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1. INTRODUCTION 

1.1. Neurodegenerative disorders 

Neurodegenerative disorders affect over 30 million of individuals in the world leading 

them to disability and death. They are characterized by important pathological changes 

in specific areas of the central nervous system (CNS) and degeneration of distinct neuron 

subsets. Despite the different symptomatology and neuronal vulnerability, the 

pathological processes seem to be similar, suggesting common neurodegenerative 

mechanisms. Neurodegenerative disorders include common diseases, such as the well-

known Parkinson’s disease (PD), Alzheimer’s disease (AD), but also uncommon 

conditions, such as Huntington’s disease (HD)1. 

Some diseases, such as AD, are characterized by cognitive decline, while others, such as 

PD, are mainly characterized by motor impairments. HD shows simultaneously motor, 

psychiatric, and cognitive symptoms as predominant features early on. 

 

▪ Alzheimer’s disease (AD) 

Alzheimer’s disease is the most common neurodegenerative disorder and it is 

characterized by memory decline. In the early stage, patients present episodic memory 

dysfunctions, with more recent events being more difficult to remember while more 

distant memories are generally preserved. Patients also have early impairment in 

semantic memory regarding the knowledge of facts about the world while procedural 

memory is not affected. Other cognitive disfunctions of AD include language, visuospatial 

function, and executive function1. AD patients also present language difficulties that 

manifest early in the disease as reduced verbal fluency and naming. Patients often have 

neuropsychiatric disturbances, including depression, delusions, hallucinations, behavioral 

disturbances, such as agitation, and personality changes.  

 

▪ Parkinson’s disease (PD) 

PD has been defined as a motor disorder. The motor symptoms include resting tremor, 

bradykinesia, rigidity, and gait imbalance. However, also nonmotor features have been 

observed such as cognitive impairment, psychiatric symptoms, autonomic dysfunction, 

and sleep disturbances1. Autonomic dysfunction includes constipation, gastrointestinal 
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motility issues, urinary symptoms, orthostatic hypotension. Common psychiatric features 

include depression and anxiety. In later stage of the pathology patients develop cognitive 

decline and in some cases dementia. Differently from AD, memory decline is rare while 

cognitive impairments such as deficits in attention, hallucinations, or psychosis often 

occur in PD. Sleep disturbances include sleep apnea, daytime sleepiness, and rapid eye 

movement sleep behavior disorder (RBD). 

 

▪ Huntington’s disease (HD) 

This disorder is characterized psychiatric illness, cognitive impairment, and motor 

dysfunction. When HD manifests during adulthood, patients can show simultaneously 

either motor symptoms or behavioral symptoms. Psychiatric symptoms include 

depression, anxiety, and less likely mania and psychosis. Suicide is also a very common 

event in patients with HD. Patients may also be aggressive toward others. Cognitive 

impairments are also not rare with decline in attention, motivation, problem solving, and 

executive function. The motor dysfunction is typically marked by choreiform movements, 

which are excessive, together with involuntary movement. Differently from AD and PD, 

HD occurs during childhood and the clinical manifestations are quite different and include 

akinesia, rigidity along with cerebellar ataxia and seizures. 

 

Mechanisms implicated in neurodegeneration  

Despite causes of each neurodegenerative disorder are different, some mechanisms 

involved in neurodegeneration seem to be similar. In fact, the mechanisms leading to 

neurodegeneration and cell death include: 

• Mitochondrial Dysfunction.  

• Oxidative Stress.  

• Excitotoxicity. 

•  Protein Aggregation.  

• Prion-Like Spread.  

• Neuroinflammation.  
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Among these mechanisms, no one appears to be the main cause of neurodegeneration, 

and these pathogenic mechanisms act synergistically through complex interactions to 

promote neurodegeneration. 

 

Current treatment options  

At present, the therapeutic treatments available to patients with neurodegenerative 

disorders are few and those that are available address only symptoms and not affecting 

the mechanisms underlying the disease. Despite these therapies can make a big 

difference in the quality of life of patients, it is urgent to develop effective and safe 

therapies able to stop or slow the progression of diseases. To achieve this we need a 

better understanding of the mechanisms and causes regulating the neurodegeneration 

that could provide new promising targets for drug the discovery programs1. 

 

1.2 Adenosine in brain disorders 

In central nervous system (CNS), adenosine plays the double role of neuro- and 

homeostatic modulator. The neuromodulatory effect results from a balanced activation 

of inhibitory A1 receptors and facilitatory A2A receptors, mostly controlling excitatory 

glutamatergic synapses2. A1 adenosine receptor (AR) induces a tonic brake on excitatory 

transmission, whereas the A2AAR is involved in promoting synaptic plasticity phenomena. 

The neuromodulatory role of adenosine is very similar to the role of adenosine in the 

control of brain disorders; in fact, A1ARs mostly act as a hurdle that needs to be overcame 

to begin neurodegeneration and, accordingly, A1AR only effectively control 

neurodegeneration if activated in the temporal vicinity of brain insults; in contrast, the 

blockade of A2AAR leads to beneficial effects in different neurodegenerative conditions 

such as ischemia, epilepsy, Parkinson's or Alzheimer's disease and also seem to afford 

benefits in some psychiatric conditions2. Despite this qualitative agreement between 

neuromodulation and neuroprotection by A1AR and A2AAR, it is still not clear if the role of 

A1AR and A2AAR in the control of neuroprotection is mostly due to the control of 

glutamatergic transmission, or if it is instead due to the different homeostatic roles of 

these receptors related with the control of metabolism, of neuron–glia communication, 

of neuroinflammation, of neurogenesis or of the control of action of growth factors. 
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Althoughthis current mechanistic uncertainty, it seems evident that targeting the A1 and 

A2AARs might constitute a novel strategy to control the progression of different 

neurological and psychiatric disorders. Based on these premises, I focused my PhD 

research activity on the identification of new compounds designed as antagonists of the 

human (h) A2AAR or of both hA1 and hA2AARs. 

 

1.3 Adenosine 

Adenosine is an endogenous purine nucleoside that plays an important role in the human 

body. Its existence was demonstrated for the first time in 1927 when a adenine 

compound able to slow the heart rhythm and rate was discovered in extracts from cardiac 

tissues3. Since then, adenosine physiopathological roles have been investigated in various 

disciplines (biology, physiology, medicine,) thus generating a new field of research. Fifty 

years later, this findings led to the introduction of adenosine in the diagnosis and 

treatment of supraventricular tachycardia4,5. At present, adenosine is known to be an 

ubiquitous endogenous molecule involved in several biological functions, both 

physiological and pathological6,7. These include cardiac rhythm and circulation8,9 

lipolysis10 , renal blood flow11,12, immune function13 , sleep regulation14,15 and 

angiogenesis16 , as well as inflammatory diseases17,18, ischaemia–reperfusion19 and 

neurodegenerative disorders20. 

 

1.3.1 Origin and metabolism of adenosine 

In physiological conditions, extracellular adenosine levels are between 20 and 300 nM, 

rising to a low micromolar values in particular situations (physical exercise or low 

atmospheric oxygen levels) and high micromolar levels (30 µM) in pathological conditions. 

The concentration of adenosine in the extracellular compartment is the consequence of 

biological processes such as extracellular adenosine production, adenosine transport, 

adenosine formation from intracellular pathways or adenosine breakdown to inosine or 

AMP (Figure 1). Extracellular adenosine derives from two sources. First, it may be derived 

from the external transport of intracellularly generated adenosine otherwise may also be 

formed as a consequence of extracellular hydrolysis of adenine nucleotides. In many 
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instances, extracellular adenosine arises from the degradation of extracellular 

nucleotides ATP and ADP. 

 

 

 

Figure 1. Adenosine metabolism and transport in the extra-intracellular milieu.21 

 

In particular, adenosine originates from ATP through a two-step enzymatic reaction in 

which ATP or ADP are turned into AMP by ectonucleoside triphosphate 

diphosphohydrolase 1 (ENTPD1; also known as CD39) and followed by AMP hydrolysis to 

adenosine by ecto-5′-nucleotidase (NT5E; also known as CD73). ATP can be released from 

different cell types by various mechanisms including the releasing from storage vesicles 

together with other hormones but it can be also released via a ‘kiss and run’ mechanism22 

(a type of synaptic vesicle release where the vesicle opens and closes transiently) or from 

the lysosome by exocytosis23. The ATP is also released by mechanisms including 

uncontrolled leakage from necrotic cells9 or from cells undergoing other forms of cell 

death24,25 as well as release from inflammatory cells or vascular endothelia through 

connexin hemichannels and channels such as P2X purinergic receptor 726-28. In 

physiological conditions, adenosine is mainly originated intracellularly, from hydrolysis of 

AMP and S-adenosylhomocysteine (SAH) through the endo-5-nucleotidase, and SAH 

hydrolase, respectively29. Also the extracellular adenosine, once generated, is captured at 

the intracellular level trough the SLC28 family of cation-linked concentrative nucleoside 

transporters (CNTs) and the SLC29 family of energy-independent, equilibrative nucleoside 

transporters (ENTs), which regulate the free passage of adenosine across the cell 
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membrane. The adenosine passage across the membrane is regulated by a concentration-

dependent mechanism which suggests how the uptake or release from cells is determined 

by the adenosine gradient. The role of ENTs in this transfer is more important than that 

of CNTs, indeed, the four isoforms of ENT (1–4) allows the passage into or out of cell 

membranes on the basis of adenosine concentrations, while the three isoforms of CNT 

(1–3) facilitate adenosine influx against a concentration gradient, using the sodium ion 

gradient as a source of energy. Normally the adenosine flux is from the extracellular to 

intracellular compartment, while during hypoxia, it is reversed. After intracellular uptake, 

adenosine is rapidly metabolized to inosine by adenosine deaminase (ADA) or 

phosphorylated to AMP through adenosine kinase (AK). The Michaelis constant (Km) 

values for these enzymes are 2 µM (AK) and 17–45 µM (ADA) respectively thus suggesting 

that AK is the principal means of adenosine clearance in physiological conditions, while 

deamination occurs preferentially in case of pathological processes featuring higher 

adenosine levels. In such situations, deamination through ecto-ADA or influx through 

ENTs may occur to reduce the extracellular adenosine concentration30-32. 

 

1.3.2 Adenosine receptors (ARs) 

Adenosine mediates its effects through specific interactions with G protein-coupled 

receptors (GPCRs) divided into four subtypes termed A1, A2A, A2B, and A3 (ARs, Figure 2). 

 

 

 

Figure 2. Adenosine receptors (ARs) and their corresponding intracellular signal pathways.33 
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ARs are widely expressed in the human body, and are present in the nervous, 

cardiovascular, respiratory, gastrointestinal, urogenital, and immune systems as well as 

in bone, joints, eyes, and skin34—a pattern of distribution that explains the role of 

adenosine in the control of a broad spectrum of physiological and pathophysiological 

conditions.  

Each AR is characterized by specific cell and tissue distribution (Figure 3), secondary 

signaling transductors (Table 1), and physiological effects.  

 

 

Figure 3. ARs anatomical distribution and corresponding physiological effects. 

 

In particular, A1AR and A3AR signals are mediated through Gi and Go which are able to 

reduce adenylyl cyclase (AC) activity and cAMP levels, while A2AARs and A2BARs are 

coupled to Gs proteins, through which they stimulate AC and increase cAMP levels, thus 

leading to the activation of a plethora of effectors, depending on the signaling triggered 

by cAMP in specific cells35 (Table 1). 
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1.3.3 Adenosine receptor molecular structures 

All four ARs have been well identified, cloned and pharmacologically studied, and present 

a common structure consisting in a core domain which crosses the plasma membrane 

seven times, in which each helix is 20–27 amino acids long and linked by three intracellular 

and three extracellular loops36. The extracellular amino-terminal contains one or more 

glycosylation sites, while the intracellular carboxylic-terminus provides sites for 

phosphorylation and palmitoylation thus regulating desensitization and internalization 

processes. The AR subtypes present different numbers of amino acids. For instance, a 

longer COOH terminus, with 122 amino acids, is found on A2AAR, whereas A1AR, A2BAR, 

and A3AR bear COOH-terminal tails consisting of ~30–40 amino acids35. The sequence 

identity between the hA1 and hA3 ARs is 49%, and the hA2A and hA2B ARs are 59% Some of 

these charateristic conserved residues are involved in specific functions. In particular, 

there are two peculiar His residues in TMs 6 and 7 of hA1, hA2A, and hA2B ARs while in the 

hA3 AR, one of this His residue is lacking but another His residue can be found in TM3. All 

this His residues have been indicated by mutagenesis studies to be important in 

recognition and/or activation of the receptor35,37. In the beginning, adenosine receptors 

were divided in subtypes A1 and A2 following their ability to increase or decrease the 

activity of adenylate cyclase (AC), respectively38,39. Then, A2 receptors were further 

classified, by Daly and collaborators40, on the basis on their affinity for the endogenous 

ligand adenosine, indeed, A2A affinity (0.1-1 μM) is higher than and A2B one (>10 μM). A3 

Table 1. Classification and mechanism of action of adenosine receptors 

Name A1 A2A A2B A3 

G protein coupling 
effector system 

Gi/0 Gs Gs/q11 Gs/q11 

 Adenylyl  

cyclase 

Adenylyl  

Cyclase     

Adenylyl  

cyclase 

Adenylyl  

cyclase 

 Phospholipase C MAP kinase Phospholipase C Phospholipase C 

 K+/Ca+  MAP kinase PI 3-Kinase 

 PI 3-Kinase   MAP kinase 

 MAP kinase    

Adenosine affinity 1-10 nM 0.1-1 μM >10 μM 100 nM 



1.INTRODUCTION 
 

9 

AR was identified fort the first time in 1991 through a polymerase chain reaction (PCR) 

performed on rat cDNA encoding a GPCR that showed high affinity (58%) with A1 and A2A 

AR41. This “new” receptor revealed an unconventional low homology between its 

homologous in other species (e.g. 72% versus rat A3 AR) considering the other ARs (85-95 

% of homology versus rat). Moreover, the presence of several GPCRs (including ARs) in 

homomer, oligomer or heteromer forms has been observed42-47. GPCR heteromers are 

considered to be new signaling entities characterized by different functional properties 

when compared with homomers. In this field, the adenosine A1AR-A2AAR unit represents 

the first reliable structure of a macromolecular complex, including two different receptors 

but also two different G proteins coupled to them42,45. Indeed A1AR is coupled to Gi and 

A2AAR to Gs, thus making this heteromer able to activate opposite signals affecting the 

cAMP-dependent intracellular pathway. In particular, this entity plays the role of sensor 

a cell surface of adenosine concentration, able to discriminate between low and high 

levels of nucleoside45. In the case of low adenosine levels, it binds preferentially the A1AR 

protomer of the heteromer and activates Gi/o protein, thus inhibiting adenylate cyclase 

(AC), protein kinase A (PKA), and GABA uptake. Instead, when adenosine levels are higher, 

its binding is favored to A2AR component of the complex, which reduces A1AR activation 

and, through Gs protein, associates with the AC/cAMP/PKA cascade, resulting in the 

increase of GABA uptake48. Interestingly, the heteromerization phenomenon appears as 

a general mechanism affecting also A3ARs, forming homodimers and A1AR-A3AR 

heterodimers49,50. This opens up new perspectives in the drug development44, in 

particular, A2AAR-D2 dopamine receptor heterodimers have been detected in the striatum 

and may be a viable therapeutic target in PD51-53. 
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1.3.4 A1 adenosine receptor 

 

 

Figure 4. Overview of A1AR intracellular signaling pathways. A1AR stimulation decreases adenylate cyclase 

(AC) activity and cAMP production, thus inhibiting protein kinase A (PKA), while activated phospholipase C 
(PLC)-β and Ca2+. K+ and Ca2+ channels are opened and closed, respectively, by A1AR enrollement. Mitogen 
activated protein kinases p38, ERK1/2, and JNK1/2 phosphorylation are induced by A1AR activation.21 

 

The A1AR is expressed in the central nervous system (CNS) especially in the brain cortex, 

cerebellum, hippocampus, autonomic nerve terminals, spinal cord, and glial cells29. This 

broad distribution reflects the wide range of physiological functions regulated by A1AR in 

the brain incuding neurotransmitter release, dampening of neuronal excitability, control 

of sleep/wakefulness, pain reduction, as well as sedative, anticonvulsant, anxiolytic, and 

locomotor depressant effects54-56. This subtype is also present at high levels in peripheral 

organs such as the heart, kidney, adipose tissue, and pancreas, where it induces negative 

chronotropic, inotropic, and dromotropic effects, reduces renal blood flow and renin 

release, and inhibits lipolysis and insulin secretion, respectively57-63. It is also located on 

airway epithelial and smooth muscle cells, where it stimulates a bronchoconstrictory 

response, and in several immune cells such as neutrophils, eosinophils, macrophages, and 

monocytes in which it modulates essentially proinflammatory effects64-66. A1AR also 

stimulates phospholipase C (PLC)-β activation, thereby increasing inositol 1,4,5-

trisphosphate (IP3) and intracellular Ca2+ levels, which induces calcium-dependent 

protein kinases (PKC) and/or other calcium-binding proteins. At the neuronal and 

myocardial level, A1AR stimulates potassium (K) pertussis toxin-sensitive and K-ATP 

channels, while reducing Q-, P-, and N-type Ca2+ channels. Furthermore, involvement of 

A1AR in the intracellular phosphorylative cascade of the mitogen-activated protein kinase 
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(MAPK) family—including extracellular signal-regulated kinase (ERK), p38, and Jun NH2-

terminal kinase (JNK)— has been reported67,68(Figure 4). 

 

1.3.4.1 A1AR in neurological diseases 

The A1AR subtype is widely and homogeneously expressed in the CNS, mainly in excitatory 

synapses, and plays an important role in regulating the physiological synaptic 

transmission. In detail, A1AR stimulation inhibits the excitatory transmission through the 

inhibition of N-type calcium-channel and neuronal hyperpolarization by regulation of 

potassium current69,70. This leads to a reduction in glutamate release and inhibition of 

NMDA effects, which maintains an A1ARs-dependent inhibitory tonus in the brain71-73, an 

effect that is beneficial in several central disfunctions such as epilepsy, pain, and cerebral 

ischemia74. 

 

➢ A1AR in epilepsy, pain and cerebral ischemia 

During investigations, adenosine proved to be an endogenous anticonvulsant molecule, 

able to reduce the frequency of action potentials induced by electrical stimulation 

through involvement of overexpressed A1ARs75. Several studies have reported protection 

against seizures resulting from an increase in adenosine levels produced by a ketogenic 

diet, which apparently inhibits adenosine kinase76 (ADK). It seems that this effect may also 

be related to adenosine interfering with the S-adenosyl methionine (SAM)-induced DNA 

methylation pathway— involved in epileptogenesis—as a result of ADK reduction, 

adenosine increase, SAH accumulation, and SAM inhibition77. These data constitute the 

rationale supporting ADK inhibitors as therapeutic agents. However, despite these may 

increase adenosine and reverse such epigenetic changes, their toxic side effects have not 

yet been overcome78. As an alternative, adenosine-based treatments have been 

proposed. For example, adenosine administration might be useful as a preventative 

treatment or following surgical resection of an epileptogenic focus79.  

The neuroprotective properties of A1ARs have been investigated in several models of 

inflammation and neuropathic pain, in which A1AR agonists showed antinociceptive 

and/or antihyperalgesic properties. A1AR activation reduces pain by acting on spinal, 

supraspinal, and peripheral neurons as well as in glial cells. The molecular mechanisms 

involved in pain mitigation include the classical signal pathways described for A1AR-AC 
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and PKA reduction; PLC induction; Ca2+ and K+ channel regulation; and ERK, CREB, 

calmodulin kinase (CaMKIIα) inhibition, as well as reduction of excitatory amino acid 

release55. In addition, the pathway involving the nitric oxide/cGMP/protein kinase 

G/KATP channel emerged as a molecular effector in the A1AR-mediated pain suppression 

through induction of nociceptive neuron hyperpolarization and inhibition of microglia 

hyperactivation80. However, since the systemic administration of A1AR agonists may lead 

to central and cardiovascular side effects, several candidates have failed in clinical trials. 

In this sense, partial agonists or allosteric modulators could represent a solution to this 

problem. Furthermore, the A1AR’s inhibitory effect on the glutamate release appears to 

be fundamental in the prevention/protection against ischemic damage. However, A1AR 

only seems to be effective in the early hours after damage while the chronic stimulation 

is responsible for the opposite effects. Indeed, a role for A1AR has been retrieved during 

preconditioning—a state of tissue protection by exposure to sublethal insults— probably 

occurring through modulation of NMDA preconditioning- mediated increase of glutamate 

uptake81.  

 

➢ A1AR in Alzheimer’s disease 

A1 receptors reduces the synaptic transmission and release of various 

neurotransmitters82. In the hippopcampus, adenosine inhibits the release of acetylcholine 

and the excitatory amino acid glutamate82-84. This latter and its receptors have been 

recognized to play a central role in the pathogenesis of AD and the dysfunction of this 

excitatory amino acid system may be responsible for some of the AD clinical 

manifestations85,86. Alexandre de Mendoca first described that endogenous adenosine, 

through A1 receptor activation, modulates long-term synaptic plasticity phenomena, such 

as long-term potentiation87 (LTP), and then showed that tonic activation of A1 receptors 

decreases88 LTP. In accordance with the notion that synaptic plasticity is the basis for 

learning and memory in different brain areas89, adenosine correspondingly modulates 

rodent performances in various learning and memory paradigms90. Administration of 

adenosine receptor agonists (mainly A1) disrupts learning and memory in rodents91,92 

while the nonselective adenosine receptor blockade by caffeine/theophylline or selective 

blockade of A1 and A2A receptors improve the performances of rodent different 

behavioral tasks92,93. A1 receptors are highly expressed in the CA1 region of 
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hippocampus94 in a normal healthy brain. A change in the pattern of A1 receptor 

expression has been found in AD patients when compared with age-matched control 

brains95. Most of the studies regarding the AD models for adenosine receptors were 

performed in hippocampus and striatum and showed reduced levels of A1 receptors in 

these areas96. In AD patients, a reduced density of A1 receptors, along with reduced 

binding sites for adenosine agonists and antagonists, has been found in the molecular 

layer of the dentate gyrus. In addition, altered binding of adenosine agonists and 

antagonists to A1 receptors in CA1 and CA3 regions of hippocampus has been observed97. 

Kalaria and colleagues have demonstrated that A1 receptors are significantly reduced by 

40-60% in AD after assessing the hippocampal samples collected from postmortem AD 

subjects as well as they observed an highest reduction of A1 receptors in the molecular 

layer of the dentate gyrus including perforant pathways98, which is the principal source of 

cortical input to the hippocampal formation99. On the contrary, Albasanz and co-workers 

highlighted that an upregulation of both the A1 and A2A receptors take place in frontal 

cortex both in early and advanced stages of AD100, associated with sensitization of the 

corresponding transduction pathways. In agreement with theses results, a study carried-

out in a transgenic mouse model (APP Swedish mutation) also found the higher levels of 

cortical A1 and hippocampal A2A receptors as compared with the non-transgenic mouse101. 

On the other hand, it is not clear if A1 receptors influence the processes involved in the 

formation of abnormal APP and hyperphosphorylated tau proteins in AD patients. 

However, the role of A1 receptors in APP processing, tau phosphorylation and cellular 

signaling has been investigated in a model of human neural cells (neuroblastoma SH-SY5Y 

cells) that naturally express A1 receptors95. This study shows that activation of A1 

receptors led to the production of soluble APP, mediate tau phosphorylation and its 

translocation towards the cytoskeleton of neuroblastoma cells. A marked increase in A1 

receptor immunoreactivity was also observed in degenerating neurons with 

neurofibrillary tangles and in dystrophic neurites of Aβ plaques in the hippocampus and 

frontal cortex of AD. The positive involvement of A1 receptors in in vitro APP processing, 

tau phosphorylation and the presence of A1 receptors in the neurodegenerative 

structures of AD suggest that A1 receptors may play a role in the pathogenesis of AD.  
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➢ A1AR in Parkinson’s disease 

Regarding the involvement of A1 adenosine receptor in Parkinson’s diesease, quantitative 

autoradiographic studies in rodent, postmortem human brain samples102, as well as [11C-

MPDX] PET imaging in human subjects103 highlighted that adenosine A1 receptors are 

highly expressed in neocortex, hippocampus, and striatum. Based on anatomical and in 

vivo microdialysis studies, A1ARs seem to be localized presynaptically of dopamine (DA) 

axon terminals where they reduce the DA release104. Futheremore it was been observed 

that A1ARs blockade improves DA release in the striatum and similarly to the A2A 

receptors, potentiate DA-mediated responses. Furthermore, the A1 receptor is also 

concentrated in neocortical and limbic brain areas that are important for cognitive 

function and have been implicated in antidepressant action. Inhibition of A1 receptors 

enhances neurotransmitter release in the hippocampus105 and is effective in improving 

performance in animal models of learning and memory106. ASP-5854 is a dual A2A/A1 

antagonist able to bind the A2A and A1 ARs with affinity values of 1.8 and 9.0 nM, 

respectively107. ASP-5854 turned out to be effective in a number of animal models of 

PD108,109, and it has shown beneficial effects in two models of cognition, the scopolamine-

induced memory deficits in the mouse Y-maze and the rat passive avoidance test110. On 

the contrary, the highly selective A2A antagonist KW-6002 showed minimal or no effect in 

the same models thus indicating that the A1 component could provide added benefit to 

PD patients. These data suggest that a dual A2A/A1 adenosine receptor antagonist may 

offer a unique and exciting approach to treating both the motor and the nonmotor 

disturbances of PD. 

A1 receptors play an active role in protecting astrocytes from damage and cell death111-113 

through the activation of PI3K and ERK 1/2 phosphorylation. A1ARs on microglial cells 

have been demonstrated to reduce excessive activation of microglial cells following 

immune activation114. Activation of these receptors may secondarily affect 

oligodendroglial cells114 and also astrocyte proliferation115, which emphasizes the 

possibility of an extended glial network of signaling. A1 receptors on neurons (especially 

at nerve terminals) are involved in mediating the dampening effect on neuronal activity 

mediated by adenosine generated from ATP released from astrocytes116,117.  
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1.3.5 A2A adenosine receptor 

 

 

Figure 5. Overview of A2AAR intracellular signaling pathways. A2AAR stimulation increases adenylate 

cyclase (AC) activity, cAMP production, protein kinase A (PKA), and cAMP-responsive element-binding 
protein (CREB) phosphorylation. AKT and mitogen- activated protein kinases p38, ERK1/ 2 and JNK1/2 are 
activated following by A2AAR recruitment.21 

 

The A2AAR subtype is localized both in the CNS and peripherally showing the greatest 

expression is in the striatum, olfactory tubercle and the immune system, while lower 

levels were observed in the cortex, hippocampus, heart, lung, and blood vessels. 

Furtheremore, A2AAR is expressed on both pre and postsynaptic neurons and in glial cells, 

astrocytes, microglia and oligodendrocytes, where it regulates several functions related 

to excitotoxicity, spanning neuronal glutamate release, glial reactivity, blood-brain barrier 

(BBB) permeability, and peripheral immune cell migration. The A2AAR subtype is also 

expressed in the immune system, in leukocytes, platelets, and the vasculature, where it 

mediates anti-inflammatory, antiaggregatory, and vasodilatory effects, respectively118. 

In the brain, A2AARs modulate the activation of a particular neuron-specific type of Gs 

protein, known as Golf, which is also linked to AC119. cAMP-dependent PKA is the most 

common effector raised by A2AAR activation; this phosphorylates and activates numerous 

proteins, including receptors, phosphodiesterases, cAMP-responsive element binding 

protein (CREB), and dopamine- and cAMP-regulated phosphoprotein (DARPP-32)120. 

Moreover, according to several literature reports on different cellular models, the A2AAR 

appears to be involved in the modulation of MAPK signaling121,122 (Figure 5). A2AAR may 

also interact with different accessory proteins, D2-dopamine receptors, α-actinin, ADP-
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ribosylation factor nucleotide site opener (ARNO), ubiquitin-specific protease (USP4), and 

translin associated protein X (TRAX) through the COOH terminus, which would explain the 

contrasting results found in terms of A2AAR-mediated effects121.  

 

1.3.5.1 A2AAR in neurological diseases 

 

➢ A2AAR in Parkinson’s disease 

A2ARs are highly expressed in the basal ganglia and depend on Gs and other interacting 

proteins for correct transduction of their signals123. The striatum is the anatomical region 

in mammals that most strongly expresses A2ARs, which have been established to play an 

important role in the regulation of dopaminergic transmission in the basal ganglia124. 

A2AAR are co-localized postsynaptically with D2Rs in GABAergic striatopallidal 

enkephalinergic MSNs. Stimulation of the A2AAR at this level counteracts the inhibitory 

modulation of NMDA receptor activity mediated by D2Rs, which includes regulating Ca2+ 

influx, transition to the firing “up” state and modulation of neuronal firing in the “up” 

state125,126 . This interaction is the main cause of most of the locomotor inhibition and 

activation induced by A2AR agonists and antagonists, respectively127. Adenosine A2AAR-

mediated activity is usually antagonistic to that mediated by D2R in MSNs and functional 

antagonism between A2A and D2 receptors was recently reported in striatal cholinergic 

interneurons128. Overall, adenosine-dopamine antagonism underlies the potential 

therapeutic benefits of A2AR-selective antagonists in PD. Related to this, blockade of A2A 

receptors showed beneficial effects in preclinical animal models of PD, showing 

potentiation of dopamine induced responses in dopamine 6-OHDA-treated129,130 animals 

and significant relief of parkinsonian symptoms in MPTP-treated131,132 nonhuman 

primates133-135. A2A antagonists facilitate dopamine receptor signaling thus normalizing 

motor function in animal models of dopamine dysregulation. Despite most of adenosine 

A2A receptors are located in the basal ganglia, some have been also found in other areas 

of the CNS such as the nucleus accumbens and olfactory tubercle. This suggests that 

adenosine A2A receptors might be actively involved in the neuropsychiatric nonmotor 

symptoms occurring in PD including anxiety, depression, and cognitive impairment. Only 

little investigation was carried out about of this possibility until recently but an association 

with A2A receptors had been demonstrated using A2A receptor knock-out mice and 
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pharmacological manipulation of A2A receptor function136,137. This is potentially important 

since the PD non-motor impairments, such as anxiety and depression, are not well 

controlled by classical antidepressant and anxiolytic drugs and changes in cognition only 

show a small improvement in response to cholinesterase inhibitors which can, in some 

cases, worsen motor features. Another issue to be investigated is the potential ability of 

A2A receptor antagonists to modify and slow the disease progression. At this regard, 

several epidemiological studies revealed that caffeine intake is related to a decrease risk 

of developing PD138. Among its many actions, caffeine also acts as an adenosine A2A 

receptor antagonist and this led to investigation of the potential of A2A receptor 

manipulation as a means of controlling disease progression in PD. 

 

➢ A2AAR in Alzheimer’s disease 

Limited data are available about the role of A2A in AD. An increased expression of A2A 

receptors in microglial cells in the hippocampus and cerebral cortex of AD patients has 

been found95. Modulation of A2A receptors could have neuroprotective effects in AD since 

they might interfere the pathogenesis of AD increasing the resistance of neuronal cells to 

insults. The main hypothesis underlyng the progressive neurodegeneration in AD is the 

neurotoxicity caused by Aβ139 and current evidence favors the idea that soluble Aβ plays 

the pivotal role in the pathogenesis of AD. Primary cultures of cerebellar granule cells with 

Aβ25-35 in the presence of adenosine receptor blockers revealed that the blockade of A2A 

receptors almost completely prevented Aβ-induced neurotoxicity140. So it appears that 

the presence of A2A receptor is essential for Aβ toxicity and inhibition of this receptor 

might counteract the Aβ induced neurotoxicity in AD. Nevertheless, the neuroprotective 

mechanism of A2A receptor antagonists against Aβ induced neurotoxicity is not well 

known. A possible explanation might be the A2AAR ability to modulate neuro-

inflammation by its anti-inflammatory properties141. Symptomatic relief from cognitive 

impairments in AD patients might be achieved by modulating A2A receptors, in fact, these 

receptors are able to positively modulate the neurophysiological mechanisms of learning 

and memory142,143. Furtheremore, severeal studies highlighted the efficacy of caffeine or 

selective A2A receptor antagonists in preventig delayed memory deficits induced by 

intracerebroventricular Aβ144. This result indicates that caffeine affords its beneficial 

effects through A2A receptors, which were found to be overexpressed in cortical regions 
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both in animal models101 as well as in cortical tissues of AD patients95, 100. The data 

collected from a recent report showed a reduction in memory loss induced by Aβ after 

the pharmacological blockade or genetic inactivation of A2A receptors142. Moreover, in A2A 

receptor knockout mice, administration of Aβ did not cause learning deficits or 

synaptotoxicity145, thus proving the important role of A2A receptors in cognitive function. 

The beneficial effects usually exerted by A2A receptor antagonists have also been found 

in different behavioral studies in vivo. 

 

➢ A2AAR in Huntington’s disease 

Several studies support the hypothesis146 that cortico-striatal glutamatergic deregulation 

should be involved in pathogenesis of HD. Indeed, mutated huntingtin induces 

glutamatergic dysfunctions such as the increased glutamate release and decreased 

astrocytic glutamate clearance147,148, as well as an overexpression and activation of NMDA 

receptors149 which are able to induce changes in NMDA receptor subunits150-152. A2AAR is 

mainly located postsynaptically in medium spiny neurons (MSNs)153 but it can also be found 

presynaptically on the cortico-striatal glutamatergic afferents154, where it modulate 

glutamate release155,156. Besides neurons, A2AR is also present in non-neuronal cells, such 

as endothelial and glial cells which allow a control of vasodilation and glial responses to 

injury and inflammation157-159. Several lines of evidence point towards a pathophysiologic 

role for adenosine A2AR in HD, since changes in A2AR gene expression, density and signaling, 

as well as early vulnerability of MSNs selectively expressing A2AR, has been observed160-163. 

Moreover, recent evidence indicates that a polymorphism of the A2AR gene (ADORA2A) can 

influence the age of onset of HD patients164. As reported above, continued exposure to 

glutamate and persistent opening of NMDA channels, make MSNs vulnerable to excitotoxic 

damage, in particular those expressing A2AR, which receive more glutamatergic inputs from 

the cortex165, further supporting a role for A2AR in HD physiopathology165. Neuroprotective 

effects attributed to A2AR antagonists correlate well with their ability to decrease glutamate 

levels by preventing166-169 or decreasing its release and enhancing its uptake by glial cells170-

173. A2AR in glutamatergic synapses is also able to control the activation/expression of 

NMDA receptors174,175, their subunit composition176 and plastic changes in cortical 

glutamatergic inputs. Whereas the presynaptic role of A2AR antagonists is increasingly 

accepted as neuroprotective, an effect mainly attributed to the modulation of 
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glutamatergic transmission, the postsynaptic and extra-synaptic effects of A2AR blockade 

have been speculative and most studies favor A2AR agonists, rather than antagonists as 

protective agents in the particular case of the degeneration of MSNs. These were attributed 

to the ability of A2AR antagonists to potentiate NMDA-mediated toxicity and to the ability 

of agonists to reduce NMDA currents in striatal MSNs168,169,174,177,178. Finally, A2AR blockade 

is generally accepted as a protective strategy in the control of neuroinflammation in several 

degenerative conditions, including HD. However, despite the established pathophysiologic 

role of A2AR in HD,further investigations areneeded to understandjjj if it is the activation or 

the blockade of A2AR that can bring about clinical benefits. The complexity of functions 

operated by A2AR in specific cellular and regional locations specifically in the striatum may 

suggest that neither stimulation nor blockade are beneficial or that both can be 

advantageous, depending on the time-frame of the disease taken into account. Thus, HD is 

a special case of a brain disorder where both A2AR agonists and antagonists have been 

shown to provide protection in animal models of HD.  

 

➢ A2AAR in cerebral ischemia 

The role of A2AR in ischemic brain damage was described in parallel by the group of John 

Phillis and that of Ennio Ongini at Schering-Plough; they first observed that the blockade 

of A2AR afforded protection against ischemic brain damage179-182. This effect was then 

confirmed in experiments carried out by Jiang-Fan Chen, showing that the genetic 

elimination of A2AR was effective in protecting from the ischemic brain damage183. 

Subsequent investigations in different brain preparations also confirmed that the 

pharmacological or genetic blockade of the A2AR consistently decreased the infarted area 

and/ or the outcome (neurological score) upon ischemic insults184-186. Although the 

collected data are consistent in indicating the important role for A2AR in counteracting 

ischemia-induced brain damage, there are still open questions before to consider this 

receptor as a concrete therapeutic target. In fact, is not yet known the exact time window 

in which the A2A AR manipulation might be beneficial and if its blockade might only be 

considered as a prophylactic strategy or if it might also have therapeutic utilities187. Also 

the comprehension of the mechanisms underlying the A2AR ability to control ischemic 

neuronal damage should be tackled to ensure a sustained translational rationale. In fact, 

several evidences in animal models have suggested the possible involvement of 
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mechanisms, either controlling glutamate release188,189, central inflammatory processes 

and glial reactivity190-192 or the permeability of the blood-brain barrier193,194 and 

infiltration of peripheral myeloid cells195. Recent studies highlighted also that caffeine 

improves both the stroke recovery196 and post-traumatic injury197 thus suggesting to 

further investigate the potential therapeutic effects of A2AR antagonists in the regulation 

of the post ischemic recovery of brain function.  

 

➢ A2AAR in cerebral glial cells  

Many functional measurements (such as cAMP levels and cytokine release) in association 

with pharmacological tools have clearly shown the presence and function of A2ARs in glial 

cells. Expression of this receptor in glial elements both the striatum and the solitary tract 

has been also confirmed by electron microscopic studies198. Under physiological 

conditions, the A2A AR expression in microglia and astrocyte is usually low and frequently 

below the detection limit of histological methods (i.e., immunohistochemistry, 

autoradiography, or in situ hybridization)116,199,200. On the contrary, A2ARs in glial cells is 

overexpressed following the brain insults as clearly shown by double 

immunohistochemistry analysis, in which, A2A AR expression is increased in microglial cells 

and astrocytes of mouse substantia nigra at 24 h after 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP) intoxication. The induction of glial A2ARs by brain insults and 

inflammatory signals, couple with local increase in adenosine and proinflammatory 

cytokine levels (such as IL-1b, which further induces A2AR expression) and take part to an 

important feed-forward mechanism to locally control neuroinflammatory responses in 

the brain. Moreover, A2A AR in glial cells might be involved in complex actions regulating 

neuronal cell death (both, potentially deleterious as well as neuroprotective) and possibly 

other functions such as modulation of synaptic transmission. In astrocytes, A2AAR 

stimulation by extracellular adenosine increases astrocyte proliferation and 

activation201,202, inhibits the expression of iNOS and the production of NO203, as well 

regulates glutamate efflux by astrocytes 170. Regarding the microglial cells, activation of 

A2AARs has mixed effects on their proliferation, but clearly shows facilitating effects on 

the release of cytokines, including upregulation of cyclooxygenase 2 and release of 

prostaglandin E2 (PGE2)204. The A2AR stimulation at this level was also observed to be 
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effective in increasing the nitric oxide synthase (NOS) activity and NO release205 as well as 

the nerve growth factor expression206. 

 

1.3.5.2 A2AAR in cardiovascular disorders 

A2AARs are largely involved in coronary vascular control due to their expression in the 

smooth muscle and endothelium, where they induce vasodilation. The A2AAR-mediated 

coronary response seems to involve PKA activation, and some studies have indicated the 

participation of p38 MAPK and IP3 signaling207,208. It has also been reported that 

adenosine induces the generation of large amounts of nitric oxide, a well-known 

vasodilator, through A2AAR-mediated activation of endothelial nitric oxide synthase209. 

The cardioprotective actions of A2AARs are also related to their potent anti-inflammatory 

effects, and it has been proposed that A2AAR stimulation results in cardioprotection by 

reducing neutrophil accumulation210. Furtheremore, A2AAR overexpression has been 

associated with spontaneous calcium release from the sarcoplasmic reticulum in atrial 

fibrillation patients, and blocking A2AARs results incalcium inhibition211. Moreover, 

stimulation of A2AARs in human atrial myocytes can induce beat-to-beat irregularities in 

the calcium transient, thus suggests a novel role for A2AAR antagonists in atrial fibrillation: 

maintaining uniform beat-to-beat responses at higher beating frequencies212.  

 

1.3.5.3 A2AAR in Inflammation 

A2A receptor is coupled to a Gs protein and its stimulation leads to increased intracellular 

cAMP levels213, which is a key regulator of immune and inflammatory responses. cAMP 

exerts its functions mainly through the protein kinase cAMP-dependent (PKA) that 

activates the nuclear substrate cAMP responsive element-binding protein (CREB) by 

phosphorylation at the level of Ser-133214. This latter binds to the nuclear co-factor CBP 

and to p300, and the complex in turn modulates the expression of many genes by binding 

to cAMP responsive elements in their promoter regions214. Importantly, CREB can 

indirectly regulate the transcription of many inflammatory genes competing with nuclear 

factor-κB (NF-κB)/p65 for CBP215. The latter is probably one of the major mechanisms by 

which A2AR stimulation inhibits the transcriptional activity of NF-κB in a PKA/CREB-

dependent manner, subsequently suppressing the expression of pro-inflammatory 

cytokines, such as tumour necrosis factor (TNF-α). cAMP can also activate other 
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substrates such as EPAC 1 (exchange protein directly activated by cAMP), altering 

proinflammatory genes expression216. Related to this, Sands and collaborators 

demonstrated that following A2AR stimulation, the accumulation of cAMP and the 

activation of EPAC1 in vascular endothelial cells might inhibit proinflammatory cytokines-

induced Janus kinases (JAKs) and signal transducer and activator of transcription (STAT) 

pathways, effect related to the suppressor of cytokine signaling-3 (SOCS-3)217,218. 

