functional Features 

Thanks to the X-ray crystallography, several details about fibrinogen molecular structure 

and variants as well as interactions that occur during fibrin formation have been displayed 

[95,96].  

Fibrinogen is a 340 kDa molecule with an α-helix secondary structure and a length of 45 

nm. As shown in figure 16 (panel A and B), two external D domains, together with a 

central E domain to which they are joined by a coiled-coil segment, describe the 

biochemical organization of the protein. Fibrinogen molecules are characterized by two 

sets of three polypeptide chains termed Aα, Bβ and γ and connected together by 29 

symmetrical disulphide bridges. Particularly, the Aα chain is composed by 610, the Bβ 

chain by 461 and the major form of the γ chain, γA, by 411 amino residues. γ’ is an 

important γ chain variant that exists in a smaller percentage (about 8% of the total 

fibrinogen γ chain population) and it is due to alternative processing of the primary 

mRNA transcript.  427 amino residues describe γ’ chains and the presence of an anionic 

20 amino acid sequence, including two sulphated tyrosines instead of the γA chains four 

ultimate C-terminal γA residues, AGDV411, represents the principal distinctive trait 

between the two variants of fibrinogen γ chains. In plasma, the heterodimeric fibrinogen 

molecules γ’/γA describe about the 15% of all circulating fibrinogen molecules and they 

differ from homodimeric γA/γA ones. On the contrary, about 1% of fibrinogen is 

represented by the homodimeric γ’/γ’ one [94,97]. 
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Fig 16. Fibrinogen molecular structure [98]. Fibrinogen molecule 

 representation (a):the three Fg chains Aα, Bβ and γ are represented in blue,  

red and green respectively. Fibrinogen crystallographic representation (b). 

 

Thrombin-Induced Fibrin Polymerization Mechanism  

Fibrin polymerization is a process within the enzymatic cascade of blood clotting and it 

occurs, together with platelet adhesion and aggregation, during physiological 

mechanisms of stopping bleeding at the site of vascular injury (haemostasis) as well as 

during pathological haemostatic system disorders (thrombosis) [99]. Fibrin 

polymerization is described by a cascade of enzymatic events catalyzed by thrombin, a 

serine protease enzyme produced by the cleavage of two sites on prothrombin mediated 

by activated Factor X (Xa). Prothrombin is synthetized in the liver and co-translationally 

modified in a  K vitamin -dependent reaction that converts 10-12 glutamic acids located 

on the N terminus of the molecule to gamma-carboxyglutamic acid (Gla). In the presence 

of calcium, the Gla residues promote prothrombin binding to phospholipid bilayers. K 

vitamin deficiency or anticoagulant warfarin administration inhibits the production of 

gamma-carboxyglutamic acid residues, slowing the coagulation cascade activation.  

The molecular mechanism of fibrin polymerization is displayed in figure 17. 

 

 

 

https://en.wikipedia.org/wiki/Prothrombin
https://en.wikipedia.org/wiki/Factor_X
https://en.wikipedia.org/wiki/Vitamin_K
https://en.wikipedia.org/wiki/Gamma-carboxyglutamic_acid
https://en.wikipedia.org/wiki/Warfarin
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Fig 17. Fibrin polymerization process [93] 

 

Fibrin polymerization is triggered by the thrombin-induced proteolytic cleavage of 

fibrinopeptides A (FpA) and B (FpB) from the N-terminal subunits of fibrinogen Aα and 

Bβ-chains, producing fibrin monomers (α, β and γ)2. FpA and FpB cleavage does not 

occur simultaneously. Indeed, FpA release (through the proteolytic cleavage between 

Arg16 and Gly17 amino residues) is earlier and promotes the beginning of fibrin assembly 

process [99] by exposing an N-terminal α-chain motif Gly-Pro-Arg called EA 

polymerization site. EA interacts with a complementary binding site (DA), located between 

γ337 and γ379 within the D domain of neighbouring fibrinogen molecules. The EA : DA 

interaction promotes fibrin molecules overlapping in an end-to-middle domain 

arrangement way producing double-stranded twisting fibrils [97]. Dimer and trimer can 

be increased by the longitudinally addition of fibrin monomers, becoming larger 

oligomers and then protofibrils, defined as oligomers with the potential of lateral 

aggregation and fibers assembly [99]. Indeed, fibrils are involved in lateral and 

intermolecular associations needed for the three-dimensional fiber network.  
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The FpB is cleaved off more slowly than FpA and its release seems to be essential for 

protofibrils lateral aggregation. Accordingly, several data displayed that clots composed 

of thinner fibers are associated with the release of FpA in absence of FpB cleavage instead 

of what happens after the proteolytic elimination of both fibrinopeptides. This suggests 

the central role of B:b interactions in the lateral aggregation of protofibrils [99].  

Thrombin-induced FpB release (through the proteolytic cleavage between Arg14 and 

Gly15 amino residues) exposes an N-terminal β-chain motif Gly-His-Arg-Pro called EB 

polymerization site, which complementary combines to the binding site DB on the D 

domain of the same or different protofibrils β-chains [97]. However, also αC regions are 

important during polymerization process: particularly, αC polymers produced by the 

plasma transglutaminase factor XIIIa, contribute to fibrils lateral aggregation [99]. 

Among factors able to influence fibrin polymerization, calcium ions are central 

for fibrinogen stability and clot assembly, but just a moderate effect on thrombin-

catalyzed fibrinopeptides release is observed. Ca2+ promotes fibrils lateral aggregation, 

indeed higher Ca2+ levels are associated with thicker fibrin fibers [99]. 

Fibrinogen shows calcium binding sites located on β and γ-nodules of polypeptide chains 

and low/high affinity calcium binding residues can be displayed. If low-affinity binding 

residues substitutions do not have important effects on fibrin polymerization, changes in 

high-affinity ones can affect protofibril formation and fibrin features [99]. 

Moreover, branching process is essential for clot three-dimensional architecture 

during fibrin polymerization. Two types of branching can be described for the elongation 

and thickening of fibrin fibers [93, 99]. “Tetramolecular or bilateral branch point” is 

observed when two protofibrils undergo lateral aggregation to form a 4-stranded fibril 

and then diverge again in two separate protofibrils, promoting the strength and rigidity of 

fibers network [99]. “Equilateral branch point” occurs when three fibrin molecules, that  
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connect three double-stranded fibrils of equal widths, join together inducing clot elasticity 

[93]. However, lateral aggregation and branching are in competition: lateral aggregation 

is involved in generation of clots with thick fibers and few branch points, whereas 

inhibition of lateral aggregation is associated with clots composed of thinner fibers and 

more branch points [99]. 

During and after fibrin polymerization, factor XIIIa, activated by thrombin and 

calcium levels, acts stabilizing fibrin clot that acquires irreversible characteristics [99]. 

Coagulation factor XIIIa catalyzes the introduction of intermolecular ε-(γ-glutamyl) 

lysine bridges between the lysine at γ406 of the C-terminal portion of a fibrin γ chain and 

a glutamine at γ398/399 of another one [91,96]. The same interactions are evident 

between C-terminal portions of fibrin α-chains and cross-linking also occurs between α 

and γ chains [91, 96, 97]. Factor XIIIa polymorphisms, as 34Val to 34Leu, can alter cross-

linking process affecting fiber features, fibrin clot structure and permeability [99]. 

 

Plasmin-Induced Fibrinolysis Mechanism 

Under physiological conditions, a balance between thrombotic and fibrinolytic 

mechanisms at the site of vascular injury characterizes haemostatic system. After 

endothelial tissue repair, the activation of fibrinolysis is central for fibrin clot removal. 

Fibrinolysis is promoted by plasmin, a serine-protease enzyme derived from tissue-type 

plasminogen activator (tPA)-mediated proteolytic activation of plasminogen that is 

produced by vascular endothelial cells and found in blood flow. tPA-mediated 

plasminogen induction is increased by fibrin, due to the role of fibrin polymers and cross-

linked fibrinogen polymers as trigger factors for that [92,97,100].  

Specific high-affinity plasminogen and tPA binding sites were found in the distal portion 

of each fibrinogen αC-domain and genetic mutations at that level may affect fibrinolysis  
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and plasminogen availability for interacting with fibrin [92]. Physiologically, a ternary 

complex between tPA, fibrin and plasminogen is obtained, being a crucial mechanism for 

plasminogen activation to plasmin. Plasmin cleaves off fibrin, making additional lysine-

binding sites available in order to substance fibrinolysis [92]. Particularly, Aα148-160 

and γ312-324 are the two principal fibrinogen binding sites involved in plasminogen 

activation. They are cryptic on fibrinogen, but intermolecular D:E domains interaction 

and conformational changes in D region occurring during fibrin polymerization, can 

induce their exposure. When the ternary complex dissociates, those binding-sites return 

in their cryptical status [92,93]. Plasmin proteolytic activity on fibrin molecules produces 

a moderate percentage of large fragments and a group of smaller peptides detectable in 

blood flow (figure 18). Particularly, the cleavage of αC-domain is the first step of 

fibrinolysis process, followed by the removal of β chains N-terminal portions. Plasmin 

enzyme can also act on the coil-coiled segments that connect D domains to the E one, 

forming an E fragment and a D-dimer as products of plasmin fibrinolytic activity. The 

biochemical detection of these products can give clinicians important information not 

only about fibrinolytic process but also on coagulation activity. 

 

Fig 18. Fibrin degradation products [93] 
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Several factors could be involved in the alterations of plasmin-induced fibrin lysis, 

including interferences in plasminogen interaction with fibrinogen, genetic/acquired 

fibrin structural and dynamic features alterations, environmental components, etc. Among 

plasma proteins able to bind fibrinogen/fibrin affecting fibrinolysis process, α2-

antiplasmin plays a central role in fibrin resistance to plasmin digestion. Indeed, its cross-

linkage on Aα303 residues of fibrin α chains prevents plasminogen interaction with fibrin 

and its activation to plasmin. However, a covalent interaction between α2-antiplasmin and 

fibrinogen has been also observed under physiological condition [93].  

Plasminogen activator inhibitor-2 (PAI-2), a serine protease that inactivates tPA and 

urokinase, can be involved in reducing fibrin susceptibility to plasmin digestion due to its 

bonds on several sites of fibrin αC-domain [92].  

Moreover, histidine-rich glycoprotein (HRGP) is a plasma and platelet protein with a 

great binding affinity for fibrinogen and fibrin. It circulates in association with 

plasminogen (mediated by lysine binding) and prevents its binding to fibrin affecting 

fibrinolysis. Another protein associated with fibrinolysis impairment is Lp(a), that is 

formed by the complex between apoLP(a) and apoLP B-100 and represents a new risk 

factor for atherosclerotic disorders. LP(a) has revealed a specific affinity for αC-domain 

binding sites on fibrinogen/fibrin via a lysine-independent mechanism. In the presence of 

factor XIII, LP(a) can cross-link to fibrinogen, displaying a competition with 

plasminogen for the same binding sites on the target protein. Fibrinolysis results inhibited 

and LP(a) accumulation instead of fibrin deposition is observed at the site of endothelial 

injury or atherosclerotic lesions [92]. 
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Fibrin Clot Structure and Stability 

Clot formation, structure and stability are determined by several factors that occur during 

fibrin polymerization and that are essential for its functions and behavior (figure 19). A 

lot of determinants in (patho)physiological conditions including pro-coagulants and 

anticoagulants concentration, vascular cells and cell-derived microvesicles, blood flow, 

fibrinogen-binding proteins and metal ions, fibrinogen and thrombin concentration can 

affect structural and dynamic features of clot [94,101]. Indeed, fiber pore sizes may affect 

clot permeability, fiber density and fibrin network architecture may modulate the rate of 

lytic enzymes that interact with clots and their distribution over it [100]. Based on this 

evidence, haemostasis and thrombosis seem to be actively influenced by fibrin structure, 

as a critical factor in haemostatic balance. Accordingly, fibrin networks composed of 

thinner/compact fibers have been found in pathological conditions associated with pro-

thrombotic complications, whereas the increased bleeding risk seem to be related with 

networks of thicker/thinner fibers [94,102]. 

 

 

Fig 19. Scanning electron microscopy of fibrin clots [103] 

 

Some of clot structure determinants are listed below. 
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Hereditary and acquired fibrinogen variations 

Fibrinogen splice variants, genetic mutations and single-nucleotide polymorphisms may 

affect fibrin network structure. Among multiple-spliced forms of fibrinogen, γ’ is one of 

the most interesting. It differs from the native γ chain because of 20 amino acids instead 

of 4 terminal amino residues physiologically located in the polypeptide chain [94,99]. 

Epidemiologic studies displayed the association of circulating levels of γA/γ’ 

heterodimeric fibrinogen with both arterial and venous thrombosis: accordingly, ncreased 

γA/γ’ fibrinogen appears related to higher incidence of CAD, cardiovascular risk and 

heart failure as well as ischemic stroke. On the contrary, γA/γ’ fibrinogen may prevent 

venous thrombosis but investigations are still in progress [94]. 

Moreover, in vitro studies revealed the involvement of γA/γ’ fibrinogen isoform in thinner 

fibrin fibers generation, resulting in clots with a reduced susceptibility to enzymatic lysis 

[94,104]. 

 Several investigations also explored the role of two important fibrinogen 

polymorphisms in fibrin clot mechanical/structural characteristics and thrombotic risk. 

Particularly, AαThr312Ala polymorphism is associated with higher factor XIIIa cross-

linking and thicker fibers, but no difference in clot permeability has been found in 

association with the Thr312 variant clots. On the contrary, BβaRG448Lys polymorphism 

may induce thinner fibrin fibers and clots with smaller pores if compared to the Arg448 

variant [100]. 

As mentioned before, post-translational modifications of fibrinogen as ROS/RNS-

induced oxidation, glycation, phosphorylation, tyrosine sulfation, proline hydroxylation, 

methionine oxidation, asparagine or glutamine deamidation, glutamine cyclization, 

acetylation and homocysteinylation can induce alterations in fibrinogen structural 

features, affecting fibrin clotting ability and its susceptibility to plasmin digestion 

[94,105,106]. Accordingly, several recent in vitro and in vivo studies displayed the 
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relationship between oxidative stress and fibrinogen oxidation with fibrin clot structure 

abnormalities and fibrinolysis alterations in haemostatic system disorders as pulmonary 

hypertension, thrombosis, myocardial infarction, autoimmune disorders, cirrhosis etc 

[1,85,107-109].  

 

Environmental determinants 

Metal ions, pH value, several plasma proteins as albumin, fibronectin, lipoprotein(a) etc 

can influence clot forming. However, this process seems to be also determined by 

thrombin concentration. High thrombin levels are associated with fibrin clots 

characterized by thin fibers, many branch-points and small pores, resulting in more 

resistant to plasmin digestion clots. On the contrary, low thrombin levels induce fibrin 

clots with thicker and unbranched fibers, suggesting an increased susceptibility to 

fibrinolysis [94,99]. 

 

Cells and cellular components effects on fibrin clot forming 

Cellular effects on fibrin clot assembly can be generally summarized in the modulation 

of clot viscoelastic properties, permeability, stability and resistance to plasmin-induced 

lysis. Intra-extra vascular cells as leukocytes, endothelial cells and fibroblasts can 

influence clot structure and stability by physically interacting with fibrin and by releasing 

several molecules with pro-thrombotic effects [99].  

Platelets are involved in the physiological mechanisms of thrombus formation, being the 

principal actors of platelet phase during the coagulation cascade. However, clot structure 

can be compromised by platelet polyphosphate and factor 4 release and also by clot 

retraction. This is a central phenomenon in blood coagulation, based on fibrinogen 

interaction with platelets via αIIbβ3 glycoprotein and where both fibrinogen and platelet 

concentrations are relevant modulation factors [94]. Clot retraction causes the decrease 
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in clot permeability to proteolytic enzymes, suggesting its pathophysiological 

involvement in thrombosis risk [94]. 

Moreover, many studies also reported Red Blood Cells (RBCs) and NETs effects in clot 

architecture and dynamic features. RBCs act in coagulation and their increased levels are 

associated with blood viscosity and higher risk of venous thrombosis. RBCs can also 

interact with platelets and endothelial cells as well as with fibrinogen via two receptors 

expressed on their surface, β3 or β3-like molecule and the integrin associated CD47, 

showing RBCs active role in thrombus formation [110]. The presence of RBCs during 

clot formation can contribute to fibrin network heterogeneity, but their influence on fibrin 

fibers thickness it is not completely defined yet [94]. However, several data in literature 

underlined the role of RBCs in altering clot viscoelastic features and in promoting 

resistance to fibrinolysis via decreasing plasminogen activation [94]. 

NETs, composed of DNA, histones and antimicrobial proteins and produced by activated 

neutrophils during NETosis process [111], are an immune system response to pathogens. 

In the last years, literature largely revealed how NETs could represent a fundamental link 

between inflammation and thrombosis [1,2,112]. Indeed, NETs can interact with cells and 

coagulation factors and are included in the clot structure. NETs components interfere in 

the intrinsic pathway of coagulation and in platelets activation (via toll-like receptors-2 

and -4-dependent mechanisms) contributing to thrombin production. Parallel, histones 

contribute to the generation and activation of C protein by thrombin/thrombomodulin 

mechanism observed both in vitro and in mice. Altering local thrombin levels, NETs may 

indirectly influence fibrin assembly and its properties [94,113,114]. 

 

Hydrodynamic Flow 

Fibrin network architecture and dynamic features can be also affected by blood flow. It 

can alter local thrombin concentration, changing pro-coagulant proteins and active 
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enzymes levels and it is involved in fibrinogen, platelets, leukocytes and RBCs transport 

to the site of clot assembly. Blood flow seems to be central in fibers orientation affecting 

clot mechanical features and susceptibility to fibrinolysis and it can modulate fibrin 

deposition in several regions of a clot, changing its viscoelasticity and its stability and 

increasing the risk of embolization [94,99]. 