Furtheremore, expression of A2AR was increased by lipopolysaccharide (LPS) or by 

inflammatory cytokines such as TNF-α and IL-1β because of the presence of putative NF-

κB consensus sites in its promoter region219-222. Hence, during inflammatory conditions 

the overexpression of A2AR by inflammatory cytokines could imply an endogenous 

protective mechanism avoiding devastating effects. A2AR essentially suppress 

inflammatory and immune responses by reducing production of many pro-inflammatory 

cytokines from different cell types. One of the first pieces of evidence on this matter was 

shown by Sullivan et al who highlighted that CGS21680 inhibits TNF-α production from 

monocytes and macrophages in response to microbial products, such as endotoxin223.At 

this regard, CGS21680-mediated effects on accumulation of pro-inflammatory cytokines, 

such as TNF-α and IL-12, in macrophages activated via Toll-like receptor (TLR) agonists or 

by cytokines, is related to cAMP-mediated inhibition of NF-κB, via inhibition of IκB 

phosphorylation224. CGS21680 have been also observed to be capable in stimulating 

cycloxygenase-2 expression in neutrophils thus increasing the capacity of these cells to 

produce prostanglandins E2, that have potent anti-inflammatory activities on leukocytes 

and other inflammatory cells225-228. Interestingly, in human neutrophils stimulated with 

known inflammatory agents, it has been recently demonstrated  that CGS21680 and other 

c-AMP-elevating compounds could regulate the expression profile of many genes, 

encoding transcription factors, enzymes and regulatory proteins, as well as cytokines and 

chemokines involved in molecular signaling pathways associated with the resolution of 

inflammation229. 

 

 

 

 

 



1.INTRODUCTION 
 

23 

1.3.6 A2B adenosine receptor 

 

 

Figure 6. Overview of A2BAR intracellular signaling pathways. A2BAR stimulation increases adenylate 

cyclase (AC) activity, cAMP production, and protein kinase A (PKA) phosphorylation. A2BAR enrollement 
activates phospholipase C (PLC)-β and increases Ca2+. Mitogen-activated protein kinases p38, ERK1/2, and 
JNK1/2 phosphorylation are induced by A2BAR activation21. 
  

The A2BAR is highly expressed essentially in peripheral organs including bowel, bladder, 

lung, vas deferens, and different cell types such as fibroblasts, smooth muscle, 

endothelial, immune, alveolar epithelial, cells, and platelets. In the CNS are found in 

astrocytes, neurons, and microglia230-232. Its expression is upregulated in different 

injurious conditions such as hypoxia, inflammation, and cell stress. A2BAR signaling 

pathways involve AC activation through Gs proteins, leading to PKA phosphorylation and 

enrollment of different cAMP-dependent effectors like exchange proteins, which are 

directly activated by cAMP (Epac). Moreover, A2BARs can stimulate PLC through the Gq 

protein, resulting in Ca2+ mobilization, and can regulate ion channels through their βγ 

subunits (Figure 6). This subtype acts as stimulator of MAPK activation in several cell 

models in both central and peripheral systems233. In addition, A2BARs have multiple 

binding partners that modulate A2BAR responses and functions; these include netrin-1, 

E3KARPP-EZRIN-PKA, SNARE, NF-κB1/ P105, and α-actinin-1. Netrin-1, the neuronal 

guidance molecule, induced during hypoxia, reduces inflammation by activating A2BAR, 

which inhibit neutrophils migration234. Interestingly, binding of A2BAR to P105 inhibits NF-

κB activity, thereby explaining its anti-inflammatory effects235. Furthermore, α-actinin- 1 
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might favor A2AAR and A2BAR dimerization, thus inducing A2BAR expression on the cell 

surface236. 

 

1.3.6.1 A2BAR in neurological diseases 

A2BARs are located in the CNS and spinal cord in low concentrations, while higher levels 

have been observed in astrocytes, in which A2BAR expression is upregulated following 

lipopolysaccharide (LPS) and hypoxic stimulation237. It has been reported that A2BAR 

blockade in the brain inhibits the inflammatory cascade and neuronal injury following 

global cerebral ischemia by interfering with the p38 pathway238. Whatever the case, 

A2BARs may have a potential indirect role in hypoxia/ ischemia as a consequence of 

angiogenesis resulting from increased endothelial cell functions 239. Recently, it has been 

shown in two different chronic pain models that A2BARs on myeloid cells contribute to 

pain perception by stimulating IL-6 receptor signaling and promoting immune-neuronal 

interactions240. Even more recently, secretion of IL-6 and a consequent increase in cell 

proliferation mediated by A2BARs and a pathway involving p38 has been observed in 

microglial cells, suggesting that this subtype may have a proinflammatory role241. 

However, an anti-inflammatory effect, linked to IL-10 production and TNF-α inhibition, 

has also been observed following the A2BAR activation242,243. 

 

1.3.7 A3 adenosine receptor 

The A3AR subtype expression has been found in a variety of primary cells, tissues, and cell 

lines. Low levels have been reported in the brain, where it is located in the thalamus, 

hypothalamus, hippocampus, cortex, and retinal ganglion cells, as well as at motor nerve 

terminals and the pial and intercerebral arteries. A3ARs are also expressed in microglia 

and astrocytes, and the inhibition of a neuroinflammatory response in these cells has 

been associated with their induction of an analgesic effect244. Despite A3AR is also known 

to exert cardioprotective effects, and to be greatly expressed in the coronary and carotid 

artery, its precise location in the heart has not yet been reported. At the peripheral level, 

however, A3AR has been found in enteric neurons, as well as epithelial cells, colonic 

mucosa, lung parenchyma, and bronchi. Moreover, A3AR is widely expressed in 

inflammatory cells like mast cells, eosinophils, neutrophils, monocytes, macrophages, 

foam cells, dendritic cells, lymphocytes, bone marrow cells, lymph nodes, chondrocytes, 
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and osteoblasts, where it regulates anti-inflammatory effects74. Interestingly, A3AR is 

overexpressed in several cancer cells and tissues and is therefore likely to have an 

important antitumoral role245. 

 

 

Figure 7. Overview of A3AR intracellular signaling pathways. A3AR stimulation triggers decrease of 

adenylate cyclase (AC) activity and cAMP production, activation of glycogen synthase kinase-3β (GSK-3β), 
and consequent decrease of β-catenin, cyclin D1, and c-Myc. Increase induced by A3AR activation of 
phospholipase C (PLC)-β and Ca2+, as well as of RhoA and phospholipase D (PLD) is shown. Mitogen-activated 
protein kinases p38, ERK1/2, and JNK1/2 phosphorylation are induced by A3AR activation21. 

 

A3ARs activates a variety of intracellular signaling by preferentially coupling to Gi proteins, 

by which they inhibit AC, and, a high concentrations of A3AR agonists, to Gq proteins or Gβγ 

subunits, thereby inducing an increase in both PLC and calcium (Figure 7). A reduction in 

cAMP results in PKA inhibition, which leads to an increase in glycogen synthase kinase-3β 

(GSK-3β); downregulation of beta-catenin, cyclin D1, and c-Myc; and reduction of nuclear 

factor (NF)-κB DNA-binding ability246. A different pathway from GPCR signaling—involving 

monomeric G protein RhoA and phospholipase D—is important for A3AR-mediated neuro- 

and cardioprotection. A3ARs are also known to regulate MAPK, PI3K/Akt, and NF-κB 

signaling pathways, by which they exert anti-inflammatory effects. Stimulation or 

inhibition of HIF-1 has been also proved to have protumoral and neuromodulatory effects 

in cancer cells and astrocytes, respectively245.  
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1.3.7.1 A3AR in neurological diseases 

Despite the A3ARs expression in the brain is not abundant as in the periphery, these 

receptors are influential in some neuronal diseases. In cerebral ischemia, A3ARs play an 

initial protective role in synergy with A1ARs by inhibiting excitatory synaptic transmission. 

However, longer activation raises excitotoxicity and the risk of damage through the 

activation of PKC and consequent calcium increase. This suggests that the protective or 

deleterious role of A3ARs depends on the severity and duration of the ischemic episode247. 

In addition, plastic changes in A3ARs may occur following prolonged stimulation by both 

agonists and antagonists before and after ischemia/ hypoxia with similar results248. 

Specifically, A3ARs affect glial functions by regulating cell migration and TNF-α production 

in microglial cells249-251. In astrocytes, it has been demonstrated that A3 ARs decrease HIF-

1 expression in both normoxic and hypoxic conditions thus inhibiting proinflammatory 

genes including those for inducible nitric oxide synthse and A2BAR and suggesting an anti-

inflammatory role of this AR subtype in the CNS237. A3ARs involvement in pain conditions 

has also been investigated even if with mixed results. Despite some studies, performed 

with nonselective ligands as well as KO mice, have attributed them a pronociceptive 

function, several other studies have suggested A3ARs as an antinociceptive drug target252-

254 . In fact, A3ARs agonists show beneficial effects in neuropathic pain models by 

inhibiting the mechano-allodynia onset after chronic constriction injury and by increasing 

the potency of classical analgesic drugs such as morphine and gabapentin255,256. 

Interestingly, the antinociceptive activity of these agents has been demonstrated in 

neuropathic pain induced by chemotherapy in animal models of bone metastasis 

associated with breast cancer54,244,257,258.  

 

1.4. Adenosine receptors oligomerization 

For long time, adenosine receptors have been thought to exclusively exist in a monomeric 

state. Monomeric receptors are sufficient to induce signaling260-263. At least some studies 

suggest signaling via dimers occurs only at higher receptor densities263. However, several 

studies highlighted that adenosine receptors can form dimeric, multimeric or oligomeric 

structures. Through self-association, homo-oligomers (“homomers”) can be formed. 

Hetero-oligomerization leading to “heteromers” may be the consequence of the 
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association between adenosine receptors and preferred partners, preferably other 

GPCRs, including other adenosine receptor subtypes. This event has been observed 

through several experimental techniques, mostly in artificial cell lines. The use of 

overexpressed recombinant receptors may result in the creation of many more oligomers 

than naturally exist. Furthermore, GPCRs contain hydrophobic regions that can 

oligomerize, even after solubilization in SDS. Hence, receptor dimerization or 

oligomerization may occur after solubilization in detergent without being representative 

of receptor structure and organization in the membrane. 

 

1.4.1 Adenosine homomers 

 

Despite four homomeric pairs might be possible for adenosine receptors (A1-A1, A2A-A2A, 

A2B-A2B, and A3- A3) only experimental reports for the occurrence of A1-A1 and A2A-A2A 

homomers have been published. 

➢ A1-A1 

The existence of A1 receptor homomers were observed for the first time in 1995 by Ciruela 

263 and then by Yoshioka264  in 2002 by using (different) antibodies against the wild-type 

adenosine A1 receptor and observing after the immunoprecipitation experiments, 

analyzed with Western blotting, the presence of higher order bands in some instances 

(e.g., in HEK293 cells expressing the human adenosine A1 receptor, but also in brain 

tissues). In another study, A1-A1 homomers, predominantly located at the cell surface, has 

been identified with BiFC (Bimolecular Fluorescence Complementation) techniques in 

CHO cells expressing yellow fluorescent protein (YFP)-tagged receptors265. 

➢ A2A-A2A  

The first experimental evidence of the A2A-A2A homodimer existence was reported in 2004 

by Canals and coworkers. The authors used both FRET (Fluorescence Resonance Energy 

Transfer) and BRET (Bioluminescence Resonance Energy Transfer) techniques as well as 

immunoblotting to show that in transfected HEK293 cells, overexpressed recombinant 

adenosine A2A receptors exist as both homodimers and monomers. A2A receptor 

homodimerization was also demonstrated by Vidi (2008) with BiFC techniques 266, who 

also used a combination of FRET and BiFC techniques to demonstrate that recombinant 

adenosine A2A receptors exist as higher order oligomers, consisting of at least three 
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monomers, at the plasma membrane of differentiated neuronal cells267. In another study, 

recombinant A2A-A2A homodimers, mainly located intracellularly, were identified with 

BiFC techniques in CHO cells expressing YFP-tagged receptors265. 

 

1.4.2 Adenosine heteromers 

 

Available evidence points to the interaction of both adenosine A1 and A2A receptors with 

other GPCRs, no direct data have been reported for adenosine A2B and A3 subtypes. 

➢ A1-A2A 

Ciruela and coworkers155 in 2006 investigated the heteromerization of adenosine A1 and 

A2A receptors. The two receptors are colocalized in striatal glutamatergic terminals, both 

pre- and postsynaptically. This was demonstrated in immunogold blotting and, after 

detergent solubilization, coimmunoprecipitation experiments. In HEK293 cells 

transfected with suitably tagged adenosine A1 as well as A2A receptors, evidence in BRET 

and TR- FRET experiments was found for a direct interaction between the two 

recombinant receptors. The major receptor-receptor interaction found appears to be an 

A2AR agonist produced reduction of A1R affinity. Therefore, at high concentrations of 

adenosine, which can activate A2ARs, an increase of glutamate release is found.                         

In astrocytes a similar mechanism maybe found involving A1R-A2AR heteromers which via 

Gi/o and Gs proteins modulate GABA transport268,269.  

➢ D2-A2A 

The heteromeric couple of adenosine A2A and dopamine D2 receptor is probably the 

deeply studied combination. Hillion and coworkers performed double 

immunofluorescence experiments with confocal laser microscopy showing substantial 

colocalization of recombinant adenosine A2A and dopamine D2 receptors in cell 

membranes of SH-SY5Y human neuroblastoma cells stably transfected with human D2 

receptor as well as in cultured striatal cells (2002)270. Heteromerization between the two 

detergent-solubilized receptors was demonstrated in coimmunoprecipitation 

experiments, for which membrane preparations were used from D2 receptor-transfected 

SH-SY5Y cells and from mouse fibroblast Ltk_ cells stably transfected with the long form 

of the human D2 receptor. In the latter case, the A2A receptor (doubletagged with 

hemagglutinin) was transiently cotransfected. Similar studies were done by Kamiya et al. 
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(2003) in HEK293 cells271. Resonance energy transfer techniques (BRET and FRET) with 

suitably tagged receptors were used to demonstrate the same heteromerization in intact 

HEK293 cells271,272. Heteromerization seemed to be constitutive and not ligand-induced, 

and involved the long C-terminal tail of the adenosine A2A receptor273 , in contrast to A2A 

receptor homomerization. Related to PD, a large wide of evidence clearly showed the 

important role of the A2A-D2 heteroreceptor complex in modulation of motor activity. In 

fact, due the allosteric receptor-receptor interactions in this complex, adenosine reduces 

the affinity of agonists for the D2 receptor thus behaving as negative modulator of D2 

receptor-mediated neurotransmission52,230,274. In this scenario, A2A AR antagonists have 

demonstrated therapeutic value in the treatment of PD because they potentiate 

dopamine D2 receptor-mediated neurotransmission. 

 

1.5 Adenosine receptors ligands 

Several chemical methods have been applied to obtain selective agonists and antagonists 

for all four AR subtypes (A1, A2A, A2B, and A3). Availability of selective compounds has 

facilitated research on therapeutic applications of modulating ARs and in some cases has 

provided clinical candidates. The Prodrug approach have been also applied to improve 

the bioavailability of some compounds and minimize side-effects. The A2A agonist 

regadenoson (Lexiscan®), a diagnostic drug for myocardial perfusion imaging, was the first 

selective AR agonist to be approved. Other selective ligands (agonists and antagonists) 

are or were undergoing clinical trials for a broad range of therapeutic applications, 

including capadenoson and tecadenoson (A1 agonists) for atrial fibrillation, or paroxysmal 

supraventricular tachycardia, respectively, apadenoson and binodenoson (A2A agonists) 

for myocardial perfusion imaging, preladenant and tozadenant (A2A antagonists) for the 

treatment of Parkinson's disease, and CF101 and CF102 (A3 agonists) for inflammatory 

diseases and cancer, respectively. 

 

1.5.1 Adenosine receptor agonists 

The structure–activity relationship (SAR) of adenosine analogues as AR agonists has been 

deeply investigated and almost all are  purine nucleoside derivatives, either adenosine  or 

xanthosine. One exception to this role is represented by the class of 2-aminopyridine-3,5-
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dicarbonitrile derivatives that act as agonists at ARs with different degrees of subtype 

selectivity275-277. 

 

➢ A1AR selective agonists 

In general, substitution of adenosine at the N6 -position with a wide range of alkyl, 

cycloalkyl, and arylalkyl groups henances selectivity for the A1AR. In addition, any 

modification at the N6-position prevents the action of adenosine deaminase, which 

rapidly degrades adenosine itself, in vivo. N6-Cycloalkyl substitution has been the most 

successful and general means of achieving selectivity for the A1AR.                                                               

N6-Cyclopentyladenosine (CPA) and its 2-chloro analogue (CCPA) are the most potent and 

selective A1AR agonists in wide use as pharmacological agents. The bicyclic analogue S-

ENBA shows subnanomolar affinity at the A1AR with lower residual affinity than CPA or 

CCPA for other AR subtypes278. Bayer Co. (Germany) discovered 2-amino-3,5-

dicyanopyridine derivatives, e.g. capadenoson, as non-nucleoside-derived adenosine 

receptor agonists275,279 (Figure 8). Several A1-selective adenosine derivatives, including, 

selodenoson, capadenoson, NNC-21-0136 and others have been clinically investigated for 

various indications (Figure 8). 

 

 

 

Figure 8. A1 AR agonists.280 
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Diagnostic and therapeutic uses 

A1-selective (partial) agonists have been clinically investigated for therapeutic application 

in paroxysmal supraventricular tachycardia, atrial fibrillation, angina pectoris or 

neuropathic pain. In this sense, partial agonists are preferred to avoid receptor 

desensitization and to possibly achieve a certain tissue selectivity of the effects. A1AR 

agonists have antiischemic effects in the heart and brain. Recently, A1AR activation was 

shown to mediate neuroprotective effects through microglial cells281. Various A1AR 

agonists have been shown to be neuroprotective in ischemic and seizure models. 

However, the peripheral side effects of A1AR agonists could be severe. The A1AR agonist 

NNC-21-0136 was previously in clinical development for the treatment of stroke and 

other neurodegenerative conditions282. A1AR agonists are of interest for applications in 

treating cardiac arrhythmias, and recently was suggested that a partial agonist of this 

subtype would have advantages over a full agonist for this use283. The A1AR-selective 

agonist selodenoson (Figure 8) has been in clinic trials for treatment of acute and chronic 

control of tachycardia and topical treatment of diabetic foot ulcers (Aderis 

Pharmaceuticals). It was formulated for intravenous administration to control heart rate 

during acute attacks and for oral administration in the chronic management of atrial 

fibrillation. The non-nucleoside AR agonist BAY 68-4986 (capadenoson) is under 

investigation for atrial fibrillation and for the treatment of angina.  
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➢ A2AAR selective agonists 

 

 

Figure 9. A2A AR agonists280. 

 

Regarding the SARs for the A2AAR agonists, introduction of (thio)ethers, secondary 

amines, and alkynes groups at the 2-position of adenosine enhanced A2AAR selectivity in 

many synthetic analogues. The presence of a 5′-N-alkyluronamide modification, as found 

in the potent nonselective agonist NECA (5′-N-ethyluronamide), tends to maintain or 

enhance the selectivity for the A2AAR. Also, the 2-(2-phenylethyl)amino modification of 

adenosine was particularly advantageous in increasing the affinity at the A2AAR and is 

present in an extended chain in CGS21680 . In some cases also substitutions at the N6 -

position have been observed to increase the affinity at the A2AAR. An example of this is 

the class of N6 -(2,2-diphenylethyl)adenosine analogues, such as UK-432097. 

Regadenoson (Lexiscan™)284 has been introduced as a diagnostic for stress testing due to 

its vasodilatatory effects, and apadenoson was developed for the same application. 

Several A2A-selective agonists including UK-432097, sonedenoson, and binodenoson have 

been clinically evaluated. Unfortunately, their potent hypotensive effects following the 

systemic administration was the main problem associated to the application of A2A 

agonists as anti-inflammatory agents. Recently, efforts have been undertaken to obtain 

A2A agonists which show site-specific action. A2A agonists, such as UK-432097 have been 
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developed for the treatment of bronchial inflammation (constructive pulmonary disease, 

COPD) by inhalation with limited systemic exposure285. As an alternative, 5′-phosphate 

prodrugs (Figure 9) of A2A agonists have been prepared to obtain a selective cleveage and 

release of the A2A agonist at inflammation site where ecto-5′-nucleotidase (CD73) is highly 

expressed286. 

 

Diagnostic and therapeutic uses 

The 2-substituted A2AAR agonist apadenoson and other analogues (binodenoson and 

sonedenoson,  were investigated as cardiovascular clinical candidates287-289. Some 

agonists are of interest for use as vasodilatory agents in cardiac imaging (like adenosine 

itself, marketed as Adenoscan®) and in suppressing inflammation290. Regadenoson 

(Lexiscan®) is already approved for diagnostic imaging291. Two selective A2A agonists 

developed by Adenosine Therapeutics (now Clinical Data) were selected for clinical trials 

as therapeutic agents for acute inflammatory conditions (ATL-1222, structure not 

disclosed) and ophthalmic disease (ATL-313). 

 

1.5.2 Adenosine receptor antagonists 

The prototypical AR antagonists were alkylxanthine derivatives such as the natural 

products caffeine and theophylline that behave as weak and nonselective AR antagonists. 

The structure–activity relationship (SAR) of xanthine derivatives as AR antagonists has 

been exhaustively investigated. The effects on the receptor subtype selectivity of 

substitution at the 1-, 3-, 7-, and 8-positions have been explored in detail292. However, 

several new highly selective AR antagonists are chemically diverse than the xanthines and 

contain non purine heterocyclic scaffolds (Figure 10-11). 

 

➢ A1AR selective antagonists. 

Introduction of aryl or cycloalkyl groups at the 8-position of the xanthine core structure 

led to high affinity and selectivity for the A1AR. For example, the 8-cyclopentyl derivative 

DPCPX (CPX) (Figure 10) is highly selective and showed nanomolar affinity at the rat A1AR 

and is still selective, to a lesser degree, at the human A1AR. A bicycloalkyl group is present 

in the 8-(3-noradamantyl) group of rolofylline293 (KW-3902, NAX). Another 8-bicycloalkyl 



                                    1.INTRODUCTION 
 
 

                                                                                                                                                                           34 

xanthine analogue naxifylline (BG9719, Figure 10) was even more selective for the A1AR, 

with a Ki ratio human A2A /A1 of 2400 compared with a ratio of 150 for rolofylline  

 

 

 

Figure 10. A1 AR antagonists280. 

 

Diagnostic and therapeutic uses 

Various A1AR antagonists, xanthines and non-xanthines, have been or are currently being 

explored for clinical applications294 for heart failure, and for improving renal function and 

treatment of acute renal failure. The 8-cyclopentyl derivative DPCPX has been in clinical 

trials for cystic fibrosis through a non-AR related mechanism295 . The highly selective A1AR 

antagonist L-97-1 (Endacea Inc.) is relatively well water-soluble and in late preclinical 

development for the treatment of asthma and sepsis296 . Disappointedly the low water-

solubility and low bioavailability of DPCPX, rolofylline, naxifylline and others has always 

been a problem in the development of A1AR antagonists297,298; thus, A1AR antagonists 

such as toponafylline and L-97-1 endowed with good water solubility are better clinical 

candidates. Some nonxanthine A1AR antagonists including  SLV 320299 (Solvay 

Pharmaceuticals) have also been shown to have high receptor subtype selectivity. SLV 320 

has been selected for clinical trials as an intravenous treatment for acute decompensated 

heart failure with renal impairment. 
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➢ A2AAR selective antagonists 
 

 

 

Figure 11. A2A AR antagonists280. 

 

Recent discoveries led to the identification of new A2A antagonists300-302. Modification of 

xanthines at the 8-position with alkenes (notably styryl groups) henanced the selectivity 

for the A2AAR. The 8-styrylxanthine istradefylline was among the first A2AAR antagonists 

reported (Figure 11). The phosphate prodrug MSX-3 and the L-valine ester prodrug MSX-

4 have been synthesized to improve the water-solubility of the potent and selective A2A 

antagonist MSX-2303,304. Both are now broadly used as pharmacological tools in particular 

for in vivo studies305,306. Replacement of the xanthine core with various heterocyclic ring 

systems has led to exceptionally high affinity and selectivity at the A2AAR. The 

triazolotriazine ZM241385, the triazolopyrimidine vipadenant and the 

pyrazolotriazolopyrimidine SCH442416 (structure not reported) are examples of highly 

potent A2AAR antagonists of later generation. ZM241385, in both tritiated and iodinated 

form, has been employed as a radioligand at the A2AAR. SCH442416 related compounds 

include preladenant (SCH 420814). The latter proved to be effective in phase II clinical 

trials for the treatment of Parkinson’s disease but it was discontinuetd in may 2013 since 

it showed scarse efficacy than the Placebo in phase III clinical trials. Novel A2A antagonists, 

such as the benzothiazole derivative tozadenant (Figure 11) that are structurally neither 

related to xanthines nor to adenine have been identified by highthroughput screening.  
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Diagnostic and therapeutic uses 

The well-known regulation of motor control mediated by A2ARs under conditions of 

dopamine depletion is solid enough to merit the clinical trials currently underway, which 

aim to demonstrate the therapeutic efficacy of A2AR antagonists in PD. Thus far, several 

A2AAR antagonists have been developed and brought to the clinical arena. Istradefylline 

is the only drug that has been approved, but only in Japan, in combination with levodopa 

(L-DOPA), and is currently awaiting global approval following new clinical trials performed 

by Kyowa Hakko Kirin. Indeed, the American Food and Drug Administration (FDA) has thus 

far not approved this drug, due to its lack of efficacy with respect to L-DOPA. Similarly, 

another A2AAR antagonist, Preladenant, did not significantly decrease off-time in 

comparison with a placebo. Tozadenant appears more promising, and following positive 

results from phase IIb trials, a phase III clinical study has begun for this A2AR antagonist308. 

Furthermore, a functional link between A2AAR and α-synuclein (α-Syn) has recently been 

reported, which may open new avenues. Indeed, A2AAR knockout (KO) mice prevented α-

Syn-induced toxicity309, and α-Syn aggregation and associated toxicity were reduced by 

A2AAR blockade, suggesting a strong relationship between these two proteins, which are 

both harmful in PD310. More extensively, the involvement of aberrant A2AAR signaling has 

been found in the pathogenesis of synucleinopathy, as its genetic deletion reduces 

hippocampal pathological α-Syn aggregation311. 

 

1.6 Oxidative Stress and Neurodegenerative Disorders 

As widely known, oxygen plays a central role for the survival and normal functions of most 

eukaryotic organisms. Along the respiratory chain, oxygen is partially converted, at low 

ratio, into superoxide, a basic free radical that can generates other reactive oxygen 

species (ROS). Cell metabolism could generate other free radicals from nitrogen, classified 

into the family of reactive nitrogen species (RNS). ROS and RNS at physiological 

concentrations have recently been proved to regulate several normal functions, such as 

regulation of signal transduction, induction of mitogenic response, and involvement in 

defense against infectious agents, etc.312 

ROS levels are under the control of antioxidant systems which are responsible for keeping 

their level constant in living organisms. These antioxidant systems are both enzymatic and 
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non-enzymatic. Breaking the balance by over production of ROS and/or reduction of 

antioxidants can be deleterious, and is termed oxidative stress. Under these conditions, 

excessive free radicals could freely pass through the plasma membrane, damaging the cell 

membrane via lipid peroxidation, modifying signal and structural proteins to lead to 

misfolding and aggregation, and oxidizing RNA/DNA to interrupt transcription thus 

resulting in gene mutation.  

 

1.6.1 Reactive oxygen species (ROS) 

 

 

 
Figure 12. Overview of the reactions leading to the formation of ROS. Green arrows represent lipid 

peroxidation. Blue arrows represent the Haber–Weiss reactions and the red arrows represent the Fenton 
reactions. The bold letters represent radicals or molecules with the same behavior (H2O2). SOD refers to the 
enzyme superoxide dismutase and CAT refers to the enzyme catalase.313  

 

ROS principal production sites include mitochondria, endoplasmic reticulum (ER), plasma 

membrane and cytoplasm. During the aerobic metabolism, the 1–2% of electrons leak 

from the electron transport chain and form O2
•− by cycling the ubiquinol in the inner 

mitochondrial membrane. In this sense, the NADH-ubiquinone oxidoreductase (Complex 

I) and ubiquinol-cytochrome c oxidoreductase (Complex III) are the two enzymatic 

sources for O2
•− production314. O2

•− is also produced by cytochrome P450-dependent 

oxygenases in the ER of the liver, lung and small intestine315,316 as well as by NADPH 

oxidase (Nox) of phagocytes cell membrane317,318. Xanthine oxidase (XO), instead, 

provides for the O2
•− and H2O2 in the cytosol319. In addition, O2

•− is generated non-

enzymatically by transferring a single electron to oxygen by reduced coenzymes, 

prosthetic groups (e.g., flavins or iron sulfur clusters) or previously reduced xenobiotics314. 
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O2
•− is the precursor of most ROS and a mediator in oxidative chain reactions. It is 

spontaneously converted or catalyzed by superoxide dismutases (SOD) into H2O2, which 

is then partially reduced to •OH in the presence of Fe2+ by the Fenton reaction320. NO•, 

istead, is enzymatically synthesized from L-arginine by the family of nitric oxide synthases 

(NOS), including neuronal NOS (nNOS), endothelial NOS (eNOS) and inducible NOS (iNOS), 

which are all located in the cytosol. On the contrary, mitochondrial NOS (mtNOS) and α-

isoform ofnNOS, are localized in the mitochondria where NO and O2
•− lead to the 

formation of ONOO−.NO− as the result of NO reaction with Heme-Fe2+ while a NO+ 

originates from a reaction of NO with Heme-Fe3+, 321,322. 

 

1.6.2 Antioxidant systems 

ROS over-accumulation is counteracted in the body thanks to enzymatic and non-

enzymatic systems. Enzymatic antioxidants are divided into primary and secondary 

enzymatic defences. Regarding the primary defence, it consists of three important 

enzymes:  

• Superoxide dismutase (SOD) 

• Glutathione peroxidase (GPx) 

• Thioredoxin reductase (TR)  

• Catalase (CAT) [10]  

SOD converts O2
•− to O2 and H2O2 which is destroyed by GPx to form H2O in the presence 

of the tripeptide glutathione (GSH). Thioredoxin reductase (TR) is also essential for keeping 

low levels of H2O2 by converting it into H2O and O2 as well323,324. CAT, another enzyme that 

converts H2O2 to H2O and O2, is present in the cells. Despite their high efficiency, the 

enzymatic antioxidant systems does not suffice thus forcing the human body to use non 

enzymatic resources able to maintain free radical at low levels. These include, ascorbic acid 

(vitamin C), α-tocopherol (vitamin E), glutathione (GSH) and flavonoids325. Ascorbic acid is 

effective in scavenging the superoxide radical anion, hydrogen peroxide, hydroxyl radical, 

singlet oxygen and reactive nitrogen oxide326, while Vitamin E stops the lipid peroxidation 

by donating its phenolic hydrogen to the peroxyl radicals forming tocopheroxyl radicals 

that are unreactive and unable to continue the oxidative chain reaction. Vitamin E is the 

principal lipid-soluble antioxidant found in plasma, red cells and tissues, allowing it to 

protect the integrity of lipid structures, mainly membranes327. These two vitamins also 
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display a synergistic behavior with the regeneration of vitamin E through vitamin C from 

the tocopheroxyl radical to an intermediate form, therefore reinstating its antioxidant 

potential328.  Glutathione (GSH) is an endogenous tripeptide, which is the most abundant 

thiol in most tissues. It plays a crucial role in the cellular protection against oxidative stress 

(Figure 13) being active at various different levels. In particular, it acts as a direct free 

radical scavenger by hydrogen atom donation, and the resulting much less reactive radicals 

decay bimolecularly or through an oxygen-dependent mechanism forming in both cases 

the GSH disulphide329 (GSSG). Moreover, GSSG can quench radicals through electron 

donation by short living disulphide radical anions330. GSH also acts as as a hydrogen donor 

for several other endogenous antioxidants such as ascorbate, which in turr regenerates α -

TOC331. In this way, GSH can potentiate the protective efficacy of a wide range of 

endogenous mechanisms that are active against different reactive intermediates. 

Flavonoids constitute the most important single group of polyphenols, acting as 

antioxidants by terminating free radical chain reactions. Flavonoids stop the oxidation of 

lipids and other molecules by the rapid donation of hydrogen atoms to radicals, becoming 

the phenoxy radical intermediates by themselves. However, these intermediates are 

relatively stable, and thus do not initiate further radical reaction. Other non-enzymatic 

antioxidants in the body, such as selenium, carotenoids, lipoic acid, coenzyme Q and 

melatonin were also recognized as nicely reported in recent reviews 325, 332. 

 

 

 
Figure 13. The pathways of the antioxidants: glutathione (GSH), Lipoic acid (LA), and dihydrolipoic acid 

(DHLA). LA and DHLA increase the efficiency of the vitamin C cycle and activate the vitamin E cycle. 333 
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1.6.3 Other antioxidants 

➢ Lipoic acid 

 

 

 

Figure 14. Chemical structure of Lipoic acid (LA) and dihydrolipoc acid (DHLA). 

 

Lipoic acid (LA, Figure 14) is an endogen organosulfur compound that plays an essential 

role in the metabolism as a cofactor for several mitochondrial enzymes334,335. It can be 

synthesized by a enzymatic reaction from octanoic acid or ingested with food336,337.LA is 

better known than its reduce form, dihydrolipoic acid (DHLA) and both forms have been 

demostrated to exert antioxidant properties338-341. The chemical reactivity of LA is mainly 

conferred by its dithiolane ring. The oxidized (LA) and reduced (DHLA) forms create a 

potent redox couple, in fact, it has been reported that LA/DHLA has a redox potential of 

−320 mV while the redox potential of GSH/oxidized glutathione is −240 mV. This 

difference suggests that DHLA is more effective in protecting from oxidative damage than 

GSH. The LA/DHLA couple has been called “universal antioxidant” since it is able to 

regenerate several antioxidants333.  Furtheremore, differently from ascorbic acid DHLA is 

not destroyed while quenching free radicals and can be recycled from LA. Several studies 

higlighted that LA and DHLA are able to inactivate hydroxyl radicals, hypochlorous acid, 

and singlet oxygen339. Recently, LA and DHLA were also shown to react with peroxynitrite 

(ONOO−), a highly reactive oxidant species resulting from the rapid reaction of nitric oxide 

(•NO) with superoxide anion (O2
•−), which is thought to be the main mediator of all the 

nitric oxide cytotoxic effects. However, Trujillo and Radi showed that the direct reaction 

between the LA/DHLA couple with peroxynitrite was not fast enough to be effective under 

in vivo conditions342. In addition to its ability to directly quench ROS in biological systems, 

LA also exerts antioxidant effects by acting on transition metal chelation. In fact, LA is a 

potent chelator of divalent metal ions in vitro, and forms stable complexes with Mn2+, 

Cu2+, Fe2+, and Zn2+. It has been demonstrated that LA had a profound dose-dependent 
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inhibitory effect upon Cu 2+ -catalyzed ascorbic acid oxidation343. LA also inhibited Cu2+ 

catalyzed liposomal peroxidation. Futhermore, have been also reported the protective 

effect of R- LA on cortical iron content in aged rats with lowering age-related oxidative 

stress344. DHLA-mediated chelation of iron and copper in the brain showed also a positive 

effect in the pathobiology of Alzheimer’s disease by lowering free radical damage345. 

Lipoic acid (LA), is used in combination with epalrestat in the treatment of diabetic 

peripheral neuropathy (DPN) Experimental evidences higlighted that LA enhances nerve 

blood flow, reduces oxidative stress, and improves distal nerve conduction346. A study 

revelead that intravenous (IV) administrations of LA (600 mg IV/day) ameliorated the 

symptoms of neuropathy after 3 weeks347, with i.v. therapy being more effective than oral 

treatment348 (SMD =−2.8 vs SMD =−1.8).Epalrestat is an aldose reductase inhibitor that 

relieves oxidative stress and suppresses the polyol pathway, which delays the progression 

of DPN and effectively and safely improves both diabetic neuropathy symptoms and the 

motor nerve conduction velocity349-351. Accumulating evidence has shown that LA 

combined with epalrestat may be a viable alternative for patients with DPN due to its 

marked beneficial effect on clinical symptoms and nerve conduction velocity352.  

 

1.6.4 Oxidative stress 

 

Figure 15. Targets of free radicals313. 

The equilibrium between production and neutralization of ROS is very delicate, and in the 

case this balance tends to a ROS overproduction, the cells start to suffer the consequences 

of oxidative stress353. Under normal conditions ROS mediate and regulate physiological 

functions of the body while in case of an over-accumulation they lead to severe 

deleterious effects for cells, tissues and organs. Oxidative stress and ROS accumulation 

are the result of several conditions including injury, inflammation, aging or chronic 



                                    1.INTRODUCTION 
 
 

                                                                                                                                                                           42 

diseases. Alternatively, their overproduction might originate from a diminished ability in 

the elimination of ROS. These compounds pass freely through cell and nucleus 

membranes, causing the oxidation of biomacromolecules such as lipids, proteins and 

nucleic acids (DNA and RNA) (Figure 15). The ROS-induced lipid peroxidation leads to 

membrane leakage354, while oxidation of amino acids (especially cysteine residues) 

results in the formation of protein-protein cross-links with dysfunction of these proteins. 

DNA peroxidation induced by ROS interrupts gene transcription and causes gene 

mutations, microsatellite instability, and effects on transcription binding factor355. RNA is 

even more vulnerable to oxidative stress than DNA due to its generally single-stranded 

state and accessibility to the oxidant-producing mitochondria. As a consequence of these 

processes, high levels of ROS cause damage to various cellular components and ultimately 

result in cell death. ROS overproduction results in a number of chronic diseases typified 

by neurodegenerative diseases and also mediate therapeutic side effects, such as 

chemotherapy-induced neuropaty. 

 

1.6.5 Oxidative stress and neurodegeneration 

A common feature in neurodegenerative disorders is the presence of specific protein(s) 

including Tau and beta-amyloid (Aβ) for Alzheimer’s disease (AD), alpha-synuclein (αSyn) 

for Parkinson’s disease, mutant huntingtin protein (mHtt) for Huntington’s disease, and 

TAR DNA binding protein (TDP-43) for Amyotrophic lateral sclerosis. ROS mediate 

neurotoxicity in each of these diseases through the oxidative modifications of the 

hallmark protein. It is well known that AD is characterized by the presence of intracellular 

neurofibrillary tangles (NFT) and extracellular Aβ deposits. NFT mainly consist in bundles 

of paired helical filaments (PHF), whose major component being the microtubule-

associated protein Tau. At this regard, hyperphosphorylation appears to be the critical 

event in leading the Tau protein to an abnormal aggregation and alterated function and 

in which ROS seem to be actively involved. In AD, ROS can also activate the c-Jun N-

terminal kinases (JNK), p38 and deactivate protein phosphatase 2A (PP2A). JNK and p38 

promote the expression of Tau, and stimulate AβPP cleaving enzyme 1 (BACE1), causing 

Aβ1-42 accumulation which leads to activation of NADPH oxidase (Nox) and producion of 

additional O2
•−, and results in Ca2+ influx to elicit excitatory neurotoxicity. Once 

phosphorylated, Tau and other cytoskeletal proteins are subject of modification by 
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carbonyl products of oxidative stress356,357 and consequent aggregation into fibrils356. 

Furtheremore, Aβ presence in senile plaques is considered to have a causal role in AD and 

related to this H2O2 at 100–250 μM results in increased levels of intracellular Aβ in human 

neuroblastoma SH-SY5Y cells358. Oxidative stress have been also demonstrated to induce 

accumulation of potentially neurotoxic Aβ peptide by inducing the amyloidogenic process 

of AβPP and increasing the activity of β-secretase359,360. Cerebral amyloid angiopathy is 

associated with most cases of AD and characterized by Aβ deposits in brain vessels361. 

Oxidative stress is found triggering the amyloidogenic pathway in human vascular smooth 

muscle cells by up-regulation of AβPP cleaving enzyme 1 (BACE1) expression and 

secretion of Aβ1–40 and Aβ1–42 with mediation of c-Jun N-terminal Kinase and p38 

MAPK362. Oxidative stress plays also a central role in the protein aggregation mechanism 

in PD. Post translational modifications of the αSyn induced by oxidative stress, including 

those by 4-hydroxy-2-nonenal (HNE-αSyn), nitration (n-αSyn), and oxidation (o-αSyn), 

have been observed in αSyn oligomerization. Especially the HNE-αSyn and n-αSyn tend to 

be more inclined in forming oligomers than the unmodified one. The cellular toxicity of 

HNE-αSyn is significantly higher than other postranslationally modified species363. Related 

to HD, the mHtt aggregation is actively involved in the pathogenesis of the disease. The 

mHtt can aggregate at distinctive conformations that have different neurotoxicity, and 

different conformations of mHtt exist in different brain regions in HD mice364. Oxidative 

modification of the aggregated mHtt facilitates an increase in the size of aggregates and 

changes the conformation of aggregated mHtt365. Furtheremore, oxidative stimulations 

have been found to enhance the polyglutamine-expanded truncated N-terminal 

Huntingtin aggregation and mHtt-induced cell death366.  