Stability refers to the resistance of the clot to the mechanical stress and fibrinolytic 

dissolution and it is generally investigated by measuring clotting times, clot properties 

(thromboelastography or similar techniques) or the rate of fibrinolysis [115]. 

In parallel, elasticity indicates reversible clot mechanical deformation while viscosity is 

associated with irreversible deformation induced by force [101]. These viscoelastic 

features characterize not only the whole fibrin but also each fiber and several 

environmental factors together with other physical and biochemical ones can modify and 

compromise them. Structural fibrin changes as unfolded regions, lack of secondary α-

structure can occur at fibrin molecular level during deformation. These alterations may 

affect fibrin viscoelasticity resulting in changes of clot behavior under 

(patho)physiological conditions. [101,115]. 

 

Molecular and Cellular Binding Interactions of Fibrinogen 

Fibrinogen Integrin Binding Sites 

Fibrinogen exposes two integrin binding sequences at Aα95-98 containing Arg-Gly-Asp-

Ser (RGDF) and at Aα572-575 containing Arg-Gly-Asp-Ser (RGDS) involved in several 

cellular interactions. RGD sequences play a central role in fibrinogen interaction with 

platelet αIIbβ3 glycoprotein [116], αvβ3 integrins on endothelial cells, melanoma and 

fibroblast cells [93].  

Particularly, platelet interaction with fibrinogen specific RGD sequences or C-terminal 

portion of γ chain results in platelets activation, aggregation and in clot retraction as a 
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consequence of fibrin-platelet interaction [116]. Further, past investigations revealed the 

central role of peptide β15-42 on the amino terminal portion of fibrinogen β chain, 

released as a consequence of FBp thrombin-induced cleavage, in platelets spreading on a 

surface of polymerized fibrin [116]. β15-42 is involved in heparin binding and cellular 

matrix interactions as well as in platelets and endothelial cells spreading, fibroblast 

proliferation, proliferation and capillary tube formation and release of vWF [93]. 

Accordingly, fibrin β chain seems to play an important role in stimulating vascular cell 

response via vWF release from endothelial cells but also in spreading of both endothelial 

cells and platelets. Cell proliferation is crucial during vascular repair and fibrin is 

involved in the modulation of this process, showing how specific proteolytic modification 

of adhesive protein substrates at sites of tissue injury may act in regulating cell adhesion 

and growth processes [117]. 

Fibrinogen is also molecular related to leukocytes and involved in the regulation 

of their immune response. Indeed, stimulated monocytes and neutrophils exposes αMβ2 

integrin (Mac-1) on their surface. Mac-1 is a high affinity receptor for D domain 

fibrinogen specific sequences, promoting fibrinogen-leukocyte interaction and 

consequently affecting inflammatory response [92,93]. 

 

Proteins, growth factors and cytokines binding to fibrinogen 

Fibrinogen interaction with several other proteins and biological molecules may affect 

their function and involvement in different physiological pathways.  

Plasma fibronectin binding to fibrinogen on its C-terminal region of Aα chain is mediated 

by factor XIIIa, involving multiple fibrinogen lysine residues and Gln-3 of fibronectin. 

This interaction is central for fibrinogen incorporation in cellular matrix [93]. 

Fibroblast growth factor-2 (FGF-2, bFGF) and VEGF binding to fibrinogen avoid their 

proteolytic degradation and induces endothelial cell proliferation, whereas fibrinogen 
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cross-linkage with insulin-like growth factor-1 (IGF-1) is involved in stromal cells 

function and proliferation, inducing wound healing process [92,93]. 

Furthermore, fibrinogen can interact with several cytokines as IL-1 promoting its 

stimulatory activity on endothelial cells [92]. 

Moreover, thrombin concentration, lipoprotein(a) and anticoagulants drugs as 

well as statins seem to be associated with alterations in fibrin structure and function but 

molecular mechanisms are still unclear in several cases [118]. 
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Oxidative Stress and SLE  

Inflammation and Oxidative Stress: General Details 

Free radical generation is traditionally accepted as a mechanism of action during 

inflammatory response. Immune system activation is associated with increased 

phagocytosis, NETs releasing as well as pro-inflammatory cytokines, chemokines and 

ROS/RNS production. Free radicals are great instruments to kill bacteria but they are also 

crucial in the stimulation of adaptive immune system T cells and B-cells, supporting 

inflammation. Excessive ROS/RNS levels are associated with oxidative stress, causing 

tissue injury and consequently maintaining the inflammatory status. These elements have 

been found also in autoimmune disorders including SLE disease, where immune system 

de-regulation and autoantibodies overproduction are involved in the development of a 

chronic inflammatory status and in the clinical features of the pathology.  However, low 

ROS production is implicated in higher susceptibility to microbial infections as well as 

immune tolerance affection, suggesting that physiological ROS levels are needed to 

promote health and reduce the possibility of autoimmune disorders onset [119].  

Despite the evidence of a redox imbalance as a consequence of autoimmunity and 

inflammation, several studies underlined the involvement of oxidative stress in the 

pathogenesis of lupus disorder. Higher ROS levels, mediated by free radical 

overproduction, mitochondrial dysfunction or antioxidant genes polymorphisms, can 

alter apoptotic pathways, resulting in growing apoptosis and decreased clearance of 

apoptotic debris and promoting their interaction with ROS [120,121]. The generation of 

new epitopes is observed, inducing immune system reactivity and autoantibodies 

production followed by inflammation and tissue damages [122,123]. 
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Several investigators reported that oxidative stress is increased in SLE. In this regard, 

markers of lipids, proteins or DNA oxidation, biochemically detected, could be useful 

indicators of disease activity and progression, driving therapeutic supplementation with  

antioxidants in order to enhance SLE patients’ redox status. Indeed, if a decreased 

antioxidant capacity (as intracellular GSH) seems to be associated with nephritis, CNS 

and endothelial activation in patients affected by SLE, treatment with antioxidant agents 

can reduce organ damages [121].   

A large amount of data about oxidative stress assessment in SLE is reported in literature. 

Someone supported the idea of oxidative biomarkers increasing during active disease, 

especially in presence of renal failure and antiphospholipid antibodies and of their relation 

to the severity of symptoms with particular reference to fatigue [123]. Higher 8-OHdG 

plasma levels and alterations in cytokines/chemokines production/elimination were found 

significantly correlated with SLEDAI Index in SLE patients as well as increased lipid 

peroxidation products, oxidized/nitrosylated proteins and lower antioxidants levels 

[120,124]. Among oxidative stress biomarkers, protein oxidation seems to be associated 

with new antigens generation, immune profiles (with particular reference to Th1-Th17 

immune shift), auto-immune response and severity of the disorder [125]. Redox 

imbalance has a crucial role in cardiovascular manifestations of SLE and in this context, 

lipoproteins reveal structural and functional differences in SLE patients when compared 

to them of healthy subjects; particularly an increased susceptibility to de novo oxidation 

and fragmentation is described [126]. 

 Among immune-deregulation and inflammatory conditions, one of the principal 

actor in free radical generation is represented by neutrophils, that are central in redox 

imbalance amply described in SLE. 
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The Role of Neutrophils in SLE 

Among immune system cellular mediators, polymorphonuclear neutrophils are active in 

organizing defensive responses against bacteria and fungi mediated by proteases and 

bactericidal peptides release, phagocytosis and NETosis, together with the production of 

pro-inflammatory cytokines and ROS. Physiologically, neutrophils have a half-life of 4-

10 hours, but during inflammation they could be found in blood flow for 1-2 days. 

Quantitative and qualitative neutrophils abnormalities are identified in lupus disorder. 

Neutropenia is one of the first hematological alterations detectable in SLE patients, but 

several data also suggest genetic and epigenetic modifications on neutrophils, involved 

in the pathogenesis of SLE. Indeed, patients display neutrophils with altered phagocytic 

capacities and oxidative ability as well as increased production of pro-inflammatory 

cytokines as IFN-1. Moreover, a subtype of neutrophils, lupus low-density granulocytes 

(LDGs), have been found in SLE. They are characterized by a pro-inflammatory 

phenotype and a great susceptibility to undergo NETosis [127]. Parallel, they represent a 

way to externalize autoantigens and enhance immune-stimulation, inducing break self-

tolerance in autoimmune disorders. 

Polymorphonuclear neutrophils play also a central role in adaptive immunity, 

contributing to T and B cells activation via pro-inflammatory molecular mediators. 

 

NADPH Oxidase 

Neutrophils and also monocytes host one of the principal sources of free radicals called 

NADPH oxidase (or NOX), a membrane bound enzyme that catalyzes the reduction of 

extracellular O2 in O2
∙-, using cytosolic NADPH as electrons donor. It exists in four 

isoforms as NOX1, NOX2, NOX3, and NOX4 and it is located into the plasma membrane 

as well as into the membranes of phagosomes used by neutrophils  to engulf 

microorganisms [61]. 

https://en.wikipedia.org/wiki/Phagosome
https://en.wikipedia.org/wiki/Neutrophil
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Others redox reactions can be triggered downstream of NADPH oxidase including the 

generation of ONOO- (in endothelium) and hydrogen peroxide (due to the reaction  

between superoxide anion and protons), the last one potentially used by MPO for the 

production of HOCl. If ROS show both beneficial effects in immune defense from 

infections and harmful ones due to inflammation and tissue injury in case of free radical 

overproduction, a great system of NADPH oxidase activity regulation is needed.  The 

phosphorylation of all the NADPH oxidase subunits, the activation of Rac2 and the 

cytosolic proteins transfer to the membrane are the principal mechanisms that influence 

inactivated/activated enzyme state [128]. 

As shown in figure 20, NADPH oxidase is a multi-component enzyme characterized by 

several proteins in the active site. The cytochrome b558 is a heterodimer composed by 

the two transmembrane proteins gp91phox (phox: phagocyte oxidase) and p22phox and 

by proteins p47phox p67phox p40phox and Rac2 (in neutrophils) originally located in 

cellular cytosol.  

 

 

Fig 20. NADPH oxidase structure [128] 

 

Four different states of NADPH oxidase activation have been identified: a resting state, a 

primed state, a fully activated state and a hyper-active state. The first one characterizes 

the inactivated enzyme, the priming state is a consequent response to stimuli from 
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bacterial LPS or pro-inflammatory cytokines as TNFalpha, Granulocyte-Macrophage 

Colony-Stimulating Factor (GM-CSF) and IL-8. Enzyme activation is due to mobilization 

and phosphorylation of granular and cytosolic components of NOX to the phagosomal 

membrane, promoting the formation of a complex with gp 91phox able to oxidize NADPH 

and reduce O2 into O2
∙- [61,128].  

NOX enzymes can be found in different cells and tissues displaying specific roles. 

NADPH oxidase is associated with cytoskeleton in endothelium, adventitia and 

cardiomyocytes and the production of superoxide anion and hydrogen peroxide in 

response to different factors, including thrombin, angiotensin II, endothelin-1 and 

mechanical forces, is involved in regulating the expression of several genes as PAI-1, 

ICAM-1, VEGF. Moreover, NOX-mediated ROS are implicated in the proliferation and 

migration of vascular smooth cells as well as in the regulation of MMPs enzyme, affecting 

vascular remodeling [129]. 

 As just anticipated in the section of Oxidative Stress of this draft, NOX2 is 

considered “the primary-source of immune-active ROS in neutrophils”. Producing ROS, 

releasing proteases and triggering NETosis process, NOX2 plays a crucial role in 

protecting organism against infections. However, it is also able to control immune 

response and derived inflammation by modulating several signaling pathways associated 

with innate/adaptive immune cells recruitment/elimination and by regulating specific 

transcriptional factors as Nf-kB [130]. Its involvement in several pro-inflammatory 

pathways can explain the potential implication of the enzyme in inflammation and injury 

enhancement [130]. 

 

NETs and Thrombosis 

As reported for the first time in 2004 by Brinkmann et al. [111], NETs are complexes of 

chromatin and proteins (histones, MPO and other antimicrobial proteins) able to degrade 
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virulence factors and bacterial compounds. They are released in the extracellular space as 

a consequence of infections or inflammation-induced neutrophil activation (figures 21 

and 22). In addition to phagocytosis, proteolytic enzymes, pro-inflammatory cytokines 

and ROS release, NETs represent a further new immune defense mechanism against 

Gram-positive and Gram- negative bacteria. They originate from NETosis process, a 

particular cellular death pathway where neutrophils stimulation by ROS, LPS or 

cytokines and chromatin unfolding are the principal trigger events [131]. 

NETs can also act avoiding the spread of bacteria and protecting tissues from 

inflammation-mediated injury: indeed, they can block the release of several bacterial 

proteases in the neighboring sites, preventing their damage. Moreover, NETs might also 

be involved in autoimmunity onset including SLE, due to the exposure of chromatin and 

protein complexes that can trigger immune system activation [111]. 

 However, data in the literature have underlined the role of NETs also in 

thrombosis. Both platelets and neutrophils are active protagonists in thrombus formation 

and progression, suggesting how pro-thrombotic alterations of haemostatic system could 

be associated not only to coagulation/fibrinolytic system factors abnormalities, but also 

to inflammation. Particularly, the pathogenetic involvement of neutrophils in thrombosis 

is due to the release of NETs, implicated in deep vein thrombosis (DVT) as demonstrated 

by several studies on animal models of DVT and by NET plasma biomarkers, reflecting 

disease activity [132,133]. 

Importantly, NETs have been described to form scaffolds in circulation that 

promote thrombus formation by interacting with the endothelium, platelets, coagulation 

factors and red blood cells. Consistently, depletion of neutrophils or injection of 

exogenous DNase I have been shown to prevent thrombus formation in mouse models 

and humans. IL-8 and ROS released from endothelial cells can recruit and trigger 

neutrophils to form NETs, which in return activate and damage the endothelium by 
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binding of histones to endothelial membranes. The release of Weibel–Palade bodies from 

the endothelium and deposition of fibrin and vWF promote blood coagulation by 

formation of thrombus scaffolds. vWF and fibrin have a high affinity for histones and 

therefore readily bind to NETs. Furthermore, histones have been shown to inhibit 

anticoagulants in the plasma, thereby further promoting thrombus formation.  

Based on this evidence, systemic inflammation more than usual thrombophilic factors is 

thought to be one of the principal trigger factor of thrombosis in chronic inflammatory 

and autoimmune disorders as SLE and seems to be mainly mediated by T lymphocytes, 

monocytes, neutrophils and pro-inflammatory cytokines along with endothelial cell 

dysfunction [112-114]. 

 

Fig 21. NETosis process [134] 

 

Fig 22. Electron microscopical analysis of activated neutrophils and NETs release [111] 
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Aim of the Study  

Fibrinogen plays an essential role in inflammatory response and in blood coagulation, 

being a critical molecule for clot formation. Modifications in fibrinogen structure and 

dynamic features may influence fibrin network assembly, promoting haemostatic system 

alterations. During several pathological and chronic-inflammatory disorders, oxidative 

stress can lead to oxidation of plasma proteins including fibrinogen, that is 20x more 

susceptible to oxidative damage than albumin, as our group recently described [85]. We 

observed in BS, myocardial infarction and pulmonary hypertension and patients that 

fibrinogen oxidative modifications, especially increased fibrinogen carbonyl content, 

were significantly associated to structural and functional alterations of the protein 

[1,85,107]. Particularly, a loss of α-helix secondary structure as well as a reduced clotting 

ability and a decreased susceptibility to plasmin-induced lysis were found on purified 

fibrinogen from those patients. 

Based on this background, being SLE an autoimmune and chronic inflammatory disorder 

where the main cause of mortality is represented by cardiovascular manifestations in 

patients with long duration of disease [34], it can represent an excellent experimental 

model for our investigations. In particular, in fibrinogen purified from SLE patients, the 

assessment of oxidative-dependent structural and functional modifications could shed 

light on the pathogenetic mechanisms involved in the increased cardiovascular risk in 

these patients. 
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Materials and Methods 

The study sample included 144 patients with SLE (90% female) who attended the 

Florence Lupus Clinic (SOD Medicina Interna Interdisciplinare, AOUC Careggi) and 90 

age-matched healthy control subjects. The characteristics of patients are reported in Table 

8. 

All patients were diagnosed as having SLE disease according to SLICC 2012 criteria 

[28,47]. Patients with other autoimmune diseases, active infections or neoplastic 

conditions were excluded. Blood samples were collected from patients under 

immunosuppressive therapy with glucocorticoids. 

The study protocol was submitted by the local Ethics committees and informed written 

consent was obtained from all the subjects before entering the study. 

Patients (n) 144 

Age (yrs, mean ± SD) 50.3 (±14.9; min 21 max 89) 

Gender (n) 

Female 

Male 

 

128 (89%) 

16 (11%) 

Clinical Manifestations 

Articular 

Cutaneous 

Haematological 

Renal 

Serological  

Neuropsychiatric 

Cardiac 

 

122 (85%) 

83 (57.5%) 

76 (52.5%) 

50 (35%) 

27 (19%) 

25 (17.5%) 

9 (6.5%) 
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Gastrointestinal 1.9 (1.3%) 

CV risk factors 

BMI 

Hypertension (ESC Clinical Practice Guidelines) 

Smoke 

Dyslipidemia 

History of CV events 

Diabetes 

aPLs (antiphospholipid antibodies) 

 

24.1 (± 4.3); min 16 max 42.2) 

59 (41.2%) 

41 (28.8%) 

23 (16.3%) 

13 (8.8%) 

9 (6.3%) 

42 (29%) 

Atherothrombotic events (n) 

Arterial 

Venous 

Mixed 

32 (22.5%) 

16 

12 

4 

 
Table 8. Clinical characteristics of SLE patients enrolled in the study. 