 

1.6.6 Oxidative stress and neuropatic pain 

Neuropathic pain (NP) is a common and unique type of chronic pain. In developed 

countries, about the 3% of the population suffer from NP. It manifests as spontaneous 

burning, shooting pain, hyperalgesia and in most patients is usually chronic. This condition 

is the result of several factors with impairment in nerve function. The pathophysiology is 

relatively complex and involves both central and peripheral mechanisms with alteration 

in the ion channel expression, neurotransmitter release, and pain pathways are involved 

in the pathophysiology of pain367. Although infomations on molecular basis of the 
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neuropathy are insufficient, it has been reported that oxidative stress might contribute to 

the pathophysiology of NP368. In fact, in chronic constriction injury (CCI) model of rat 

neuropathic pain, heat hyperalgesia was reduced by systemically injections of 

antioxidants369,370. Another study, in spinal nerve ligation (SNL) model of neuropathic 

pain, showed that systemic administration of ROS scavenger phenyl-N-tert-butylnitrone 

(PBN) relieved mechanical allodynia371. Furthermore, increased levels of the antioxidant 

enzyme SOD together with a reduction in the concentration of the ROS-scavenger 

glutathione have also been observed in the CCI model of rat neuropathic pain372. In 

addition to this, beneficial effects in reliefing the hyperalgesia in CCI-induced neuropathic 

rats was demonstrated after the intraperitoneal administration of the antioxidant N-

acetyl-cysteine372.  

Neuropathy is a commonly found condition with the oxaliplatin anticancer treatment. In 

fact, patiens treated with oxaliplatin tend to develop a neuropathic syndrome with 

paresthesia, dysesthesia, and pain adversely affecting the quality of the daily life until 

suspension of the therapy373. At this regard, in a rat model of painful oxaliplatin-induced 

neuropathy an important component of oxidative stress have been observed374. 

Furtheremore, high levels levels of carbonylated protein and thiobarbituric acid reactive 

substances in the plasma of oxaliplatin-treated rats are index of the resultant protein 

oxidation and lipoperoxidation, respectively. The same pattern of oxidation was revealed 

also in the sciatic nerve, and in the spinal cord where the damage reached the DNA 

level374. Treatment with the antioxidant derivatives silibinin and α-tocopherol (100 mgkg 

-1 per os) proved to be effective in preventing oxidative damage and reducing oxaliplatin-

dependent pain induced by mechanical and thermal stimuli. These compounds have been 

also demostrated to improve motor coordination and reverse about 50% of the 

oxaliplatin-induced behavioral alterations374
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Adenosine elicits its physiological effects interacting with four receptor subtypes, whose 

activation mediate many physiophatological functions. Among adenosine receptors, the 

A2A subtype have attracted much interest as druggable target for therapeutic intervention 

in neurodegenerative diseases95,101,124,163. The A2AAR is widely expressed in the CNS and 

is involved in the control of motor activity, learning, memory90, 375-377 and in 

excitotoxicity176,378. Blockade of A2AARs may be useful in brain disorders such as 

Parkinson’s disease (PD)53,379, cerebral ischemia232,380,381, Huntington’s disease176,378(HD), 

or Alzheimer’s disease382,383 (AD) and also affords benefits in some psychiatric 

disorders142. Thus, identification of new A2A AR antagonists remains an attractive goal in 

drug discovery. Also the A2A/A1 AR dual targeted antagonism have emerged as promising 

therapeutic approach for the treatment of PD107,109,384. A1 ARs are presinaptically 

expressed on striatal dopaminergic neurons where they inhibit dopamine release385,386. 

Hence, A1/A2A AR antagonists would both facilitate dopamine release (A1) and potentiate 

the post-synaptic response to dopamine (A2A). A1 AR are also located in the hippocampus, 

neocortex and limbic system which are brain areas implicated in the control of cognitive 

and emotive functions6. Thus, A1 AR antagonists could ameliorate cognitive impairments 

associated to PD since they improve performance in animal model of learning and 

memory109,384.  

The research group I joined has been interested for years in the design, synthesis and 

pharmacological evaluation of heterocycle derivatives as adenosine receptor antagonists. 

In searching for a new byciclic chemotype to obtain selective hA2A AR antagonists, a 

molecular simplification approach was applied to the 1,2,4-triazolo[4,3-a]quinoxaline-1-

one scaffold (Figure 16), successfully employed in the past to synthesize potent and 

selective antagonists of A1, A2A and A3 ARs387-391. Thus, the 8-amino-1,2,4-triazolo[4,3-a]-

pyrazine-3-ones series was designed, also considering that its synthetic accessibility 

would have permitted to functionalize the 6 position with different moieties (methyl, aryl, 

arylalkyl, heteroaryl) and the 2 position with suitable aryl and benzyl groups. 
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Figure 16. Molecular simplification of 1,2,4-triazolo[4,3-a]quinoxaline-1-one scaffold to obtain the new      

8-amino-1,2,4-triazolo[4,3-a]-pyrazin-3-ones series. 

 

Hence, this PhD thesis focused on the identification of new compounds designed to target 

the hA2AAR, or both the hA1 and hA2A ARs, and based on the 8-amino-1,2,4-triazolo[4,3-

a]pyrazin-3-one scaffold (Figure 16). 

 

2.1 Preliminary structure-affinity relationship investigations: synthesis of 

8-amino-2-aryl-1,2,4-triazolo[4,3-a]pyrazin-3-ones 1-10 

The first aim of the work was the synthesis of compounds 1-10 (Figure 17) to carry out a 

preliminar SAR study. Hence, a methyl and the bulkier and more lipophilic phenyl moiety 

were appended at the 6-position (R6), while different small subtituents (R), endowed with 

different electronic and lipophilic properties, were placed on the 2-phenyl ring. The R 

groups were also selected as suggested by the affinity data of the TQX series387. 

Anticipating the obtained binding activities, it was observed that the phenyl was better 

than the methyl group for the 6-position, while the unsubstituted phenyl ring at position 

2 emerged as the best group for obtaining an efficient hA2A receptor interaction.  

 
Figure 17. Modifications performed on the 2-phenyl and at the 6-position of the 8-amino-1,2,4-

triazolo[4,3-a]-pyrazin-3-one scaffold. 
 

The 2,6-diphenyl substituted compound 2 was the most notable within the first set of 

synthesized compounds, possessing nanomolar for hA1, hA2A and hA3 ARs (Ki = 10-13 nM). 
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Based on these premises, in the subsequent derivatives, the 2-phenyl was maintained 

unmodified while structural changes were made at the 6-phenyl level. 

 

2.2 Structural modifications on the 6-phenyl ring: synthesis of 8-amino-6-

aryl-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3-ones 11-39 

 

Figure 18. Modifications on the 6-phenyl ring of the 8-amino-2-phenyl -1,2,4-triazolo[4,3-a]-pyrazin-3-

one scaffold. 
 

The subsequent modifications were carried out on the 6 phenyl ring of derivative 2, where 

substituents with different lipophilicity, electronic and steric properties (OR1, NO2, NH2, 

Br, Cl, Me) were introduced at 2, 3 and 4 positions (Figure 18). In particular, several alkoxy 

moieties, containing either linear, unsaturated, branched or cyclic alkyl and benzyl chains 

(compounds 18-28) were investigated at position 3 and 4. Introduction of hindering 

moieties was performed taking into account the SARs of different series of hA2A AR 

antagonists with similar size and shape, indicating that the presence of bulky substituents 

at suitable positions was often profitable for an effective and selective recognition of the 

hA2A AR380. 

 

2.3 Structural modifications to improve drug-like properties: synthesis of 8-

amino-1,2,4-triazolo[4,3-a]pyrazin-3-ones 40-61 and 62-68  

To expand SAR studies and especially to ameliorate the drug-like properties of these AR 

antagonists, a third set of compounds was designed and synthesized by derivatization of 

the -NH2 and -OH functions of the previously obtained derivatives 16, 37-39.  

First, hydrophilic substituents were used to decorate some triazolopyrazines (40-51, 

Figure 19). In particular, substituted piperazine rings were introduced at the ortho, meta 

and para position of the 6-phenyl ring (compounds 40-45). Furthermore, substituted 

piperidine, pyrrolidine and morpholine moieties were appended at the para position of 

the 6-phenyl ring by using different length linkers (derivatives 52-61, Figure 19) endowed 
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with diverse flexibility. These basic moieties were selected since they are a common 

feature of known potent and selective hA2A AR antagonists380 and are known to improve 

the drug-like properties of the compounds.  

 

Figure 19. Introduction of hydrophilic and/or basic moieties at the 6-phenyl level to improve drug-like 

properties.  
 

Next, the 6-phenyl ring of compound 2 was replaced with heteroaryl groups (2-furyl, 2-

(5-methylfuryl), 2-thienyl and 2-pyridyl) which were thought to enhance compound 

solubility (compounds 62-65, Figure 20). Derivatives 66-68 (Figure 20) featuring a benzyl 

chain at position 2, combined with a phenyl, a 2-furyl and a 2-(5-methylfuryl) at position 

6, were synthesized because the benzyl pendant, being more flexible than the 2-phenyl 

moiety, was thought to improve the solubility of the compounds. Combination of a benzyl 

with a 2-furyl substituent was also suggested by the binding results previously obtained 

in our pyrazolopyrimidine series392 in which this type of decoration shifted affinity toward 

the hA2A AR.  
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Figure 20. Introduction of heterocyclic moieties at the 6-position and of a benzyl pendant at position -2 

of the 8-amino-1,2,4-triazolo[4,3-a]-pyrazin-3-one scaffold (compounds 62-68) 

 

2.4 Design of dual hA2A AR antagonists-antioxidants: synthesis of 8-amino-

6-aryl-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3-ones 74-86.  

Finally, a set of triazolopyrazines bearing a potential antioxidant function (compounds 74-

86) were designed because we envisaged as an attractive aim to combine in the same 

molecule the ability of blocking the hA2A AR and that of counteracting oxidative stress and 

ROS formation, the latter processes being among the main causes of cellular and neuronal 

degeneration. The oxidative stress state is a condition in which antioxidant defenses are 

overwhelmed and not able to protect cells from oxidative damage. With this in mind, 

substituted phenolic residues were placed at the 6-position of the bicyclic scaffold 

(compounds 74-78, Figure 21). 

 
 

Figure 21. Newly synthesized 8-amino-2-phenyl-1,2,4-triazolo[4,3-a]-pyrazin-3-ones featuring 

substituted phenol moieties at the 6-position 
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The choice of these 6-substituents ensued from the evidence that substituted phenolic 

compounds, together with polyphenolic rings, are a common feature of both natural and 

synthetic antioxidant compounds. At this regard, the phenolic endogenous antioxidant α-

tocopherol (Vitamin E), as well as natural phenolic acids such as hydroxycinnamic and 

hydroxybenzoic acids, deserve to be mentioned. These latter exert antioxidant activity as 

chelators and free radical scavengers with special impact over hydroxyl and peroxyl 

radicals, superoxide anions and peroxynitrites393,394. As synthetic antioxidant compounds, 

butylhydroxytoluene (BHT), butylhydroxyanisole (BHA) and tert-butylhydroquinone 

(TBHQ) can be mentioned. With regard to BHT, it is a well known antioxidant used for 

several products including food, pharmaceuticals etc395. Moreover, several studies 

indicated that compounds containing di-tert-butylphenol groups exert several biological 

functions including antioxidant, anti-inflammatory, anticancer activities396-399.  

Other groups, thought to exert antioxidant properties, were selected and appended, 

directly or through spacers, to the para-OH and para-NH2 function of derivatives 16 and 

39, respectively, to provide compounds 79-86 (Figure 22).  

 
Figure 22. Introduction of potential antioxidant moieties at 6-phenyl level of the 8-amino-2-phenyl -1,2,4-

triazolo[4,3-a]-pyrazin-3-one scaffold. 

 

The antioxidant lipoic acid (LA) residue (compounds 80, 82, 84) was selected since LA 

turned out to be effective in scavenging free radicals in polar media by a one-electron 

transfer mechanism333 and also exerts antioxidant effects by acting on transition metal 
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chelation333. There are also evidences, from both in vitro and physiological studies, that 

LA increases or maintains cellular GSH levels by acting as a transcriptional inducer of genes 

governing GSH synthesis400 (see “Introduction”). 

The (S)-2-oxothiazolidine-4-carboxylic acid residue (OTC, derivative 79, 81), together with 

the 3,5-di-tert-butyl-4-hydroxybenzoic acid (compounds 83, 85) and the 5-methyl-1,2-

dihydro-3H-pyrazol-3-one (compound 86) moiety, were also chosen for the ibridization 

approach. OTC is a prodrug of cysteine which acts as antioxidant since it is able to 

inactivate the hydroxyl radicals401 or maintain free sulfhydryl groups402. Introduction of 

the 3,5-di-tert-butyl-4-hydroxybenzoic acid residue was undertaken due to its structural 

similarity to the butylhydroxytoluene (BHT, see above) which is able to break radical chain 

reactions through atom transfer403. Instead, the 5-methyl-1,2-dihydro-3H-pyrazol-3-one 

ring was selected since it plays a key role in the antioxidant mechanism of edaravone, an 

approved drug for brain ischemia404 which turned out to to be effective also in 

counteracting the myocardial ischemic insult405. Edaravone can exist in three tautomeric 

forms A, B, C406-408 (Figure 23) and it is currently accepted that the anionic form is very 

effective in scavenging free radicals in polar media by a one-electron transfer 

mechanism409 (Figure 23, pathway A). 

 

 

Figure 23. Edaravone antioxidant mechanism of action. 

All the synthesized 8-amino-1,2,4-triazolo[4,3-a]pyrazin-3-ones 1-86 were investigated 

for their affinity and selectivity at hARs. Based on the binding data, some of the 

compounds endowed with the highest affinities at the hA1 and hA2A subtypes (13, 31, 32, 

68, 47, 78, 82, 84 and 85) were selected to determine their antagonistic properties by 

evaluating their effect on cAMP production in CHO cells, stably expressing the hA1 and 
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hA2A ARs. The same derivatives were further pharmacologically profiled to evaluate their 

potential protective effects in vitro models of neuroprotection.
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Scheme 1. a) NaNO2, 2-Chloroacetoacetate, NaOAc, MeOH 0-5 °C; b) 33% aqueous NH3, 1,4-dioxane, r.t.; 

c) absolute EtOH, Ethyl 2-amino-2-thioxoacetate K2CO3, r.t.; d) for 99-102, Triphosgene, anhydrous THF, 
r.t.;410 for 103, Carbonyldiimidazole, dichloromethane, r.t.; e) R6-COCH2Br, K2CO3, DMF/acetonitrile, r.t.; f) 
NH4OAc, mw or conventional heating 130-190 °C sealed tube; g) POCl3, mw or conventional heating, 140-
180 °C; h) NH3, absolute EtOH, 130 °C. For R2 and R6 see Table 2. 

 

The new 8-amino-1,2,4-triazolopyrazin-3-one derivatives 1-6, 11-13, 17, 29-36, 62-73 

were prepared as depicted in Schemes 1. The starting ethyl 2-arylhydrazono-2-

chloroacetates 90-93393,411,412 were prepared by reacting the suitable aryldiazonium 

chloride with ethyl 2-chloroacetoacetate, in the presence of sodium acetate in MeOH. 

Compounds 94-97413,414 were prepared by reacting the ethyl 2-arylhydrazono-2-

chloroacetates 90-93 with 33 % aqueous ammonia solution in 1,4-dioxane at room 

temperature, while ethyl 2-amino-2-(2-benzyl-hydrazono)acetate 98 was obtained by 

reacting benzylhydrazine dihydrochloride with ethyl 2-amino-2-thioxoacetate in absolute 

ethanol and in the presence of potassium bicarbonate. Treatment of derivatives 94-97 

with triphosgene yielded the ethyl 1-phenyl-5-oxo-1H-1,2,4-triazole-3-carboxylates 99-

102410,415. The 1-benzyl-substituted derivative 103, instead, was obtained by reacting 
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ethyl 2-amino-2-(2-benzyl-hydrazono)acetate 98 with carbonyldiimidazole in methylene 

chloride at room temperature416. N4-alkylation of 99-103 with commercial or properly 

synthesized α-aloketones in DMF/CH3CN, in the presence of potassium carbonate, 

afforded the ethyl 1-aryl-5-oxo-1,2,4-triazole-3-carboxylates 104-133 whose cyclization 

with ammonium acetate, performed by conventional heating or under microwave 

irradiation, gave the 1,2,4-triazolo[4,3-a]pyrazine-3,8-dione derivatives 134-163. The 

latter were chlorinated with phosphorus oxychloride, under microwave irradiation, to 

obtain the related 8-chloro derivatives 164-193 which were allowed to react with a 

saturated solution of ammonia, in absolute ethanol, to afford the desired 8-amino-1,2,4-

triazolo[4,3-a]pyrazine-3-one derivatives 1-6, 11-13, 17, 29-36, 62-73. 

 

 

Demethylation of the (methoxyphenyl) derivatives 3, 4, 6, 11-13 with 1M solution of BBr3 

in methylene chloride gave the corresponding (hydroxyphenyl)-substituted compounds 

7-9, 14-16 (Scheme 2). 

    Table 2. R6 R2  R6 R2 

104, 134, 164, 1 

105, 135, 165, 2 

106, 136, 166, 3 

107, 137, 167, 4 

108, 138, 168, 5 

109, 139, 169, 6 

110, 140, 170, 11 

111, 141, 171, 12 

112, 142, 172, 13 

113, 143, 173, 17 

114, 144, 174, 29 

115, 145, 175, 30 

116, 146, 176, 31 

117, 147, 177, 32 

118, 148, 178, 33 

           Me 

            Ph 

           Me 

            Ph 

            Ph 

            Ph 

    C6H4-2-OMe 

    C6H4-3-OMe 

    C6H4-4-OMe 

    C6H4-4-Me 

C6H4-3,4-OCH2O 

      C6H4-3-Br 

      C6H4-4-Br 

      C6H4-3-Cl 

      C6H4-4-Cl 

        Ph 

        Ph 

C6H4-4-OMe 

C6H4-4-OMe 

C6H4-4-NO2 

C6H4-2-OMe 

        Ph 

        Ph 

        Ph 

        Ph 

        Ph 

        Ph 

        Ph  

        Ph 

        Ph 

119, 149, 179, 34 

120, 150 ,180, 35 

121, 151, 181, 36 

122, 152, 182, 62 

123, 153, 183, 63 

124, 154, 184, 64 

125, 155, 185, 65 

126, 156, 186, 66 

127, 157, 187, 67 

128, 158, 188, 68 

129, 159, 189, 69 

130, 160, 190, 70 

131, 161, 191, 71 

132, 162, 192, 72 

133, 163, 193, 73 

C6H4-2-NO2 

C6H4-3-NO2 

C6H4-4-NO2 

2-furan 

2-(5-methylfuryl) 

2-thienyl 

2-pyridyl 

Ph 

2-furan 

2-(5-methylfuryl) 

C6H4-2,4-diOCH3 

C6H4-3,4-diOCH3 

C6H4-3,4-triOCH3 

C6H4-4-OCH3-3,5-diCH3 

C6H4-4-OCH3-3,5-di-t-but 

   Ph 

   Ph 

   Ph 

   Ph 

   Ph 

   Ph 

   Ph 

CH2Ph 

CH2Ph 

CH2Ph 

   Ph 

   Ph 

   Ph 

   Ph 

   Ph 
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Scheme 2. a) BBr3 1M in dichloromethane, anhydrous dichloromethane, 0 °C, r.t. 

 

Finally, the (nitrophenyl) derivatives 5, 34-36 were reduced (H2, Pd/C) in a Parr apparatus 

to yield the corresponding (aminophenyl) derivatives 10, 37-39 (Scheme 3). 

 

 

Scheme 3. a) H2, Pd/C, DMF, Parr apparatus, 40 psi, r.t. 

 

The 6-(alkoxyphenyl) compounds 18−28 (Table 3) were synthesized as outlined in Scheme 

4, i.e. by alkylation of the 6-(hydroxyphenyl) derivatives 15 or 16 with the suitable alkyl 

bromides in refluxing 2-butanone and in the presence of potassium carbonate. 

 

Scheme 4. a) Alkyl bromide, K2CO3, 2-Butanone, reflux. 
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           Table 3.  

 

 

 

 

It has to be pointed out that the 6-aminophenyl substituted compounds 37-39 and the 6-

(4-hydroxyphenyl) derivative 16 were employed as key intermediates for the synthesis of 

the new sets of compounds 40-61 and 79-86. 

The 2-phenyl-triazolopyrazines 40-61, bearing, on the 6-phenyl ring, substituents which 

were thought to enhance water solubility and drug-like properties, were synthesized as 

depicted in Scheme 5-9. Compounds 40-42, featuring a piperazine residue at the three 

positions of 6-phenyl moiety, were achieved as described in Scheme 5. The piperazine 

ring was constructed by alkylation of the aromatic amino group of derivatives 37-39 with 

bis(2-chloroethyl)amine in sulfolane at 150 °C. Reaction of the 6-(3-piperazin-1-yl)-

substituted compound 41 with methyl iodide gave rise to the N,N-dimethylpiperazinium 

salt 43 while allowing to react compounds 41 and 42 with benzyl bromide, the respective 

N-benzylpiperazin-1-yl-derivatives 44 and 45 were obtained. 

 

Scheme 5. a) Bis(2-chloroethyl)amine hydrochloride, sulfolane, 150 °C; b) From 41, CH3I, anhydrous DMF, 

r.t.; c) From 41 and 42, Benzyl bromide, Et3N, anhydrous 1,4-dioxane, reflux. 

Derivatives 46-50, featuring small hydrophilic chains on the para position of the 6-phenyl 

ring, were synthesized as outlined in Scheme 6. Reaction of the 6-(4-hydroxyphenyl)-

 R  R 
18 3-O-propargyl 24 4-O-iC3H7 
19 4-O-propargyl 25 4-OCH2-iC3H7 
20 3-OCH2Ph 26 4-OCH2cC3H5 
21 4-OCH2Ph 27 4-OCH2cC4H7 
22 4-OC2H5 28 4-OCH2-CH=CH2 
23 4-O-nC3H7  
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derivative 16 with suitable alkyl halides and in presence potassium carbonate in 

anhydrous acetone, afforded the desired 6-(4-O-alkylated) compounds 46 and 47. 

Reduction of the nitrile 47 with lithium aluminium hydride in anhydrous THF at room 

temperature gave the corresponding 6-(4-(2-aminoethoxy)phenyl compound 48. 

Compounds 49 and 50 were achieved by reacting the 6-(4-hydroxyphenyl) intermediate 

16 with ethylene carbonate, in presence of potassium carbonate and in anhydrous DMF 

at 110 °C, (compound 49) or with 3-chloropropane-1,2-diol in anhydrous acetonitrile at 

room temperature (compound 50). 

 
 
Scheme 6. a) Chloroacetamide (for compd. 46) or Chloroacetonitrile (for compd. 47), K2CO3, anhydrous 

acetone, r.t.; b) from 47, LiAlH4, anhydrous THF, 0 °C; c) Ethylene carbonate, K2CO3, anhydrous DMF, 110 
°C; d) 3-Chloropropane-1,2-diol, K2CO3, anhydrous Acetonitrile, r.t. 
 

Other basic hydrophilic functions were appended, by suitable spacers on the para-

position of the 6-phenyl ring (Schemes 7, 8 and 9). Reaction of the 6-(4-aminophenyl)-

derivative 39  with 3-chloropropionic acid in presence of EDCI hydrochloride,                                                                                    

DIPEA in anhydrous DMF, gave the N-(4-(8-amino-3-oxo-2-phenyl-2,3-dihydro-

[1,2,4]triazolo[4,3-a]pyrazin-6-yl)phenyl)acrylamide 194 which was treated with a 

saturated ammonia solution at 130 °C in absolute ethanol to afford 3-amino-N-(4-(8-

amino-3-oxo-2-phenyl-2,3-dihydro-[1,2,4]triazolo[4,3-a]pyrazin-6 

yl)phenyl)propanamide 51. Instead, the 8-amino-1,2,4-triazolopyrazin-3-one derivatives 
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52-55, bearing in the side chain cyclic amines, were achieved by refluxing the 

intermediate 194 with the suitable amine in anhydrous THF (Scheme 7). 

 
 

Scheme 7. a) 3-Chloropropionic acid, EDCI.HCl, DIPEA, anhydrous DMF, r.t.; b) NH3, absolute EtOH, 130 

°C; c) Cyclic amine, anhydrous THF, reflux. 

 

Reaction of the 6-(4-(2-hydroxyethoxy)phenyl) derivative 49 with thionyl chloride in 

anhydrous toluene, and in presence of pyridine, afforded the 6-(4-(2-

chloroethoxy)phenyl) derivative 195 which was reacted with suitable cyclic amines in 

presence of potassium carbonate, and catalytic amount of potassium iodide, in anhydrous 

DMF at 110 °C, to yield the desired final compounds 56-59 (Scheme 8).  

 

 

 
Scheme 8. a) SOCl2, pyridine, anhydrous toluene, reflux; b) Cyclic amines, K2CO3, KI, anhydrous DMF, 110 

°C. 

 
Treatment of the 6-(4-hydroxyphenyl)-derivative 16 with epichlorohydrin, potassium 

carbonate in anhydrous acetonitrile at 85 °C, afforded the 6-(oxiran-2-ylmethoxy)phenyl 

substituted derivative 196 which was reacted with piperidine or morpholine, in boiling 

ethanol and in presence of potassium carbonate, to yield the desired triazolopyrazines 

60-61 (Scheme 9). 
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Scheme 9. a) Epichlorohydrin, K2CO3, anhydrous acetonitrile, reflux; b) Cyclic amines, K2CO3, absolute 

EtOH, reflux. 

 

Finally, a set of 8-amino-1,2,4-triazolopyrazin-3-one derivatives 74-86, containing 

moieties which were thought to confer antioxidant properties were synthesized (Scheme 

10-14). Compounds 74-77, bearing substituted phenolic rings at position 6, were obtained 

by reacting the corresponding methoxy derivatives 69-72 with BBr3 1M dichloromethane 

solution in anhydrous methylene chloride at room temperature. This conditions did not 

work to demethylate the 3,5-di-tert-butyl-4-methoxyphenyl-derivative 73, due to the 

steric hindrance of the two tert-butyl groups. More drastic conditions, i.e. 48% aqueous 

HBr in boiling acetic acid, permitted demethylation of 73, but also caused elimination of 

one tert-butyl group, thus affording the 3-(tert-butyl)-4-hydroxyphenyl derivative 78 

(Scheme 10).  

 

Scheme 10. a)  from 69-72, BBr3 1M in dichloromethane, anhydrous dichloromethane, r.t.; b) from 73, 

48% HBr, acetic acid, reflux. 

The set of 8-amino-1,2,4-triazolopyrazin-3-one derivatives 79-86, featuring different 

possible antioxidant groups on 6-phenyl ring, were synthesized as depicted in Schemes 

11-14. Compounds 79, 80 were prepared as shown in Scheme 11, i.e. starting from the 6-
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(4-aminophenyl)-derivative 39 which was reacted at room temperature with (S)-2-

oxothiazolidine-4-carboxylic acid (compound 79) or racemic lipoic acid (compound 80) 

and EDCI hydrochloride, 1-hydroxybenzotriazole hydrate, DIPEA, in anhydrous DMF. 

 

Scheme 11. a) (R) Oxothiazolidine-4-carboxylic acid, EDCI.HCl, DIPEA, HOBt.H2O, anhydrous DMF, r.t.;                

b) (R, S) Lipoic acid, EDCI.HCl, DIPEA, HOBt.H2O, anhydrous DMF, r.t. 
 

Compounds 81-83 were synthesized by reacting the 4-(2-aminoethoxy)phenyl derivative 

48 with the suitable carboxylic acids and in the same experimental conditions described 

above to prepare 79 and 80 from 39 (Scheme 12).  

 

Scheme 12. a) (R) Oxothiazolidine-4-carboxylic acid, EDCI.HCl, DIPEA, HOBt.H2O, anhydrous DMF, r.t.; b) 

(R, S) Lipoic acid, EDCI.HCl, DIPEA, HOBt.H2O, anhydrous DMF, r.t.; b) 3,5-Di-tert-butyl-4-hydroxy-benzoic 
acid, EDCI.HCl, DIPEA, HOBt. H2O, anhydrous DMF, r.t.                                                                                                                                                                                   
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The same procedure was employed to prepare the novel 8-amino-1,2,4-triazolo[4,3-

a]pyrazin-3-ones 84 and 85 (Scheme 13) starting from the amino derivative 51.  

 

Scheme 13. a) (R, S) Lipoic acid, EDCI.HCl, DIPEA, HOBt.H2O, anhydrous DMF, r.t.; b) 3,5-Di-tert-butyl-4-

hydroxy-benzoic acid, EDCI.HCl, DIPEA, HOBt.H2O, anhydrous DMF, r.t.  

 
Compound 86, bearing the 5-methyl-1,2-dihydro-3H-pyrazol-3-one ring on the lateral 

chain, was obtained starting from intermediate 194 which was reacted with hydrazine 

monohydrate in anhydrous THF at reflux to give the corresponding 3-

hydrazinylpropanamide 197. Cyclization of the latter with ethyl acetoacetate in ethanol 

at 60°C afforded the desired final compound (Scheme 14).  

 

Scheme 14. a) Hydrazine.hydrate, anhydrous THF, reflux; b) Ethyl acetoacetate, EtOH, 60 °C
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4. RESULTS AND DISCUSSION 

The 8-amino-1,2,4-triazolo[4,3-a]pyrazin-3-ones 1-86 were evaluated for their affinity to 

hA1, hA2A, and hA3 ARs, stably transfected in Chinese hamster ovary (CHO) cells, and were 

also tested at the hA2B AR subtype by measuring their inhibitory effects on 5′-(N-ethyl-

carboxamido)adenosine (NECA)-stimulated cAMP levels in hA2B CHO cells. These studies 

were performed in collaboration with the group of Professor R. Volpini, from the 

University of Camerino. With the aim to rationalize the results obtained from 

pharmacological assays, the synthesized compounds were subjected to a molecular 

modeling investigation at the A2AAR crystal structure. These studies were performed by 

the group of Professor Dal Ben, from the University of Camerino. As previously discussed 

in the “Aim of the Work”, the synthesized compounds have been subdivided into four sets 

which reflect the different phases of the work. The same division was applied to SAR 

discussion. 

 

4.1. Preliminary structure-affinity relationship investigations of 8-amino-2-

aryl-1,2,4-triazolo[4,3-a]pyrazin-3-ones 1-10  

 

                 Table 4                                                           

 

Binding experiments 

Ki (nM)a 

cAMP assays 

IC50 (nM)a 

 R6 R2 hA1
b hA2A

c hA3
d hA2B

e 

1 CH3 H 67 ± 8 485 ± 39 4370 ± 355 >30000 

2 C6H5 H 13 ± 1 10 ± 3 11 ± 2 >30000 

3 CH3 4-OCH3 1743 ± 514 1038 ± 271 255 ± 21 >30000 

4 C6H5 4-OCH3 20 ± 5 78 ± 18 117 ± 26 >30000 

5 C6H5 4-NO2 8.1 ± 2.5 402 ± 91 >30000 >30000 

6 C6H5 2-OCH3 247 ± 31 309 ± 37 392 ± 60 >30000 

7 CH3 4-OH 1000 ± 128 1319 ± 184 5159 ± 752 >30000 
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aData (n = 3−5) are expressed as means ± standard errors. bDisplacement of specific [3H]-CCPA binding at 
hA1 AR expressed in CHO cells. cDisplacement of specific [3H]-NECA binding at hA2A AR expressed in CHO 
cells. dDisplacement of specific [3H]-HEMADO binding at hA3 AR expressed in CHO cells. eIC50 values of the 
inhibition of NECA-stimulated adenylyl cyclase activity in CHO cells expressing hA2BAR. fKi values (nM) from 
radioligand binding assays, for DPCPX417, for NECA418 and CCPA. gEC50 value (nM) of the stimulation of 
adenylyl cyclase activity in CHO cells expressing hA2B AR. 
 

As anticipated above, the first purpose of the work was to perform a preliminary 

investigation of the SARs of this new series and to identify new hA2A AR antagonists. In 

the early stage of the project, structural modifications were carried out to evaluate which 

group, between the methyl and the phenyl, was the better for the 6 position. Analyzing 

the binding data of the 8-amino-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3-ones 1-10, the 

2,6-diphenyl-substituted derivative 2 turned out to be notable, showing high and 

comparable affinities at hA1, hA2A and hA3 ARs (Ki = 10-13 nM). The 6-methyl-2-phenyl 

derivative 1 instead (Ki = 67-4370 nM) was significantly less active, in particular for the 

targeted hA2A AR. The para-hydroxy substituent inserted on the 2-phenyl ring of 1 and 2 

was chosen because in the TQX series388 it was profitable for A2A AR affinity. The 2-(4-

hydroxyphenyl)-substituted derivatives 7 and 8 were less active at the hA2AAR than the 

unsubstituted compounds 1 and 2 and also than their methoxy substituted synthetic 

precursors 3 and 4. The last two derivatives showed, on the whole, lower affinities for 

both hA1 and hA2A ARs than their parent compounds 1 and 2. The comparison of AR 

affinity data for the 6-phenyl derivatives 2 (Ki hA2A = 10 nM), 4 (Ki hA2A = 78 nM) and 8 (Ki 

hA2A = 138 nM) with those of the corresponding 6-methyl derivatives 1 (Ki h A2A = 485 

nM), 3 (Ki hA2A 1038  = nM) and 7 (Ki hA2A = 1319 nM) highlighted that the 6-phenyl moiety 

is more advantageous than the methyl one, probably due to its higher lipophilicity and/or 

capability to enhance the structural complementarity of the whole molecule with the 

receptor binding site. Thus, subsequent investigations were carried out on the 6 phenyl 

8 C6H5 4-OH 18 ± 2 138 ± 28 429 ± 89 >30000 

9 C6H5 2-OH 47 ± 9 232 ± 47 1558 ± 393 >30000 

10 C6H5 4-NH2 8.9 ± 1.1 3480 ± 398 650 ± 143 >30000 

 DPCPX  2.8 ± 0.5 125 ± 21 3850 ± 762  989 ± 22g 
73.24 ±2.0f 

 NECA  4.6 ± 0.8 16 ± 3 12.8 ± 2.5 1510 ± 210g 

1890f 

 CCPA  1.2 ± 0.2 2050 ± 400 26 ± 5 16850 ± 320g 

18800f 
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substituted compound 2 which was modified by introducing a para-amino group 

(compound 10), as suggested by affinity data for the TQX series388. Compound 10 (Ki hA2A 

= 3480 nM), as well as its synthetic precursor 2-(4-nitrophenyl) derivative 5 (Ki hA2A = 402 

nM) did not show enhanced affinity for the hA2A AR with respect to the lead 2. On the 

contrary, hA1 AR affinities of 5 and 10 were very high (Ki = 8.1 and 8.9 nM) and similar to 

that of 2 (Ki hA1 = 13 nM). The presence of a methoxy or hydroxy group at the ortho 

position of the 2-phenyl ring proved to be disadvantageous for the recognition of both 

hA2A and hA1 ARs. In fact, compounds 6 (Ki hA2A = 309 nM) and 9 (Ki hA2A = 232 nM) are 

significantly less active than 2 (Ki hA2A = 10 nM). 

 

4.1.1. Molecular modeling studies 

The binding mode of the synthesized compounds at the hA2A AR cavity was simulated with 

docking analysis by using the Molecular Operating Environment (MOE, 2014.09) docking 

tool and Gold and Autodock software419-422. For the docking tasks, two crystal structures 

of the hA2A AR in complex with the antagonist/inverse agonist ZM241385 were employed 

(PDB 3EML, 2.6 Å resolution, and PDB 4EIY, 1.8 Å resolution)423-425. The MOE software 

analysis was made by selecting the induced fit docking and optimization protocol 

(schematically, a preliminary docking analysis provides a set of ligand conformations that 

are energy minimized, including inthis step the side chains of the receptor residues in 

proximity). The docking analysis was performed with different docking tools and two 

different crystal structures of the target to get an average prediction of the binding mode 

of the synthesized compounds at the binding cavity. The docking results at the hA2A AR 

show that the molecules could bind to the pocket of this receptor with a preferred 

orientation (“type-one” conformations), presenting the substituent at the 2-position 

located in the depth of the cavity and the R6 group at the entrance of the binding site 

(Figure 24, A).  
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Figure 24. (A) General binding mode of the synthesized compounds atthe hA2A AR (pdb 4EIY) binding 

cavity, with indication of some key receptor residues. (B) Schematic description of the ligand−target 
interaction (built with MOE software). 
 

The scaffold adopts a position that makes it able to interact with Asn 2536.55 and Glu169 

(EL2) through H-bond contacts, while a π−π interaction is present between the phenyl 

ring of Phe168 (EL2) and the bicyclic core of the compounds (Figure 24, B). This interaction 

is very similar to the one given by the cocrystallized hA2A AR antagonist ZM241385423-425 

and by other structural classes of hA2A AR ligands previously described393,426. A second 

binding mode (“type-two” conformations) simulated by docking experiments presents 

the scaffold oriented in the opposite way with respect to the conformations described 

above, the 6-substituent being located in the depth of the cavity and the 2-substituent 

pointing toward the extracellular environment. This second binding mode is generally not 

preferred at the hA2A AR, being associated with lower docking scores than those of the 

above-described docking conformations, except for derivatives presenting ortho-

substituent on the 2-phenyl ring (see below). Compound 2 can be considered the 

reference ligand of the series, as it bears two unsubstituted phenyl rings at the 2 and 6 

positions. This derivative showed good affinity at the hA1 AR, hA2A AR, and hA3 AR, and 

this makes it a sort of passe-partout for the three ARs. Docking results of compound 2 at 

the three AR structures showed that it may be inserted in the receptor cavities with the 

two binding modes, both associated with good docking scores (the “type-one” generally 

preferred). The possibility of making more than one complex with the same receptor 

could result in good affinity, and this feature could be applied at the three ARs. The 

substituents inserted on the 2-phenyl group modulate the interaction with the binding 

pocket. In detail, the presence of small groups at the para-position generally affords 

decreased hA2A AR affinity with respect to the corresponding analogues with an 



4.RESULTS AND DISCUSSION 

                                                                                                                                                                           66 

unsubstituted 2-phenyl ring (compare derivatives 3 and 7 with 1 and compounds 4, 5, 8, 

and 10 with 2). This result was interpreted considering various parameters. The first is the 

topological complementarity of the ligand with the binding pocket (Figure 25, A). 

The presence of a para-substituent on the 2-phenyl ring seems to cause a slight 

displacement of the ligand that decreases its ability in establishing some crucial 

interactions with the receptor (i.e., H-bonds with Asn2536.55 and Glu169) with respect to 

the compounds with an unsubstituted 2-phenyl ring. Second, hA2A AR affinities may be 

rationalized by docking results also considering that the depth of the binding cavity is 

mainly hydrophobic. Hence, a nonpolar group at the paraposition of the 2-phenyl ring, 

such as the methoxy group of 4 (Ki = 78 nM), would afford a slightly better interaction 

with the target when compared to a more polar group at the same position such as the 

OH group of 8 (Ki = 138 nM). On this basis, we conclude that a para-substituent on the 2-

phenyl ring is fairly allowed for these compounds and, if present, should be a small 

hydrophobic function. Introduction of a substituent (OMe, OH) at the ortho position of 

the 2-phenyl ring of compound 2 afforded derivatives 6 and 9, endowed with 20−30-fold 

reduced hA2AAR affinity. Docking results suggest that these compounds preferentially 

adopt the “type-two” orientation with the 2-aryl pendant located at the entrance of the 

cavity and the R6 group positioned in the depth of the pocket (Figure 25, B). In this way, 

the ortho-hydroxy group of derivative 9 could give some polar interaction with Glu169 

(EL2). 

  

Figure 25. (A) Molecular surface representation of the A2A hAR binding cavity (yellow) and the bound 

ligand (red) indicating the topological complementarity of the ligand and the cavity in the depth of the 
binding pocket. (B) Alternative binding mode of the synthesized compounds at the hA2A AR (pdb 4EIY) 
binding cavity, with indication of some key receptor residues. This binding mode was particularly 
observed for compounds presenting an ortho-substituted phenyl ring at position 2. 
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4.2 Structural modifications on the 6-phenyl ring: 8-amino-6-aryl-2-phenyl-

1,2,4-triazolo[4,3-a]pyrazin-3-ones 11-39  

 

Table 5. Binding experiments 

Ki (nM)a 

cAMP assays IC50 

(nM)a 

 R6 hA1
b hA2A

c hA3
d hA2B

e 

2 C6H5 13 ± 1 10 ± 3 11 ± 2 >30000 

11 2-OCH3 40.8 ±7.1 2.0 ± 0.2 51.5 ± 3.5 >30000 

12 3-OCH3 44 ± 7 6.8 ± 0.7 42 ± 10 >30000 

13 4-OCH3 >30000 7.2 ± 1.8   >30000 >30000 

14 2-OH 16.3 ± 0.3 2.4 ± 0.5 44.5±8.3 > 30000 

15 3-OH 14 ± 2 3.5 ± 0.6 134 ± 13 >30000 

16 4-OH 45 ± 10 45 ± 12 53 ± 13 >30000 

17 4-CH3 >30000 >30000 >30000 >30000 

18 3-O-propargyl 45 ± 10 5.1 ± 1.5 67 ± 9 >30000 

19 4-O-propargyl >30000 10.6 ± 1.3 >30000 >30000 

20 3-OCH2Ph >30000 >30000 >30000 >30000 

21 4-OCH2Ph 3704 ± 495 708 ± 160 >30000 >30000 

22 4-OC2H5 >30000 2.9 ± 0.5  >30000 >30000 

23 4-O-nC3H7 >30000 NDf >30000 >30000 

24 4-O-iC3H7 >30000 7.4 ± 0.9 >30000 >30000 

25 4-OCH2-iC3H7 NDf NDf NDf >30000 

26 4-OCH2cC3H5 >30000 >30000 >30000 NDf 

27 4-OCH2cC4H7 >30000 >30000 >30000 >30000 

28 4-OCH2-CH=CH2 NDf NDf NDf >30000 

29 3,4-OCH2O 13 ± 2.5 7.4 ± 0.9 38 ± 6.7 >30000 

30 3-Br 11±2 8±2.1 >30000 > 30000 

31 4-Br >30000 10.6 ± 2.5 705.4 ± 139.5 > 30000 
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aData (n = 3−5) are expressed as means ± standard errors. bDisplacement of specific [3H]-CCPA binding at 

hA1 AR expressed in CHO cells. cDisplacement of specific [3H]-NECA binding at hA2A AR expressed in CHO 

cells. dDisplacement of specific [3H]-HEMADO binding at hA3 AR expressed in CHO cells. eIC50 values of the 

inhibition of NECA-stimulated adenylyl cyclase activity in CHO cells expressing hA2B AR. fNot determined. 