 

Samples Collection 

Blood samples were collected in Vacutainer tubes containing 0.109 mol/L buffered 

trisodium citrate (1:10) or EDTA (0.17 mol/L). After centrifugation (1500g for 15 

minutes at 4°C), aliquots of sodium citrate plasma were used for experiments, fibrinogen 

purification or stored at -80°C for further analyses.  

 

Fibrinogen Purification  

Fibrinogen was purified using the previously described ethanol precipitation method 

[1,85,107]. After the purification process, fibrinogen concentration was determined by 
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ultraviolet spectroscopy (ONDA UV-20) at a wavelength of 280 nm, assuming an 

extinction coefficient of 1.51 mg/mL. The amount of purified fibrinogen was not 

statistically different between patients and controls (data not shown). The purity of 

purified fibrinogen (from 10 mL of citrated plasma) was assessed performing fibrinogen 

electrophoresis under reducing conditions and then densitometric analysis of Coomassie-

stained polyacrylamide gels. No significant statistical difference between controls and 

patients was observed at the end of purification (data not shown). 

 

Blood Leukocytes Intracellular ROS Levels Assessment 

As described in others work of our group [1,135,136], after collection 100 µl of EDTA-

anticoagulated blood samples was resuspended in 2 mL of BD FACS Lysing Solution 

(Becton Dickinson Biosciences, San Jose, CA, USA), gently mixed and incubated at room 

temperature in the dark for 15 minutes. Next, cells were centrifuged (700g for 7 minutes 

at 20°C), the supernatant was discarded and cells were washed twice in PBS. The 

evaluation of intracellular ROS levels was performed incubating cells with H2DCF-DA 

(2.5 µM) (Invitrogen, Carlsbad, CA, USA) in RPMI medium without serum and phenol 

red for 30 min at 37°C. H2DCF-DA is a chemically reduced form of fluorescein used as 

a ROS indicator in cells. Indeed, the 2’,7’-dichlorofluorescein (DCF) fluorescent probe 

is particularly sensitive to several oxygen radical species as hydrogen peroxide, 

peroxynitrite, hydroxyl radicals and also by superoxide anions and if compared to more 

specialized ROS probes in development, H2DCF-DA represents the most versatile 

indicator of cellular oxidative stress and the gold standard for ROS measurement [137]. 

After labelling, cells were washed and resuspended in PBS and analysed immediately 

using FACSCanto flow cytometer (Becton-Dickinson, San Jose, CA, USA). The sample 

flow rate was adjusted to about 1000 cells/s. For a single analysis, the fluorescence 

properties of at least 20,000 events were collected per sample. The individual cell 
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subpopulations were gated using their distinctive forward-scatter and side-scatter 

properties. Moreover, the viability of the cells was controlled by flow cytometry with 

propidium iodide staining, and was found to exceed 95 %. Data was analysed using BD 

FACSDiva software (Becton-Dickinson, San Jose, CA, USA). 

 

Plasma Lipid Peroxidation Assessment (Thiobarbituric Acid Reactive 

Substances Assay, TBARS ASSAY)  

Plasma Thiobarbituric Acid Reactive Substances (TBARS) levels were estimated using a 

TBARS Assay Kit (TBARS-Cayman) following the manufacturer’s sheet. It is based on 

the thiobarbituric acid as an optimal reagent able to react with lipoperoxidation products 

(after 1h at 95°C), leading to the formation of a chromophore adduct measured 

spectrofluorometrically with excitation at 530 nm and emission at 550 nm in a Microplate 

Fluorometer (Biotek Synergy H1). Results were expressed in terms of malondialdehyde, 

MDA (nmol/mL) [1,85,135,138].  

 

Plasma Total Antioxidant Capacity Estimation (Oxygen Radical 

Absorbance Capacity Assay, ORAC ASSAY)  

The ORAC method (Oxygen Radical Absorbance Capacity) is based on the fluorescence 

decay of a fluorescent probe, fluorescein, consequent to its oxidation by free radical 

species (particularly peroxyl radical) generated after the thermal decomposition of azo 

compounds as 2,2’-azobis(2-amidinopropane) dihydrochloride (AAPH). A fluorescein 

solution (6 nM) prepared daily from a 4 µM stock in 75 mM sodium phosphate buffer 

(pH 7.4), was used. Trolox (250 µM final concentration), a water-soluble analogue of E 

vitamin, was used as a standard. 70 µl of each sample was pre-incubated for 30 min at 

37°C in each well with 100 µl of fluorescein and then AAPH solution (19 mM final 
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concentration) was added starting the reaction. Fluorescence was measured with 

excitation at 485 nm and emission was measured at 537 nm in a Microplate Fluorometer 

(Biotek Synergy H1). Results were expressed as Trolox Equivalents (µM) and then 

normalized for protein concentration [1,85,135,138,139]. 

 

Assessment of Dityrosine Content in Purified Fibrinogen  

Dityrosine content was evaluated on purified fibrinogen fractions by fluorometric 

measurements using a Jasco Fluorimeter (Jasco 810). Samples were dialyzed in 5 liters 

of PBS pH 7.4 and then Dityrosine Fluorescence Spectra were recorded at 25 °C in a 1 

cm quartz cuvette with an excitation wavelength of 316 nm and maximum emission of 

367 nm. Three spectra for each sample were acquired and then normalized for protein 

concentration (mg/ml) of each related sample [89-91]. 

 

Evaluation of Thrombin-Catalyzed Fibrin Polymerization  

For functional analysis, purified fibrinogen fractions stored at -80°C and not previously 

thawed were used. The reaction was performed in duplicate using 40 µg of fibrinogen 

and PBS with Ca2+-Mg2+ (starting volume of 100 µl) to which 100 µl of thrombin at the 

final concentration of 0.20 U/ml (in PBS with Ca2+-Mg2+) were added, starting the 

process. Fibrin polymerization was monitored at 405 nm in a 96-well microtiter plate 

reader (Biotek Synergy H1) for 120 minutes at 25°C. The procedure was performed in 

accordance to the protocol previously described in our recent studies [1,85]. 

Absorbance curves were characterized using the following parameters: 

1. The maximum slope (Vmax), calculated as the slope of the steepest part of the 

polymerization curve (using 10 points), indicates the rate of lateral protofibril 

association; 
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2. The lag phase, measured as the time elapsed until an increase in absorbance was 

seen, represents the time to the start of lateral fibril aggregation; 

3. Maximum absorbance (Max Abs) of the growing clot, recorded 60 min after 

polymerization was initiated, which reflects an average fibrin fiber size and the 

number of protofibrils per fiber. 

 

Evaluation of Fibrin Susceptibility to Plasmin-Induced Lysis  

According to our protocol performed during other studies [1,85,107], 10 µg of purified 

fibrinogen were incubated with bovine thrombin (50 U/ml final concentration) in 20 µl 

of Buffer (50mM Tris, 100mM NaCl, 20mM EDTA, pH 7,4) [140] for 1h at 25°C in 

microcentrifuge tubes. After, plasmin was added (5 µl of 50 U/ml final concentration) 

and the fibrin clots were digested over a period of 6h at 37°C. 10 µl of Lithium Dodecyl 

Sulfate (LDS) Gel Electrophoresis Sample Buffer (50mM Dithiothreitol, DTT and LDS 

4X) was used to terminate fibrin clots degradation. The same lot of thrombin and of 

plasmin were used for all experiments. Samples were incubated at 90°C for 15 minutes 

under reducing conditions and then loaded in 4-12% Bis-Tris gels. After electrophoresis, 

gels were stained with Coomassie Blue and band intensities of stained gels were 

quantified by Image J Software. Data were expressed as the ratio between the 

densitometric reading of the purified protein at a given digestion time and that at the 

undigested protein (time 0 for incubation with plasmin). 

 

Circular Dichroism (CD) Spectra of Purified Fibrinogen  

CD Spectra of purified fibrinogen 1 mg/ml were recorded on a Jasco Fluorimeter (Jasco 

810) at 25 °C in 0.2 cm quartz cell from 250 to 195 nm (far UV). Samples were filtered 

through 0.22 µM filters and three spectra recorded for each sample. Protein ellipticity at 
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208 and 222nm has been evaluated to investigate fibrinogen α-helix secondary structure 

[1,85]. Molar ellipticity values [q] were calculated according to the equation: [θ] (deg-

cm2 dmol-1) = [θ (MRW)]/[10(l)(c)], where f is the displacement from the basaline value 

X to the full range in degrees; MRW is the mean residue weight of the aminoacids; l is 

the path length of the cell (cm) and  c is the protein concentration (g/ml). 

 

Intrinsic Fluorescence Spectra of Purified Fibrinogen  

In order to provide information on conformational changes of purified fibrinogen, we 

performed Intrinsic Fluorescent Spectra of the protein deriving from the naturally 

fluorescent amino acid tryptophan and to a lesser extent from tyrosine. Spectra were 

recorded on a Jasco Fluorimeter (Jasco 810) at 25 °C in a 1 cm quartz cells with an 

excitation wavelength of 280 nm and maximum emission of 352 nm. Three spectra were 

acquired for each sample and then normalized for protein concentration (mg/ml) of each 

related sample [141,142]. 