 

Affinity data of the first set of triazolopyrazines (1-10) indicated the unsubstituted phenyl 

ring as the best group for the 2-position. Thus, to enhance affinity and selectivity for the 

hA2AAR and enlarge SAR studies, new derivatives (11-39) were synthesized by 

introduction of various substituents with different lipophilicity, electronic and steric 

properties (OR1, NO2, NH2, Br, Cl, Me) at the 2, 3 and 4 positions of the 6-phenyl ring. The 

obtained results show that some of the probed substituents, such as para-alkoxy residues 

(derivatives 13, 19, 22, 24), the para-bromo (compound 31) and the para-nitro groups 

(compound 36), afforded high hA2A AR affinities and selectivities, the best group being the 

4-ethoxy residue (22, Ki = 2.9 nM). Other compounds (15, 30, 32, 33, 38, 39) bind 

efficiently both hA2A and hA1 ARs. This result makes these derivatives interesting as well, 

because dual hA1/A2A AR antagonists have emerged as promising agents for the treatment 

of PD107,109,384 since they are able to both relieve motor symptoms and ameliorate 

cognitive impairments associated to PD. In fact, hA1 receptor antagonists facilitate DA 

release in the striatum and potentiates, like hA2A AR antagonists, the DA-mediated 

responses. hA1AR antagonists are also able to improve performance in an animal model 

of learning and memory109,384 due to the high hA1AR expression in brain areas 

(hippocamus, neocortex, limbic system) implicated in the control of cognitive and 

emotive functions. Analizing the affinity data in detail, introduction of a methoxy and 

hydroxy group at the ortho (11 and 14), meta (12 and 15) and para (13 and 16) positions 

on the 6-phenyl moiety achieved notable results, the most relevant being the 

32 3-Cl 4.7 ± 1.1 6.3 ± 1 >30000 > 30000 

33 4-Cl 14.3 ± 3.6 10.9 ± 2.7 >30000 > 30000 

34 2-NO2 95 ± 18 43 ± 2.4 180 ± 34 >30000 

35 3-NO2 35.9 ± 7.8 NDf 38.6 ± 7.9 >30000 

36 4-NO2 7834 ± 597 7.2± 1.6 16421 ± 3505 > 30000 

37 2-NH2 191 ± 28 19.5 ± 1 321 ± 63 > 30000 

38 3-NH2 15.0 ± 3.0 10.9± 2.3 169 ± 13.5 > 30000 

39 4-NH2 33.5 ± 6.7 22.9 ± 0.2 253.7 ±67.6 > 30000 
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identification of the 6-(4 methoxyphenyl) derivative 13 possessing nanomolar affinity (Ki 

= 7.2 nM) and a complete selectivity for the hA2A AR. Very interestingly, demethylation of 

compound 13 led to a completely change in the the affinity profile since the hydroxy 

derivative 16 shows a 6-fold reduced hA2A AR affinity (Ki = 45 nM) and, above all, null 

selectivity, being able to bind also hA1 and hA3 ARs with similar Ki values. Moving the 

methoxy substituent from the para to the ortho (derivative 11) or the meta position 

(derivative 12) maintained a high hA2A AR affinity (Ki = 2.0 and 6.8 nM) but lost selectivity 

since 11 and 12 displayed considerable and comparable affinity both for hA1 AR (Ki = 40.8 

and 44 nM) and hA3 ARs (Ki = 51.5 and 42 nM). Demethylation of compounds 11 and 12 

to the corresponding hydroxy derivatives 14 and 15 did not modify the affinity profile 

much, although they showed a higher affinity both to the hA1 (Ki = 16.3 and 14 nM) and 

hA2A ARs (Ki = 2.4 and 3.5 nM) and a quite good one to the hA3 AR (Ki = 44.5 and 134 nM). 

On the contrary, replacement of the 4-methoxy group with a methyl elicited a detrimental 

effect, which was difficult to explain, since compound 17 being totally inactive. With the 

aim of enhancing the hA2A AR affinity, compounds 12 and 13 were modified by replacing 

the 3- and 4-methoxy groups with the hindered propargiloxy (compound 18 and 19) and 

benzyloxy moieties (compound 20 and 21). In fact, it is well known that long and bulky 

side chain increase affinity and selectivity at the hA2A AR.380 Similarly, to the methoxy-

substituted compounds 12 and 13, the propargyloxy substituted derivatives 18 and 19 

showed nanomolar affinity for the hA2A AR (Ki = 5.1 and 10.6 nM) and 19 was also totally 

selective. On the contrary, the benzyloxy derivatives 20 (ki hA2A > 30000 nM) and 21 (ki h 

A2A = 708 nM) were significantly less active than 12 and 13, in particular, the 3-benzyloxy 

derivative 20 was completely devoid of affinity for all the ARs. Other structural 

modifications were carried out by replacing the 4-methoxy group with small alchoxy 

residues containing either linear, unsaturated, branched or cyclic alkyl chains (derivatives 

22-28). Within this new set of ligands, the 4-ethoxyphenyl derivative 22 (Ki hA2A = 2.9 nM) 

and the 4-isopropoxyphenyl derivative 24 (Ki hA2A = 7.4 nM), bearing the smallest alkyl 

groups resulted in potent and completely selective hA2A AR antagonists. Differently, 

compounds 26 and 27, bearing the cyclopropylmethoxy and cyclobutylmethoxy moieties, 

were inactive at the hA2A AR as well as at the other ARs. Disappointendly, no biological 

data are available for derivatives 25 and 28 since we met some difficulties in testing them, 

probably due to their scarce solubility in the assay medium. The same applies to 23 for 
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the assays at the hA2A AR. Interestingly, the presence at 6 level of the 3,4-

(methylendioxy)phenyl ring, (compound 29), led to a potent and non selective hA1 (Ki= 13 

nM), hA2A (Ki= 7.4 nM) and hA3 (Ki= 38 nM) AR ligand.  

To continue SAR investigations, other small substituents with different electronic, 

lipophilic and steric properties (Cl, Br, NO2, NH2) were probed on 6-phenyl ring 

(compounds 30-39). Introduction of a 4-bromo and 4-nitro substituent resulted in potent 

and selective hA2AAR ligands (compounds 31 and 36, respectively, Ki= 10.6 and 7.2 nM). 

Insertion of the nitro group at the ortho position (derivative 34) yielded to moderate 

affinity for the hA1, hA2A and hA3 ARs. Good hA1 and hA3 AR affinities were achieved for 

the meta nitro-substituted derivative 35 (Ki= 35.9 and 38.6 nM, respectively) while it was 

not possible to obtain the hA2A data. Its low solubility in the assay medium did not allow 

to test high enough concentrations to obtain the dose-response curve. Introduction of 

the lipophilic 3-bromo (30), 3-chloro (32) and 4-chloro (33) substituents on the 6-phenyl 

moiety led to dual potent hA1 (Ki= 4.7-14.3 nM) and hA2A ligands (Ki= 6.3-10.9 nM). The 

hydrophilic amino group inserted either in meta (38) or para (39) position gave 

compounds able to bind efficiently (Ki= 10.9-33.5 nM) both hA1 and hA2A ARs while the 

same group at the ortho position (37) preserved the hA2A affinity (Ki= 19.5 nM) but 

worsened the hA1 one (Ki= 191 nM). All the three amino-substituted compounds 37-39 

showed also some ability to bind the hA3 receptor subtype.  

Concerning the hA2B AR, all the compounds 11-39 were inactive (IC50> 30000 nM) in 

inhibiting the NECA-stimulated cAMP levels in hA2B CHO cells, thus suggesting that they 

lack affinity for the hA2B AR.Derivative 32, able to bind both hA1 and hA2A ARs with 

nanomolar affinity, and compounds 13, 22 and 31, highly selective for the hA2A subtype, 

were selected to determine their antagonistic properties by evaluating their effect on 

cAMP production in CHO cells, stably expressing the hA1 and hA2A ARs. The obtained 

results (Table 6) showed that the compounds behaved as antagonists being able to 

counteract NECA-inhibited (A1) or NECA-stimulated (A2A) cAMP accumulation.  
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Table 6. Potencies of compounds 13, 22, 31 and 32 at hA1 and hA2A ARs. 

 

 

 

 

 

aIC50 values obtained counteracting the NECA-induced decrease of cAMP accumulation in CHO cells 
expressing hA1R. bIC50 values obtained by inhibition of NECA-stimulated adenylyl cyclase activity in CHO cells 
expressing hA2AR. cNot determined. 

 

4.2.1. Molecular modeling studies  

Docking results of compounds bearing an unsubstituted 2-phenyl ring and various aryl 

substituents at the R6 position (11−39) again show a preferential binding mode with the               

2- group located in the depths of the cavity and the 6-substituent pointing toward the 

external environment. Hence, the substituents on the 6-phenyl ring are generally located 

at the entrance of the cavity, providing different degrees of interaction with the receptor 

residues in proximity and modulating the affinity for the three ARs subtypes. The 

compounds featuring a small ortho-substituent (11, 14, 34, 37) are generally endowed 

with low nanomolar hA2A AR affinity. This substituent is oriented toward the N7 atom and 

in proximity of Glu169 (EL2) residue, with possibility to give polar interaction with the 

nitrogen atom of the compound scaffold or with the backbone or sidechain atoms of the 

above cited receptor residue (Figure 26).  

 

Figure 26. (A) The type-one docking conformation of the synthesized compounds at the hA2A AR cavity, 

representing the preferred binding mode according to docking-scoring results; compound 11 is represented 
and key receptor residues are indicated. (B) Schematic description of the ligand-target interaction (built 
within MOE software). 

 
hA1  

IC50 (nM)a 
hA2A  

IC50 (nM)b 

13 NDc 180 ± 34 

22 NDc 98 ± 19 

31 NDc 694 ± 74 

32 298 ± 58 374 ± 52 
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However, the precence of a nitro group at the ortho position of the 6-phenyl ring (34) 

affords a lower hA2A AR affinity, mainly due to higher hindrance of the substituent and 

consequent lower ability of the compound to maintain the co-planarity of the 6-phenyl 

ring with the heterocyclic scaffold. An electronic repulsion with the Glu169 (EL2) side 

chain is an additional factor at the basis of the lower affinity of this compound. According 

to the binding data, the presence of small substituent at the meta or para position of the 

6-phenyl ring leads, excepting for 17, 26 and 27, to a high hA2AAR affinity. Even these 

compounds appear to exclusively bind this receptor with the “type-one” docking 

conformation. These groups get located in proximity of H-bond donor functions of the 

receptor, such as the backbone NH groups of Phe168 and Glu169 (EL2) and the hydroxyl 

group of Tyr2717.36. Even the side chains of (EL2) and Leu267 (EL3) are in proximity to 

these compound substituents, allowing non-polar interaction. Considering the effects of 

substituents at the para-position of the 6-phenyl ring, the introduction of a polar hydroxyl 

group led to a decrease in hA2A AR affinity (16, Ki = 45 nM) with respect to the 

unsubstituted analogue 2. Docking results suggest that this hydroxy group is inserted 

within a set of hydrophobic amino acid residues, such as Leu167 (EL2), Leu267 (EL3), and 

Tyr2717.36, thus helping to explain the nonoptimal interaction of the 6-(4-phenol) group 

(16) with the receptor site with respect to the phenyl ring (2). On the same basis, we may 

interpret why the introduction of nonpolar groups at the para-position of the 6- phenyl 

ring is generally well tolerated, leading to compounds (13, 19, 22, and 24) with similar 

affinity with respect to the corresponding analogue 2, lacking a substituent on the 6-

phenyl ring.  

 

Figure 27. hA2A AR residues located at the entrance of the binding cavity (pdb 4EIY) and able to provide 

interaction with substituents on the R6 aryl ring. 
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Figure 27 shows the binding mode of compound 22 with a focus on the residues located 

in proximity of the R6 substituent. The para-ethoxy substituent of 22 appears inserted 

among the above cited hydrophobic residues Leu167 (EL2), Leu267 (EL3), and Tyr2717.36. 

In the case of derivatives with substituents at the meta position of the 6-phenyl ring, the 

affinity data show that the nature of the substituent does not significantly influence the 

receptor−ligand interaction because the presence of a polar hydroxyl group (15) or 

nonpolar functions, such as methoxy or propargyloxy groups (12, and 18, respectively), 

leads to analogue affinities at the hA2A AR. Figure 27 shows the presence on the receptor 

of nonpolar groups (i.e., the alkyl chain of Ile662.64) as well as polar functions (i.e., the 

carbonyl groups of Ile662.64 and Ser672.65) in proximity with the meta position of the 6-

phenyl ring.  

 

4.3. Structural refinement aimed at improving drug-like properties:                         

8-amino-6-(hetero)aryl-1,2,4-triazolo[4,3-a]pyrazin-3-ones 40-61 and 62-

68  

 

40-61 

Table 7 Binding experiments 

Ki (nM) a 

cAMP assays 

IC50 (nM) a 

 R6 hA1
b hA2A

c hA3
d hA2B

e 

40 2-(piperazin-1-yl) 1640 ± 237 1528 ± 100 4465 ± 653 > 30000 

41 3-(piperazin-1-yl) 36.1 ± 8.4 NDf 410.1 ± 89.2 >30000 

42 4-(piperazin-1-yl) 265.1 ± 14.4 90.4 ± 8 1905 ± 314 > 30000 

43 3-(N-dimethyl+-
piperazin-1-yl) 

57.1 ± 2.9 89.8 ± 2.8 3783 ± 667 > 30000 

44 3-(4-benzylpiperazin-1-
il)- 

235.7 ± 39.9 32.3± 7.5 298.1 ± 49.8 > 30000 

45 4-(4-benzylpiperazin-1-
yl)- 

121 ± 28 29 ± 1.5 >30000 > 30000 

46 C6H4-4-OCH2-CONH2 391.7 ± 104 26 ± 1.7 604 ± 94 > 30000 
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aData (n = 3−5) are expressed as means ± standard errors. bDisplacement of specific [3H]-CCPA binding at 

hA1 AR expressed in CHO cells. cDisplacement of specific [3H]-NECA binding at hA2A AR expressed in CHO 

cells. dDisplacement of specific [3H]-HEMADO binding at hA3 AR expressed in CHO cells. eIC50 values of the 

inhibition of NECA-stimulated adenylyl cyclase activity in CHO cells expressing hA2B AR. 

 

The set of triazolopyrazines 40-68 (Tables 7 and 8) was designed to obtain derivatives 

endowed with enhanced water solubility and drug-like properties with respect to the 

compounds synthesized in the previuos phases of the work. Hence, the 6-phenyl ring was 

decorated with hydrophilic functions, some of which (substituted piperazines, 

morpholine, piperidine and pyrrolidine) are a common feature of known potent and 

selective hA2A AR antagonists, structurally correlated to our series380. The selected 

substituents were attached both directly on the 6-phenyl ring (compounds 40-45) or 

47 C6H4-4-OCH2-CN > 30000 8.2 ± 2.3 > 30000 > 30000 

48 C6H4-4-O-(CH2)2-NH2 288.7 ± 54 14.94 ± 0.1 2131 ± 173.5 > 30000 

49 C6H4-4-O-(CH2)2-OH 510 ± 0.2 250 ± 24 >30000 >30000 

50  
363.7 ± 58 355 ± 93 1774 ± 362 >30000 

51 C6H4-4-NHCO-(CH2)2-NH2 479.2 ± 89 0.59 ± 0.17 509 ± 90 9658 ± 1431 

52 

 

 
296 ± 36 4.31 ± 0.5 1016 ± 165 >30000 

53  
614.1 ± 145 5 ± 1.3 1169 ± 85 >30000 

54  
586 ± 164 3.6 ±1.1 1023 ± 76.7 >30000 

55  
662.8 ± 178 1 ± 2.5 3104 ± 924 >30000 

56  
873.5 ± 171 230 ± 50 4303 ±968 >30000 

57  
363.3 ± 52.8 45.4 ± 1.5 1062 ± 138 >30000 

58  
363.2 ± 61 174.4 ± 16 >30000 >30000 

59  
510.3 ± 86 85.2 ± 18 368.7 ± 90 >30000 

60  
336.1 ± 87 91.7 ± 15 495 ± 112 >30000 

61  
571 ± 47 197 ± 49 780 ± 149 >30000 
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through small alkoxy (derivatives 46-50, 56-61) and amide (derivatives 51-55) chains, both 

linked to the para position of the ring. 

Analyzing the binding data, it can be observed that some derivatives (46-48, 51-55) are 

endowed with high affinity (Ki hA2A = 0.59-26 nM) and good selectivity for the A2A AR. The 

most relevant outcomes included derivatives 51-55 which showed hA2A AR affinity values 

in the range 0.59-5 nM.  

Compounds bearing piperazine moieties on the 6-phenyl group (40-45) did not showed 

the expected affinities. Insertion of an unsubstituted piperazine at the ortho position 

made the compound (40) a very weak ligand at all ARs, instead its presence at the para 

position (42) permit a quite good and selective interaction with the hA2A AR (Ki= 90 nM). 

Unfortunately, we were not able to determine the hA2A AR affinity of the meta- piperazine 

derivative 41, for the problems described above for compounds 23, 25, 28 and 35. Also 

the N,N-dimethylation of the meta-piperazine group afforded a quite good affinity for the 

hA2A AR (43), and an even better substitution was the N-benzylation of the meta- (44) or 

para- (45) piperazine, giving rise to low nanomolar affinities at this receptor. In the 

subsequent modifications, small chains containing CONH2 (46), CN (47), NH2 (48, 51) or 

OH (49, 50) as terminal group groups were inserted at the para position of the 6-phenyl 

ring by an –O- or NHCO linker. Very interestingly, compounds 46-48 and 51 were endowed 

with high affinity (Ki= 0.59-26 nM) and selectivity for the hA2A AR, the most active being 

derivatives 47 (Ki= 8.2 nM) and 51 (Ki= 0.59 nM). On the contrary, compounds 49 and 50, 

bearing, respectively, the 6-(4-(2-hydroxyethoxy)phenyl and 6-(4-(2,3-

dihydroxypropoxy)phenyl pendants, emerged as weak hA1 and hA2A AR ligands. 

Concerning the set of compounds bearing cyclic amines (piperidine, pyrrolidine, 

morpholine or substituted piperazines) in the side chain (derivatives 52-61), it can be 

observed that compounds 52-55 are highly potent (Ki = 3.6-11 nM) and selective hA2AAR 

ligands while compounds 56-59 (Ki = 45-230 nM) are less active at the hA2A subtype, as 

well as the other ARs. These data highlight that the propanamide linker is more profitable 

than the ethoxy or propoxy chain for hA2A receptor-ligand interaction.  
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aData (n = 3−5) are expressed as means ± standard errors. bDisplacement of specific [3H]-CCPA binding at 

hA1 AR expressed in CHO cells. cDisplacement of specific [3H]-NECA binding at hA2A AR expressed in CHO 

cells. dDisplacement of specific [3H]-HEMADO binding at hA3 AR expressed in CHO cells. eIC50 values of the 

inhibition of NECA-stimulated adenylyl cyclase activity in CHO cells expressing hA2B AR. 

 

Other structural modifications, supposed to be advantageus for improving drug-like 

properties, were made by replacing the 6-phenyl ring of the reference ligand 2 with a 

heterocyclic moiety (2-furyl, 2-(5-methylfuryl), 2-thienyl, 2-pyridinyl). Compounds 62-65 

maintained a high affinity for both hA1 and hA2A ARs (Ki= 8.4-13.2 nM) while showing an 

enhanced selectivity versus the hA3 subtype (Table 8). Furthermore, derivatives bearing a 

benzyl chain at position 2, combined with a phenyl, 2-furyl and a 2-(5-methylfuryl) at 

position 6 (compounds 66-68, Table 8), were synthesized because the 2-benzyl pendant, 

being more flexible than the 2-phenyl moiety, was thought to enhance the solubility of 

the compounds. This type of decoration was also suggested by the binding results 

previously obtained in our pyrazolopyrimidine series393 in which combination of a benzyl 

moiety with a 2-furyl substituent shifted affinity toward the hA2A AR. In the 

triazolopyrazine series, this modification enhanced both hA1 and hA2A AR affinities 

(compare the 2-benzyl derivative 66-68 with the relative 2-phenyl derivatives 2, 62, 63) 

Table 8 Binding experiments 

Ki (nM) a 

cAMP 

assays 

IC50 (nM) a 

 R6 R2 hA1
b hA2A

c hA3
d hA2B

e 

62 2-furyl Ph 13 ± 2 8.4 ± 0.9 120 ± 18 > 30000 

63 2-(5-methylfuryl) Ph 10 ± 2.8 11 ± 1 77 ± 6.5 > 30000 

64 2-thienyl Ph 14.1 ± 3.2 9.0 ± 2.2 42 ± 10.2 > 30000 

65 2-pyridyl Ph 77.4 ± 5.2 13.2 ± 3.8 131.1 ± 30 > 30000 

66 Ph CH2Ph 2.4 ± 0.5 4.4 ± 0.1 223.7 ± 4.8 > 30000 

67 2-furyl CH2Ph 13.7 ± 0.3 2 ± 0.1 1131 ± 132 > 30000 

68 2-(5-methylfuryl) CH2Ph 3.7 ± 0.2 4.6 ± 1.3 112 ± 2 > 30000 
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while reducing ability to bind the hA3 AR. Compounds 66-68 are indeed dually potent hA1 

(Ki =2-4.6 nM) and hA2A ligands (Ki= 2.4-13 nM). 

Derivative 68, able to bind both hA1 (Ki= 3.7 nM) and hA2A (Ki= 4.6 nM) ARs with nanomolar 

affinity, was selected to evaluate its antagonistic profile by measauring the effect on 

cAMP production in CHO cells, stably expressing hA1 and hA2A ARs. The obtained results 

(Table 9) showed that the compound behaved as antagonist being able to counteract 

NECA-inhibited (A1) or NECA-stimulated (A2A) cAMP accumulation.  

Table 9. Potencies of compound 68 at hA1 and hA2A ARs. 

 

 

 

 

aIC50 values obtained counteracting the NECA-induced decrease of cAMP accumulation in CHO cells 
expressing hA1R. bIC50 values obtained by inhibition of NECA-stimulated adenylyl cyclase activity in CHO cells 
expressing hA2AR.  

 

To verify if the performed modifications are effective or not in improving solubility and 

physicochemical properties of the compounds, further investigations are needed.  

However, we are confident about the successful outcome since for most of derivatives 

40-68, lower melting points (200-270 °C), a better solubility in the most common organic 

solvents (methanol, ethanol, nitromethane etc.), as well as less drastic recrystallization 

conditions, have been observed. 

 

4.3.1. Molecular modeling studies 

Molecular docking studies at the A2AAR crystal structure were carried out on compounds 

42-45 (Table 7) to depict their hypothetical binding mode. The obtained results 

highlighted that derivatives 43 and 44 bearing large substituents at the meta position of 

the 6-phenyl ring adopt the “type-one” docking conformation, presenting the 2-phenyl-

ring located in the depth of the cavity and the 6-aryl group at the entrance of the binding 

site. Compounds 42 and 45, featuring a large substituent at the para position of the same 

ring, were also investigated, showing an upside-down conformation, where the 2-phenyl 

ring was inserted in the depth of the cavity while the scaffold was oppositely oriented 

with the 3-carbonyl group pointing toward the Asn2536.55 amide function (Figure 28).  

 
hA1  

IC50 (nM)a 
hA2A 

IC50 (nM)b 

68 675 ± 123 521 ± 79 
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Figure 28. Alternative binding mode of the synthesized compounds presenting a large substituent in the 

para-position of the 6-phenyl ring (compound 45 is shown). The key ligand-target polar interaction is 
between the 3-carbonyl group of the compound and the Asn2536.55 amide function. 
 

Compounds 62-65, bearing a heterocyclic moiety at the 6-position and a phenyl ring at 

the 2-position, may adopt both type-one and type-two docking conformations, like 

compound 2, with a fair preference for the type-two conformation (the one pointing the 

2-phenyl ring toward the extracellular environment). This behaviour may explain the high 

affinity of these derivatives for the hA2A AR binding cavity, analogously to the reference 

compound 2. When the 2-phenyl ring is replaced by a benzyl moiety and a heterocyclic 

ring is inserted at the 6-position (66-68), the compounds preferentially adopt a type-two 

docking conformation pointing the 2-substituent toward the extracellular environment. 

For both these sets (62-65 and 66-68) the steric and chemical-physical profile of the 6 

substituent modulates the hA2A AR affinity, with the 2-furyl providing the highest affinity 

data within each set, as expected.  
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4.4 Design of dual A2A AR antagonist-antioxidant triazolopyrazines:                   

8-amino-6-aryl-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3-ones 69-86  

 

Table 10 Binding experiments 

Ki (nM) a 

cAMP assays 

IC50 (nM) a 

 R6 hA1
b hA2A

c hA3
d hA2B

e 

69 C6H4-2,4-diOCH3 28 ± 0.26 2.4 ± 0.48 118 ± 6.6 >30000 

70 C6H4-3,4-diOCH3 59.0 ± 12.7 5.68 ± 0.78 80.1±15.8 >30000 

71 C6H4-3,4,5-triOCH3 55 ± 16 3.5 ± 0.8 214 ± 4.4 >30000 

72 C6H4-4-OCH3-3,5-diCH3 4.5 ± 1.4 0.17 ± 0.0046 8.6 ± 1.7 >30000 

73 C6H4-4-OCH3-3,5-ditBu 108.5 ± 17 141.6 ± 34 >30000 >30000 

74 C6H4-2-OCH3-4-OH 29.8 ± 1.6 16.8 ± 0.87 11130 ± 975 > 30000 

75 C6H4-3,4-diOH 42.6 ±9.6 5.21 ± 0.5 950±200.4 >30000 

76 C6H4-3,4,5-triOH 175.5 ± 3 94.5± 21 5575±989 17.330±3365 

77 C6H4-4-OH-3,5-diCH3 21.3 ± 7 2.5 ± 0.78 100 ± 0.7 >30000 

78 C6H4-4-OH-3-tBu >30000 8.47 ± 1.4 >30000 >30000 

79 

 

504 ± 129 8.1 ± 0.83 1140 ± 167 >30000 

80 

 

8.4 ± 0.39 5 ± 0.62 >30000 >30000 

81 

 

173.4 ± 37 1.7±1.4 868±169 >30000 

82 

 

378.6 2.4±0.3 >30000 4097±812 

83 

 

13670 ± 275 14750 ± 270      >30000      >30000 

84 

 

1359 ± 284 36.4 ± 8.2 >30000 >30000 
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aData (n = 3−5) are expressed as means ± standard errors. bDisplacement of specific [3H]-CCPA binding at 

hA1 AR expressed in CHO cells. cDisplacement of specific [3H]-NECA binding at hA2A AR expressed in CHO 

cells. dDisplacement of specific [3H]-HEMADO binding at hA3 AR expressed in CHO cells. eIC50 values of the 

inhibition of NECA-stimulated adenylyl cyclase activity in CHO cells expressing hA2B AR. 

 

Finally, a new set of 8-amino-1,2,4-triazolo[4,3-a]pyrazin-3-ones (74-86, Table 10) bearing 

potential antioxidant moieties at the 6-position were synthesized and pharmacologically 

evaluated. These compounds can be divided into two sets: derivatives 74-78, featuring 

substituted phenol rings at the 6-position, and compounds 79-86, bearing antioxidant 

moieties on the lateral chain linked to the para position of the 6-phenyl ring. The affinity 

data, reported in Table 10, indicate that the presence of differently substituted phenols 

(compounds 74-78) at the 6-position shifted affinity towards both the hA1 (Ki = 21.3-175 

nM) and A2A (Ki = 2.5-94 nM) ARs. Within this set of compounds, the 6-(3-(tert-butyl)-4-

hydroxyphenyl derivative 78 turned out to be a highly potent (Ki = 8.47 nM) and selective 

hA2A AR ligand while compounds 74, 75 and 77 bind both hA1 (Ki = 21.3-42.6 nM) and hA2A 

(Ki = 2.5-16.8 nM) ARs with nanomolar affinity and different degrees of selectivity versus 

the hA3 subtype. Among the latter derivatives, the best in terms of hA2A affinity were 75 

and 77, displaying Ki values in the range of 2.5-5.21 nM. The methoxy derivatives 69-73, 

synthetic precursors of the desired phenols 74-78, were also tested to evaluate their 

affinity at ARs. The obtained binding data for this subset indicated that the contemporary 

presence of two or three methoxy groups on the 6-phenyl ring led to compounds (69-71) 

possessing high affinity for both hA1 (Ki = 28-59 nM) and hA2A (Ki = 2.4-5.68 nM) ARs, and 

also able to bind to the hA3 AR subtype (Ki = 80.1-214 nM). Compound 72, instead, bearing 

the 6-(3,5-dimethyl-4-methoxyphenyl) residue, showed subnanomolar hA2A AR affinity (Ki 

= 0.17 nM) and was also able to bind efficiently the hA1 and hA3 ARs with Ki values of 4.5 

and 8.6 nM respectively. Replacement of the methyl groups of 72 with t-butyl moieties 

(compound 73) completely changed the affinity profile. In fact, the 6-(3,5-ditert-butyl-4-

methoxyphenyl) derivative 73 shows a marked reduced affinity for both hA1 (Ki = 108.5 

nM) and hA2A (Ki = 141.6 nM) ARs and completely lacks activity at the A3 AR subtype. Other 

85 

 

    >30000    54.5 ± 7.1     >30000      >30000 

86   
581.4±40.3 

 
91±8.5 

 
>30000 

 
>30000 
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groups supposed to exert antioxidant properties (see “Aim of the work”) were introduced, 

by suitable spacers, at the para position of 6-phenyl ring. The (S)-2-oxothiazolidine-4-

carboxylic acid (OTC) residue achieved good results since the triazolopyrazines 79, 81 

were endowed with high affinity (Ki = 8.1 and 1.7 nM respectively) and selectivity at the 

hA2A AR. Also the lipoic acid residue, either directly appended on the para-amino function 

(compound 80) or spaced by a chain (compounds 82, 84) was well tolerated by the hA2A 

AR.  In fact, compounds 82 and 84 emerged as highly potent and selective hA2A AR ligands 

(Ki = 2.4 and 36.4 nM respectively) and derivative 80 also efficiently binds the hA2A AR (Ki 

= 5 nM), even though showing high hA1 AR affinity (Ki = 8.4 nM). It is worth noting that the 

presence of the ethoxy or propanamide spacer shifted the selectivity toward the A2A AR 

(compounds 82 and 84).  

The presence of the 3,5-di-tert-butyl-4-hydroxybenzoic acid residue on the lateral chain 

of derivatives 83 and 85 led to opposite results in terms of AR affinity depending on the 

linker, -O- and -NHCO-, binding the chain to the 6-phenyl ring. The amide linker might 

confer more rigidity to the moiety, thus, probably, stabilizing the proper binding 

conformation of the triazolopyrazine 85, which showed high affinity (Ki = 54 nM) and 

selectivity at the hA2AAR. In contrast, compound 83, featuring a more flexible pendant 

due to the –O- linker, completely lacks affinity towards all the ARs. Molecular docking 

studies are in progress to interpret these affinity data. The 5-methyl-1,2-dihydro-3H-

pyrazol-3-one ring, appended on compound 86, was chosen as potential antioxidant 

moiety because it plays a key role in the antioxidant mechanism of action410 of edaravone, 

an approved anti-cerebral ischemia drug. This modification turned out to be 

advantageous since derivative 86 possesses good nanomolar affinity (Ki = 91 nM) toward 

the hA2AAR and is also able to bind the hA1 AR subtype with a 6-fold reduced activity. 

 

The triazolopyrazines 75-80, 82, bearing potential antioxidant functions, and endowed 

with high hA2AAR affinity, were selected to evaluate their stability in human plasma, and 

in tris(hydroxymethyl)aminomethane/HCl (Tris/HCl) and phosphate buffer solutions 

(PBS). These tests are being performed by the research group of Prof. Gianluca Bartolucci, 

at the NEUROFARBA Department – Pharmaceutical and Nutraceutical Section, of the 

University of Florence. Preliminary results suggested that the tested compounds are, on 

the whole, stable in the assayed conditions (data not shown). 
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4.4.1 Molecular modeling studies 

Molecular docking studies on compound 79 and 80 (Table 10), bearing antioxidant 

residues at 6-phenyl level, were carried out to determine the hypothetical binding mode 

at the A2AAR crystal structure (PDB: 4EIY) and to gain useful information for the design of 

new hA2A AR antagonists. The obtained results showed that these molecules bind to the 

receptor binding pocket with the preferred “type one” arrangement. The 

triazolopyrazinone scaffold has been demonstrated to be able to interact with Asn2536.55 

and Glu169 (EL2) through H-bond contacts and with the phenyl ring of Phe168 (EL2) 

through a π-π interaction410. Moreover, π-π interaction between Phe168 and the bicyclic 

core were evidenced, as well as hydrophobic interaction between Leu167, 267 and the 

lipoic and the (S)-2-oxothiazolidine-4-carboxylic acid moieties (Figure 29). 

 

 

 

 

 

 

 
 
 
Figure 29. Schematic description of ligand−target interaction of derivatives 79 (A) and 80 (B) in the hA2A 

AR (built with MOE software).  
 
 

4.5 Pharmacological studies 

Based on their affinity and selectivity profile at ARs, some of the synthesized compounds 

(13, 31, 32 and 68) indentified in the second phase of the work (see “Aim of the work”) 

were selected to investigate their in vitro neuroprotective properties in PD and AD 

models. The 6-(4-methoxyphenyl)-2-phenyl-triazolopyrazine derivative 13, showing high 

affinity (Ki = 7.2 nM) and selectivity at the hA2A AR, was evaluated for its ability in 

counteracting the MPP+ induced neurotoxicity in cultured human neuroblastoma SH-SY5Y 

cell lines, a widely used cellular PD model427,428. Compound 31, highly selective at the hA2A 
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subtype, and derivatives 32 and 68, able to bind both hA1 and hA2A ARs with nanomolar 

affinity, were profiled for their neuroprotective effect against the -amyloid peptide (Aβ)-

induced toxicity429.  

 

4.5.1 Neuroprotection Studies in MPP+-induced toxicity in SH-SY5Y Cell Lines 

As reported above (see “Introduction”), interest in the use of A2A AR antagonists in PD has 

increased because they proved to be beneficial both in relieving motor symptoms and 

neuropsychiatric impairments of the disease430,431 but, more importantly, because they 

might be helpful in counteracting neurodegeneration190,432. In fact, animal models of PD 

highlighted the A2A AR antagonist ability to protect nigral dopaminergic neurons from 

death induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)190, thus slowing 

the deterioration of dopamine-producing cells and modifying the disease progression. 

Related to this, the A2A AR antagonist protective effect against the MPTP-induced toxicity 

is probably associated to a mechanism counteracting neuroinflammation and involving 

A2A AR on glial cells190,433. The aim of the herein reported study was to examine the 

efficacy of compound 13 in counteracting the 1-methyl-4-phenyl-pyridinium (MPP+) 

induced neurotoxicity on SH-SY5Y cells in an in vitro model of PD. A large wide of evidence 

indicates that SH-SY5Y cells possess many features of dopaminergic neurons and have 

been widely employed for the study of neuroprotection against PD-related neurotoxins. 

MPP+ is a well-recognized dopaminergic neurotoxin resulting from the metabolic 

transformation of MPTP and able to induce cell death through a series of processes such 

as oxidation, hydrogen peroxide formation, and direct inhibition of the mitochondrial 

respiratory chain434. These studies were carried out in collaboration with Dr. Teresa De 

Vita, from the Italian Institute of Technology (IIT) of Genova. First, a pilot study was 

conducted to evaluate the neurotoxic effect produced by MPP+ on SH-SY5Y cells. Cells 

were treated for 24 h with increasing doses of MPP+ (50 μM to 3 mM). 
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Figure 30. Dose dependency of MPP+ in SH-SY5Y cells. Cellular viability was carried out after 24 h of MPP+. 

Effect of MPP+ on cell viability was measured by CellTiter-Glo luminescent assay. Data are expressed as 
mean of three independent experiments. **P < 0.01 compared with control; ***P < 0.001 compared with 
control 

 

The results in Figure 30 show that MPP+ produced a significant and concentration-

dependent neurotoxic effect in this cell line. The dose of 1.5 mM, which caused 50% of 

cell death, was chosen for the subsequent neuroprotection studies. Compound 13, when 

administered alone, did not modify cell viability (Figure 31, A) while at the concentration 

of 15 nM it was able to partially counteract MPP+-induced neurotoxicity (Figure 31, B).  

 

 

Figure 31. SH-SY5Y cells were treated for 24 h with different concentrations of compound 13 from 0.5 to 

30 nM, alone (A) and inthe presence of MPP+ 1.5 mM (B). Compound 13 proved not to be toxic and 
neuroprotective against MPP+ in SH-SY5Y cells after CellTiter-Glo luminescent cell viability assay. Data are 
expressed asmean of three independent experiments. ***P < 0.001 compared withcontrol, ###P < 0.001 
compared to MPP+ 1.5 mM. 
 

To verify that the protective effect of 13 was due to the selective blockade of the A2A AR, 

we compared the effects of the compound with those of the well-known selective hA2A 
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AR antagonist 4-(2-[7-amino- 2-(2-furyl[1,2,4]-triazolo[2,3-a][1,3,5]triazin-

5ylamino]ethyl)- phenol ZM241385435 and we evaluated the effects of 13 in the presence 

of the selective hA2A AR agonist 2-[p-(2-carboxyethyl)phenethylamino]-5′-N-

ethylcarboxamido adenosine CGS21680436. As shown in Figure 32 A, the hA2A AR 

antagonist ZM241385, used at the concentration of 0.5 nM427, presented a 

neuroprotective effect on SH-SY5Y cells, thus counteracting MPP+ toxicity. To validate the 

involvement of the A2A AR in the neuroprotective activity of 13 against MPP+ toxicity, we 

evaluated the ability of the hA2A AR agonist CGS21680 to reverse the effects of compound 

13. SH-SY5Y cells were treated with 13 (15 nM) in the presence of different CGS21680 

concentrations ranging from 10 to 100 nM. As shown in Figure 32 B, the hA2A agonist 

CGS21680 was able to suppress the protective effects of 13, thus confirming that the its 

effects may be attributed to the selective blockade of the A2A AR.  

 

Figure 32. Reference hA2A antagonist ZM241385-induced neuroprotection against MPP+ toxicity in SH-

SY5Y cells (A). Neuroprotection inducedby the hA2A antagonist 13 is lost by the coadministration of the 

selective hA2A agonist CGS21680. SH-SY5Y cells were treated for 24 h with 1.5 mM MPP+ in absence and in 

the presence of 15 nM of compound 13 and different concentrations of the agonist CGS21680, from 10 to 

100 nM (B). Cell viability was evaluated by using CellTiter-Glo luminescent assay. Data are expressed as 

mean of three independent experiments. ***P <0.001 compared with control, ###P < 0.001 compared to 

MPP+ 1.5mM, §§§P < 0.001 compared with MPP+ 1.5 mM + 13 15 nM. 
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4.5.2 Neuroprotection studies in β-amyloid peptide (Aβ)-induced toxicity in SH-SY5Y 

cells 

In the last decade, several human studies highlighted the beneficial effects of caffeine, a 

non-selective A1 and A2A AR antagonist, in reducing the risk of developing AD and PD437-

440. The caffeine protective effect was also investigated in animal models of AD and PD 

turning out to be related, among other pathways, to antagonism of the A2A AR 

subtype140,441. Moreover, in AD models, both caffeine and the potent A2A AR antagonist 

ZM241385 proved to be effective in preventing cell death after exposure of rat cultured 

cerebellar granule neurons to Aβ-amyloid peptide (25-35)140. Recently, also the A1 AR 

antagonism was recognized to afford neuroprotection in a model of combined 

neurotoxicity, in fact, the protective effect of dual A1 and A2A AR blockade in counteracting 

β-amyloid toxicity in neuroblastoma cells exposed to aluminium chloride has been 

demonstrated429. Within the synthesized compounds, the highly potent and selective 

hA2A AR antagonist 31 togheter with the dual potent hA1/A2A AR ligands 32 and 68 were 

chosen to evaluate their ability in counteracting β-amyloid peptide (Aβ)-induced toxicity. 

For this purpose we used the neuronal cell line SH-SY5Y a widely emplyed 

catecholaminergic in vitro model for studies on pathologies or toxicities affecting the 

nervous system429, 442-444. The 25-35 aminoacids Aβ fragment was used for setting up a 

model of neurotoxicity429. It was previously incubated (at 2 and 10 µM) at 37 °C to allow 

peptide aggregation, 3 and 7 days were evaluated to establish the optimal timepoint. The 

obtained aggregates were incubated with cells for increasing times (24, 48 and 72 h), 

subsequently cell viability was assessed via the MTT assay. Results are shown in Table 11, 

we chose 48 h incubation with 7 days aggregated-Aβ as the most suitable, concentration-

dependent condition for screening the new synthesized compounds (cell viability of 

control was arbitrarily set to 100%).  
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Table 11. Toxic effect induced by β-amyloid protein (Aβ fragment 25-35 aa)a 

 Cell viability % 

Time of 
incubation with 

cells 

 Time of preventive 
aggregation of Aβ 25-35 

 

2
4

 h
 

  3 days 7 days 

Control 100 ± 4.2   

Aβ 25-35, 2 µM  92.8 ± 1.9 69.6 ± 2.9** 

Aβ 25-35, 10 µM  80.3 ± 4.5* 64.4 ± 3.8** 
 

4
8

 h
 

  3 days 7 days 

Control 100 ± 7.2   

Aβ 25-35, 2 µM  80.5 ± 7.6 73.3 ± 2.1* 

Aβ 25-35, 10 µM  69.8 ± 5.4** 63.2 ± 4.6** 
 

7
2

 h
 

  3 days 7 days 

Control 100 ± 8.9   

Aβ 25-35, 2 µM  95.5 ± 15.1 108.1 ± 16.3 

Aβ 25-35, 10 µM  83.0 ± 11.4 68.7 ± 8.7** 
 

aAggregation of β-amyloid protein (Aβ fragment 25-35 aa; 2 and 10 µM) was allowed for 3 and 7 days at 
37°C. The so obtained different proteins aggregates were tested in SH-SY5Y cell (1x104 cell/well) to 
evaluate the cytotoxic effect. Incubation was performed for increasing times (24, 48 and 72 h), 
subsequently cell viability was assessed via the MTT assay. Viability is expressed as % in comparison to 
the control cells (arbitrarily set 100 % of viable cells). Data are presented as mean ± SEM of 3 different 
experiments performed in quintuplicate. One-way ANOVA with a Bonferroni post-hoc test was used to 
compare different treatments. *P<0.05 and **P<0.01 versus control. 
 

Derivatives 31, 32 and 68 (0.1–1 µM) were co-incubated with SH-SY5Y cells (1x104 

cell/well) for 48 h in the presence of Aβ 25-35 (2 and 10 µM). Figure 33 shows the 

decrease of cell viability induced by 2 µM Aβ up to 73.3 ± 2.1%. Compound 68 is able to 

significantly prevent Aβ toxicity starting from concentration 0.1 µM restoring the cell 

viability till to control level at 0.3 µM. Compound 31, instead, proved to be effective in 

counteracting the Aβ induced neurotoxicity starting from 0.3 µM concetration. On the 

other hand, higher concentration of Aβ 25-35 (10 µM, previously aggregated for 7 days) 

decrease cell vitality to 63.2 ± 4.6% (Figure 34). Compound 31 was protective when co-

incubated at 0.3 µM whereas 68 was able to significantly prevent cell mortality from 0.1 

µM (Figure 34). In the concentration range 0.1-3 µM, caffeine was ineffective. These 
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studies were performed by Dr. Lorenzo Di Cesare Mannelli at the NEUROFARBA 

Department – Pharmacology and Toxicology section, of the University of Florence. 

  

 

Figure 33. SH-SY5Y cell (1x104 cell/well) were incubated 48 h with compounds 31, 32 and 68 (0.1, 0.3 and 

3 µM) in the presence Aβ-amyloid peptide (Aβ fragment 25-35 aa; 2 µM following 7 days of 37 °C 
aggregation). Caffeine was used as reference compound. Cell vitality was assessed via MTT assay. Viability 
is expressed as % in comparison to the control cells (arbitrarily set 100 % of viable cells). Dashed lines 
represent values of control and Aβ-treated samples. Data are presented as mean ± SEM of 3 different 
experiments performed in quintuplicate. One-way ANOVA with a Bonferroni post-hoc test was used to 
compare different treatments. ^P<0.05 and ^^P<0.01 versus β-amyloid effect. 
 

 

Figure 34. SH-SY5Y cell (1x104 cell/well) were incubated 48 h with compounds 31, 32 and 68 (0.1, 0.3 and 

3 µM) in the presence Aβ-amyloid peptide (Aβ fragment 25-35 aa; 10 µM following 7 days of 37 °C 
aggregation). Caffeine was used as reference compound. Cell vitality was assessed via MTT assay. Viability 
is expressed as % in comparison to the control cells (arbitrarily set 100 % of viable cells). Dashed lines 
represent values of control and Aβ-treated samples. Data are presented as mean ± SEM of 3 different 
experiments performed in quintuplicate. One-way ANOVA with a Bonferroni post-hoc test was used to 
compare different treatments. ^P<0.05 and ^^P<0.01 versus β-amyloid effect. 
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4.5.3 Neuroprotection studies in oxaliplatin-induced neurotoxicity in microglia cells 

As previously reported in the “Introduction”, the anticancer drug oxaliplatin leads to the 

development of neuropathic syndrome with paresthesia, dysesthesia, and pain. Despite 

informations about the molecular basis underlyng the neuropathy are unclear, some 

experimental evidences point toward a correlation between oxidative stress damage and 

neuropatic pain (NP) onset374,445. The aim of the current study was to determine the 

potential protective effects of the novel triazolopyrazines 47, 78, 82, 84 and 85 against 

the oxaliplatin-induced neurotoxicity in rat microglia cells. These compounds were chosen 

taking into account their high affinity and selectivity toward the hA2AAR but also for the 

presence, in some of them (78, 82, 84 and 85), of antioxidant moieties which were 

envisaged to counteract the oxidative stress-neurotoxicity. Before to perform these 

studies, the antagonistic properties of the derivatives were preliminarly demonstrated in 

functional cAMP assays (data not shown).  

Primary rat microglia cells have been obtained then they were treated with oxaliplatin in 

the absence or in the presence of the tested compounds. Oxaliplatin damage was 

evaluated as cell viability and oxidative stress as previously described as a main damage 

evoked by oxaliplatin374,445. The new synthesized compounds were tested at 10 μM, the 

maximum soluble concentration. Oxaliplatin, concentration-dependently, strongly 

reduced microglia viability (MTT test) after 24 h incubation (33% and 19% viability with 

10 and 30 μM, respectively, in comparison to 100% of control condition).  

This oxaliplatin-induced neurotoxicity assay was performed by Dr. Lorenzo Di Cesare 

Mannelli at the NEUROFARBA Department – Pharmacology and Toxicology section, of the 

University of Florence.  The obtained results showed that derivative 82 was the most 

active in prevent the oxaliplatin damage also when incubated at the high concentration 

while 47 was effective against 10 μM oxaliplatin. With regard to the other tested 

compounds, only a partial activity has been observed for derivatives 78 and 85 whereas 

84, contrary to our expectations, turned out to be ineffective (Table 12). 
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Table 12 Cell viability (%)a 

 Oxa 0 μM Oxa 10 μM Oxa 30 μM 

Control 100.0 ± 7 33.2 ± 1.3** 19.1 ± 0.8** 

DMSO 0.75% 90.9 ± 8   

47 10 μM  48.7 ± 0.8^^ 23.0 ± 0.9 

78 10 μM  46.4 ± 1.4^^ 28.6 ± 1.21^ 

82 10 μM  54.5 ± 1.9^^ 34.2 ± 0.60^ 

84 10 μM  38.9 ± 1.6 18.3 ± 0.3 

85 10 μM  43.5 ± 1.8^ 30.6 ± 2.2^ 

 

aCell viability. Primary rat microglia cells were plated 4000 cells/well and 24 hours later cells were treated 
with oxaliplatin 10 and 30 μM in presence of 47, 78, 82, 84, 85 at 10 μM for 24 hours. Cell vitality was 
assessed via MTT assay. Viability is expressed as % in comparison to the control cells (arbitrarily set 100 % 
of viable cells). Data are presented as mean ± SEM. *P<0.05 and **P<0.01 versus control; ^P<0.05 and 
^^P<0.01 versus oxaliplatin. 

 

Further investigations were carried out these compounds by evaluating their ability to 

prevent the oxaliplatin-dependent increase of the SOD-inhibitable superoxide anion 

(cytochrome C assay). According to the obtained data, compounds 82 and 85 proved to 

be effective in significantly decrease the oxygen free radical level thus suggesting a direct 

antioxidant activity or, hypothetically, a protective property against mitochondrion 

(Figure 35).  

 

Figure 35. SOD-inhibitable O2
.− concentrations. Microglia cells (5×105 cells/well) were exposed to 100 μM 

oxaliplatin for 4 h in the absence or presence of tested compounds (10 μM). O2
.− concentration was 

evaluated by cytochrome c assay. The nonspecific absorbance was measured in the presence of SOD 
(300 mU/ml) and subtracted from the total value. Values are expressed as the mean ± SEM of three 

experiments. *P<0.05 and **P<0.01 versus control; ^P<0.05 and ^^P<0.01 versus oxaliplatin.  
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The activity of the detoxifying enzyme catalase was also measured to study the potential 

effect of new compounds on peroxisomes, the other intracellular organelle involved in 

the redox balance. As shown in Figure 36, oxaliplatin impaired peroxisome functionality 

reducing catalase activity while 82 and 85 significantly prevented the damage. 

 

 

Figure 36.  Activity of catalase. Microglia cells (5·105 cells/well) were treated with oxaliplatin (10 µM) in 

the absence or in the presence of new compounds (10 µM). Activity was measured after 24h incubations. 
Values are expressed as the mean ± S.E.M. percent of control of three experiments. Control condition was 
arbitrarily set as 100%. *P<0.05 and **P<0.01 versus control; ^P<0.05 and ^^P<0.01 versus oxaliplatin. 
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5. CONCLUSIONS 

The research activity accomplished in this PhD thesis led to the identification of the new 

and versatile 8-amino-1,2,4-triazolo[4,3-a]pyrazin-3-one scaffold which was successfully 

employed to obtain highly potent and selective antagonists for the hA2A AR and 

compounds able to bind with high affinity both the hA1 and the hA2A ARs. These type of 

AR antagonists have attracted our attention for their therapeutic potential in 

neurodegenerative disorders, such as PD and AD.  

Different sets of triazolopyrazines were designed and synthesized with diverse aims.  

 

The first set of compounds (1-10) was prepared to carry out a preliminary SAR study, and 

point out the basic structural requirements to target the A2A AR. The 2,6-diphenyl 

substituted compound 2 was the most notable within this set of ligands, possessing 

nanomolar affinity for hA1, hA2A and hA3 ARs (Ki = 10-13 nM). 

In the subsequent phase of the work a structural refinement was performed to enhance 

hA2A AR affinity and selectivity and expand the SAR study. Within this set of AR ligands 

(11-39), some derivatives (13, 19, 22, 24, 31 and 36) turned out to be highly potent and 

selective hA2A AR ligands (Ki = 2.9- 10.6 nM) while others (15, 30, 32, 33, 38 and 39) were 

able to efficiently bind both the hA1 (Ki = 4.7-33.5 nM) and hA2A ARs (Ki = 3.5-22.9 nM). 

Selected derivatives (13, 31 and 32), proved to be potent A2A AR antagonists, were further 

investigated for their in vitro neuroprotective effects. Compound 13, at 15 nM 

concentration, showed protective effect against the MPP+ induced-neurotoxicity in         

SH-SY5Y cells, a widely used cellular PD model. Derivative 31, at 0,3 μM concentration, 

demonstrated ability in counteracting the Aβ-amyloid peptide-induced toxicity in an AD 

model.  

The set including the triazolopyrazines 40-68 was designed to improve the drug-like 

properties of the compounds. Within this set of ligands, compounds 46-48, 51-55 

emerged as potent and highly selective hA2AAR antagonists (Ki = 0.59-26 nM) while 

derivatives 66-68 turned out to be dual potent hA1 (Ki =2-4.6 nM) and hA2A ligands (Ki= 

2.4-13 nM). Derivative 68 was selected to be tested for the potential neuroprotective 

effect in the same in vitro model of AD used for 31 and 32. The obtained results showed 
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that 68 was effective in preventing the cell mortality starting from concentration 0.1 µM 

and restoring the cell viability till to control level at 0.3 µM. 

Further investigations are currently ongoing to understand if these structural 

modifications have been effective in improving the drug-like properties of these 

compounds.  

The last purpose of the work was the synthesis of triazolopyrazines bearing, at position 6 

of the scaffold, potential antioxidant functions (compounds 74-86). These modifications 

were succesfull since compounds 78, 79, 81, 82, 84 and 85 showed high affinity and 

selectivity toward the hA2A AR (Ki = 1.7-54.5 nM) while 74 and 80 were able to bind 

efficiently both the hA1 (Ki = 8.4-29.8 nM) and hA2A (Ki = 5-16.8 nM) ARs. The selected 

derivatives 78, 82, 84 and 85 were tested for their potential protective effects in microglia 

cells against oxaliplatin-induced neurotoxicity. The obtained results highlighted that 

compound 82 was effective in preventing the oxaliplatin damage at 10 and 30 μM 

concentrations whereas only a partial activity has been observed for derivatives 78 and 

85. 

Further investigations are ongoing to confirm the stability of derivatives 75-80, 82 in 

human plasma, and in Tris/HCl and phosphate buffer solutions (PBS). These tests are 

being performed by the research group of Prof. Gianluca Bartolucci, at the NEUROFARBA 

Department – Pharmaceutical and Nutraceutical Section, of the University of Florence 

 

Molecular modeling investigations were carried out on the synthesized compounds to 

gain informations about their hypothetical binding mode at the A2AAR crystal structure 

and to provide useful indications for the design of new 8-amino-triazolo[4,3-a]pyrazin-3-

one derivatives as hA2A AR antagonists. 
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6. EXPERIMENTAL SECTION 

The microwave-assisted syntheses were performed using an Initiator EXP Microwave 

Biotage instrument (frequency of irradiation: 2.45 GHz). Silica gel 60 (Merck, 70-230 

mesh) was used for analytical TLC, and for column chromatog raphy, respectively. All 

melting points were determined on a Gallenkamp melting point apparatus and are 

uncorrected. Elemental analyses were performed with a Flash E1112 Thermofinnigan 

elemental analyzer for C, H, N and the results were within 0.4% of the theoretical values. 

All final compounds revealed purity not less than 95%. The IR spectra were recorded with 

a Perkin-Elmer Spectrum RX I spectrometer in Nujol mulls and are expressed in cm-1. NMR 

spectra were recorded on a Bruker Avance 400 spectrometer (400 MHz). The chemical 

shifts are reported in δ (ppm) and are relative to the central peak of the solvent which 

was CDCl3, MeOD or DMSO-d6. The following abbreviations are used: s= singlet, d= 

doublet, dd = doublet of doublets, t= triplet, q= quartet, m= multiplet, br= broad and ar= 

aromatic protons. The following abbreviation are used for solvents and reactive products: 

AcOH = Acetic acid, CDCl3 = Deuterated chloroform, CHCl3 = Chloroform, DCM = 

Dichloromethane, DIPEA = N,N-Diisopropylethylamine, DMF = Dimethylformamide, 

DMSO-d6 = Deuterated dimethyl sulfoxide, EtOAc = Ethyl acetate,  EDCI.HCl = N-(3-

Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride,   Et2O = Diethyl ether, EtOH = 

Ethanol, HCl = Hydrochloric acid, HOBt = Hydroxybenzotriazole, MeOD = Deuterated 

methanol, MeOH = Methanol, THF = Tetrahydrofuran. 

 

General procedure for the synthesis of Ethyl 2-amino-2-arylhydrazonoacetates (94-97). 

 

2-amino-2-arylhydrazonoacetates 95 (R2= 4-OMe), 96 (R2= 4-NO2) and 97 (R2= 2-OMe)414 

were prepared as previously described for 94 (R= H)413 i.e. from the corresponding 2-

chloro derivatives 90-93.392,411,412 Briefly, 33% aqueous ammonia (3 mL) in dioxane (5 mL) 

was added dropwise to a solution of the suitable chloro derivative 90-93 (13.3 mmol) in 

dioxane (15 mL) and the reaction mixture was stirred for 4 h at room temperature. The 
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white solid was filtered off and the mother liquor was concentrated at reduced pressure. 

The obtained precipitate was collected by filtration, washed with water (30 mL), dried and 

recristallized. The crude compound 51 was obtained as an oil residue which was purified 

on silica gel column chromatography (eluent Cyclohexane 7/EtOAc 3). 

Ethyl 2-amino-2-(phenylhydrazono)acetate (94). Yield 73% m.p. 129-130 °C (lit413 128 °C) 

(Cyclohexane/EtOAc). 1H NMR (DMSO-d6) 1.28 (t, 3H, ar, J = 7.1 Hz), 4.23 (q, 2H, CH2, J = 

7.1 Hz), 5.88 (br s, 2H, NH2), 6.72 (t, 1H, ar, J = 7.3 Hz), 7.01 (d, 2H, ar, J = 7.6 Hz), 7.18 (t, 

1H, ar, J = 8.2 Hz), 8.66 (br s, 1H, NH). Anal. Calcd. for C10H13N3O2 

Ethyl 2-amino-2-(4-methoxyphenylhydrazono)acetate (95). Yield 55% brownish oil; 1H 

NMR (CDCl3) 1.42 (t, 3H, CH3, J= 7.1 Hz), 3.87 (s, 3H, OCH3), 4.38 (q, 2H, CH2, J= 7.1 Hz), 

4.69 (br s, 2H, NH2), 6.45 (br s, 1H, NH), 6.88 (d, 2H, ar, J= 9.0 Hz), 7.11 (d, 2H, ar, J= 9.0 

Hz), 8.27 (s, 1H, NH). Anal. Calcd. For C11H15N3O3. 

Ethyl 2-amino-2-(4-nitrophenylhydrazono)acetate (96). Yield 65 % m.p. 192-193 °C 

(EtOH) (lit414 190-191 °C). 1H NMR (DMSO-d6) 1.29 (t, 3H, CH3, J= 7.2 Hz), 4.27 (q, 2H, CH2, 

J= 7.2 Hz), 6.39 (br,s, 2H, NH2), 7.07 (d, 2H, ar, J= 9.2 Hz), 8.20 (d, 2H, ar, J= 9.2 Hz), 9.66 

(br s, 1H, NH). Anal. Calcd. For C10H12N4O4. 

Ethyl 2-amino-2-(2-methoxyphenylhydrazono)acetate (97). Yield 95% m.p. 99-101 °C 

(Cyclohexane/EtOAc). 1H- NMR (DMSO-d6) 1.28 (t, 3H, ar, J= 7.1 Hz), 3.82 (s, 3H, OCH3), 

4.23 (q, 2H, CH2, J= 7.1 Hz), 6.15 (br s, 2H, NH2), 6.73 (t, 1H, ar, J= 7.6 Hz), 6.84-6.92 (m, 

2H, ar), 7.28 (d, 1H, ar, J= 7.9 Hz), 7.86 (s, 1H, NH). Anal. Calcd. for C11H15N3O3.  

 

Synthesis of ethyl (Z)-2-amino-2-(2-benzylhydrazono)acetate (98). 

 

Ethyl thiooxamate (3.7 mmol) was added to a mixture of benzylhydrazine hydrochloride 

(3.7 mmol) and K2CO3 (3.7 mmol) in absolute ethanol (15 mL). The suspension was stirred 

at 25° C for 15 h then was treated with NaHCO3 saturated solution (40 mL) and extracted 

with EtOAc (30 mL x 3). The organic layer was washed with brine (30 mL x 3), anhydrified 

(Na2SO4) and evaporated under reduced pressure to give a brown solid which was used 
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for the next step without further purification. Yield 88%. 1H NMR (DMSO-d6) 1.22 (t, 3H, 

CH3, J = 7.1 Hz), 4.16 (q, 2H, CH2, J = 7. 1 Hz), 4.25 (d, 2H, CH2, J = 5.1 Hz), 5.49 (br s, 2H, 

NH2), 5.88 (t, 1H, NH, J = 5.1 Hz), 7.24-7.35 (m, 5H, ar). Anal. Calcd. For C11H15N3O2. 

 

General procedure for the synthesis of Ethyl 5-oxo-1-aryl-4,5-dihydro-1H-1,2,4-triazole-

3-carboxylates (99-102). 

 

A solution of triphosgene (4.2 mmol) in anhydrous THF (10 mL) was added dropwise to a 

stirred solution of ethyl 2-amino-2-(arylhydrazono)acetate derivatives 94-97 (4.6 mmol) 

in anhydrous THF (15 mL) at 0 °C. After the addition was completed, the mixture was 

stirred 2-3 h at room temperature. Then, most of the solvent was removed at reduced 

pressure and water (20 mL) was added to the residue to give a solid wich was collected 

by filtration, washed with water (20 mL), dried and recrystallized. 

Ethyl 5-oxo-1-phenyl-4,5-dihydro-1H-1,2,4-triazole-3-carboxylate (99). Yield 62%. m.p. 

200-202 °C (lit.415 193-194 °C) (Cyclohexane/EtOAc). 1H NMR (DMSO-d6) 1.33 (t, 3H, CH3, 

J = 7.1 Hz), 4.38 (q, 2H, CH2, J = 7.1 Hz), 7.30 (t, 1H, ar, J = 7.4 Hz), 7.49 (t, 2H, ar, J = 7.4 

Hz), 7.89 (d, 2H, ar, J = 7.6 Hz), 7.90 (s, 1H, H-9), 12.99 (br s, 1H, NH). Anal. Calcd. for 

C11H11N3O3. 

Ethyl 1-(4-methoxyphenyl)-5-oxo-4,5-dihydro-1H-1,2,4-triazole-3-carboxylate (100). 

Yield 42%. m.p. 186-187 °C (lit415 179 °C) (EtOH). 1H NMR (CDCl3) 1.48 (t, 3H, CH3, J= 7.2 

Hz), 3.80 (s, 3H, OCH3),4.50 (q, 2H, CH2, J= 7.2 Hz), 6.98 (d, 2H, ar, J= 9.1 Hz), 7.87 (d, 2H, 

ar, J= 9.1 Hz), 10.65 (br s, 1H, NH). Anal. Calcd. for C12H13N3O4.  

Ethyl 1-(4-nitrophenyl)-5-oxo-4,5-dihydro-1H-1,2,4-triazole-3-carboxylate (101). Yield 

65%. m.p. 241-242 °C (Cyclohexane/EtOAc). 1H NMR (CDCl3) 1.50 (t, 3H, CH3, J= 7.1 Hz,), 

4.55 (q, 2H, CH2, J= 7.1 Hz), 8.29-8.37 (m, 4H, ar), 10.31 (br s, 1H, NH). IR 3369, 1755, 1698, 

1513, 1375. Anal. Calcd. for C11H10N4O5.  

Ethyl 1-(2-methoxyphenyl)-5-oxo-4,5-dihydro-1H-1,2,4-triazole-3-carboxylate (102). 

Yield 79%. m.p. 131-133 °C (EtOAc). 1H NMR (DMSO-d6) 1.30 (t, 3H, CH3, J = 7.1 Hz), 3.78 
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(s, 3H, OCH3), 4.34 (q, 2H, CH2, J= 7.1 Hz), 7.06 (t, 1H, ar, J= 7.6 Hz), 7.21 (d, 1H, ar, J= 8.3 

Hz), 7.36 (d, 1H, J= 7.6 Hz), 7.49 (t, 1H, J= 7.6 Hz), 12.69 (br s, 1H, NH). Anal. Calcd. for 

C12H13N3O4. 

 

Synthesis of Ethyl 5-oxo-1-benzyl-4,5-dihydro-1H-1,2,4-triazole-3-carboxylate (103). 

 

Carbonyldiimidazole (5.4 mmol) was portion wise added to a cold (T= 0° C) suspension of 

ethyl (Z)-2-amino-2-(2-benzylhydrazono)acetate 98 (2.7 mmol) in anhydrous DCM (20 

mL). The mixture was stirred at room temperature for 15 h then was treated with a NH4Cl 

saturated solution (30 mL) and extracted with DCM (30 mL x 3). The organic phase was 

anhydrified (Na2SO4) and the solvent evaporated under reduced pressure to afford a 

yellow solid which was purified by column chromatography (Cyclohexane 6/EtOAc 

4/MeOH 1). Yield 35%. mp 154-156 °C. 1H NMR (DMSO-d6) 1.27 (t, 3H, CH3, J = 7.1 Hz), 

4.31 (q, 2H, CH2, J = 7.1 Hz), 4.95 (s, 2H, CH2), 7.26-7.38 (m, 5H, ar), 12.67 (br s, 1H, NH). 

Anal. Calc. for C12H13N3O3. 

 

General procedure for the synthesis of ethyl 1-aryl- and 1-benzyl-substituted 5-oxo-4-

(2-(hetero)aryl-2-oxoalkyl)-4,5-dihydro-1H-1,2,4-triazole-3-carboxylate derivatives 

(104-133). 

 

A solution of chloroacetone (1.2 mmol) or the suitable α-bromoketone (1.2 mmol), was 

added to a mixture of ethyl 1-aryl-5-oxo-1,2,4-triazole-3-carboxylate derivatives (99-103) 

(1 mmol) and potassium carbonate (2 mmol) in a mixture of DMF/acetonitrile (1:9, 10 

mL). The suspension was stirred at room temperature until the disappearance of the 
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starting material (TLC monitoring, 2-24 h). The solvent was removed at reduced pressure 

and the residue was treated with water (50-70 mL). The precipitate was collected by 

filtration, washed with water (20 mL), then with Et2O (10 mL). The crude compounds were 

purified by recrystallization except compound 129 which was purified by liquid 

chromatography.  

 

Ethyl 5-oxo-4-(2-oxopropyl)-1-phenyl-4,5-dihydro-1H-1,2,4-triazole-3-carboxylate 

(104). Yield 58% m.p. 104-105 °C (EtOH). 1H NMR (DMSO-d6) 1.31 (t, 3H, CH3, J = 7.1 Hz), 

2.28 (s, 3H, CH3), 4.35 (q, 2H, CH2, J = 7.1 Hz), 4.92 (s, 2H, CH2), 7.35 (t, 1H, ar, J = 7.4 Hz), 

7.54 (t, 2H, ar, J = 7.4 Hz), 7.91 (d, 2H, ar, J = 7.7 Hz). Anal. Calc. for C14H15N3O4.  

Ethyl 5-oxo-4-(2-oxo-2-phenylethyl)-1-phenyl-4,5-dihydro-1H-1,2,4-triazole-3-

carboxylate (105). Yield 75%. m.p. 157-159 °C (EtOAc/EtOH). 1H NMR (DMSO-d6) 1.21 (t, 

3H, ar, J = 7.1 Hz), 4.29 (q, 2H, CH2, J = 7.1 Hz), 5.59 (s, 2H, CH2), 7.37 (t, 1H, ar, J = 7.4 Hz), 

7.55 (t, 2H, ar, J = 7.6 Hz), 7.63 (t, 2H, ar, J = 7.7 Hz), 7.76 (t, 1H, ar, J = 7.4 Hz), 7.95 (d, 2H, 

ar, J = 7.7 Hz), 8.11 (d, 2H, ar, J = 7.8 Hz). Anal. Calc. for C19H17N3O4. 

Ethyl 1-(4-methoxyphenyl)-5-oxo-4-(2-oxopropyl)-4,5-dihydro-1H-1,2,4-triazole-3-

carboxylate (106). Yield 92%. m.p. 98-100 °C (EtOH). 1H NMR (DMSO-d6) 1.30 (t, 3H, CH3, 

J = 7.1 Hz), 3.80 (s, 3H, OMe), 4.34 (q, 2H, CH2, J = 7.1 Hz), 4.91 (s, 2H, CH2), 7.08 (d, 2H, 

ar, J = 9.1 Hz), 7.76 (d, 2H, ar, J = 9.1 Hz). Anal. Calc. for C15H17N3O5. 

Ethyl 1-(4-methoxyphenyl)-5-oxo-4-(2-oxo-2-phenylethyl)-4,5-dihydro-1H-1,2,4-

triazole-3-carboxylate (107). Yield 58%. m.p. 127-128 °C (Cyclohexane/EtOAc). 1H NMR 

(CDCl3) 1.38 (t, 3H, CH3, J= 7.1), 3.86 (s, 3H, OCH3), 4.40 (q, 2H, CH2, J= 7.1 Hz), 5.57 (s, 2H, 

CH2), 6.99 (d, 2H, ar, J= 9.1 Hz), 7.55 (t, 2H, ar, J = 7.5 Hz), 7.68 (t, 1H, ar, J = 7.4 Hz), 7.88 

(d, 2H, ar, J = 9.1 Hz), 8.03 (d, 2H, ar, J = 7.4 Hz). IR 1732, 1711, 1694. Anal. Calc. for 

C20H19N3O5.  

Ethyl 1-(4-nitrophenyl)-5-oxo-4-(2-oxo-2-phenylethyl)-4,5-dihydro-1H-1,2,4-triazole-3-

carboxylate (108). Yield 92%. m.p. 147-148 °C (MeOH). 1H NMR (CDCl3) 1.40 (t, 3H, CH3, 

J= 7.2 Hz), 4.44 (q, 2H, CH2, J= 7.2 Hz), 5.59 (s, 2H, CH2), 7.58 (t, 2H, ar, J = 7.2 Hz), 7.70 (t, 

1H, ar, J = 8.4 Hz), 8.04 (d, 2H, ar, J = 7.2 Hz), 8.35-8.38 (m, 4H, ar). IR 1736, 1725, 1700, 

1463, 1375. Anal. Calc. for C19H16N4O6.  

Ethyl 1-(2-methoxyphenyl)-5-oxo-4-(2-oxo-2-phenylethyl)-4,5-dihydro-1H-1,2,4-

triazole-3-carboxylate (109). Yield 65%. m.p. 88-90 °C (Cyclohexane/EtOAc). 1H NMR 
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(DMSO-d6) 1.18 (t, 3H, CH3, J =  7.1 Hz), 3.81 (s, 3H, OMe), 4.24 (q, 2H, CH2, J = 7.1 Hz), 

5.55 (s, 2H, CH2), 7.04-7.09 (m, 2H, ar), 7.42-7.48 (m, 2H, ar), 7.57 (t, 2H, ar, J = 7.5 Hz), 

7.67 (t, 1H, ar, J = 7.4 Hz), 8.04 (d, 2H, ar, J = 7.1 Hz). Anal. Calc. for C20H19N3O5. 

.Ethyl 4-[2-(2-methoxyphenyl)-2-oxoethyl]-5-oxo-1-phenyl-4,5-dihydro-1H-1,2,4-

triazole-3-carboxylate (110). Yield 53%. m.p. 155-157 °C (EtOH). 1H NMR (DMSO-d6) 1.21 

(t, 3H, CH3, J = 7.1 Hz), 4.02 (q, 2H, CH2, J = 7.1 Hz), 4.31 (s, 3H, OCH3), 5.37 (s, 2H, CH2), 

7.12 (t, 1H, ar, J = 7.5 Hz), 7.30 (d, 1H, ar, J = 8.6 Hz), 7.36 (t, 1H, ar, J = 7.4 Hz), 7.55 (t, 2H, 

ar, J = 7.6 Hz), 7.70 (t, 1H, ar, J = 7.8 Hz), 7.79 (d, 1H, ar, J = 7.8 Hz), 7.9 (d, 2H, ar, 7.9 Hz). 

C20H19N3O5 

Ethyl 4-[2-(3-methoxyphenyl)-2-oxoethyl]-5-oxo-1-phenyl-4,5-dihydro-1H-1,2,4-

triazole-3-carboxylate (111). Yield 80%. m.p. 123-125 °C (EtOH). 1H NMR (DMSO-d6) 1.20 

(t, 3H, ar, J = 7.1 Hz), 3.86 (s, 3H, OCH3), 4.29 (q, 2H, CH2, J = 7.1 Hz), 5.59 (s, 2H, CH2), 

7.34-7.38 (m, 2H, ar), 7.52-7.57 (m, 4H, ar), 7.71 (d, 1H, ar, J = 7.7 Hz), 7.94 (d, 2H, ar, J = 

8.0 Hz). Anal. Calc. for C20H19N3O5.  

Ethyl 4-[2-(4-methoxyphenyl)-2-oxoethyl]-5-oxo-1-phenyl-4,5-dihydro-1H-1,2,4-

triazole-3-carboxylate (112). Yield 85%. m.p. 149-151 °C (Cyclohexane/EtOAc). 1H NMR 

(CDCl3) 1.38 (t, 3H, CH3, J = 6.9 Hz), 3.93 (s, 3H, CH3), 4.41 (q, 2H, CH2, J = 6.9 Hz), 5.53 (s, 

2H, CH2), 7.02 (d, 2H, CH2, J = 7.6 Hz), 7.31 (t, 1H, ar, J = 7.4 Hz), 7.48 (t, 2H, ar, J = 7.4 Hz), 

8.01-8.05 (m, 4H, ar). Anal. Calc. for C20H19N3O5. 

Ethyl 4-[2-(4-methylphenyl)-2-oxoethyl]-5-oxo-1-phenyl-4,5-dihydro-1H-1,2,4-triazole-

3-carboxylate (113). Yield 60%. m.p. 189-190 °C (EtOH). 1H NMR (DMSO-d6) 1.19 (t, 3H, 

CH3, J = 6.9 Hz), 2.43 (s, 3H, CH3) 4.28 (q, 2H, CH2, J = 7.1 Hz), 5.55 (s, 2H, CH2), 7.37 (t, 1H, 

ar, J = 7.4 Hz), 7.43 (d, 2H, ar, J = 7.7 Hz), 7.55 (t, 2H, ar, J = 7.7 Hz), 7.94 (d, 2H, ar., J = 8.3 

Hz), 8.01 (d, 2H, ar, J = 7.6 Hz). Anal. Calc. for C20H19N3O4. 

Ethyl 4-[2-(3,4-methylendioxyphenyl)-2-oxoethyl]-5-oxo-1-phenyl-4,5-dihydro-1H-

1,2,4-triazole-3-carboxylate (114) Yield 77%. m.p. 179-181 °C (Cyclohexane/EtOAc). 1H 

NMR (CDCl3) 1.39 (t, 3H, CH3, J = 7.1 Hz), 4.42 (q, 2H, CH2, J = 7.1 Hz), 5.50 (s, 2H, CH2), 

6.11 (s, 2H, CH2), 6.94 (d, 1H, ar, J = 8.2 Hz), 7.31 (t, 1H, ar, J =  7.6 Hz),  7.48 (t, 3H, ar, J = 

8.0 Hz), 7.65 (d, 1H, ar, J = 8.2 Hz), 8.03 (d, 1H, ar, J = 8.0 Hz). Anal. Calc. for C20H17N3O6. 

Ethyl 4-[2-(3-bromophenyl)-2-oxoethyl]-5-oxo-1-phenyl-4,5-dihydro-1H-1,2,4-triazole-

3-carboxylate (115). Yield 62%. m.p. 200-202 °C (EtOH). 1H NMR (CDCl3) 1.40 (t, 3H, CH3, 

J = 7.1 Hz), 4.42 (q, 2H, CH2, J = 7.1 Hz), 5.54 (s, 2H, CH2 ), 7.32 (t, 1H, ar, J = 7.5 Hz), 7.43-
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7.5 (m, 3H, ar), 7.81 (d, 1H, ar, J = 8 Hz), 7.96 (d, 1H, ar, J = 7.8 Hz), 8.02 (d, 2H, ar, J = 8.2 

Hz), 8.16 (t, 1H, ar, J = 1.8 Hz). Anal. Calc. for C19H16BrN3O4. 

 Ethyl 4-[2-(4-bromophenyl)-2-oxoethyl]-ethyl-5-oxo-1-phenyl-4,5-dihydro-1H-1,2,4-

triazole-3-carboxylate (116). Yield 77%. m.p. 167-169 °C (EtOH). 1H NMR (CDCl3) 1.39 (t, 

3H, CH3, J = 7.1 Hz), 4.42 (q, 2H, CH2, J = 7.1 Hz), 5.53 (s, 2H, CH2 ), 7.32 (t, 1H, ar, J = 7.5 

Hz), 7.48 (t, 2H, ar, J = 8.4) Hz), 7.71 (d, 2H, ar, J = 6.7 Hz), 7.9 (d, 2H, ar, J = 8.6 Hz), 8.02 

(d, 2H, ar, J = 7.8 Hz). Anal. Calc. for C19H16BrN3O4. 

Ethyl 4-[2-(3-chlorophenyl)-2-oxoethyl]-5-oxo-1-phenyl-4,5-dihydro-1H-1,2,4-triazole-

3-carboxylate (117). Yield 47%. m.p. 141-143 °C (EtOH). 1H NMR (DMSO-d6) 1.20 (t, 3H, 

CH3, J = 7.1 Hz), 4.30 (q, 2H, CH2, J = 7.1 Hz), 5.61 (s, 2H, CH2 ), 7.37 (t, 1H, ar, J = 7.6 Hz), 

7.56 (t, 2H, ar, J = 7.6 Hz), 7.67 (t, 1H, ar, J = 7.9 Hz), 7.83-7.85 (dd, 1H, ar, J = 1.2 Hz, J = 

6.7 Hz), 7.94 (d, 2H, ar, J = 7.7 Hz), 8.08 (d, 1H, ar, J = 7. 8 Hz), 8.14 (t, 1H, ar, J = 1.8 Hz) 

(C, H, N). Anal.Calc. for C19H16ClN3O4. 

Ethyl 4-[2-(4-chlorophenyl)-2-oxoethyl]-ethyl-5-oxo-1-phenyl-4,5-dihydro-1H-1,2,4-

triazole-3-carboxylate (118). Yield 60%. m.p. 194-196 °C (MeOH). 1H NMR (DMSO-d6) 

1.20 (t, 3H, CH3, J = 7.1 Hz), 4.30 (q, 2H, CH2, J = 7.1 Hz), 5.59 (s, 2H, CH2), 7.37 (t, 1H, ar, J 

= 7. 4 Hz), 7.55 (t, 2H, ar, J = 7.5 Hz), 7.70 (d, 2H, ar, J = 8.6 Hz), 7.94 (d, 2H, ar, J = 7.9 Hz), 

8.13 (d, 2H, ar, J = 8.7 Hz). Anal. Calc. for C19H16ClN3O4. 

Ethyl 4-[2-(2-nitrophenyl)-2-oxoethyl]-5-oxo-1-phenyl-4,5-dihydro-1H-1,2,4-triazole-3-

carboxylate (119). Yield 92%. m.p. 171-173 °C (EtOH). 1H NMR (CDCl3) 1.49 (t, 3H, CH3, J 

= 7.1 Hz), 4.52 (q, 2H, CH2, J = 7.1 Hz), 5.44 (s, 2H, CH2 ), 7.32 (t, 1H, ar, J = 7.4 Hz), 7.48 (t, 

2H, ar, J = 7.8 Hz), 7.70-7.77 (m, 2H, ar), 7.84 (t, 1H, ar, J = 7.3 Hz ), 8.04 (d, 2H, ar, J = 7.9 

Hz), 8.22 (d, 1H, ar, J = 8.2 Hz). Anal. Calc. for C19H16N4O6. 

Ethyl 4-[2-(3-nitrophenyl)-2-oxoethyl]-5-oxo-1-phenyl-4,5-dihydro-1H-1,2,4-triazole-3-

carboxylate (120). Yield 89%. m.p. 134-136 °C (Cyclohexane/EtOAc). 1H NMR (DMSO-d6) 

1.20 (t, 3H, CH3, J = 7.1 Hz), 4.30 (q, 2H, CH2, J = 7.3 Hz), 5.71 (s, 2H, CH2 ), 7.39 (t, 1H, ar, 

J = 7.4 Hz), 7.56 (t, 2H, ar, J =  8.1 Hz), 7.91-7.95 (m, 3H, ar), 8.57 (t, 2H, ar, J = 8. 6 Hz ), 

8.78 (s, 1H, ar). Anal. Calc. for C19H16N4O6. 

Ethyl-4-[2-(4-nitrophenyl)-2-oxoethyl]-5-oxo-1-phenyl-4,5-dihydro-1H-1,2,4-triazole-3-

carboxylate (121). Yield 97%. m.p. 180-182 °C (EtOH/Nitromethane). 1H NMR (DMSO-d6) 

1.21 (t, 3H, CH3, J = 7.1 Hz), 4.30 (q, 2H, CH2, J = 7.1 Hz), 5.67 (s, 2H, CH2 ), 7.37 (t, 1H, ar, 
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J = 7.5 Hz), 7.56 (t, 2H, ar, J = 8.3 Hz), 7.94 (d, 2H, ar, J = 7.8 Hz), 8.35 (d, 2H, ar, J = 8.8 Hz), 

8.43 (d, 2H, ar, J = 8.8 Hz). Anal. Calc. for C19H16N4O6. 

Ethyl 4-[2-(furan-2-yl)-2-oxoethyl]-5-oxo-1-phenyl-4,5-dihydro-1H-1,2,4-triazole-3-

carboxylate (122). Yield 72%. m.p. 170-172 °C (EtOH). 1H NMR (DMSO-d6) 1.22 (t, 3H, CH3, 

J= 7.1 Hz), 4.31 (q, 2H, CH2, J= 7.1 Hz), 5.37 (s, 2H, CH2), 6.84 (d, 1H, furan proton, J= 2.0 

Hz),7.35-7.38 (m, 1H, ar), 7.53-7.57 (m, 2H, ar),7.75 (d, 1H, furan proton, J= 2.0 Hz), 7.93 

(d, 2H, ar, J= 7.4 Hz), 8.15 (m, 1H, furan proton). Anal. Calc. for C17H15N3O5. 

Ethyl 4-[2-(5-methylfuran-2-yl)-2-oxoethyl]-5-oxo-1-phenyl-4,5-dihydro-1H-1,2,4-

triazole-3-carboxylate (123). Yield 58%. m.p. 142-144 °C (Cyclohexane/AcOEt). 1H NMR 

(CDCl3) 1.40 (t, 3H, CH3, J = 7.1 Hz), 2.46 (s, 3H, CH3), 4.42 (q, 2H, CH2, J = 7.1 Hz), 5.40 (s, 

2H, CH2), 6.26 (d, 1H, furan proton, J = 2.8 Hz), 7.31-7.33 (m, 2H, 1 ar, 1 furan proton), 7.47 

(t, 2H, ar, J = 7.7 Hz), 8.03 (d, 2H, ar, J = 8.4 Hz). Anal. Calc. for C18H17N3O5. 