 

Statistical Analysis 

All the experiments were performed in triplicate and data were expressed as the overall 

mean of the means of the 3 experiments ± Standard deviation (SD), after testing the low 

intra-experiment and inter-experiment variability and the reproducibility of measures 

using ANOVA Bonferroni Test. All data presented a normal distribution and were 

considered statistically significant with a value of p < 0.05. All statistical operations data 

were processed using the Graph Pad Prism 5 Software.  
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Results  

According to the aim of this study, in 144 SLE patients and 90 sex and age-matched 

controls blood systemic redox status and signs of fibrinogen oxidation were evaluated. 

Assessment of structural and functional features of purified fibrinogen fractions were 

performed and finally, correlation analyses between the considered redox markers and 

the functional fibrinogen parameters were executed. 

 

Blood Leukocytes Intracellular ROS Levels  

The evaluation of blood systemic redox status was performed in SLE patients and healthy 

subjects by the assessment of intracellular ROS levels in blood leukocyte subpopulations 

of lymphocytes, monocytes and granulocytes. 

As reported in figure 23 (panel B, C and D), SLE patients showed a significant increase 

in ROS levels in all the three leukocyte fractions, if compared to controls (p < 0.001). 

 

Fig 23. Blood leukocytes ROS production in SLE patients and controls. 

FACS representation of blood leukocyte subpopulations using their distinctive forward-scatter 

and side-scatter properties (A). Lymphocyte, monocyte and neutrophil ROS production (B, C, D) 

in SLE patients (n=144) and controls (n=90). * indicates that differences are significant at the 

p< 0.05 level by ANOVA Bonferroni Test. 
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Oxidative Stress Assessment in Plasma Samples and in Purified 

Fibrinogen 

In SLE patients, plasma samples oxidative stress monitoring revealed a significantly 

higher lipid peroxidation (0.39 ± 0.08 vs 1.42 ± 0.49, p<0.0001) and a lower total 

antioxidant capacity (TAC) (21.33 ± 3.10 vs 16.12 ± 3.78, p < 0.0001) as shown in figure 

24 (panel A and B). Moreover, signs of fibrinogen oxidation were found. Particularly, 

data in figure 24 (panel C) show a significant increase in dityrosine content on purified 

fibrinogen from SLE (151 ± 33 vs 297 ± 78, p < 0.0001). 

 

 

 
 

Fig 24. Plasma oxidative stress marker in SLE patients and controls. 

Plasma lipid peroxidation (A), plasma antioxidant capacity (B) and dityrosine content on purified 

fibrinogen fractions(C) in SLE patients (n=144) and controls (n=90). * indicates that differences are 

significant at the p < 0.05 level by ANOVA Bonferroni Test. 

 

Thrombin-Catalyzed Fibrin Polymerization 

Fibrin assembly mechanism has been investigated performing kinetics of fibrin 

polymerization during the time. Representative curves of thrombin-induced fibrin 

polymerization are reported in figure 25, displaying quantitative but particularly 

qualitative differences in the process between SLE patients and controls. 

Indeed, a reduced fibrinogen clotting ability is shown in SLE. This is in accordance with 

the significant differences between the principal parameters of fibrin polymerization 

process (Lag Phase, Vmax and Max Abs, as described in Materials and Methods section), 

suggesting abnormalities in clot structural architecture. Particularly, in SLE Lag phase 
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value is increased (3.9 ± 0.8 vs 8.6 ± 4.6, p < 0.0001) whereas a reduction in Vmax 

(0.011330 ± 0.001120 vs 0.002293 ± 0.001704, p < 0.0001) and Max Abs (0.211 ± 0.019 

vs 0.115 ± 0.043, p < 0.0001) values are observed (figure 26 panel A, B and C). 

 

 

Fig 25. Representative curves of fibrin polymerization in SLE patients and controls 

 

 

 

Fig 26. Thrombin-catalyzed fibrin polymerization and corresponding Lag phase (A), Vmax (B)  

and Max Abs (C) in fibrinogen purified from SLE patients (n=144) and controls (n=90). 

* indicates that differences are significant at the p < 0.05 level by ANOVA Bonferroni Test. 
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Plasmin-Induced Fibrinolysis 

Purified fibrinogen functional features were also investigated, evaluating fibrin 

susceptibility to plasmin-induced lysis. Particularly, we focused on the degradation rate 

of the fibrin ß chain that has been monitored before and after 3 hours and 6 hours of 

plasmin digestion, as shown in figure 27 (panel A). 

The quantification of residual fibrin β chain after 6 hours of plasmin digestion revealed a 

significantly different and higher content of this parameter in SLE than in controls (23 ± 

6 vs 63.7 ± 21.8, p < 0.0001), showing a fibrin resistance to plasmin induced lysis in SLE 

(figure 27 panel B). 

 

 

Fig 27. Representative gel of fibrin lysis after 0-6h of plasmin incubation with fibrinogen purified from SLE 

patients and controls (A). Quantification of residual fibrin β chain after 6h of plasmin digestion in SLE 

patients (n=144) and controls (n=90) (B). 

* indicates that differences are significant at the p < 0.05 level by ANOVA Bonferroni Test. 
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Analysis of Fibrinogen Structural Features 

Circular Dichroism Spectroscopy (CD) 

Fibrinogen secondary structure is defined by α-helices and β-pleated sheets and it strongly 

influence protein biological activity. 

In this study, fibrinogen secondary structure was firstly evaluated using far-UV Circular 

Dichroism Spectroscopy. Comparing CD spectra of purified fibrinogen from patients and 

healthy subjects, differences in protein structure were evident. Particularly, if fibrinogen 

purified from controls shows a typical alpha-helix secondary structure with minima at 

208 nm and at 222nm, a decreased negative peak in the 215 to 225v nm region is observed 

in SLE, suggesting a reduction in α-helical content (figure 28). 

 

 

Fig 28. Representative CD spectra of purified fibrinogen from SLE patients and controls. 
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Intrinsic Fluorescence Spectra Analysis 

Further investigations on fibrinogen structural features were performed analyzing the 

intrinsic fluorescence properties of protein samples, determined by the different exposure 

of hydrophobic amino residues to the solvent. Evaluating intrinsic fluorescence spectra 

of purified fibrinogen from patients and healthy subjects, an inverse correlation between 

the maximum fluorescence emission at 352 nm and fibrinogen structure was observed 

(figure 29 panel A). Particularly, as shown in figure 29 (panel B), the intrinsic fibrinogen 

fluorescence intensity was significantly different and higher in SLE patients than in 

controls, suggesting protein conformational alterations according to the CD results (406 

± 66 vs 185 ± 128, p < 0.0001). 

 

 

 
 

Fig 29. Representative intrinsic protein fluorescence spectra of purified fibrinogen (A); 

quantification of intrinsic fibrinogen fluorescence in in SLE patients (n=144) and controls (n=90) 

(B).* indicates that differences are significant at the p < 0.05 level by ANOVA Bonferroni Test. 
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Correlation Analysis 

At the end of the study, correlation analysis between fibrinogen functional and structural 

features and the considered redox parameters were also performed. 

As shown in figure 30 (panel A, B, C, F, G, H and I), residual fibrin β chain after 6h of 

plasmin digestion significantly correlated with lymphocyte ROS (r2 = 0.03623, p = 

0.0223), monocyte ROS (r2 = 0.03750, p = 0.0200), neutrophil ROS (r2 = 0.04586, p = 

0.0100), fibrinogen dityrosine content (r2 = 0.1164, p < 0.0001) and fibrin polymerization 

parameters of Lag phase (r2 = 0.6564, p < 0.0001), Vmax (r2 = 0.2835, p < 0.0001) and 

Max Abs (r2 = 0.2360, p < 0.0001). Conversely, no significant correlations have been 

found with plasma lipid peroxidation (r2 = 0.02077, p = 0.0848) and plasma antioxidant 

capacity (r2 = 0.01380, p = 0.1609), as reported in figure 30 (panel D and E).  

 

Fig 30. Correlation analysis comparing residual fibrin β chain after 6h of plasmin digestion with leukocyte 

subpopulations intracellular ROS production (A, B, C), plasma oxidative stress markers (D, E), fibrinogen 

dytyrosine content (F) and fibrin polymerization parameters (G, H, I) in SLE patients (n=144). 

 Statistical significance was considered at the p < 0.05 level by ANOVA Bonferroni Test. 
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Figure 31 (panel A, B and C) shows that fibrinogen dityrosine content significantly 

correlates with all fibrin polymerization parameters of Lag phase (r2 = 0.06945, p = 

0.0014), Vmax (r2  = 0.03207, p = 0.0317) and Max Abs (r2 = 0.02761, p = 0.0466). 

 

Fig. 31. Correlation analysis comparing purified fibrinogen dityrosine content with fibrinogen 

polymerization parameters of Lag phase (A), Vmax (B) and Max Abs (C) in SLE patients (n=144). 