Ethyl 4-[2-(thiophen-2-yl)-2-oxoethyl]-5-oxo-1-phenyl-4,5-dihydro-1H-1,2,4-triazole-3-

carboxylate (124). Yield 80%. m.p. 167-168 °C (EtOH). 1H-NMR (DMSO-d6) 1.21 (t, 3H, CH3, 

J = 7.1 Hz), 4.31 (q, 2H, CH2, J = 7.1 Hz), 5.52 (s, 2H, CH2), 7.35-7.39 (m, 2H, CH2), 7.55 (t, 

2H, ar, J = 7.8 Hz), 7.94 (d, 2H, ar, J = 7.7 Hz), 8.18 (d, 1H, ar, J = 4.0 Hz), 8.28 (d, 1H, ar, J = 

2.9 Hz). Anal. Calc. for C17H15N3O4S. 

 Ethyl 4-[2-(pyrid-2-yl)-2-oxoethyl]-5-oxo-1-phenyl-4,5-dihydro-1H-1,2,4-triazole-3-

carboxylate (125). Yield 30%. m.p. 153-155 °C (EtOH). 1H-NMR (DMSO-d6) 1.29 (t, 3H, CH3, 

J = 7.0 Hz), 4.29 (q, 2H, CH2, J = 7.0 Hz), 5.67 (s, 2H, CH2), 7.37 (t, 1H, ar, J = 7.4 Hz), 7.55 

(t, 2H, ar, J = 7.8 Hz), 7.80 (t, 1H, ar, J = 3.1 Hz), 7.82 (d, 1H, ar, J = 4.8 Hz), 7.95 (d, 1H, ar, J 

= 8.5 Hz), 8.05 (d, 1H, ar, J = 7.8 Hz), 8.11 (t, 1H, ar, J = 7.7 Hz), 8.85 (d, 1H, ar, J = 4.7 Hz). 

Anal. Calc. for C18H16N4O4. 

Ethyl 1-benzyl-5-oxo-4-[2-oxo-2-phenylethyl]-4,5-dihydro-1H-1,2,4-triazole-3-

carboxylate (126). Yield 34%. m.p. 90-92 °C. 1H NMR (CDCl3) 1.34 (t, 3H, CH3, J = 7.1 Hz), 

4.36 (q, 2H, CH2, J = 7.1 Hz), 5.15 (s, 2H. CH2), 5.51 (s, 2H. CH2), 7.32-7.42 (m, 5H, ar), 7.54 

(t, 2H, ar, J = 7.7 Hz), 7.67 (t, 1H, ar, J = 7.5 Hz), 8.01 (d, 2H, J =7.7 Hz). Anal. Calc. for 

C20H19N3O4. 

Ethyl 1-benzyl-4-[2-(furan-2-yl)-2-oxoethyl]-5-oxo-4,5-dihydro-1H-1,2,4-triazole-3-

carboxylate (127). Yield 68%. m.p. 104-106 °C. 1H NMR (CDCl3) 1.34 (t, 3H, CH3, J = 7.1 

Hz), 4.36 (q, 2H, CH2, J = 7.1 Hz), 5.13 (s, 2H. CH2), 5.37 (s, 2H. CH2), 6.63 (dd, 1H, furan 
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proton, J = 1.6 Hz, J = 1.9 Hz), 7.32-7.41 (m, 6H, 5ar + 1 furan proton), 7.67 (s, 1H, furan 

proton). Anal. Calc. for C18H17N3O5. 

Ethyl 1-benzyl-4-[2-(5-methylfuran-2-yl)-2-oxoethyl]-5-oxo-4,5-dihydro-1H-1,2,4-

triazole-3-carboxylate (128). Yield 93%. Oily compound. 1H NMR (CDCl3) 1.35 (t, 3H, CH3, 

J = 7.1 Hz), 2.44 (s, 3H, CH3), 4.37 (q, 2H, CH2, J = 7.1 Hz), 5.13 (s, 2H, CH2), 5.33 (s, 2H, 

CH2), 6.24 (d, 1H, furan proton, J = 3.3 Hz), 7.25 (d, 1H, 1 furan proton, J = 3.4 Hz), 7.41-

7.31 (m, 5H, ar). C19H19N3O5. 

Ethyl 4-[2-(2,4-dimethoxyphenyl)-2-oxoethyl]-5-oxo-1-phenyl-4,5-dihydro-1H-1,2,4-

triazole-3-carboxylate (129). Yield 85%. m.p. 150-152 °C. Purified by column 

chromatography (Cyclohexane 6/EtOAc 4). 1H NMR (CDCl3-d6) 1.38 (t, 3H, CH3, J = 7.1 Hz), 

3.96 (s, 3H, CH3 ), 3.98 (s, 3H, CH3 ), 4.41 (q, 2H, CH2, J = 7.1 Hz), 5.45 (s, 2H, CH2 ),  6.53 (d, 

1H, ar, J = 1.8 Hz), 6.61 (dd, 1H, ar, J = 1.9 Hz, J = 6.8 Hz), 7.30 (t, 1H, ar, J = 7.3 Hz), 7.47 

(t, 2H, ar, J = 7.8 Hz), 7.99-8.07 (m, 3H, ar). Anal. Calc. for C22H23N3O6. 

Ethyl 4-[2-(3,4-dimethoxyphenyl)-2-oxoethyl]-5-oxo-1-phenyl-4,5-dihydro-1H-1,2,4-

triazole-3-carboxylate (130). Yield 76%. m.p. 159-161 °C (EtOH). 1H NMR (CDCl3) 1.39 (t, 

3H, CH3, J= 7.1 Hz), 3.96 (s, 3H, OCH3), 4.00 (s, 3H, OCH3), 5.55 (s, 2H, CH2), 6.97 (d, 1H, ar, 

J= 8.4 Hz), 7.31 (t, 1H, ar, J= 7.4 Hz), 7.48 (t, 2H, ar, J= 8.3 Hz), 7.54 (d, 1H, J= 1.7 Hz), 7.68 

(d, 1H, ar, J= 8.4 Hz), 8.02 (d, 2H, ar, J= 8.2 Hz). Anal. Calc. for C21H21N3O6. C22H23N3O6. 

Ethyl 4-[2-(3,4,5-trimethoxyphenyl)-2-oxoethyl]-5-oxo-1-phenyl-4,5-dihydro-1H-1,2,4-

triazole-3-carboxylate (131). Yield 95%. m.p. 131-133 °C (Cyclohexane/EtOAc). 1H NMR 

(CDCl3) 1.41 (t, 3H, CH3, J = 7.1 Hz), 4.43 (q, 2H, CH2, J = 7.1 Hz), 5.55 (s, 2H, CH2), 7.27-

7.34 (m, 4H, ar), 7.49 (t, 2H, ar, J = 7.4 Hz), 8.04 (d, 2H, ar, J = 8.6 Hz). Anal. Calc. for 

C23H25N3O7 

Ethyl 4-(2-(4-methoxy-3,5-dimethylphenyl)-2-oxoethyl)-5-oxo-1-phenyl-4,5-dihydro-

1H-1,2,4-triazole-3-carboxylate (132). Yield 70%. m.p. 140-142 °C (EtOH). 1H-NMR (CDCl3) 

1.39 (t, 3H, CH3, J = 7.1 Hz), 2.38 (s, 6H, CH3),  3.81 (s, 3H, CH3),  4.41 (q, 2H, CH2, J = 7.1 

Hz),  5.52 (s, 2H, CH2),  7.31 (t, 1H, ar, J = 7.2 Hz),  7.48 (t, 2H, ar, J = 7.9 Hz), 7.71 (s, 2H, 

ar), 8.04 (d, 2H, ar, J = 8.1 Hz). Anal. Calc. for C23H25N3O5. 
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Ethyl 4-(2-(3,5-di-tert-butyl-4-methoxyphenyl)-2-oxoethyl)-5-oxo-1-phenyl-4,5-dihydro-

1H-1,2,4-triazole-3-carboxylate (133). Yield 60%. m.p. 196-198 °C (EtOH). 1H-NMR 

(CDCl3-d)  1.40 (t, 3H, CH3, J = 7.1 Hz), 1.48 (s, 18H, (CH3)3), 3.76 (s, 3H, CH3), 4.42 (q, 2H, 

CH2, J = 7.1 Hz), 5.56 (s, 2H, CH2), 7.32 (t, 1H, ar, J = 7.5 Hz ), 7.48 (t, 2H, ar, J = 7.7 Hz ), 

7.94 (s, 2H, ar), 8.04 (d, 2H, ar, J = 7.8 Hz ). Anal. Calc. for C29H37N3O5. 

 

General procedure for the synthesis of 1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione 

derivatives (134-163). 

 

A mixture of the suitable ethyl 1,2,4-triazole-3-carboxylate derivatives 104-133 (0.87 

mmol) and ammonium acetate (3.48 mmol) was heated under microwave irradiation at 

140 °C otherwise in a sealed tube at 130°C (compound 139) or 190 °C (compounds 136, 

137) until the disappearance of starting material (TLC monitoring, 3-24 h). The residue 

was taken up with EtOH (1 mL) and Et2O (5 mL), collected by filtration and washed with 

water (20 mL). All the crude compounds were purified by recrystallization. 

6-Methyl-2-phenyl-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (134). Yield 85%. 

m.p. 288-289 °C (2-Methoxyethanol). 1H NMR (DMSO-d6) 2.04 (s, 3H, CH3), 6.88 (s, 1H, H-

5), 7.34 (t, 1H, ar, J = 7.4 Hz), 7.54 (t, 2H, ar, J = 7.8 Hz), 7.98 (d, 2H, ar, J = 8.3 Hz), 11.32 

(br s, 1H, NH). Anal. Calc. for C12H10N4O2.  

2,6-Diphenyl-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (135). Yield 65%. m.p. 290-

291 °C (2-Methoxyethanol). 1H NMR (DMSO-d6) 7.28 (s, 1H, H-5), 7.37 (t, 1H, ar, J = 7.4 

Hz), 7.46-7.51 (m, 2H, ar,), 7.57 (t, 2H, ar, J = 7.7 Hz), 7.72 (d, 2H, ar, J = 8.0 Hz), 8.02 (d, 

2H, ar, J = 7.9 Hz), 11.63 (br s, 1H, NH). Anal. Calc. for C17H12N4O2.  

6-Methyl-2-(4-methoxyphenyl)-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (136). 

Yield 78%. m.p. > 300 °C (DMF). 1H NMR (DMSO-d6) 2.04 (s, 3H, CH3), 3.80 (s, 3H, OCH3), 

6.87 (s, 1H, H-5), 7.09 (d, 2H, ar, J= 9.1 Hz), 7.85 (d, 2H, ar, J= 9.1 Hz), 11.30 (br s, 1H, NH). 

Anal. Calc. for C13H12N4O3.  
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2-(4-Methoxyphenyl)-6-phenyl-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (137). 

Yield 75% m.p. >300 °C (DMF). 1H NMR (DMSO-d6) 3.82 (s, 3H, CH3), 7.14 (d, 2H, ar, J= 9.0 

Hz), 7.26 (s, 1H, H-5) 7.46-7.51 (m, 3H, ar), 7.71 (d, 2H, ar, J= 6.2 Hz), 7.88 (d, 2H, ar, J= 9.0 

Hz), 11.60 (br s, 1H, NH). IR 3218, 1688. Anal. Calc. for C18H14N4O3   

2-(4-Nitrophenyl)-6-phenyl-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (138). Yield 

92%. m.p. > 300 °C (DMF). 1H NMR (DMSO-d6) 7.32 (s, 1H, H-5), 7.47-7.50 (m, 3H, ar), 

7.72-7.74 (m, 2H, ar), 8.34 (d, 2H, ar, J = 9.2 Hz), 8.46 (d, 2H, ar, J = 9.2 Hz), 11.71 (br s, 1H, 

NH). IR 3260, 1686. Anal. Calc. for C17H11N5O4  

2-(2-Methoxyphenyl)-6-phenyl-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (139). 

Yield 85%. m.p. > 300 °C (2-Methoxyethanol). 1H NMR (DMSO-d6) 3.99 (s, 3H, OMe), 7.12 

(t, 1H, ar, J= 7.1 Hz), 7.23 (s, 1H, H-5), 7.27 (d, 1H, ar, J = 7.7 Hz), 7.44-7.50 (m, 4H, ar), 

7.53 (t, 1H, ar, J = 8.5 Hz), 7.71 (s, 2H, ar, J = 8.2 Hz), 11.60 (br s, 1H, NH). IR 3259, 1714, 

1689. Anal. Calc. for C18H14N4O3. 

6-(2-Methoxyphenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (140). 

Yield 77%. m.p. 279-281 °C (2-Methoxyethanol/DMF). 1H NMR (DMSO-d6) 3.84 (s, 3H, 

CH3), 7.02 (s, 1H, H-5), 7.05 (t, 1H, ar, J = 8.3 Hz), 7.15 (d, 1H, ar, J = 8.00 Hz), 7.36 (t, 1H, 

ar, J = 7.4 Hz), 7.41-7.49 (m, 2H, ar), 7.56 (t, 2H, ar, J = 8.4  Hz), 8.01 (d, 2H, ar, J =7.6 Hz) 

11.39 (br s, 1H, NH). Anal. Calc. for C18H14N4O3. 

6-(3-Methoxyphenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (141). 

Yield 79%. m.p.> 300 °C (2-Methoxyethanol). 1H NMR (DMSO-d6) 3.85 (s, 3H, CH3), 6.99-

7.02 (m, 1H, ar), 7.27-7.30 (m, 2H, ar), 7.35-7.40 (m, 2H, 1 ar + H-5), 7.57 (t, 2H, ar, J = 7.1 

Hz), 8.02 (d, 2H, ar, J = 8.6 Hz), 11.60 (s, 1H, NH). Anal. Calc. for C18H14N4O3.  

6-(4-Methoxyphenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (142). 

Yield 70%. m.p. 290-291 °C (2-Methoxyethanol). 1H NMR (DMSO-d6) 3.82 (s, 3H, CH3), 7.03 

(d, 2H, ar., J = 8.8 Hz), 7.19 (s, 1H, H5), 7.36 (t, 1H, ar, J = 7.4 Hz), 7.56 (t, 2H, ar, J = 8.0 Hz), 

7.66 (d, 2H, ar., J = 8.8 Hz), 8.02 (d, 2H, ar, J = 7.8 Hz), 11.55 (br s, 1H, NH). IR 3229, 1682 

cm-1. Anal. Calc. for C18H14N4O3. 

6-(4-Methylphenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (143) . 

Yield 80%. m.p. > 300 °C (EtOH/2-Methoxyethanol). 1H NMR (DMSO-d6) 2.36 (s, 3H, CH3), 

7.23 (s, 1H, H-5), 7.29 (d, 2H, ar, J = 8.0 Hz), 7.37 (t, 1H, ar, J = 7.1 Hz), 7.54-7.62 (m, 4H, 
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ar.), 8.02 (d, 2H, ar, J = 8.5 Hz), 11.59 (br s, 1H, NH). IR 3387, 1688. Anal. Calc. For 

C18H14N4O2. 

6-(3,4-methylendioxyphenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione 

(144). Yield 78%. m.p. 279-281 °C (AcOH/DMF). 1H NMR (DMSO-d6) 6.10 (s, 2H, CH2), 7.01 

(d, 1H, ar, J = 8.16 Hz), 7.20-7.23 (m, 2H, 1 ar, H-5), 7.30 (d, 1H, ar, J = 1.6 Hz), 7.36 (t, 1H, 

ar, J = 7.4 Hz), 7.56 (t, 2H, ar, J =  7.7 Hz), 8.01 (d, 2H, ar, J = 7.8 Hz) 11.53 (br s, 1H, NH). 

Anal. Calc. For C18H12N4O4. 

6-(3-Bromophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (145). 

Yield 47%. m.p. > 300 °C (2-Methoxyethanol). 1H NMR (DMSO-d6) 7.37 (t, 1H, ar, J = 7.4 

Hz), 7.41-7.45 (m, 2H, 1 ar, H-5), 7.56 (t, 2H, ar, J = 8.4 Hz), 7.64 (d, 1H, ar, J = 8.0 Hz), 7.74 

(d, 1H, ar, J = 8.6 Hz), 7.96 (s, 1H, ar), 8.02 (d, 2H, ar, J = 8.8 Hz), 11.67 (br s, 1H, NH). Anal. 

Calc. For C17H11BrN4O2. 

6-(4-Bromophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (146). Yield 

49%. m.p. > 300 °C (AcOH/DMF). 1H NMR (DMSO-d6) 7.35-7.38 (m, 2H, 1 ar, H-5), 7.56 (t, 

2H, ar, J = 7.7 Hz), 7.67 (s, 4H, ar), 8.01 (d, 2H, ar, J = 7.7 Hz), 11.62 (br s, 1H, ar). Anal. 

Calc. For C17H11BrN4O2. 

6-(3-Chlorophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (147). Yield 

76%. m.p. > 300 °C (2-Methoxyethanol). 1H NMR (DMSO-d6) 7.37 (t, 1H, ar, J = 7.3 Hz), 

7.44 (s, 1H, H-5), 7.50-7.54 (m, 2H, ar), 7.56 (t, 2H, ar, J = 7.8 Hz), 7.69-7.71 (m, 1H, ar), 

7.83 (s, 1H, ar), 8.01 (d, 2H, ar, J = 7.80 Hz ) 11.65 (br s, 1H, NH). Anal. Calc. For 

C17H11ClN4O2. 

6-(4-Chlorophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (148). Yield 

81%. m.p. > 300 °C (2-Methoxyethanol/DMF). 1H NMR (DMSO-d6) 7.35-7.38 (m, 2H, 1 ar, 

H-5), 7.53-7.58 (m, 4H, ar), 7.74 (d, 2H, ar, J = 8.6 Hz ), 8.01 (d, 2H, ar, J = 8.00 Hz), 11.66 

(br s, 1H, ar). 13C NMR (DMSO-d6) 100.92, 119.58, 126.98, 127.27, 128.77, 129.22, 129.81, 

130.31, 134.37, 135.96, 137.67, 147.67, 153.47. Anal. Calc. For C17H11ClN4O2. 

6-(2-Nitrophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (149). Yield 

66%. m.p. > 300 °C (2-Methoxyethanol). 1H NMR (DMSO-d6), 7.20 (s, 1H, H-5), 7.41 (t, 1H, 

ar, J = 7.4 Hz), 7.60 (t, 2H, ar, J = 7.6 Hz ), 7.75 (d, 1H, ar, J = 6.1 Hz), 7.84 (t, 1H, ar, J = 7.6 

Hz), 7. 93 (t, 1H, ar, J = 7.5 Hz), 8.02 (d, 2H, ar, J = 8.5 Hz), 8.31 (d, 1H, ar, J = 8.1 Hz), 11.8 

(br s, 1H, NH). Anal. Calc. For C17H11N5O4. 
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6-(3-Nitrophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (150). Yield 

62%. m.p. > 300 °C (AcOH). 1H NMR (DMSO-d6), 7.37 (t, 1H, ar, J = 7.4 Hz ), 7.55-7-59 (m, 

3H, 2 ar, H-5), 7.77 (t, 1H, ar, J = 8. 00 Hz), 8.02 (d, 2H, ar, J = 7.8 Hz), 8.19 (d, 1H, ar, J = 

7.7 Hz), 8.29 (d,1H, ar, J = ) 8.57 (s, 1H, ar) 11. 87 (br s, 1H, NH). Anal. Calc. For C17H11N5O4. 

6-(4-Nitrophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (151). Yield 

88%. m.p. > 300 °C (2-Methoxyethanol/DMF). 1H NMR (DMSO-d6) 7.37 (t, 1H, ar, J = 7.4 

Hz), 7.57 (m, 3H, 2 ar, H-5), 8.00-8.03 (m, 4H, ar), 8.29 (d, 2H, ar, J = 8.7 Hz), 11.83 (br s, 

1H, NH). Anal. Calc. For C17H11N5O4. 

6-(2-Furan-2-yl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (152). Yield 

73%. m.p. 298-299 °C (EtOH). 1H NMR (DMSO-d6) 6.65-6.67 (m, 1H, furan proton), 7.16 (s, 

1H, H-5), 7.21 (d, 1H, furan proton, J= 1.8 Hz),7.35-7.38 (m, 1H, ar), 7.54-7.58 (m, 2H, ar), 

7.80-7.82 (m, 1H, furan proton), 7.99-8.01 (m, 2H, ar), 11.71 (br s, 1H, NH). IR 3187, 3123, 

1691. Anal. Calc. For C15H10N4O3. 

6-(5-Methylfuran-2-yl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (153). 

Yield 75%. m.p. 281-283 °C (AcOH). 1H NMR (DMSO-d6) 2.35 (s, 3H, CH3), 6.26 (d, 1H, furan 

proton, J = 2.3 Hz), 7.07- 7.08 (m, 2H, H-5 + furan proton), 7.36 (t, 1H, ar, J = 7.5 Hz), 7.56 

(t, 2H, ar, J = 7.7 Hz), 8.00 (d, 2H, ar, J = 7.6 Hz) 11.63 (br s, 1H, NH).  Anal. Calc. For 

C16H12N4O3. 

2-Phenyl-6-(2-thienyl)-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (154). Yield 55% 

m.p. > 300 °C (2-Methoxyethanol). 1H NMR (DMSO-d6) 7.17 (q, 2H, ar, J = 3.6 Hz), 7.36 (t, 

1H, ar, J = 7.4 Hz), 7.56 (t, 2H, ar, J = 7.9 Hz), 7.67 (d, 2H, ar + H-5, J = 4.4 Hz), 8.00 (d, 2H, 

ar, J = 7.9 Hz), 11.70 (br. s, 1H, NH). Anal. Calc. For C15H10N4O2S. 

2-Phenyl-6-(2-pyridyl)-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (155). Yield 70%.  

m.p. 264-265 °C (EtOH/2-Methoxyethanol). 1H NMR (DMSO-d6) 7.38 (t, 1H, ar, J = 7.4 Hz), 

7.46 (t, 1H, ar, J = 4.1 Hz), 7.57 (t, 2H, ar, J = 8.0 Hz), 7.92-7.97 (m, 2H, ar + H-5), 8.02 (d, 

2H, ar, J = 8.4 Hz), 8.19 (d, 1H, ar, J = 8.1 Hz), 8.68 (d, 1H, pyridine proton, J = 4.8 Hz), 11.02 

(br s, 1H, NH). IR 3254, 1688. Anal. Calc. For C16H11N5O2. 

2-Benzyl-6-phenyl-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (156). Yield 32%. m.p. 

278-279 °C (2-Methoxyethanol). 1H NMR (DMSO-d6) 5.13 (s, 2H, CH2), 7.20 (s, 1H, H-5), 

7.35-7.38 (m, 5H, ar), 7.45-7.47 (m, 3H, ar), 7.68-7.69 (m, 2H, ar), 11.49 (br s, 1H, NH). . 

Anal. Calc. For C18H14N4O2. 
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2-Benzyl-6-(furan-2-yl)-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (157). Yield 81%. 

m.p. 280-282 °C (AcOH). 1H NMR (DMSO-d6) 5.11 (s, 2H, CH2), 6.63 (dd, 1H, furan proton, 

J = 1.6 Hz, J = 1.8 Hz), 7.11 (s, 1H, H-5), 7.16 (d, 1H, ar, J = 3. 4 Hz), 7.32-7.39 (m, 5H, 4ar + 

1 furan proton), 7.8 (s, 1H, furan proton), 11.56 (br s, 1H, NH). Anal. Calc. For C16H12N4O3. 

2-Benzyl-6-(5-methylfuran-2-yl)-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (158). 

Yield 28%. m.p. 286-288 °C (AcOH). 1H NMR (DMSO-d6) 2.32 (s, 3H, CH3), 5.11 (s, 2H, CH2), 

6.22 (s, 1H, furan proton), 7.01 (s, 1H, furan proton), 7.03 (s, 1H, H-5), 7.34-7.37 (m, 5H, 

ar), 11.46 (br s, 1H, NH). Anal. Calc. For C17H14N4O3. 

6-(2,4-Dimethoxyphenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione 

(159). Yield 64%. mp 252-254 °C (AcOH). 1H NMR (DMSO-d6) 3.84 (s, 6H, CH3), 6.60 (dd, 

1H, ar, J = 2.4 Hz, J = 6.1 Hz),  6.67 (d, 1H, ar, J = 2.3 Hz), 6.93 (s, 1H, H-5), 7.33-7.37 (m, 

2H, ar), 7.55 (t, 2H, ar, J = 7.60 Hz),  8.00 (d, 2H, ar, J = 7.7 Hz),  11.34 (br s, 1H, NH). Anal. 

Calc. For C19H16N4O4. 

6-(3,4-Dimethoxyphenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione 

(160). Yield 53%. m.p. >300 °C (EtOH/2-Methoxyethanol). 1H NMR (DMSO-d6) 3.81 (s, 3H, 

OCH3), 3.87 (s, 3H, OCH3), 7.03 (d, 2H, ar, J = 9.0 Hz), 7.27-7.29 (m, 3H, 2 ar + H-5), 7.36 (t, 

1H, ar, J = 7.4 Hz), 7.56 (t, 2H, ar, J = 7.7 Hz), 8.02 (d, 2H, ar, J = 7.9 Hz), 11.54 (br s, 1H, 

NH). Anal. Calc. for C19H16N4O4. 

6-(3,4,5-Trimethoxyphenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione 

(161). Yield 25%. m.p. > 300 °C (AcOH/DMF). 1H NMR (DMSO-d6) 3.70 (s, 3H, CH3),                         

3.89 (s, 6H, CH3),  7.02 (s, 2H, ar),  7.37 (t, 1H, ar, J = 7.4 Hz),  7.49 (s, 1H, H-5),  7.57 (t, 2H, 

ar, J = 7.7 Hz), 8.02 (d, 2H, ar, J = 7.7 Hz), 11.59 (br s, 1H, NH). Anal. Calc. For C20H18N4O5. 

6-(4-Methoxy-3,5-dimethylphenyl)-2-phenyl-[1,2,4]triazolo[4,3-a]pyrazine-3,8(2H,7H)-

dione (162). Yield 70%. m.p. > 300 °C (2-Methoxyethanol/DMF). 1H-NMR (DMSO-d6)            

2.28 (s, 6H, CH3), 3.70 (s, 3H, CH3),  7.21 (s, 1H, ar),  7.36 (t, 1H, ar, J = 7.4 Hz), 7.44 (s, 2H, 

ar),  7.56 (t, 2H, ar, J = 7.9 Hz), 8.01 (d, 2H, ar, J = 7.9 Hz), 11.48 (br. s, 1H, NH). Anal. Calc. 

For C20H18N4O3. 

6-(3,5-di-tert-butyl-4-methoxyphenyl)-2-phenyl-[1,2,4]triazolo[4,3-a]pyrazine-

3,8(2H,7H)-dione (163). Yield 75%. m.p.  > 300°C (AcOH/DMF). 1H-NMR (DMSO-d6)                

1.44 (s, 18H, (CH3)3), 3.67 (s, 3H, CH3),  7.24 (s, 1H, ar), 7.36 (t, 1H, ar, J = 7.4 Hz), 7.49 (s, 
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2H, ar), 7.56 (t, 2H, ar, J = 7.4 Hz),  8.02 (d, 2H, ar, J = 8.2 Hz), 11.63 (br. s, 1H, NH). Anal. 

Calc. For C26H30N4O3. 

 

General procedure for the synthesis of 8-chloro-1,2,4-triazolo[4,3-a]pyrazin-3-(2H)-one 

derivatives (164-193). 

 

A suspension of the suitable 8-oxo-triazolopyrazine derivatives 134-163 (2 mmol) in 

phosphorus oxychloride (10 mL) was heated in the following conditions: microwave 

irradiation at 160 °C for 90 min otherwise at 160 °C for 20 min (compound 165), 1 h 

(compound 168) and 3.5 h (compound 169) or at 170 °C for 30 min (compound 171) and 

1.5 h (compounds 172 and 173); sealed tube in a bath oil at 140 °C for 16 h (compounds 

164, 166) or at 180 °C for 3 h (compound 167). The excess of phosphorus oxychloride was 

distilled off and the residue was treated with water (about 5−10 mL). The obtained solid 

was collected by filtration. These intermediates were pure enough (NMR, TLC) to be used 

for the next step without further purification. 

8-Chloro-6-methyl-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (164). Yield 81%. 1H 

NMR (DMSO-d6) 2.21 (s, 3H, CH3), 7.36-7.40 (m, 1H, ar), 7.47 (s, 1H, H-5), 7.55-7.58 (m, 

1H, ar), 7.54 (t, 2H, ar, J = 7.7 Hz), 8.01-8.3 (m, 2H, ar). Anal. Calc. For C12H9ClN4O. 

8-Chloro-2,6-diphenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (165). Yield 78%. 1H NMR 

(DMSO-d6) 7.41-7.43 (m, 2H, ar), 7.50 (t, 2H, ar, J = 7.3 Hz), 7.60 (t, 2H, ar, J = 8.0 Hz), 8.04-

8.09 (m, 4H, ar), 8.61 (s, 1H, H-5). Anal. Calc. For C17H11ClN4O. 

8-Chloro-6-methyl-2-(4-methoxyphenyl)-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (166). 

Yield 80%. 1H NMR (DMSO-d6) 2.31 (s, 3H, CH3), 3.82 (s, 3H, OCH3), 7.12 (d, 2H, ar, J = 8.0 

Hz), 7.90-7.93 (m, 3H, 2 ar + H-5). Anal. Calc. For C13H11ClN4O2. 

8-Chloro-2-(4-methoxyphenyl)-6-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)one (167). 

Yield 96%. 1H NMR (DMSO-d6) 3.84 (s, 3H, CH3), 7.15 (d, 2H, ar, J= 9.1 Hz), 7.04-7.63 (m, 

3H, ar), 7.94 (d, 2H, ar, J= 9.1 Hz), 8.05 (d, 2H, ar, J= 7.5 Hz), 8.61 (s, 1H, H-5). Anal. Calc. 

For C18H13ClN4O2. 
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8-Chloro-2-(4-nitrophenyl)-6-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)one (168). Yield 

72%. 1H NMR (DMSO-d6) 7.42 (t, 1H, ar, J= 7.4 Hz), 7.51 (d, 2H, ar, J= 7.4 Hz), 8.07 (d, 2H, 

ar, J= 7.4 Hz), 8.39 (d, 2H, ar, J= 7.1 Hz), 8.47 (d, 2H, ar, J= 7.1 Hz), 8.67 (s, 1H, H-5). Anal. 

Calc. For C17H10ClN5O3. 

8-Chloro-2-(2-methoxyphenyl)-6-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)one (169). 

Yield 96%. 1H NMR (DMSO-d6) 3.83 (s, 3H, OCH3), 7.14 (t, 1H, ar, J= 7.6 Hz), 7.30 (d, 1H, 

ar, J= 8.4 Hz), 7.42 (t, 1H, ar, J= 7.3 Hz), 7.46-7.55 (m, 1H; ar), 7.57 (t, 1H, ar), 8.02 (d, 2H, 

ar, J= 7.3 Hz), 8.56 (s, 1H, H-5). Anal. Calc. For C18H13ClN4O2. 

8-Chloro-6-(2-methoxyphenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3-(2H)-one (170). 

Yield 81%. 1H NMR (DMSO-d6) 3.98 (s, 3H, OCH3), 7.13 (t, 1H, ar, 7.5 Hz), 7.21 (d, 1H, ar, 

J= 8.3 Hz), 7.38-7.45 (m, 2H, ar), 7.59 (t, 2H, ar, J= 7.8 Hz), 8.00 (d, 1H; ar, J= 7.8 Hz), 8.06 

(d, 2H, ar, J= 8.2 Hz), 8.46 (s, 1H, H-5).  Anal. Calc. For C18H13ClN4O2. 

8-Chloro-6-(3-methoxyphenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3 (2H)-one (171). 

Yield 87%. 1H NMR (DMSO-d6) 3.85 (s, 3H, OCH3), 6.98 (d, 1H, ar, J = 7.6 Hz), 7.38-7.42 (m, 

2H, ar), 7.57-7.63 (m, 4H, ar), 8.07 (d, 2H, ar, J = 7.7 Hz), 8.68 (s, 1H, H-5).  Anal. Calc. For 

C18H13ClN4O2. 

8-Chloro-6-(4-methoxyphenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3 (2H)-one (172). 

Yield 92%. 1H NMR (DMSO-d6) 3.82 (s, 3H, CH3), 7.05 (d, 2H, ar, J = 8.8 Hz), 7.40 (t, 1H, ar, 

J = 7.4 Hz), 7.59 (t, 2H, ar, J = 7.9 Hz), 7.98 (d, 2H, ar, J = 8.8 Hz), 8.07 (d, 2H, ar, J = 7.9 Hz), 

8.49 (s, 1H, H5). Anal. Calc. For C18H13ClN4O2. 

8-Chloro-6-(4-methylphenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3 (2H)-one (173). 

Yield 90%. 1H NMR (DMSO-d6) 2.36 (s, 3H, CH3), 7.30 (d, 2H, ar, J = 8.1 Hz), 7.40 (t, 1H, ar, 

J = 7.8 Hz), 7.59 (t, 2H, ar, J = 7.8 Hz), 7.94 (d, 2H, ar, J = 8.1 Hz), 8. 07 (d, 2H, ar, J = 8.5 

Hz), 8.55 (s, 1H, H-5). Anal. Calc. For C18H13ClN4O. 

8-Chloro-6-(3,4-methylendioxyxyphenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3 (2H)-

one (174). Yield 64%. 1H NMR (DMSO-d6) 6.10 (s, 2H, CH2), 7.03 (d, 1H, ar, J = 8.1 Hz),  7.40 

(t, 1H, ar, J = 7.3 Hz), 7.57-7.59 (m, 3H, ar), 7.65 (s, 1H, ar), 8.07 (d, 2H, ar, J = 8.00 Hz), 

8.55 (s, 1H, H-5).  Anal. Calc. For C18H11ClN4O3. 

6-(3-Bromophenyl)-8-chloro-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3-(2H)-one (175). 

Yield 82%. 1H NMR (DMSO-d6) 7.36-7.41 (m, 2H, ar), 7.53-7.59 (m, 3H, ar), 7.82 (d, 1H, ar, 

J = 7.9 Hz), 7.09-7.11 (m, 2H, 1 ar + H-5), 8. 15 (d, 2H, ar, J = 7.7 Hz). Anal. Calc. For 

C17H10BrClN4O. 
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6-(4-Bromophenyl)-8-chloro-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3-(2H)-one (176). 

Yield 93%. 1H NMR (DMSO-d6) 7.41 (t, 1H, ar, J = 7.3 Hz), 7.60 (t, 2H, ar, J = 8.1 Hz), 7.68 

(d, 2H, ar, J = 8.5 Hz), 8.02 (d, 2H, ar, J = 8.5 Hz), 8.07 (d, 2H, ar, J = 8.6 Hz), 8.71 (s, 1H, H-

5). Anal. Calc. For C17H10BrClN4O. 

8-Chloro-6-(3-chlorophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3-(2H)-one (177). 

Yield 77%. 1H NMR (DMSO-d6) 7.41 (t, 1H, ar, J = 7.3 Hz), 7.47-7.54 (m, 2H, ar), 7.60 (t, 2H, 

ar, J = 7.4 Hz), 8.03-8.08 (m, 3H, ar), 8.13 (s, 1H, ar) 8.80 (s, 1H, H-5). Anal. Calc. For 

C17H10Cl2N4O. 

8-Chloro-6-(4-chlorophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3-(2H)-one (178). 

Yield 75%. 1H NMR (DMSO-d6) 7.40 (t, 1H, ar, J = 7.3 Hz), 7.53-7.61 (m, 4H, ar), 8.05-8.09 

(m, 4H, ar), 8.69 (s, 1H, H-5). Anal. Calc. For C17H10Cl2N4O. 

8-Chloro-6-(2-nitrophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3 (2H)-one (179). Yield 

93%. 1H NMR (DMSO-d6) 7.45 (t, 1H, ar, J = 7.4 Hz), 7.63 (t, 2H, ar, J = 7.5 Hz), 7.76-7.75 

(m, 1H, ar), 7.86-7.89 (m, 2H, ar), 8.06-8.08 (m, 3H, ar), 8.63 (s, 1H, H-5).  Anal. Calc. For 

C17H10ClN5O3.              

8-Chloro-6-(3-nitrophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3 (2H)-one (180). Yield 

95%. 1H NMR (DMSO-d6) 7.42 (t, 1H, ar, J = 7.1 Hz), 7.60 (t, 2H, ar, J = 7.6 Hz), 7.79 (t, 1H, 

ar, J = 7.8 Hz), 8.07 (d, 2H, ar, J = 7.8 Hz), 8.26 (d, 1H, ar, J = 7.7 Hz), 8.54 (d, 1H, ar, J = 7.8 

Hz), 8.82 (s, 1H, ar), 8.98 (s, 1H, H-5). Anal. Calc. For C17H10ClN5O3. 

8-Chloro-6-(4-nitrophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3 (2H)-one (181). Yield 

89%. 1H NMR (DMSO-d6) 7.42 (t, 1H, ar, J = 7.4 Hz), 7.61 (t, 2H, ar, J = 7.7 Hz), 8.07 (d, 2H, 

ar, J = 7.7 Hz), 8.32 (d, 2H, ar, J = 9.2 Hz), 8.36 (d, 2H, ar, J = 9.2 Hz), 8.95 (s, 1H, H-5). Anal. 

Calc. For C17H10ClN5O3. 

8-Chloro-6-(2-furyl)-2-phenyl[1,2,4]triazolo[4,3-a]pyrazin-3-(2H)-one (182). Yield 90%. 

1H NMR (DMSO-d6) 6.65-6.66 (d, 1H, furan proton), 6.98 (d, 1H, furan proton, J = 1.8 Hz), 

7.39 (t, 1H, ar, J = 7.3 Hz), 7.58 (t, 2H, ar, J = 7.3 Hz), 7.83 (s, 1H, furan proton), 8.03 (d, 

2H, ar, J= 7.1 Hz), 8.07 (s, 1H, H-5). Anal. Calc. For C15H9ClN4O2. 

8-Chloro-6-(5-methylfuran-2-yl)-2-phenyl[1,2,4]triazolo[4,3-a]pyrazin-3-(2H)-one (183). 

Yield 92%. 1H NMR (DMSO-d6) 2.38 (s, 3H, CH3), 6.28 (s, 1H, furan proton), 6.86 (s, 1H, 

furan proton), 7.41 (t, 1H, ar, J = 7.4 Hz), 7.59 (t, 2H, ar, J = 7.4 Hz), 7.96 (s, 1H, H-5), 8.05 

(d, 2H, ar, J = 8.3 Hz). Anal. Calc. For C16H11ClN4O2. 
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8-Chloro-6-(2-thienyl)-2-phenyl[1,2,4]triazolo[4,3-a]pyrazin-3-(2H)-one (184). Yield 

72%. 1H NMR (DMSO-d6) 7.18 (t, 1H, ar, J = 4.3 Hz), 7.41 (t, 1H, ar, J = 7.4 Hz), 7.58-7.65 

(m, 3H, ar), 7.89 (d, 1H, thiophene proton, J = 3.6 Hz), 8.07 (d, 2H, ar, J = 8.3 Hz), 8.62 (s, 

1H, H5). C15H9ClN4OS. 

8-Chloro-2-phenyl-6-(2-pyridyl)[1,2,4]triazolo[4,3-a]pyrazin-3-(2H)-one (185). Yield 

87%. 1H NMR (DMSO-d6) 7.42 (t, 1H, ar, J = 7.1 Hz), 7.50 (t, 1H, ar, J = 6.1 Hz), 7.60 (t, 2H, 

ar, J = 7.8 Hz), 8.01-8.14 (m, 4H, ar), 8.62 (d, 1H, pyridine proton, J = 4.5 Hz), 8.71 (s, 1H, 

H5). Anal. Calc. For C16H10ClN5O. 

2-Benzyl-8-chloro-6-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3-(2H)-one (186). Yield 68%. 1H 

NMR (DMSO-d6) 5.24 (s, 2H, CH2), 7.33-7.42 (m, 6H, ar), 7.48 (t, 2H, ar, J = 7.1), 8.01 (d, 

2H, ar, J = 7.2 Hz), 8.53 (s, 1H, H-5). Anal. Calc. For C18H13ClN4O. 

2-Benzyl-8-chloro-6-(furan-2-yl)-1,2,4-triazolo[4,3-a]pyrazin-3-(2H)-one (187). Yield 

85%. 1H NMR (DMSO-d6) 5.22 (s, 2H, CH2), 6.65 (dd, 1H, furan proton, J = 1.7 Hz, J = 1.5 

Hz), 6.95 (d, 1H, furan proton, J = 3.2 Hz), 7.36-7.41 (m, 5H, ar), 7.82 (s, 1H, furan proton), 

8.02 (s, 1H, H-5). Anal. Calc. For C16H11ClN4O2. 

2-Benzyl-8-chloro-6-(5-methylfuran-2-yl)-1,2,4-triazolo[4,3-a]pyrazin-3-(2H)-one (188). 

Yield 95%. 1H NMR (DMSO-d6) 2.36 (s, 3H, CH3), 5.22 (s, 2H, CH2), 6.25 (d, 1H, furan proton, 

J = 2.1 Hz), 6.81 (d, 1H, furan proton, J = 2.8 Hz), 7.33-7.38 (m, 5H, ar), 7.89 (s, 1H, H-5). 

Anal. Calc. For C17H13ClN4O2. 

8-Chloro-6-(2,4-dimethoxyphenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3 (2H)-one 

(189). Yield 96 % 1H NMR (DMSO-d6) 3.90 (s, 3H, CH3), 3.97 (s, 3H, CH3),  6.71-6.75 (m, 2H, 

ar), 7.39 (t, 1H, ar, J = 7.4 Hz), 7.58 (t, 2H, ar, J = 7.6 Hz),  7.92 (d, 1H, ar, J =  8.6 Hz), 8.06 

(d, 2H. ar, J = 7.8 Hz), 8.34 (s, 1H, H-5). Anal. Calc. For C19H15ClN4O3. 