Statistical significance was considered at the p < 0.05 levell by ANOVA Bonferroni Test. 

 

Moreover, significant correlations have been found between the intrinsic fibrinogen 

fluorescence and fibrin polymerization parameters of Lag phase (r2 = 0.1556, p < 0.0001), 

Vmax (r2  = 0.06002, p= 0.00031) and Max Abs (r2  = 0.08406, p = 0.0004), residual fibrin 

β chain after 6h of plasmin digestion (r2  = 0.2850, p < 0.0001) and fibrinogen dityrosine 

content (r2  = 0.1871, p < 0.0001), as shown in figure 32 (panel A, B, C, D and E). 

 

Fig. 32. Correlation analysis comparing intrinsic purified fibrinogen fluorescence with fibrinogen 

polymerization parameters (A, B, C), residual fibrin β chain after 6h of plasmin digestion (D) and 

fibrinogen dityrosine content (E) in SLE patients (n=144).  

Statistical significance was considered at the p < 0.05 level by ANOVA Bonferroni Test. 
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Discussion 

Cardiovascular events represent one of the main causes of mortality in developed 

countries. In addition to alterations of haemostatic processes, including platelet activation 

and aggregation, coagulation and fibrinolysis, over the last years a growing literature has 

underlined the pivotal role of oxidative stress in vascular health affection. Oxidative 

stress, traditionally defined as an imbalance between ROS/RNS production and 

antioxidant defense mechanisms, is strongly related to several acute and chronic disorders 

[143]. Both ROS and RNS are considered crucial mediators of inflammation, together 

with pro-inflammatory cytokines, chemokines and adhesion molecules, growth factors 

and proteases. Free radicals are also able to substantiate pro-inflammatory responses due 

to tissue injury via cellular components (lipids, proteins and DNA) oxidation [143]. Based 

on this evidence, a strong correlation between oxidative stress, vascular inflammation and 

endothelial dysfunction can be observed. Indeed, an increase in pro-inflammatory 

cytokines (as IL-1, IL-6, IFN, TNF-α) production and in adhesion molecule (as VCAM-

1, ICAM-1) expression, promoting leukocytes migration and infiltration as well as 

platelet and coagulation factors recruitment has been described in this context [2]. 

Moreover, higher levels of proteases (as MMP-2, MMP-9 in smooth muscle cells) and 

reduced NO amounts are involved, together with the before reported factors, in a pro-

thrombotic and pro-atherogenic endothelial phenotype [63,144]. 

 Recent studies observed vascular complications and higher risk of thrombosis also 

in autoimmunity, suggesting a crucial association between systemic inflammation and 

thrombotic events [2]. Accordingly, autoimmune disorders are chronic inflammatory 

pathological conditions where immune system dysfunctions and autoantibodies 

overproduction, due to the loss of self-tolerance mechanisms, may induce the clinical 

manifestations via progressive tissue and organ injury. Moreover, if a physiological 

interaction between components of coagulation and immune system (as leukocytes and 
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macrophages) exists, based on the inflammatory properties of vascular insult that induces 

coagulation cascade activation, inflammation could be also considered a trigger factor of 

haemostatic system alterations and thrombosis in chronic disorders [2]. 

Many studies in literature proposed BS as a model of inflammation-induced thrombosis. 

Accordingly, therapeutic treatment with glucocorticoids and immunosuppressants 

produced a reduction of patients’ mortality due to arterial/venous thrombosis unlike 

anticoagulant drugs [145]. Inflammation and oxidative stress in BS have been also 

supported by our recent investigations, showing blood redox status alterations (described 

by the significant increase in plasma oxidative stress markers and in leukocytes 

intracellular ROS levels) and an hyperactivation of leukocytes in patients than in healthy 

subjects. Interestingly, the considered redox parameters were significantly correlated with 

functional and structural alterations of fibrinogen (purified from plasma fractions of 

patients and controls), underlining a new pathogenic mechanism in the relation between 

immune system and thrombogenesis [1]. 

Among autoimmune disorders, SLE is characterized by an increased cardiovascular risk 

that represents one of the main causes of mortality in patients with a long-standing disease 

[34, 35]. Traditional Framingham factors as well as early atherosclerosis and disease-

related factors are included among pathogenetic mechanisms of thrombosis and 

cardiovascular manifestations in SLE, but further investigations are needed.  

Based on this evidence, the aim of our study was to evaluate the effects of oxidative stress 

on structural and functional features of fibrinogen purified from plasma of SLE patients, 

in comparison with healthy subjects. Indeed, fibrinogen is a plasma glycoprotein with a 

central role in inflammation, being an acute phase protein, but also in coagulation, being  

one of the main actors of fibrin clot assembly. Changes in its structure and conformation 

have been associated to pro-thrombotic alterations of haemostatic system.  
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As a chronic inflammatory and autoimmune disease, redox status alterations were largely 

observed in plasma, serum or urinary samples of SLE patients [123]. Higher levels of 

urinary F2 isoprostane excretion, an increased serum levels of nitrotyrosine and anti- 

MDA/anti-HNE protein adduct antibodies as well as higher oxidized low-density 

lipoproteins have been biochemically assessed in SLE patients. In addition, a lower 

content of SOD was found in serum of patients than in controls. All these data seem to be 

potentially associated with disease activity, fatigue, organ damage and comorbidities 

[123,124,126], suggesting the need of further studies devoted to improve the quality of 

life and clinical manifestations by the use of new therapeutic approaches. In this context, 

our biochemical assessment of oxidative stress both in plasma samples and blood 

leukocytes of SLE patients could supply precious information about the systemic redox 

status in these patients. 

In 144 SLE patients and 90 sex-age matched healthy subjects, ROS production in blood 

leukocyte subpopulations of lymphocytes, monocytes and granulocytes was detected by 

FACS analysis and resulted significantly higher in patients than in controls. Our recent 

investigations showed higher intracellular ROS levels also in other pathological 

conditions as BS [1], non-ST elevation myocardial infarction (NSTEMI) [136] and 

Retinal Vein Occlusion (RVO) [146]. This evidence supports that leukocytes are an 

important model to study variations of redox homeostasis in biological systems. Plasma 

oxidative stress status was evaluated by the assessment of TBARS levels, as an index of 

lipid peroxidation and Total Antioxidant Capacity (TAC) content. It is traditionally 

accepted that ROS-induced plasma lipoproteins oxidation is associated with the 

pathogenic mechanisms of atherosclerosis, being one of the main actors in the 

atherosclerotic plaque formation. Autoimmune disorders are characterized by 

inflammation, redox status alterations and, consequently, increased ox-LDL [126]. All 

these features have been also reported in SLE, suggesting an accelerated atherosclerosis 
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and an increased CVD risk [122]. Accordingly, our data showed a significant increase in 

plasma lipid peroxidation products from patients compared to healthy subjects. These 

results are in line with other reports in pathological conditions such as BS, post-

myocardial infarction, and Marfan Syndrome [1,85,148], underlining the relevance of 

lipid peroxidation products as stable biomarkers to assess sample redox status. However, 

lipid peroxidation involvement in cardiovascular risk is not only due to the triggering of 

atherosclerosis and atherosclerotic plaque formation, but also to alterations of dynamic 

characteristics of cellular membrane in specific blood cellular subsets. Indeed, two recent 

papers performed by our group reported that higher intracellular ROS levels and 

membrane lipid oxidation in erythrocytes were positively correlated with higher blood 

viscosity and reduced membrane fluidity and deformability, leading to the thrombotic 

clinical manifestations of RVO and Sudden Sensorineural Hearing Loss (SSHL) 

[146,149]. 

In our cohort of patients, oxidative stress status was also confirmed by a significant 

decrease in plasma TAC levels. Together with leukocyte ROS production and lipid 

peroxidation, TAC levels, even if representing an indirect indicator of redox balance, give 

an important contribution to oxidative status evaluation in SLE. Indeed, in the early phase 

of oxidative stress, ROS induce antioxidant gene expression, whereas during prolonged 

phase of oxidative stress TAC decreases as an effect of antioxidant consumption.  

Several biological molecules are susceptible to ROS-mediated oxidation. Especially, 

protein oxidative modifications may induce polypeptide structural changes, causing 

protein dysfunction and its involvement in the pathogenic mechanisms of several 

disorders such as neurodegenerative, cardiovascular diseases and tumors. Among plasma 

proteins, fibrinogen results 20x more susceptible to oxidative modifications than albumin 

[85], according to several studies that described it as an important target of oxidation with 

potential effects on its structural and functional characteristics [150]. Fibrinogen 
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polypeptide chains expose several amino residues to oxidative attack including arginine, 

proline, histidine and lysine, tyrosine, methionine and cysteine located in the specific 

thrombin or plasmin binding sites. It has been reported that methionine oxidation plays a 

pivotal role in vascular biology, affecting several proteins of haemostatic system and 

particularly fibrinogen [86]. As reported by Weigandt et al. [87], the oxidation of one or 

all the three fibrinogen methionine residues Met78, Met367 and Met476 may alter fibrin 

clot polymerization and delays fibrinolysis. This may be potentially due to a reduction in 

protofibrils lateral aggregation, leading to fibrin clots with smaller pore sizes [105]. 

Abnormalities in structural and viscoelastic features of fibrin clots have also been found 

as consequences of fibrinogen nitration [151] or carbonylation. Carbonyl groups are 

considered one of the main biomarkers of protein oxidation, causing an increase in protein 

hydrophobicity, aggregation and dysfunction [84,152]. 

Oxidation of the above mentioned amino acids may lead to the formation of cross links, 

nitration derivatives or carbonyl compounds that can induce protein intramolecular 

rearrangements and changes leading to fibrinogen biological activity alterations [150]. 

This evidence may legitimate our analysis, evaluating signs of oxidative stress markers 

on fibrinogen purified from plasma of SLE patients and in healthy subjects. Particularly, 

dityrosine content was fluorometrically assessed on fibrinogen fractions of patients and 

controls. After normalization for protein concentration, our data show a significant 

increase in fibrinogen dityrosine content in SLE patients compared to healthy subjects, 

suggesting further investigations aimed at evaluating the potential relationship between 

fibrinogen oxidation and the increased cardiovascular risk in SLE. Several data in the 

literature suggest that fibrinogen oxidative modifications may alter clot structural 

architecture and consequently clot dynamic, leading to thrombosis and thromboembolism 

[150].  
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When we assessed thrombin-induced fibrin polymerization process, a reduced clotting 

ability was observed in SLE patients, as demonstrated by the significant increase in Lag 

phase value and the reduction of Vmax and Max Abs values if compared with controls. 

Moreover, Lag phase value appears significantly and positively correlated with 

fibrinogen dityrosine content whereas Vmax and Max Abs values are significantly and 

inversely associated with the considered marker of fibrinogen oxidation. In 1995, Shacter 

et al. [153] reported preliminary evidence of a decreased clot formation after fibrinogen 

oxidation and later, several other studies confirmed this data. Recently, our group 

demonstrated the association of oxidative modification of fibrinogen with structural and 

functional alterations both in BS and in subacute phase of myocardial infarction and in 

[1, 85], showing the thrombogenic phenotype of fibrinogen in that pathological context. 

Similarly, the central role of fibrinogen oxidation in other thrombotic disorders has been 

revealed, including cirrhosis [109] and coagulopathy after traumatic injury [154]. 

Our investigations on fibrinogen functional features in SLE were extended to the 

evaluation of fibrin susceptibility to plasmin-induced lysis. A reduced fibrinolysis has 

already been found by our group in several pro-thrombotic or chronic inflammatory 

disorders as BS [1], post-acute myocardial infarction [85] and pulmonary hypertension 

[107]. However, this evidence can be found in other pathological conditions characterized 

by thrombotic events, suggesting alterations in fibrin clot structure/function as a 

transversal mechanism involved in thrombogenesis. Indeed, fibrin resistance to lysis has 

been also described in deep vein thrombosis and pulmonary embolism [102], in idiopathic 

venous thromboembolism [108], chronic thromboembolic pulmonary hypertension [140] 

and in acute coronary syndrome [155]. 

When we analyzed SLE patients’ fibrin susceptibility to lysis after 6 hours of fibrin 

incubation with plasmin, a marked resistance to the enzyme catalytic activity was 

observed in comparison with healthy subjects. This was confirmed by the significant 
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increase in residual fibrin β chain after 6 hours of plasmin digestion in SLE patients. In 

accordance to our investigations performed in BS and in the subacute phase of myocardial 

infarction [1, 85] where fibrin resistance to lysis was significantly related to fibrinogen 

carbonyl content, a significant and positive correlation between the residual fibrin β chain 

after 6 hours of plasmin digestion and the considered redox parameters of blood leukocyte 

ROS production and fibrinogen dityrosine content has been also found in our cohort of 

SLE patients. Interestingly, another main result is the significant correlation among the 

residual fibrin β chain after 6 hours of plasmin digestion and Lag phase, Vmax and Max 

Abs values, supporting that fibrinogen oxidation can alter fibrin clot architecture and 

influence fibrin susceptibility to plasmin activity.  

Accordingly, a reduced protofibrils lateral aggregation and stiffer clots can be observed 

in pro-thrombotic pathological conditions, where thinner fibrin fibers and smaller pore 

sizes result in clot with higher stability and less permeability to plasmin, as largely 

reported by Undas et al in 2008 [155] but also by Mills et al. in 2002 [156] and Collet et 

al 2006 [157]. On the contrary, clots composed by thick fibrin fibers and larger pore sizes 

are found in healthy subjects, suggesting a higher permeability to plasmin and an 

accelerated fibrinolysis [1]. 

Based on the data here reported, our main future perspective will be represented by an in-

detail clot structure analysis by Transmission Electron Microscopy and/or DIC analyses- 

in order to characterize the structural features of fibrin network in SLE patients.  

Several factors may influence fibrin clot conformational and mechanical features as well 

as stability, including blood flow and cells, environment, thrombin and fibrinogen 

concentration, fibrinogen genetic variants, intrafibrillar structure and protofibril 

packaging [158,159]. However, in haemostatic system disorders, a great relevance in 

modulating fibrin network assembly is also represented by oxidative stress, a 

consequence of systemic response to vascular injury. Fibrinogen oxidation is associated 
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with alterations in clot structure/function, resulting in a fibrin thrombogenic phenotype 

[1,85,106]. Based on this evidence, in the last part of this study fibrinogen structure was 

also investigated. Using far-UV Circular Dichroism Spectroscopy (CD), fibrinogen 

secondary structure was analyzed. Comparing CD spectra of fibrinogen purified from 

patients and controls, a reducing in α-helical content was observed in SLE patients. 

Fibrinogen structure was further explored by assessing intrinsic protein fluorescence. Our 

results revealed a different exposure of fibrinogen hydrophobic amino residues to the 

solvent in patients, confirming fibrinogen conformational changes in SLE. 

Interestingly, a significant correlation was found between the intrinsic fibrinogen 

fluorescence and both fibrinogen dityrosine content and fibrinogen functional features 

parameters (the residual fibrin β chain after 6 hours of plasmin digestion and Lag phase, 

Vmax and Max Abs values).  

The findings here reported show a systemic redox imbalance in SLE patients and mostly 

important, the observed fibrinogen oxidative modifications seem to be associated with 

alterations in fibrinogen secondary structure, affecting fibrin clot assembly and its 

dynamic features. Moreover, experiments performed in vitro support this evidence. In 

literature, several reports described that in vitro fibrinogen oxidation with HOCl 

promoted the formation of Advanced Oxidation Protein Products (AOPP), leading to 

changes in its structural domains and consequently in its biological activity (a reduced 

clotting time) [160]. In addition, Nowak et al [161] confirmed in his study that 

peroxynitrite-induced oxidative/nitrative modifications of fibrinogen may be related to 

functional consequences including a reduced fibrin clotting ability and a decreased fibrin 

susceptibility to plasmin-induced lysis. Particularly, AαC fibrinogen domain is largely 

involved in protofibrils lateral aggregation and results the most susceptible domain to 

oxidation, causing abnormalities in fibrin polymerization process as well as in clot 

structure. Indeed, clots with higher number of fibrin fibers as well as thinner fibers are 
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observed after fibrinogen oxidation. However, also our group evaluated fibrinogen 

structural and functional effects after in vitro oxidation using 2,2’-azobis (2-

amidinopropane) dihydrochloride (AAPH) as a free radical generator. A great 

correspondence with our data obtained in vivo was described. Indeed, a significant 

increase in carbonyl content and dityrosine formation was observed in AAPH treated 

samples compared to controls. Thrombin-induced fibrin polymerization and plasmin 

catalyzed fibrinolysis were assessed, showing a reduced clotting ability and a fibrin 

resistance to lysis in AAPH treated samples [85]. Moreover, fibrinogen structural 

alterations were discovered: a reduction in  α-helical content (as suggested by circular 

dichroism spectroscopy) and an alteration in tertiary structure (detected by Thioflavin T 

and ANS assays) in AAPH treated samples were evident. These results were confirmed 

by FTIR analysis, which showed marked structural modifications in treated samples. 

Moreover, AFM analysis revealed that AAPH treatment induces changes in fibrinogen 

morphology and aggregates formation (unpublished data). 

Altogether, the data presented in this study provide evidence for fibrinogen oxidative 

modifications as a new risk factor for thrombotic events in SLE patients. The association 

of fibrinogen oxidative modifications with its structural and functional alterations and 

prothrombotic phenotype suggests a potential role of oxidative stress in the pathogenetic 

mechanisms underlying the increased cardiovascular risk in autoimmunity and 

particularly in SLE. 

Therapeutic approaches based on antioxidant supplementation could be useful to improve 

SLE patient redox status and parallelly to reduce fibrinogen oxidative–mediated structural 

and functional alterations ultimately decreasing SLE mortality for CVD. 
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