8-chloro-6-(3,4-dimethoxyphenyl)-2-phenyl-[1,2,4]triazolo[4,3-a]pyrazin-3(2H)-one 

(190). Yield 85 % 1H NMR (DMSO-d6) 3.81 (s, 3H, CH3), 3.88 (s, 3H, CH3), 7.06 (d, 1H, ar, J 

= 8.2 Hz),  7.41 (t, 1H, ar, J = 7.4 Hz), 7.62-7.58 (m, 4H, ar), 8.08 (d, 2H, ar, J = 8.1 Hz), 8.63 

(s, 1H, H-5). Anal. Calc. For C19H15ClN4O3. 

8-Chloro-6-(3,4,5-trimethoxyphenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3 (2H)-one 

(191). Yield 96 % 1H NMR (DMSO-d6) 3.71 (s, 3H, CH3), 3.89 (s, 6H, CH3), 7.33 (s, 2H, ar), 

7.41 (t, 1H, ar, J = 7.6 Hz), 7.62 (t, 2H, ar, J = 7.8 Hz), 8.07 (d, 2H, ar, J = 7.9 Hz), 8.79 (s, 1H, 

H-5).  Anal. Calc. For C20H17ClN4O4. 
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8-Chloro-6-(4-methoxy-3,5-dimethylphenyl)-2-phenyl-[1,2,4]triazolo[4,3-a]pyrazin-

3(2H)-one  (192).  Yield 82 %  1H-NMR (DMSO-d6) 2.30 (s, 6H, CH3), 3.70 (s, 3H, CH3),  7.41 

(t, 1H, ar, J = 7.5 Hz),  7.59 (t, 2H, ar, J = 7.9 Hz), 7.73 (s, 2H, ar),  8.07 (d, 2H, ar, J = 8.1 Hz),  

8.48 (s, 1H, ar). Anal. Calc. For C20H17ClN4O2. 

8-Chloro-6-(3,5-di-tert-butyl-4-methoxyphenyl)-2-phenyl-[1,2,4]triazolo[4,3-a]pyrazin-

3(2H)-one (193). Yield 90 % 1H-NMR (DMSO-d6) 1.45 (s, 18H, tBu), 3.67 (s, 3H, CH3),                    

7.41 (t, 1H, ar, J = 7.56 Hz), 7.60 (t, 2H, ar, J = 7.80 Hz),  7.85 (s, 2H, ar),  8.07 (d, 2H, ar, J = 

7.92 Hz),  8.65 (s, 1H, ar). Anal. Calc. For C26H29ClN4O2. 

 

General procedure for the synthesis of 8-amino-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one 

derivatives (1-6, 11-13, 17, 29-36, 62-73). 

 

A suspension of the 8-chloro-triazolopirazine derivatives 164-193 (1 mmol) in a saturated 

ethanolic solution of NH3 (30 mL) was heated at 130 °C in a sealed tube overnight with 

the exception of the 6-(2-furyl) derivative 182 that was reacted at 100 °C for 4 h. After 

cooling the mixture at room temperature, the solid was collected by filtration, washed 

with water (about 5-10 mL), dried and recrystallized. Derivatives 63, 67, 68 and 71 were 

purified by column chromatography.  

8-Amino-6-methyl-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (1). Yield 92%. m.p. 

258-259 °C (Toluene). 1H NMR (DMSO-d6) 2.11 (s, 3H, CH3), 7.09 (s, 1H, H-5), 7.35 (t, 1H, 

ar, J = 6.6 Hz), 7.40 (br s, 2H, NH2), 7.54 (t, 2H, ar, J = 7.7 Hz), 8.05 (d, 2H, ar, J = 7.7 Hz). 

Anal. Calc. for C12H11N5O. 

8-Amino-2,6-diphenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (2). Yield 50%. m.p. 276-

277 °C (Nitromethane). 1H NMR (DMSO-d6) 7.33-7.38 (m, 2H, ar), 7.43 (t, 2H, ar, J = 7.4 

Hz), 7.55-7.59 (m, 4H, 2 ar + NH2), 7.77 (s, 1H, H-5), 7.98 (d, 2H, ar, J = 7.5 Hz), 8.08 (d, 2H, 

ar, J = 7.9 Hz). Anal. Calc. for C17H13N5O. 
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8-Amino-6-methyl-2-(4-methoxyphenyl)-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (3). 

Yield 83%. m.p. 243-244 °C (EtOH/2-Methoxyethanol). 1H NMR (DMSO-d6) 2.11 (s, 3H, 

CH3), 3.81 (s, 3H, OCH3), 7.07 (s, 1H, H-5), 7.09 (d, 2H, ar, J = 9.1 Hz), 7.36 (br s, 2H, NH2), 

7.90 (d, 2H, ar, J = 9.1 Hz). Anal. Calc. for C13H13N5O2. 

8-Amino-2-(4-methoxyphenyl)-6-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (4). 

Yield 84%. m.p. 254-255 °C (Nitromethane). 1H NMR (DMSO-d6) 3.82 (s, 3H, OCH3), 7.13 

(d, 2H, ar, J= 8.8 Hz), 7.33-7.45 (m, 3H, ar), 7.56 (br s, 2H, NH2), 7.75 (s, 1H, H-5), 7.92-7.99 

(m, 4H, ar). IR 3366, 3311, 1644. Anal. Calc. for C18H15N5O2.  

8-Amino-2-(4-nitrophenyl)-6-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (5). Yield 

62%. m.p. 290-291 °C (Cyclohexane/EtOAc). 1H NMR (DMSO-d6) 7.13 (t, 1H, ar, J= 8.8 Hz), 

7.35 (t, 2H, ar, J = 7.5 Hz), 7.69 (br s, 2H, NH2), 7.79 (s, 1H, H-5), 7.99 (d, 2H, ar, J = 7.5 Hz), 

8.38 (d, 2H, ar, J = 9.3 Hz), 8.48 (d, 2H, ar, J = 9.3 Hz). IR 3366, 3311, 1644. Anal. Calc. for 

C17H12N6O3. 

8-Amino-2-(2-methoxyphenyl)-6-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (6). 

Yield 74%. m.p. 257-258 °C (Nitromethane). 1H NMR (DMSO-d6) 3.80 (s, 3H, OCH3), 7.11 

(t, 1H, ar, J= 7.6 Hz), 7.26 (d, 1H, ar, J= 8.3 Hz), 7.35 (t, 1H, ar, J= 7.3 Hz), 7.43 (t, 2H, ar, J= 

7.3 Hz), 7.49-7.56 (m, 4H, 2ar + NH2), 7.73 (s, 1H, H-5), 7.97 (d, 2H, ar, J= 7.5 Hz). Anal. 

Calc. for C18H15N5O2. 

8-Amino-6-(2-methoxyphenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (11). 

Yield 68%. m.p. 249-251 °C (EtOH). 1H NMR (DMSO-d6) 3.93 (s, 3H, OCH3), 7.06 (t, 1H, ar, 

J = 8.1 Hz), 7.14 (d, 1H, ar, J = 8.1 Hz), 7.34-7.37 (m, 2H, ar), 7.48 (br s, 2H, NH2), 7.56 (t, 

2H, ar, J = 7.8 Hz), 7.9 (s, 1H, H-5), 8.06-8.09 (m, 3H, ar). Anal. Calc. for C18H15N5O2. 

8-Amino-6-(3-methoxyphenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (12). 

Yield 66%. m.p. 249-251 °C (EtOH). 1H NMR (DMSO-d6) 3.83 (s, 3H, CH3), 6.90-6.93 (m, 1H, 

ar), 7.31-7.37 (m, 2H, ar), 7.53-7.58 (m, 6H, 4 ar + NH2), 7.81 (s, 1H, H-5), 8.07 (d, 2H, ar, J 

= 7.5 Hz). IR = 3358, 3312, 1703, 1645 cm-1. Anal. Calc. for C18H15N5O2. 

8-Amino-6-(4-methoxyphenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (13). 

Yield 94%. m.p. 251-252 °C (EtOH/2-Methoxyethanol). 1H NMR (DMSO-d6) 3.80 (s, 3H, 

CH3), 6.99 (d, 2H, ar, J = 8.7Hz), 7.36 (t, 1H, ar, J = 7.5 Hz), 7.54-7.58 (m 4H, 2ar + NH2), 7.67 

(s, 1H, H5), 7.92 (d, 2H, ar, J = 8.7 Hz), 8.08 (d, 2H, ar, J = 8.5 Hz). IR  3381, 3308, 1697, 

1649. Anal. Calc. for C18H15N5O2. 
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8-Amino-6-(4-methylphenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (17). 

Yield 75%. m.p. 287-288 °C (2-Methoxyethanol). 1H NMR (DMSO-d6) 2.34 (s, 3H, CH3), 7.24 

(d, 2H, ar., J = 7.9 Hz), 7.36 (t, 1H, ar, J = 7.4 Hz), 7.54-7.58 (m, 4H, 2 ar + NH2), 7.70 (s, 1H, 

H5), 7.87 (d, 2H, ar, J = 7.9 Hz), 8.07 (d, 2H, ar, J = 7.6 Hz). IR 3366, 3310, 1701, 1651. Anal. 

Calc. for C18H15N5O. 

8-Amino-6-(3,4-methylendioxyxyphenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3 (2H)-

one (29). Yield 96%. m.p. > 300 °C (AcOH/DMF). 1H NMR (DMSO-d6) 6.06 (s, 2H, CH2), 6.96 

(d, 1H, ar, J = 7.9 Hz), 7.35 (t, 1H, ar, J = 7.4 Hz), 7.54-7.58 (m, 6H, 4 ar + NH2), 7.72 (s, 1H, 

H-5), 8.07 (d, 2H, ar, J = 7.8 Hz). Anal. Calc. for C18H13N5O3. 

8-Amino-6-(3-bromophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (30). Yield 

87%. m.p.  281-283 °C (2-Methoxyethanol). 1H NMR (DMSO-d6) 7.35-7.40 (m, 2H, ar), 

7.52-7.59 (m, 3H, ar), 7.66 (br s, 2H, NH2), 7.93 (s, 1H, H-5), 8.02 (d, 1H, ar, J = 7.8 Hz), 8.07 

(d, 2H, ar, J = 8.0 Hz), 8.23 (s, 1H, ar). 13C NMR (DMSO-d6) 102.93, 119.90, 122.57, 124.64, 

126.83, 128.65, 129.68, 131.04, 131.09, 131.60, 134.18, 137.89, 139.26, 147.63, 147.94. 

Anal. Calc. for  C17H12BrN5O. 

8-Amino-6-(4-bromophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (31). Yield 

92%. m.p. 266-268 °C (2-Methoxyethanol). 1H NMR (DMSO-d6) 7.36 (t, 1H, ar, J = 7.4 Hz), 

7.57 (t, 2H, ar, J = 7.8 Hz), 7.63-7.61 (m, 4H, 2 ar + NH2), 7.85 (s, 1H, H-5), 7.96 (d, 2H, ar, 

J = 8.6 Hz), 8.07 (d, 2H, ar, J = 7.8 Hz). 13C NMR (DMSO-d6) 102.35, 119.89, 121.63, 126.79, 

128.01, 129.66, 131.57, 131.81, 134.82, 136.15, 137.93, 147.63, 147.94. Anal. Calc. for 

C17H12BrN5O. 

8-Amino-6-(3-chlorophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (32). Yield 

85%. m.p. 279-281 °C (EtOH/2-Methoxyethanol). 1H NMR (DMSO-d6) 7.34-7.47 (m, 3H, 

ar), 7.57 (t, 2H, ar, J = 7.7 Hz), 7.65 (br s, 2H, NH2), 7.92 (s, 1H, H-5), 7.98 (d, 1H, ar, J = 7. 

7 Hz), 8.06-8.08 (m, 3H, ar). 13C NMR (DMSO-d6) 102.96, 119.92, 124.30, 125.78, 126.82, 

128.14, 129.67, 130.78, 131.62, 133.96, 134.33, 137.91, 139.09, 147.64, 147.95. Anal. 

Calc. for C17H12ClN5O. 

8-Amino-6-(4-chlorophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (33). Yield 

87%. m.p. 256-258 °C (2-Methoxyethanol). 1H NMR (DMSO-d6) 7.36 (t, 1H, ar, J = 7.4 Hz), 

7.48 (d, 2H, ar, J = 8.6 Hz), 7.56 (t, 2H, ar, J = 7.6 Hz), 7.63 (br s, 2H, NH2), 7.84 (s, 1H, H-5), 

8.02 (d, 2H, ar, J = 8.5 Hz), 8.07 (d, 2H, ar, J = 7.6 Hz). 13C NMR (DMSO-d6) 102.40, 119.88, 
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127.70, 128.97, 129.57, 129.72, 131.55, 132.99, 134.75, 135.76, 137.92, 147.62, 147.92. 

Anal. Calc. for C17H12ClN5O. 

8-Amino-6-(2-nitrophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3 (2H)-one (34). Yield 

83%. m.p. 281-283 °C (AcOH). 1H NMR (DMSO-d6) 7. 40 (t, 1H, ar, J = 7. 4 Hz), 7.58- 7.69 

(m, 6H, 4ar + NH2), 7.76-7.80 (m, 2H, 1 ar + H-5), 7.98 (d, 1H, ar, J = 7. 8 Hz), 8.09 (d, 2H, 

ar, J = 7.7 Hz). Anal. Calc. for C17H12N6O3. 

8-Amino-6-(3-nitrophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3 (2H)-one (35). Yield 

72%. m.p. 280-281 °C (AcOH). 1H NMR (DMSO-d6) 7.37 (t, 1H, ar, J = 7.2 Hz), 7.57 (t, 2H, 

ar, J = 7.6 Hz), 7.71 (t, 1H, ar, J = 7.7 Hz), 7.77 (br s, 2H, NH2), 8.07-8.09 (m, 3H, 2 ar + H-

5), 8.19 (d, 1H, ar, J = 7.6 Hz), 8.48 (d, 1H, ar, J = 7.6 Hz), 8.85 (s, 1H, ar). Anal. Calc. for 

C17H12N6O3. 

8-Amino-6-(4-nitrophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3 (2H)-one (36). Yield 

69%. m.p. 297-299 °C (2-Methoxyethanol/DMF). 1H NMR (DMSO-d6) 7.36 (t, 1H, ar, J = 7.4 

Hz), 7.57 (t, 2H, ar, J = 7.7 Hz), 7.73 (br s, 2H, NH2), 8.06-8.08 (m, 3H, 2 ar + H-5), 8.28 (s , 

4H, ar). 13C-NMR (DMSO-d6) 104.87, 119.91, 124.19, 126.80, 126.87, 129.69, 131.56, 

133.78, 137.85, 143.48, 147.17, 147.64, 148.08. IR = 1713, 3373, 3485 cm-1. Anal. Calc. for 

C17H12N6O3. 

8-Amino-6-(2-furyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3-(2H)-one (62). Yield 25%. 1H 

NMR (DMSO-d6) 6.59-6.60 (m, 1H, furan ptoton), 6.78 (d, 1H, furan proton, J = 1.8 Hz), 

7.38 (t, 1H, ar, J = 7.4 Hz), 7.41 (s, 1H, H-5), 7.58 (t, 2H, ar, J = 7.8 Hz), 7.65 (br s, 2H, NH2), 

7.74 (s, 1H, furan proton), 8.06 (d, 2H, ar, J= 7.8 Hz). Anal. Calc. for C15H11N5O2. 

8-Amino-6-(5-methylfuran-2-yl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3-(2H)-one (63). 

Yield 52%. m.p. 263-265 °C Purified by column chromatography. (Cyclohexane 6/EtOAc 

4). 1H NMR (DMSO-d6) 2.34 (s, 3H, CH3), 6.20 (s, 1H, furan proton), 6.66 (s, 1H, furan 

proton), 7.33-7.37 (m, 2H, 1ar + 1 furan proton), 7.56 (t, 2H, ar, J= 7.8 Hz), 7.63 (br s, 2H, 

NH2), 8.06 (d, 2H, ar, J= 7.8 Hz). 13C NMR (DMSO-d6) 13.89, 99.15, 108.39, 108.79, 119.81, 

126.78, 129.58, 129.65, 131.47, 137.88, 147.51, 148.27, 150.06, 152.30. Anal. Calc. for 

C16H13N5O2. 

8-Amino-2-phenyl-6-(2-thienyl)-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (64). Yield 58%. 

m.p. 283-284 °C (EtOH/2-Methoxyethanol). 1H NMR (DMSO-d6) 7.11 (t, 1H, ar, J = 4.4 Hz), 

7.36 (t, 1H, ar, J = 7.5 Hz), 7.51-7.71 (m, 6H, 4ar + NH2), 7.80 (s, 1H, H5), 8.07 (d, 2H, ar, J = 

7.8 Hz).13C NMR (DMSO-d6) 100.20, 119.85, 123.09, 126.50, 126.79, 128.62, 129.67, 
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131.52, 132.25, 137.92, 142.42, 147.53, 147.92. IR = 3318, 3223, 1715, 1643 cm-1. Anal. 

Calc. for C15H11N5OS. 

8-Amino-2-phenyl-6-(2-pyridyl)- 1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (65). Yield 62%. 

m.p. 251-252 °C (EtOH). 1H NMR (DMSO-d6) 7.36 (t, 2H, ar, J = 5.9 Hz), 7.57 (t, 2H, ar, J = 

8.0 Hz), 7.65 (br s, 2H, NH2), 7.90 (t, 1H, pyridine proton, J = 3.9 Hz), 7.92-8.10 (m, 4H, 3ar 

+ H5), 8.62 (d, 1H, ar, J = 3.8 Hz). IR = 3217, 3167, 1715, 1634 cm-1. Anal. Calc. for C16H12N6O. 

8-Amino-2-benzyl-6-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (66). Yield 79%. m.p. 

288-290 °C (DMF). 1H NMR (DMSO-d6) 5.18 (s, 2H, CH2), 7.31-7.45 (m, 10H, 8 ar + NH2), 

7.72 (s, 1H, H-5), 7.95 (d, 2H, ar, J = 7.2 Hz). Anal. Calc. for C18H15N5O. 

8-Amino-2-benzyl-6-(furan-2-yl)-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (67). Yield 38%. 

m.p. 185-187 °C. Purified by column chromatography (n-Hexane 7/EtOAc 3 / MeOH 0.1). 

1H NMR (DMSO-d6) 5.16 (s, 2H, CH2), 6.58 (dd, 1H, furan proton, J = 1.6 Hz, J =  1.8 Hz), 

6.75 (d, 1H, furan proton, J = 3.1 Hz), 7.31-7.37 (m, 6H, 5 ar + H-5), 7.51 (br s, 2H, NH2), 

7.72 (s, 1H, furan proton). Anal. Calc. for C16H13N5O2. 

8-Amino-2-benzyl-6-(5-methylfuran-2-yl)-1,2,4-triazolo[4,3-a]pyrazin-3-(2H)-one (68). 

Yield 54%. m.p. 215-217 °C Purified by column chromatography. (Cyclohexane 5 /EtOAc 4 

/MeOH 1). 1H NMR (DMSO-d6) 2.33 (s, 3H, CH3), 5.15 (s, 2H, CH2), 6.17-6.18 (m, 1H, furan 

proton), 6.61 (d, 1H, furan proton, J = 3.0 Hz), 7.30-7.39 (m, 6H, ar + H-5), 7.47 (br s, 2H, 

NH2). Anal. Calc. for C17H15N5O2. 

8-Amino-6-(2,4-dimethoxyphenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3 (2H)-one 

(69).  Yield 43%. m.p. 255-257 °C (EtOH/2-Methoxyethanol). 1H NMR (DMSO-d6) 3.82 (s, 

3H, CH3), 3.92 (s, 3H, CH3),  6.64-6.68 (m, 2H, ar),  7.35 (t, 1H, ar, J = 7.4 Hz),  7.43 (br s, 

2H, NH2),  7.57 (t, 2H, ar, J = 8.4 Hz),  7.80 (s, 1H, H-5),  8.02 (d, 1H, ar, J = 8.6 Hz),  8.07 (d, 

2H, ar, J = 8.4 Hz). Anal. Calc. for C19H17N5O3. 

8-Amino-6-(3,4-dimethoxyphenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one 

(70). Yield 65%. m.p. 212-214 °C (EtOH/2-Methoxyethanol). 1H NMR (DMSO-d6) 3.80 (s, 

3H, OCH3), 3.86 (s, 3H, OCH3), 7.00 (d, 2H, ar, J = 8.4 Hz), 7.36 (t, 1H, ar, J = 7.4 Hz),  7.52-

7.58 (m, 6H, 4 ar + NH2), 7.76 (s, 1H, H-5), 8.08 (d, 2H, ar, J = 7.7 Hz).13C-NMR (DMSO-d6) 

55.98,  56.09, 100.99, 109.59, 112.05, 118.63, 119.85, 126.72, 129.57, 129.64, 131.54, 

135.92, 137.99, 147.63, 149.20, 149.42. IR = 3348.42, 3340.00-3300.00, 1714.72, 1699.29 

cm-1. Anal. Calc. for C19H17N5O3. 
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8-Amino-6-(3,4,5-trimethoxyphenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3 (2H)-one 

(71). Yield 95%. m.p.  231-232 °C. Purified by liquid chromatography (CHCl3 9.5/MeOH 

0.4). 1H NMR (DMSO-d6) 3.70 (s, 3H, CH3), 3.87 (s, 6H, CH3), 7.28 (s, 2H, ar), 7.35 (t, 1H, ar, 

J = 7.4 Hz), 7.56-7.58 (m, 4H, ar + NH2), 7.90 (s, 1H, H-5), 8.08 (d, 2H, ar, J = 7.7 Hz). Anal. 

Calc. for C20H19N5O4. 

8-Amino-6-(4-methoxy-3,5-dimethylphenyl)-2-phenyl-[1,2,4]triazolo[4,3-a]pyrazin-

3(2H)-one (72). Yield 70%. m.p. 228-229°C (EtOH). 1H-NMR (DMSO-d6) 2.27 (s, 6H, CH3), 

3.68 (s, 3H, CH3),  7.35 (t, 1H, ar, J = 7.4 Hz), 7.58-7.54 (m, 4H, ar + NH2), 7.71-7.66 (m, 3H, 

ar),  8.07 (d, 2H, ar, J = 7.8 Hz).13C-NMR (DMSO-d6) 16.43, 59.79, 101.15, 119.91, 126.38, 

126.76, 129.66, 130.67, 131.51, 132.02, 135.79, 137.96, 147.62, 147.75, 157.12. IR = 

3400.50, 3298.28, 1699.29 cm-1. Anal. Calc. for C20H19N5O2. 

8-Amino-6-(3,5-di-tert-butyl-4-methoxyphenyl)-2-phenyl-[1,2,4]triazolo[4,3-a]pyrazin-

3(2H)-one (73).  Yield 75%. m.p. 263-264°C (2-Methoxyethanol). 1H-NMR (DMSO-d6) 1.44 

(s, 18H, tBu), 3.66 (s, 3H, CH3), 7.35 (t, 1H, ar, J = 7.4 Hz), 7.54 (br. s, 2H, NH2), 7.56 (t, 2H, 

ar, J = 7.7 Hz), 7.68 (s, 1H, ar), 7.78 (s, 2H, ar), 8.08 (d, 2H, ar, J = 7.7 Hz).IR = 3473.80, 

3296.35, 1716.65 cm-1. Anal. Calc. for C26H31N5O2. 

 

General procedure for the Synthesis of Hydroxy-substituted 8-amino-1,2,4-triazolo[4,3-

a]pyrazin-3(2H)-one derivatives (7-9, 14-16, 74-77). 
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1 M solution of BBr3 in DCM (5.1 mL) was slowly added at 0 °C, under nitrogen 

atmosphere, to a suspension of the methoxy-substituted triazolopirazines 3,4,6, 11-13, 

69-72 (1.02 mmol) in anhydrous DCM (20 mL). The mixture was stirred at room 

temperature until the disappearance of the starting material (TLC monitoring, 5-16 h), 

then was diluted with water (10 mL) and neutralized with a NaHCO3 saturated solution. 

The organic solvent was removed by evaporation at reduced pressure and the solid was 

collected by filtration. The crude compounds were dried and purified by recrystallization 

(compounds 7-9, 14-16, 75) or liquid chromatography (compounds 74, 76, 77). 

8-Amino-2-(4-hydroxyphenyl)-6-methyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (7). 

Yield 65%. m.p. > 300 °C (EtOH/2-Methoxyethanol). 1H NMR (DMSO-d6) 2.11 (s, 3H, CH3), 

6.88 (d, 2H, ar, J = 6.8 Hz), 7.06 (s, 1H, H-5), 7.33 (br s, 2H, NH2), 7.75 (d, 2H, ar, J = 6.8 Hz). 

9.69 (br s, 1H, OH). Anal. Calc. for C12H11N5O2. 

8-Amino-2-(4-hydroxyphenyl)-6-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (8). 

Yield 72%. m.p. > 300 °C (EtOH). 1H NMR (DMSO-d6) 6.91 (d, 2H, ar, J = 8.5 Hz), 7.34 (t, 1H, 

ar, J = 7.5 Hz), 7.43 (t, 3H, ar, J = 7.5 Hz), 7.53 (br s, 2H, NH2), 7.74 (s, 1H, H-5), 7.78 (d, 2H, 

ar, J = 8.5 Hz), 7.97 (d, 2H, ar, J = 7.8 Hz), 9.72 (s, 1H, OH). IR = 3393-3122, 1642, 1667 cm-

1. Anal. Calc. for C17H13N5O2. 

8-Amino-2-(2-hydroxyphenyl)-6-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (9). 

Yield 67%. m.p. 271-273 °C (2-Methoxyethanol). 1H NMR (DMSO-d6) 6.95 (t, 1H, ar, J = 7.5 

Hz), 7.03 (d, 1H, ar, J = 8.1 Hz), 7.33-7.44 (m, 5H ar), 7.55 (br s, 2H, NH2), 7.75 (s, H, H-5), 

7.98 (d, 2H, ar, J = 7.5 Hz), 9.88 (s, 1H, OH). Anal. Calc. for C17H13N5O2. 

8-Amino-6-(2-hydroxyphenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (14). 

Yield 88%. m.p. 274-276 °C (EtOH). 1H NMR (DMSO-d6) 6.83-6.87 (m, 2H, ar), 7.18 (t, 1H, 

ar, J = 8.1 Hz), 7.37 (t, 1H, ar, J = 7.8 Hz), 7.57 (t, 2H, ar, J = 8.0 Hz), 7.91- 7.93 (m, 4H, 1ar 

+ H-5 + NH2), 8.07 (d, 2H, ar, J = 8. 0 Hz). 11.93 (s, 1H, OH). 13C NMR (DMSO-d6) 102.57, 

117.76, 119.46, 119.61, 119.90, 126.87, 127.18, 129.70, 129.87, 131.27, 134.75, 137.88, 

147.12, 147.59, 157.06. Anal. Calc. for C17H13N5O2. 

8-Amino-6-(3-hydroxyphenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (15). 

Yield 93%. m.p. > 300 °C (EtOH/2-Methoxyethanol). 1H NMR (DMSO-d6) 6.75 (d, 1H, ar J = 

7.3 Hz), 7.21 (t, 1H, ar, J = 7.4 Hz), 7.36-7.38 (m, 3H, ar), 7.55-7.61 (m, 5H, 3 ar + NH2), 7.61 

(s, 1H, H-5), 8.08 (d, 2H, ar, J = 8.1 Hz), 9.45 (s, 1H, OH). Anal. Calc. for C17H13N5O2.  
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8-Amino-6-(4-hydroxyphenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (16). 

Yield 85%. m.p. 285-286 °C (EtOH/2-Methoxyethanol). 1H NMR (DMSO-d6) 6.81 (d, 2H, ar., 

J = 6.8 Hz), 7.35 (t, 1H, ar, J = 7.4 Hz), 7.40 (t, 2H, ar, J= 7.6 Hz), 7.53 (br s, 2H, NH2), 7.73 

(s, 1H, H-5), 7.79 (d, 2H, ar, J = 6.8 Hz), 8.08 (d, 2H, ar, J = 7.6 Hz), 9.58 (s, 1H, OH). IR = 

3379-3294, 1694, 1643 cm-1. Anal. Calc. for C17H13N5O2. 

8-Amino-6-(4-hydroxy-2-methoxyphenyl)-2-phenyl-[1,2,4]triazolo[4,3-a]pyrazin-3(2H)-

one (74) . Yield 90%. m.p. 282-284 °C. Purified by liquid chromatography (Cyclohexane 

5/EtOAc 5/MeOH 1). 1H-NMR (DMSO-d6) 9.67 (br. s, 1H, OH), 8.07 (d, 2H, ar, J = 7.8 Hz), 

7.91 (d, 1H, ar, J = 8.6 Hz), 7.77 (s, 1H, H-5), 7.56 (t, 2H, ar, J = 7.7 Hz), 7.39-7.33 (m, 3H, 

NH2+ ar), 6.53 (s, 1H, ar), 6.47 (d, 1H, ar, J = 8.5 Hz), 3.87 (s, 3H, CH3). Anal. Calc. for 

C18H15N5O3. 

8-Amino-6-(3,4-dihydroxyphenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (75). 

Yield 88%. m.p. 256-258 °C (EtOH). 1H NMR (DMSO-d6) 6.77 (d, 1H, ar, J = 8.1 Hz), 7.23 

(dd, 1H, ar, J = 8.1, 1.5 Hz), 7.38-7.36 (m, 2H, ar), 7.43-7.53 (s + br s, H-5 + NH2), 7.55 (t, 

2H, ar, J = 7.5 Hz), 8.08 (d, 2H, ar, J = 8.6 Hz), 9.00 (br s, 2H, 2 OH). 13C-NMR (DMSO-d6) 

99.83, 113.69, 116.06, 117.26, 119.81, 126.71, 128.23, 129.65, 131.51, 136.46, 137.99, 

145.66, 146.14, 147.56, 147.59, IR = 3417.86-3091.89, 1693.50, 1681.93 cm-1. Anal. Calc. 

for C17H13N5O3.  

8-Amino-6-(3,4,5-trihydroxyphenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one 

(76).  Yield 79%. m.p. 281-283 °C. Purified by liquid chromatography (CHCl3 9/MeOH 1). 

1H-NMR (DMSO-d6) 6.85 (s, 2H, ar), 7.30 (s, 1H, H-5), 7.35 (t, 1H, ar, J = 7.4 Hz), 7.46 (br. S, 

2H, NH2),  7.56 (t, 2H, ar, J = 7.6 Hz), 8.07 (d, 2H, ar, J = 7.8 Hz), 8.29 (br s, 1H, OH),  8.91 

(br. s, 2H, OH). Anal. Calc. for C17H13N5O4. 

8-amino-6-(4-hydroxy-3,5-dimethylphenyl)-2-phenyl-[1,2,4]triazolo[4,3-a]pyrazin-

3(2H)-one (77). Yield 90%. m.p. 236 °C. Purified by liquid chromatography (Cyclohexane 1 

/EtOAc 1). 1H-NMR (DMSO-d6) 2.21 (s, 6H, CH3), 7.35 (t, 1H, ar, J = 7.3 Hz), 7.45 (s, 2H, ar), 

7.54 (s, 1H, ar), 7.55-7.52 (m, 7H, ar + NH2), 8.07 (d, 2H, ar, J = 7.9 Hz) 8.40 (br. s, 1H, OH). 

13C-NMR (DMSO-d6) 17.21, 99.91, 119.85, 124.54, 126.04, 126.71, 127.54, 129.65, 131.49, 

136.39, 137.99, 147.59, 147.64, 153.94. IR = 3550-3450, 3363.86, 3323.35, 1699.29 cm-1. 

Anal. Calc. for C19H17N5O2. 
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Synthesis of 8-amino-6-(3-(tert-butyl)-4-hydroxyphenyl)-2-phenyl-[1,2,4]triazolo[4,3-

a]pyrazin-3(2H)-one (78).  

 

A solution of 48% aqueous HBr (2.5 mL) was added to a mixture of 8-amino-6-(3,5-di-tert-

butyl-4-methoxyphenyl)-2-phenyl-[1,2,4]triazolo[4,3-a]pyrazin-3(2H)-one (73) (0.50 

mmol) in glacial AcOH (2 mL). The mixture was refluxed 24 h, then the cooled suspension 

was treated with ice and water (30 mL) and the solid was collected by filtration and rinsed 

with Et2O. The crude product was purified by column chromatography (CHCl3 9.5/MeOH 

0.5). Yield 89%.  m.p. > 300 °C  1H-NMR (DMSO-d6) 1H NMR (400 MHz, DMSO) δ 9.54 (s, 

1H, OH), 8.08 (d, 2H, ar, J = 7.7 Hz), 7.72 (d, 1H, ar, J = 2.0 Hz), 7.58-7.54 (m, 3H, ar + H-5), 

7.50 (s, 3H, ar + NH2), 7.35 (t, 1H, ar, J = 7.4 Hz), 6.82 (d, 1H, ar, J = 8.3 Hz), 1.40 (s, 9H, 

(CH3)3). 13C NMR (DMSO-d6) 37.26, 45.14, 52.50, 101.01, 119.35, 119.85, 126.02, 126.33, 

126.74, 128.73, 129.65, 131.45, 131.56, 135.74, 137.97, 139.58, 142.94, 144.95, 145.36, 

147.61, 147.79, 170.84. Anal. Calc. for C21H21N5O2. 

 

General procedure for the synthesis of 8-amino-6-(alkyloxyphenyl)-2-phenyl-1,2,4-

triazolo[4,3-a]pyrazin-3(2H)-ones (18-28).  

 

 

 

 

 

 

 

 R  R 
18 3-O-propargyl 24 4-O-iC3H7 
19 4-O-propargyl 25 4-OCH2-iC3H7 
20 3-OCH2Ph 26 4-OCH2cC3H5 
21 4-OCH2Ph 27 4-OCH2cC4H7 
22 4-OC2H5 28 4-OCH2-CH=CH2 
23 4-O-nC3H7  
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A solution of the suitable alkyl bromide (1.2 mmol) in butan-2-one (3 mL) was added 

dropwise to a mixture of the hydroxyphenyl- derivative 15 or 16 (1 mmol) and K2CO3 (2 

mmol) in butan-2-one (5 mL). The mixture was heated at reflux until the disappearance of 

the starting hydroxy-derivative (TLC monitoring, 7-58 h). After cooling at room 

temperature, the solid was collected by filtration, washed with water and recrystallized. 

8-Amino-2-phenyl-6-(3-propargyloxyphenyl)-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one 

(18). Yield 58%. m.p. 217-219 °C (EtOH/2-Methoxyethanol). 1H NMR (DMSO-d6) 3.58 (t, 

1H, CH, J = 2.3 Hz), 4.89 (d, 2H, CH2, J = 2.3 Hz), 6.97 (d, 1H, ar, J = 6.5 Hz), 7.36 (t, 2H, ar, J 

= 7.6 Hz), 7.55-7.63 (m, 6H, 4ar + NH2), 7.84 (s, 1H, H-5), 8.08 (d, 2H, ar, J = 7.6 Hz). IR = 

3443, 3298, 1721, 1643 cm-1. Anal. Calc. for C20H15N5O2.   

8-Amino-2-phenyl-6-(4-propargyloxy)phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one 

(19).  Yield 56%. m.p. 244-245 °C (AcOH). 1H NMR (DMSO-d6) 3.59 (t, 1H, CH, J = 2.3 Hz), 

4.85 (d, 2H, CH2, J = 2.4 Hz), 7.04 (d, 2H, ar, J = 6.9 Hz), 7.36 (t, 1H, ar, J = 7.4 Hz), 7.54-7.59 

(m, 4H, 2ar + NH2), 7.69 (s, 1H, H-5), 7.93 (d, 2H, ar, J = 6.9 Hz), 8.08 (d, 2H, ar, J = 7.6 Hz). 

IR = 3458, 3331, 3219, 1695, 1620 cm-1. Anal. Calc. for C20H15N5O2.  

8-Amino-6-(3-benzyloxyphenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (20). 

Yield 78%. m.p. 264-266 °C (2-Methoxyethanol). 1H NMR (DMSO-d6) 5.19 (s, 2H, CH2), 6.99 

(d, 1H, ar, J = 8.3 Hz), 7.32-7.65 (m, 13H, 11ar + NH2), 7.84 (s, 1H, H-5), 8.07 (d, 2H, ar, J = 

8.0 Hz). Anal. Calc. for C24H19N5O2.  

8-Amino-6-(4-benzyloxyphenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (21). 

Yield 78%. m.p. 284-285 °C (2-Methoxyethanol). 1H NMR (DMSO-d6) 5.16 (s, 2H, CH2), 7.07 

(d, 2H, ar, J = 8.9 Hz), 7.34-7.48 (m, 6H, ar), 7.51-7.58 (m, 4H, 2ar + NH2), 7.67 (s, 1H, H-5), 

7.92 (d, 2H, ar, J = 8.9 Hz), 8.08 (d, 2H,ar, J = 7.6 Hz). IR = 3362, 3310, 1697, 1647 cm-1. 

Anal. Calc. for C24H19N5O2. 

8-Amino-6-(4-ethoxyphenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (22). Yield 

72%. m.p. 267-268 °C (EtOH/2-Methoxyethanol). 1H NMR (DMSO-d6) 1.35 (t, 3H, CH3, J = 

7.0 Hz), 4.07 (q, 2H, CH2, J = 7.0 Hz), 6.96 (d, 2H, ar, J = 6.8 Hz), 7.36 (t, 1H, ar, J = 8.8 Hz), 

7.53-7.58 (m, 4H, 2ar + NH2), 7.65 (s, 1H, H-5), 7.90 (d, 2H, ar, J = 6.8 Hz), 8.08 (d, 2H, ar, J 

= 8.8 Hz). IR = 3119, 3102, 1697, 1647 cm-1. Anal. Calc. for C19H17N5O2.  

8-Amino-6-(4-n-propyloxyphenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one 

(23). Yield 67%. m.p. 266-267 °C (2-Methoxyethanol). 1H NMR (DMSO-d6) 0.99 (t, 3H, CH3, 

J = 7.4 Hz), 1.72-1.77 (m, 2H, CH2), 3.97 (t, 2H, CH2, J = 6.5 Hz), 6.97 (d, 2H, ar, J = 8.8 Hz), 



6.EXPERIMENTAL SECTION 

                                                                                                                                                                           

122 

7.35 (t, 1H, ar, J = 7.3 Hz), 7.54-7.58 (m, 2ar + NH2), 7.65 (s, 1H, H-5), 7.89 (d, 2H, ar, J = 

8.8 Hz), 8.07 (d, 2H, ar, J = 7.9 Hz). Anal. Calc. for C20H19N5O2.  

8-Amino-6-(4-isopropyloxyphenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one 

(24). Yield 70%. m.p. 240-241 °C (EtOH/2-Methoxyethanol). 1H NMR (DMSO-d6) 1.30 (d, 

6H, 2CH3, J = 6.0 Hz), 4.63-4.69 (m, 1H, CH), 6.96 (d, 2H, ar, J = 8.7 Hz), 7.36 (t, 1H, ar, J = 

7.4 Hz), 7.52 (br s, 2H, NH2), 7.58 (m, 2H, ar, J = 7.7 Hz), 7.64 (s, 1H, H5), 7.88 (d, 2H, ar, J = 

8.7 Hz), 8.08 (d, 2H, ar, J = 7.9 Hz). IR = 3385, 3310, 1701, 1638 cm-1. Anal. Calc. for 

C20H19N5O2.  

8-Amino-6-(4-isobutyloxyphenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (25). 

Yield 64%. m.p. 249-251 °C (2-Methoxyethanol). 1H NMR (DMSO-d6) 1.00 (d, 6H, 2CH3, J= 

6.5 Hz), 1.99-2.06 (m, 1H, CH), 3.78 (d, 2H, CH2, J = 6.5 Hz), 6.97 (d, 2H, J = 8.7 Hz), 7.35 (t, 

1H, ar, J = 7.3 Hz), 7.54-7.57 (m, 2ar + NH2), 7.65 (s, 1H, H-5), 7.98 (d, 2H, ar, J = 8.7 Hz), 

8.07 (d, 2H, ar, J = 7.9 Hz). Anal. Calc. for C21H21N5O2.  

8-Amino-6-[(4-cyclopropylmethoxy)phenyl]-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-

3(2H)-one (26). Yield 86%. m.p. 276-278 °C (EtOH/2-Methoxyethanol). 1H NMR (DMSO-

d6) 0.32-0.36 (m, 2H, 2CH), 0.57-0.60 (m, 2H, 2CH), 1.21-1.24 (m, 1H, CH), 3.85 (d, 2H, CH2, 

J = 7.0 Hz), 6.97 (d, 2H, ar, J = 8.9 Hz), 7.36 (t, 1H, ar, J = 7.4 Hz), 7.54 (br s, 2H, NH2), 7.56 

(t, 2H, ar, J = 7.4 Hz), 7.65 (s, 1H, H-5), 7.91 (d, 2H, ar, J = 8.9 Hz), 8.08 (d, 2H, ar, J = 7.4 Hz). 

IR = 3362, 3316, 1669, 1649 cm-1. Anal. Calc. for C21H19N5O2.  

8-Amino-6-[(4-cyclobutylmethoxy)phenyl]-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-

one (27). Yield 45%. m.p. 266-268 °C (EtOH/2-Methoxyethanol). 1H NMR (DMSO-d6) 1.88-

1.96 (m, 4H, 4CH), 2.06-2.13 (m, 2H, 2CH), 2.72-2.75 (m, 1H, CH), 3.99 (d, 2H, CH2, J = 6.7 

Hz), 6.98 (d, 2H, ar, J = 8.8 Hz), 7.36 (t, 1H, ar, J = 7.4 Hz), 7.56 (br s, 2H, NH2),  (t, 2H, ar, J 

= 7.8 Hz), 7.65 (s, 1H, H-5), 7.90 (d, 2H, ar, J = 8.8 Hz), 8.08 (d, 2H, ar, J = 7.8 Hz). IR = 3354, 

3312, 1699, 1647 cm-1.  Anal. Calc. for C22H21N5O2.  

8-Amino-2-phenyl-6-(4-allyloxy)phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (28). 

Yield 75%. m.p. 260-261 °C (2-Methoxyethanol). 1H NMR (DMSO-d6) 4.60 (d, 2H, CH2), 

5.27 (d, 1H, geminal CH, J = 10.4 Hz), 5.42 (d, 1H, geminal CH=, J = 17.4 Hz), 6.02-6.11 (m, 

1H, CH=), 7.00 (d, 2H, ar, J = 8.8 Hz), 7.35 (t, 1H, ar, J = 7.9 Hz), 7.54-7.58 (m, 2ar + NH2), 

7.66 (s, 1H, H-5), 7.90 (d, 2H, ar, J = 8.8 Hz), 8.07 (d, 2H, ar, J = 7.9 Hz). Anal. Calc. for 

C20H17N5O2.  
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General procedure for the synthesis of amino-substituted 8-amino-1,2,4-triazolo[4,3-

a]pyrazin-3(2H)-one derivatives (10, 37-39). 

 

10% Pd/C (10% w/w with respect to the nitro derivative) was added to a solution of the 

6-(nitrophenyl) derivatives 5, 34-36 (1.2 mmol) in DMF (10 mL). The mixture was 

hydrogenated in a Parr apparatus at 40 psi for 24 h (TLC, monitoring). Then the catalyst 

was filtered off and the clear solution was diluted with water (about 50 mL) to obtain a 

solid that was collected by filtration, washed with water and Et2O, dried and 

recrystallized. 

8-Amino-2-(4-aminophenyl)-6-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3-(2H)one (10). . 

Yield 39%. m.p. >300 °C (2-Methoxyethanol). 1H NMR (DMSO-d6) 5.33 (br s, 2H, NH2), 6.68 

(d, 2H, ar, J = 8.7 Hz), 7.34 (t, 1H, ar, J = 7.2 Hz), 7.42 (t, 2H, J = 7.4 Hz), 7.49 (br s, 2H, NH2), 

7.57 (d, 2H, J= 8.7 Hz), 7.72 (s, 1H, H-5), 7.96 (d, 2H, ar, J = 7.4 Hz). Anal. Calc. for. 

C17H14N6O. 

8-Amino-6-(2-aminophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3 (2H)-one (37). Yield 

59%. m.p. 256-258 °C (2-Methoxyethanol). 1H NMR (DMSO-d6) 5.78 (br s , 2H, NH2), 6.58 

(t, 1H, ar, J = 7.4 Hz), 6.72 (d, 1H, ar, J = 8. 00 Hz), 7.05 (t, 1H, ar, J = 7.2 Hz), 7.30-7.38 (m, 

3H, 2 ar + H-5), 7.56 (t, 2H, ar, J = 7.9 Hz), 7.62 (br s, 2H, NH2), 8.07 (d, 2H, ar, J = 7.9 Hz). 

Anal. Calc. for. C17H14N6O. 

8-Amino-6-(3-aminophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3 (2H)-one (38). Yield 

75%. m.p. 280-282 °C (2-Methoxyethanol). 1H NMR (DMSO-d6) 5.10 (br s , 2H, NH2), 6.54-

6.57 (m, 1H, ar), 7.04-7.10 (m, 2H, ar), 7.16 (s, 1H, ar), 7.36 (t, 1H, ar, J = 7.4 Hz), 7.50 (s, 

1H, H-5), 7.51 (br s, 2H, NH2), 7.56 (t, 2H, ar, J = 7.7 Hz), 8.08 (d, 2H, ar, J = 7.7 Hz). Anal. 

Calc. for. C17H14N6O. 

8-Amino-6-(4-aminophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3 (2H)-one (39). Yield 

78%. m.p. 294-296 °C (Nitromethane/DMF). 1H NMR (DMSO-d6) 5.27 (br s, 2H, NH2), 6.59 

(d, 2H, ar, J = 8.6 Hz), 7.35 (t, 1H, ar, J = 7.4 Hz), 7.44 (br s , 2H, NH2), 7.46 (s, 1H, H-5), 7.56 

(t, 2H, ar, J = 8. 5 Hz), 7.64 (d, 2H, ar, J = 8.6 Hz), 8.08 (d, 2H, ar, J = 7. 6 Hz). 13C-NMR 
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(DMSO-d6) 98.70, 114.1 119.83, 124.15, 126.68, 126.89, 129.64, 131.50, 136.93, 138.03, 

147.54, 147.56, 149.40. IR = 1703, 3292-3115, 3350, 3435 cm-1. Anal. Calc. for. C17H14N6O. 

 

General procedure for the synthesis of 8-amino-2-phenyl-6-(piperazinylphenyl)-1,2,4-

triazolo[4,3-a]pyrazin-3-(2H)one (40-42). 

 

A suspension of the 8-amino-6-(aminophenyl) derivatives 37-39 (1.1 mmol) and bis-(2-

chloroethyl)amine hydrochloride in sulfolane (5 mL) was heated at 150 °C until the 

disappearance of  starting material (TLC-monitoring 16-24 h). After cooling at 0-5 °C, the 

mixture was treated with acetone (30 mL) and the obtained ammonium salts were 

collected by filtration and dissolved in water (50 mL). The solution was neutralized with a 

NaHCO3 saturated solution and extracted with EtOAc (40 mL x 5). The organic phase was 

anhydrified (Na2SO4) and reduced to dryness under vacuum to give a yellow solid. All the 

crude derivatives were purified by recrystallization. 

8-Amino-2-phenyl-6-(2-piperazin-1-yl-phenyl)-1,2,4-triazolo[4,3-a]pyrazin-3-(2H)one 

(40). Yield 52%. m.p. 214-216 °C (Nitromethane). 1H NMR (DMSO-d6) 2.82 (s , 8H, 4 CH2), 

7.08-7.11 (m, 2H, ar), 7.28 (t, 1H, ar, J = 7.6 Hz), 7.36 (t, 1H, ar, J = 7.4 Hz), 7.51 (br s, 2H, 

NH2), 7.56 (t, 2H, ar, J = 7.7 Hz), 7.84 (d, 1H, ar, J = 6.6 Hz), 8.09 (d, 2H, ar, J = 7.8 Hz), 8.40 

(s, 1H, H-5). Anal. Calc. for. C21H21N7O. 

8-Amino-2-phenyl-6-(3-piperazin-1-yl-phenyl)-1,2,4-triazolo[4,3-a]pyrazin-3-(2H)one 

(41). Yield 47%. m.p. 234-235 °C (Nitromethane). 1H NMR (DMSO-d6) 2.86 (t, 4H, 2 CH2, J 

= 4. 9 Hz), 3.11 (t, 4H, 2 CH2, J = 5.1 Hz), 6. 90 (dd, 1H, ar, J = 6.3 Hz, J = 1.9 Hz), 7.25 (t, 1H, 

ar), 7.34-7.39 (m, 2H, ar), 7.51-7.58 (m, 5H, 3 ar + NH2), 7.77 (s, 1H, H-5), 8.08 (d, 2H, ar, J 

= 8.6 Hz). Anal. Calc. for. C21H21N7O. 

8-Amino-2-phenyl-6-(4-(piperazin-1-yl-)phenyl)-1,2,4-triazolo[4,3-a]pyrazin-3-(2H)one 

(42). Yield 56%. m.p. 255-257 °C (Nitromethane). 1H NMR (DMSO-d6) 1H NMR (DMSO-d6) 

2.84 (t, 4H, 2 CH2, J = 4.9 Hz), 3.11 (t, 4H, 2 CH2, J = 5.1 Hz), 7. 96 (d, 2H, ar, J = 8.9 Hz), 
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7.36 (t, 1H, ar, J = 7.4 Hz), 7. 50 (br s, 2H, NH2), 7. 54- 7.59 (m, 2H, 1 ar + H-5), 7.82 (d, 2H, 

ar, J = 8.8 Hz), 8.08 (d, 2H, ar, J = 7.7 Hz). Anal. Calc. for. C21H21N7O. 

 

Synthesis of 4-(3-(8-amino-3-oxo-2-phenyl-2,3-dihydro-1,2,4-triazolo[4,3-a]pyrazin-6-

yl)phenyl)-1,1-dimethyl-piperazin-1-ium (43).  

 

A mixture of compound 41 (0.4 mmol), methyl iodide (0.7 mmol) and potassium 

carbonate in anhydrous DMF (0.5 mL) was stirred at room temperature for 7 h, then it 

was diluted with H2O (about 50 mL) and EtOAc (about 40 mL). The obtained solid was 

collected by filtration and recrystallized. Yield 35%. m.p. > 300 °C (DMF). 1H NMR (DMSO-

d6) 3.23 (s, 6H, 2CH3), 3.61 (br s, 8H, piperazine protons), 7.02 (d, 1H, ar, J = 7.6 Hz), 7.32-

7.38 (m, 2H, ar), 7.52-7.59 (m, 6H, 4 ar + NH2), 7.87 (s, 1H, H-5), 8.07 (d, 2H, ar, J = 8.2 Hz). 

). Anal. Calc. for C23H26N7O+. 

 

General procedure for the synthesis of 8-amino-6-((4-benzylpiperazin-1-yl)-phenyl)-2-

phenyl-1,2,4-triazolo[4,3-a]pyrazin-3-(2H)one (44, 45). 

 

A suspension of the 8-amino-6-(piperazinyl)phenyl derivative 41 or 42 (0.7 mmol), 

anhydrous triethylamine (0.9 mmol) and benzylchloride (0.9 mmol) in anhydrous dioxane 

(10 mL) was refluxed until the disappearance of starting material (TLC monitoring, 24-48 

h). In case of compound 44, the organic solvent was removed by evaporation at reduced 

pressure and the residue treated with EtOAc (50 mL). The organic phase was washed with 

water (30 mL x 3), anhydrified (Na2SO4) and reduced to dryness under vacuum to give a 

solid. To isolate compound 45, the solvent was evaporated under vacuum and the residue 

was treated with water (30 mL). The resulting solid was collected by filtration and washed 
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with diethyl ether (about 20 mL). The crude products were purified by recrystallization 

(44) or column chromatography (45). 

8-Amino-6-[3-(4-benzylpiperazin-1-yl)phenyl]-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3-

(2H)one (44). Yield 34%. m.p. 208-210 °C (EtOH). 1H NMR (DMSO-d6) 2.55 (t, 4H, 2 CH2, J 

= 4. 8 Hz), 3.22 (t, 4H, 2 CH2, J = 4.9 Hz), 6.91 (dd, 1H, ar, J = 6.2, J = 2.00 Hz), 7.24-7.30 (m, 

2H, ar), 7.34-7.31 (m, 6H, ar), 7.52-7.59 (m, 5H, 3 ar + NH2), 7.77 (s, 1H, H-5), 8.08 (d, 2H, 

ar, J = 7.6 Hz). Anal. Calc. for.  C28H27N7O. 

8-Amino-6-[4-(4-benzylpiperazin-1-yl)phenyl]-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3-

(2H)one (45). Purified by liquid chromatography (Cyclohexane 5.5 /EtOAc 4.5/ MeOH 0.1). 

Yield 63%. m.p. 244-246 °C (EtOH). 1H NMR (CDCl3-d6 ) 2.65 (t, 4H, 2 CH2, J = 4. 8 Hz), 3.30 

(t, 4H, 2 CH2, J = 4.9 Hz), 5.54 (br s, 2H, NH2), 6.98 (d, 2H, ar, J = 8.8 Hz), 7.30-7.40 (m, 6H, 

ar), 7.52 (t, 2H, ar, J = 7.7 Hz), 7.60 (s, 1H, H-5), 7.76 (d, 2H, ar, J = 8.8 Hz), 8.12 (d, 2H, ar, 

J = 7.8 Hz). 13C NMR (DMSO-d6) 48.63, 52.95, 63.07, 101.56, 110.64, 119.84, 126.64, 

126.85, 127.21, 128.32, 129.19, 129.24, 130.81, 136.62, 137.58, 146.38, 147.47, 151.50. 

Anal. Calc. for.  C28H27N7O. 

 

General procedure for the synthesis 2-(4-(8-amino-3-oxo-2-phenyl-2,3-dihydro-

[1,2,4]triazolo[4,3-a]pyrazin-6-yl)phenoxy)acetonitrile/acetamide (46-47). 

 

2-Chloroacetamide (7.05 mmol, 46) or 2-chloroacetonitrile (6.28 mmol, 47) was added to 

a suspension of 8-amino-6-(4-hydroxyphenyl)-2-phenyl-[1,2,4]triazolo[4,3-a]pyrazin-

3(2H)-one (16) (1.57 mmol) and K2CO3 (3.14 mmol) in anhydrous acetone (20 mL) . The 

mixture was stirred at room temperature overnight (TLC monitoring). The resulting solid 

was collected by filtration, rinsed with water (20 mL) and petroleum ether, dried and 

purified by recrystallization. 
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2-(4-(8-amino-3-oxo-2-phenyl-2,3-dihydro-[1,2,4]triazolo[4,3-a]pyrazin-6-

yl)phenoxy)acetamide (46). 

 

 Yield 51%. m.p. 260-263 °C (EtOH/ 2-Methoxyethanol). 1H NMR (DMSO-d6) 8.08 (d, 2H, 

ar, J = 7.8 Hz), 7.92 (d, 2H, ar, J = 8.3 Hz), 7.68 (s, 1H, H-5), 7.56-7-55 (m, 4H, ar + NH2), 

7.41 (br s, 1H, NH2), 7.34 (t, 1H, ar, J = 7.2 Hz), 7.01 (d, 2H, ar, J = 8.3 Hz), 4.47 (s, 2H, CH2). 

13C NMR (DMSO-d6) 39.39, 39.59, 39.8, 40.01, 40.22, 40.43, 40.64, 43.05, 67.25, 100.73, 

102.92, 115.12, 119.87, 126.74, 127.22, 129.64, 129.88, 131.53, 135.75, 137.98, 147.62, 

147.78, 158.26, 170.32. IR = 3458, 3371, 3284, 3209, 2671, 1707, 1377 cm-1). Anal. Calc. 

for C19H16N6O3. 

 

2-(4-(8-amino-3-oxo-2-phenyl-2,3-dihydro-[1,2,4]triazolo[4,3-a]pyrazin-6 

yl)phenoxy)acetonitrile (47). 

 

Yield 89%. m.p. 249-250 °C (EtOH). 1H NMR (DMSO d6) 8.08 (d, 2H, ar, J = 7.7 Hz), 8.00 (d, 

2H, ar, J = 8.8 Hz), 7.75 (s, 1H, H-5), 7.63–7.50 (m, 4H, ar + NH2), 7.36 (t, 1H, ar, J = 7.4 Hz), 

7.13 (d, 2H, ar, J = 8.9 Hz), 5.22 (s, 2H). 13C NMR (DMSO-d6) 39.39, 39.60, 39.81, 40.02, 

40.23, 40.44, 40.65, 54.01, 101.21, 115.28, 117.11, 119.87, 126.74, 127.46, 129.64, 

131.23, 131.54, 135.42, 137.97, 147.63, 147.83, 156.74. IR = 3406, 3311, 3169, 1701, 

1643, 1460 cm-1. Anal. Calc. for.  C19H14N6O2. 
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Synthesis of 8-amino-6-(4-(2-aminoethoxy)phenyl)-2-phenyl-[1,2,4]triazolo[4,3-

a]pyrazin-3(2H)-one (48). 

 

 2-(4-(8-Amino-3-oxo-2-phenyl-2,3-dihydro-[1,2,4]triazolo[4,3-a]pyrazin-

yl)phenoxy)acetonitrile (47) (0.78 mmol) was added  portionwise to a suspension of LiAlH4 

(1.95 mmol) in anhydrous THF (20 mL) at 0 °C. The mixture was stirred at room 

temperature for 2 h, then treated with ice and water (15 mL) and extracetd with EtOAc 

(20 mL x 3). The organic phase was washed with water (20 mL x 3) and anhydrified 

(Na2SO4), then the solvent eliminated under reduced pressure. The resulting residue was 

treated with water (20 mL) and collected by filtration. The crude was purified by column 

chromatography (CHCl3 9.5/MeOH 0.5). Yield 78%. m.p. 239-241 °C 1H NMR (DMSO-d6) 

2.89 (t, 2H, CH2, J = 5.3 Hz), 3.96 (t, 2H, CH2, J = 5.4 Hz), 6.98 (d, 2H, ar, J = 8.5 Hz), 7.35 (t, 

1H, ar, J = 7.3 Hz), 7.45 – 7.60 (m, 4H, ar + NH2), 7.65 (s, 1H, H-5), 7.90 (d, 2H, ar, J = 8.5 

Hz), 8.07 (d, 2H, ar, J = 7.9 Hz). IR: 3391, 3329, 3215, 3111, 2677, 1705, 1655, 1547, 1510, 

1456, 1360, 1246 cm-1. Anal.Calc. for  C19H18N6O2. 

 

Synthesis of 8-amino-6-(4-(2-hydroxyethoxy)phenyl)-2-phenyl-[1,2,4]triazolo[4,3-

a]pyrazin-3(2H)-one (49). 

 

Ethylene carbonate (2.96 mmol) was added to a suspension of 8-amino-6-(4-

hydroxyphenyl)-2-phenyl-[1,2,4]triazolo[4,3-a]pyrazin-3(2H)-one (16) (1.41 mmol) and 

K2CO3 (1.41 mmol) in anhydrous DMF (1.5 mL), The mixture was heated at 110 °C for 6h 

then treated with water (20 mL). The solid was collected by filtration, rinsed with 

petroleum ether, dried and recrystallized. Yield 88 %. m.p. 269-269 °C (2-

Methoxyethanol).1H NMR (DMSO-d6) 3.73 (dd, 2H, J = 10.1, 5.2 Hz), 4.03 (t, 2H, J = 5.0 Hz), 
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4.88 (t, 1H, OH, J = 5.5 Hz), 6.99 (d, 2H, ar, J = 8.8 Hz), 7.35 (t, 1H, ar, J = 7.4 Hz), 7.54 – 

7.58 (m, 4H, ar + NH2), 7.65 (s, 1H, H-5), 7.90 (d, 2H, ar, J = 8.8 Hz), 8.08 (d, 2H, ar, J = 7.9 

Hz). 13C NMR (DMSO-d6) 59.20, 152.15, 147.76, 140.65, 137.99, 137.05, 135.88, 129.65, 

129.19, 127.28, 126.73, 125.19, 119.85, 119.12, 114.85, 70.02, 61.53, 60.04. Anal. Calc. 

for  

 

Synthesis of 8-amino-6-(4-(2,3-dihydroxypropoxy)phenyl)-2-phenyl-[1,2,4]triazolo[4,3-

a]pyrazin-3(2H)-one (50). 

 

 A solution of 3-chloropropane-1,2-diol in anhyrous acetonitrile (2 mL) was added to a 

suspension of 8-amino-6-(4-hydroxyphenyl)-2-phenyl-[1,2,4]triazolo[4,3-a]pyrazin-3(2H)-

one (16)  (0.626 mmol) and anhydrous K2CO3 (3.13 mmol) in acetonitrile (5 mL). The 

mixture was refluxed for 36 h (TLC monitoring). The solvent was eliminated under 

reduced pressure and the residue was treated with water (20 mL). The solid was collected 

by filtration, rinsed with Et2O/acetone (20 + 10 mL), dried and recrystallized. Yield 73%. 

m.p. 237-239 °C. (2-Methoxyethanol) 1H NMR (DMSO-d6) 3.47 (t, 2H, J = 5.5 Hz), 3.81 (dd, 

1H, J = 11.1, 4.2 Hz), 3.91 (dd, 1H, J = 9.8, 6.1 Hz), 4.05 (dd, 1H, J = 9.8, 4.2 Hz), 4.65 (t, 1H, 

OH, J = 5.6 Hz), 4.93 (d, 1H, OH, J = 5.1 Hz), 6.99 (d, 2H, ar, J = 8.9 Hz), 7.36 (t, 1H, ar, J = 

7.4 Hz ), 7.56 (7, 4 H, J =), 7.65 (s, 1H, H-5), 7.90 (d, 2H, J = 8.8 Hz), 8.08 (d, 2H, J = 7.8 Hz). 

). Anal. Calc. for. C20H19N5O4. 
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Synthesis of N-(4-(8-amino-3-oxo-2-phenyl-2,3-dihydro-[1,2,4]triazolo[4,3-a]pyrazin-6-

yl)phenyl)acrylamide (194).  

 

A mixture of 8-amino-6-(4-aminophenyl)-2-phenyl-[1,2,4]triazolo[4,3-a]pyrazin-3(2H)-

one (39) (1.00 mmol), 3-chloropropionic acid (1.2 mmol), EDCI. HCl (1.2 mmol), DIPEA (1.2 

mmol) in anhydrous DMF (3 mL) was stirred at room temperature for 2h. The mixture was 

treated with water (30 mL). The resulting solid was collected by filtration washed with 

Et2O and recrystallized. Yield 99%. m.p. > 300 °C (Nitromethane) 1H-NMR (DMSO-d6) 5.76 

(m, 1H, CH), 6.28 (m, 1H, CH), 6.50 (m, 1H, CH), 7.33 (t, 1H, ar, J = 7.2 Hz), 7.52-7.54 (m, 

4H, ar + NH2), 7.69 (s, 1H, H-5), 7.75 (d, 2H, ar, J = 8.5 Hz), 7.93 (d, 2H, ar, J = 8.9 Hz), 8.07 

(d, 2H, ar, J = 7.9 Hz), 10.33 (br. s, 1H, NH). 13C-NMR (DMSO-d6) 101.15, 119.65, 119.82, 

126.37, 126.69, 127.28, 129.60, 131.54, 131.91, 132.36, 135.70, 137.96, 139.40, 147.59, 

147.79, 163.63. IR = 3375.43, 3331.07, 3296.35, 3205.69, 3180.62, 1693.50, 1681.93, 

1643.35, 1633.71 cm-1. Anal. Calc. for C20H16N6O2. 

 

Synthesis of 3-amino-N-(4-(8-amino-3-oxo-2-phenyl-2,3-dihydro-[1,2,4]triazolo[4,3-

a]pyrazin-6-yl)phenyl)propenamide(51). 

 

A suspension of N-(4-(8-amino-3-oxo-2-phenyl-2,3-dihydro-[1,2,4]triazolo[4,3-a]pyrazin-

6-yl)phenyl)acrylamide (194) (0.13 mmol) in a saturated ethanolic solution of NH3 (15 mL) 

was heated at 130 °C in a sealed tube for 3 h. The mixture was cooled at room 

temperature, the solid was collected by filtration and washed with water (about 5-10 mL) 

and petroleum ether. Purified by liquid chromatography (DCM 8/MeOH 2/NH3 0.2). Yield 

89%. m.p. 239-241 °C.  1H-NMR (DMSO-d6) 2.43 (t, 2H, CH2, J = 6.4 Hz), 2.87 (t, 2H, CH2, J 
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= 6.2 Hz), 7.35 (t, 1H, ar, J = 7.4 Hz), 7.54-7.58 (m, 4H, ar + NH2, J = 7.8 Hz), 7.65 – 7.69 (m, 

3H, ar + H-5),  7.91 (d, 2H, ar, J = 8.7 Hz), 8.08 (d, 2H, ar, J = 7.9 Hz),  10.18 (br s, 1H, NH). 

13C-NMR (DMSO-d6) 38.45, 39.37, 100.98, 119.33, 119.85, 126.31, 126.74, 129.65, 131.40, 

131.56, 135.76, 137.98, 139.63, 147.61, 147.79, 170.98. Anal. Calc. for.  C20H19N7O2. 

 

General procedure for the Synthesis of N-(4-(8-amino-3-oxo-2-phenyl-2,3-dihydro-

[1,2,4]triazolo[4,3-a]pyrazin-6-yl)phenyl)-3-propanamide derivatives (52-55). 

 

A suspension of N-(4-(8-amino-3-oxo-2-phenyl-2,3-dihydro-[1,2,4]triazolo[4,3-a]pyrazin-

6-yl)phenyl)acrylamide 194 (1 mmol) and the suitable amine (pyrrolidine, 5 mmol; 

piperidine and morpholine, 4 mmol; N-methylpiperazine, 3 mmol) in anhydrous THF (20 

mL) was refluxed for 2-16 h (TLC monitoring). The solvent was removed under reduced 

pressure and the resulting solid was collected bt filtration. The crude product was dryed 

and purified by recrystallization (52, 54, 55) or column chromatography (53). 

 

N-(4-(8-amino-3-oxo-2-phenyl-2,3-dihydro-[1,2,4]triazolo[4,3-a]pyrazin-6-yl)phenyl)-3-

(pyrrolidin-1-yl)propenamide (52). Yield 59%. m.p.  212-214 °C. (EtOH) 1H-NMR (DMSO-

d6) 1.70 (m, 4H), 2.74 (t, 2H, CH2, J = 7.0 Hz), 7.35 (t, 1H, ar, J = 7.4 Hz), 7.56-7.55 (m, 2H, 

ar), 7.56 (s, 2H, NH2 ), 7.64 (d, 2H, ar, J = 7.9 Hz), 7.69 (s, 1H, ar), 7.91 (d, 2H, ar, J = 7.9 Hz),    

8.08 (d, J = 7.9 Hz, 2H, ar), 10.20 (br. S, 1H, NH). 13C NMR (DMSO-d6) 23.62, 36.53, 51.98,  

53.89, 100.99, 119.24, 119.85, 126.37,  126.74, 129.65, 131.44, 131.56, 135.74,  137.97,   

139.63, 147.61, 147.79, 170.62. Anal. Calc. for C24H25N7O2. 

N-(4-(8-amino-3-oxo-2-phenyl-2,3-dihydro-[1,2,4]triazolo[4,3-a]pyrazin-6-yl)phenyl)-3-

(piperidin-1-yl)propenamide (53). Purified by column chromatography (CHCl3 9/MeOH 

1). Yield 60%. m.p. > 300 °C. 1H-NMR (DMSO-d6) 1.40 (m, 2H), 1.53 (m, 4H), 2.45 (m, 4H), 

2.66 (m, 2H), 3.37 (m, 2H), 7.35 (t, 1H, ar, J = 7.36 Hz), 7.56 (t, 2H, ar, J = 8.00 Hz),  7.56 (br. 

s, 2H, NH2),   7.63 (d, 2H, ar, J = 8.50 Hz), 7.69 (s, 1H, ar), 7.91 (d, 2H, ar, J = 8.50 Hz), 8.08 
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(d, 2H, ar, J = 7.96 Hz), 10.27 (br. s, 1H, NH). 13C-NMR (DMSO-d6) 24.28, 25.84, 34.27, 54.02, 

54.72, 101.0, 119.23, 119.83, 126.37, 126.74, 129.66, 131.46, 131.55, 135.70, 137.96, 

139.58, 147.61, 147.79, 170.62. IR = 3360.00, 3305.99, 1681.93, 1651.07 cm-1. Anal. Calc. 

for C25H27N7O2. 

N-(4-(8-amino-3-oxo-2-phenyl-2,3-dihydro-[1,2,4]triazolo[4,3-a]pyrazin-6-yl)phenyl)-3-

morpholinopropanamide (54). 

Yield 65%. m.p. 267-268 °C (EtOH /2-methoxyethanol) 1H-NMR (DMSO-d6) 2.41 (m, 4H), 

2.50 (m, 2H), 2.63 (m, 2H), 3.58 (m, 4H), 7.35 (t, 1H, ar, J = 6.94 Hz), 7.54-7.56 (m, 4H, ar + 

NH2), 7.64 (d, 2H, ar, J = 8.04 Hz), 7.69 (s, 1H, ar),  7.91 (d, 2H, ar, J = 7.96 Hz), 8.07 (d, 2H, 

ar, J = 7.92 Hz), 10.13 (br. s, 1H, NH). 13C-NMR (DMSO-d6) 34.39, 53.51, 54.64, 66.65, 101.0, 

119.28, 119.83, 126.36, 126.75, 129.66, 131.55, 135.69, 137.97, 139.58, 147.61, 147.79, 

170.60. IR = 3437.15, 3358.07, 3331.07, 1693.50, 1622.13, 1593.20 cm-1. Anal. Calc. for 

C24H25N7O3. 

N-(4-(8-amino-3-oxo-2-phenyl-2,3-dihydro-[1,2,4]triazolo[4,3-a]pyrazin-6-yl)phenyl)-3-

(4-methylpiperazin-1-yl)propanamide (55). Yield 70%. m.p.  246-248°C (Nitromethane). 

1H-NMR (DMSO-d6) 2.15 (s, 3H, CH3), 2.33 (m, 2H), 2.48 (m, 8H), 2.62 (m, 2H), 7.35 (t, 1H, 

ar, J = 7.08 Hz), 7.56 (m, 4H, ar + NH2), 7.63 (d, 2H, ar, J = 8.34 Hz), 7.69 (s, 1H, ar), 7.91 (d, 

2H, ar, J = 8.34 Hz), 8.08 (d, 2H, ar, J = 7.80 Hz), 10.18 (br. s, 1H, NH). 13C-NMR (DMSO-d6) 

34.62, 46.21, 52.83, 54.19, 55.22, 100.99, 119.24, 119.83, 126.36, 126.74, 129.66, 131.46, 

131.55, 135.70, 137.97, 139.59, 147.61, 147.79, 170.68. IR = 3371.57, 3336.85, 3201.83, 

1712.79, 1674.21 cm-1. Anal. Calc. for C25H28N8O2.  

 

Synthesis of 8-amino-6-(4-(2-chloroethoxy)phenyl)-2-phenyl-[1,2,4]triazolo[4,3-

a]pyrazin-3(2H)-one (195). 

 

Thionyl chloride (0.66 mmol) was slowly added at 10-15 °C to a suspension of 8-amino-6-

(4-(2-hydroxyethoxy)phenyl)-2-phenyl-[1,2,4]triazolo[4,3-a]pyrazin-3(2H)-one (49) (0.44 

mmol) and pyridine (0.66 mmol) in anhydrous toluene (20 mL). The mixture was stirred 
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at the same temperature for 15 minutes and then refluxed for 2h (TLC monitoring). The 

mixture was treated with water (20 mL), the solid was collected by filtration and rinsed 

with petroleum ether. The crude product was purified by column chromatography 

(Cyclohexane 5/EtOAc 5). Yield 65%. m.p. 270-272 °C. 1H NMR (DMSO-d6) 4.03 - 3.91 (m, 

2H), 4.36 – 4.27 (m, 2H), 7.02 (d, 2H, J = 8.8 Hz), 7.36 (t, 1H, J = 7.4 Hz), 7.60 - 7.51 (m, 4H), 

7.68 (s, 1H), 7.93 (d, 2H, J = 8.8 Hz), 8.08 (d, 2H, J = 7.7 Hz). 13C NMR (DMSO-d6) 158.97, 

148.29, 147.40, 137.63, 131.58, 129.78, 127.66, 127.15, 119.92, 115.26, 68.51, 43.52. 

Anal. Calc. for.  C19H16ClN5O2. 

 

General procedure for the Synthesis of 8-amino-2-phenyl-6-(4-ethoxy)phenyl)-

[1,2,4]triazolo[4,3-a]pyrazin-3(2H)-one derivatives (56-59). 

 

To a suspension of 8-amino-6-(4-(2-chloroethoxy)phenyl)-2-phenyl-[1,2,4]triazolo[4,3-

a]pyrazin-3(2H)-one (195) (0.37 mmol), anhydrous K2CO3 (0.74 mmol), KI (catalytic 

amount) in anhydrous DMF (3 mL), the suitable amine (pyrrolidine, 1.85 mmol; 

morpholine, 6.76 mmol; piperidine, 6.24 mmol; N-methylpiperazine, 1.84 mmol) was 

added. The mixture was refluxed for 8 h (TLC monitoring) and then diluted with water (20 

mL). The resulting solid was collected by filtration, rinsed with water (20 mL), petroleum 

ether and purified by column chromatography. 

8-amino-2-phenyl-6-(4-(2-(pyrrolidin-1-yl)ethoxy)phenyl)-[1,2,4]triazolo[4,3-a]pyrazin-

3(2H)-one (56). Purified by column chromatography (DCM3 8/MeOH 2).  Yield 35%. m.p. 

213-214 °C 1H NMR (DMSO-d6) 1.72 (s, 4H), 2.61 (s, 4H), 2.88 (s, 2H, CH2), 4.13 (t, 2H, CH2, 

J = 5.7 Hz), 6.99 (d, 2H, ar, J = 8.8 Hz), 7.35 (t, 1H, ar, J = 7.4 Hz), 7.54 – 7.58 (m, 4H, ar 

+NH2), 7.66 (s, 1H, H-5), 7.91 (d, 2H, ar, J = 8.8 Hz), 8.08 (d, 2H, ar, J = 7.8 Hz). Anal. Calc. 

for C23H24N6O2. 

8-amino-2-phenyl-6-(4-(2-(piperidin-1-yl)ethoxy)phenyl)-[1,2,4]triazolo[4,3-a]pyrazin-

3(2H)-one (57). Purified by column chromatography (Cyclohexane 2/ EtOAc 8; CHCl3 9/ 
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MeOH 1). Yield 20%. m.p. 220-222 °C 1H NMR (DMSO-d6) 1.38 -1.48 (m, 2H), 1.53 (dt, 4H, 

J = 10.9, 5.6 Hz), 2.44 (m, 4H), 2.67 (t, 2H, J = 5.9 Hz), 4.10 (t, CH2, 2H, J = 5.9 Hz), 6.99 (d, 

2H, ar, J = 8.9 Hz), 7.35 (t, 1H, ar, J = 7.4 Hz), 7.58 – 7.50 (m, 4H, ar + NH2), 7.65 (s, 1H, H-

5), 7.90 (d, 2H, ar, J = 8.8 Hz), 8.08 (dd, 2H, ar, J = 8.5, 0.9 Hz). IR = 3356, 1707, 1458 cm-1. 

Anal. Calc. for. C24H26N6O2.   

8-amino-6-(4-(2-morpholinoethoxy)phenyl)-2-phenyl-[1,2,4]triazolo[4,3-a]pyrazin-

3(2H)-one (58). Purified by column chromatography (Cyclohexane 2/EtOAc 8; 

Cyclohexane 6/EtOAc 6/MeOH 1) Yield 52%. m.p. 219-221 °C 1H NMR (DMSO-d6) 2.50 (d, 

4H, J = 1.5 Hz), 2.71 (t, 2H, CH2, J = 5.7 Hz), 3.58-3.62(m, 4H), 4.13 (t, 2H, CH2, J = 5.7 Hz), 

6.99 (d, 2H, ar, J = 8.8 Hz), 7.36 (t, 1H, ar,  J = 7.4 Hz), 7.54-7.58 (m, 4H, ar + NH2), 7.66 (s, 

1H, 5-H), 7.90 (d, 2H, ar, J = 8.7 Hz), 8.08 (d, 2H, ar, J = 8.0 Hz). 13C NMR (DMSO-d6) 45.50, 

53.98, 56.42, 57.36, 62.40, 66.45, 100.57, 107.83, 114.92, 119.87, 126.76, 127.28, 129.34, 

129.65, 131.53, 133.85, 135.84, 137.97, 144.80, 147.62, 147.76, 155.66, 158.90. IR = 3462, 

3367, 2795, 1707, 1614, 1454, 1114 cm-1. Anal. Calc. for C23H24N6O3.    

8-amino-6-(4-(2-(4-methylpiperazin-1-yl)ethoxy)phenyl)-2-phenyl-[1,2,4]triazolo[4,3-

a]pyrazin-3(2H)-one (59). Purified by column chromatography (Cyclohexane 2/EtOAc 6/ 

MeOH 2; CHCl3 9/MeOH 1). Yield 43 % m.p. 242-244 °C. 1H NMR (CDCl3) 2.33 (s, 3H, CH3), 

2.52 (m, 4H), 2.67 (m, 4H), 2.87 (t, 2H, CH2, J = 5.8 Hz), 4.18 (t, 2H, CH2, J = 5.8 Hz), 5.53 (br 

s, 2H, NH2), 6.99 (d, 2H, ar, J = 8.8 Hz), 7.34 (t, 1H, ar, J = 7.4 Hz), 7.52 (t, 2H, ar, J = 7.9 Hz), 

7.61 (s, 1H, H-5), 7.79 (d, 2H, ar, J = 8.8 Hz), 8.13 (d, 2H, ar, J = 7.8 Hz). 13C NMR (DMSO-d6) 

39.33, 39.54, 39.75, 39.96, 40.17, 40.38, 40.59, 45.95, 53.24, 55.02, 114.90, 118.38, 

119.87, 122.64, 127.28, 129.26, 129.66. IR = 3312, 2727, 1714, 1456, 1377, 1163 cm-1. 

Anal. Calc. for C24H27N7O2.   
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Synthesis of 8-amino-6-(4-(oxiran-2-ylmethoxy)phenyl)-2-phenyl-[1,2,4]triazolo[4,3-

a]pyrazin-3(2H)-one (196). 

 

Epichlorohydrin (6.90 mmol) was added to a suspension of 8-amino-6-(4-hydroxyphenyl)-

2-phenyl-[1,2,4]triazolo[4,3-a]pyrazin-3(2H)-one (16) (0.627 mmol) and K2CO3 (1.25 

mmol) in anhydrous acetone (10 mL). The mixture was  refluxed for 24 h. The solvent was 

evaporated under reduced pressure and the resulting residue was treated with water (20-

25 mL). The solid was collected by filtration, rinsed with diethyl ether (25-30 mL) and 

petroleum ether (20 mL), dried and recrystallized. Yield 68 % m.p. > 300°C (EtOH). 1H NMR 

(DMSO-d6) 2.72 (s, 1H), 2.85 (t, 1H, J = 4.5 Hz), 3.83 (dd, 2H, J = 11.2, 6.5 Hz), 4.37 (d, 1H, 

J = 11.6 Hz), 7.01 (d, 2H, J = 8.7 Hz), 7.35 (t, 1H, J = 7.3 Hz), 7.55 (t, 3H, J = 7.7 Hz), 7.63 (s, 

1H), 7.87 (d, 2H, J = 8.5 Hz), 8.04 (d, 2H, J = 8.1 Hz). Anal. Calc. for. C20H17N5O3. 

 

General procedure for the synthesis of 8-amino-6-(4-(2-hydroxy-3-

morpholino/(piperidin-1-yl)propoxy)phenyl)-2-phenyl-[1,2,4]triazolo[4,3-a]pyrazin-

3(2H)-one (60-61). 

 

Piperidine (10.60 mmol, 60) or morpholine (14.4 mmol, 61) was added to a suspension of 

8-amino-6-(4-(oxiran-2-ylmethoxy)phenyl)-2-phenyl-[1,2,4]triazolo[4,3-a]pyrazin-3(2H)-

one (196) (0.533 mmol) and K2CO3 (1.066 mmol) in absolute EtOH (5 mL). The mixture 

was refluxed for 24 h (TLC monitoring). The solvent was evaporated under reduced 

pressure to dryness and the resulting residue was treated with water (20-25 mL). The solid 

was collected by filtration, rinsed with diethyl ether and petroleum ether, dried and 

recrystallized. 
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8-amino-6-(4-(2-hydroxy-3-(piperidin-1-yl)propoxy)phenyl)-2-phenyl-

[1,2,4]triazolo[4,3-a]pyrazin-3(2H)-one (60). Yield 65%. m.p. 202-204 °C (2-

Methoxyethanol). 1H NMR (DMSO-d6) 1.57 – 1.42 (m, 2H), 1.65 (dd, 4H, J = 10.3, 5.5 Hz), 

2.46 (s, 2H), 2.56 (d,2H, J = 6.8 Hz), 2.68 (s, 2H), 4.04 (dd, 2H, J = 9.8, 4.9 Hz), 4.14 (dd, J = 

12.5, 5.7 Hz, 1H), 5.54 (s, 1H), 7.01 (d, 2H, J = 8.7 Hz), 7.34 (t, 1H, J = 7.3 Hz), 7.52 (t,2H, J 

= 7.9 Hz), 7.61 (s, 1H), 7.79 (d, 2H, J = 8.7 Hz), 8.13 (d, 2H, J = 8.1 Hz). Anal. Calc. for.  

C25H28N6O3. 

8-amino-6-(4-(2-hydroxy-3-morpholinopropoxy)phenyl)-2-phenyl-[1,2,4]triazolo[4,3-

a]pyrazin-3(2H)-one (61). Yield 65%. m.p. 231-233 °C (2-Methoxyethanol). 1H NMR 

(DMSO-d6) 2.47 (d, 4H, J = 22.9 Hz), 3.58 (s, 4H), 4.13 – 3.73 (m, 3H), 4.88 (s, 1H), 6.99 (d, 

2H, J = 5.9 Hz), 7.36 (s, 1H), 7.55 (d, 4H, J = 9.0 Hz), 7.66 (s, 1H), 7.90 (d, 2H, J = 5.7 Hz), 

8.08 (d, 2H, J = 5.7 Hz). Anal. Calc. for  C24H26N6O4. 

 

General procedure for the synthesis of (R)-2-oxothiazolidine-4-carboxamide-

substituted 8-amino-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one derivatives (79, 81) 

A mixture of the suitable triazolopirazine (39, 48) (1 mmol), (R)-2-oxothiazolidine-4-

carboxylic acid (2 mmol), EDCI. HCl (2 mmol), HOBt monohydrate (2 mmol), DIPEA (2 

mmol) in anhydrous DMF (3 ml) was heated at 60 °C per 18 h (TLC monitoring). The 

mixture was treated with water (20 mL) and the solid was collected by filtration and rinsed 

with Et2O and petroleum ether. The crude product was purified by recrystallization (79) 

or column chromatography (80). 

 

(R)-N-(4-(8-amino-3-oxo-2-phenyl-2,3-dihydro-[1,2,4]triazolo[4,3-a]pyrazin-6-

yl)phenyl)-2-oxothiazolidine-4-carboxamide (79) 

 

Yield 99%. m.p. > 300 °C. Purified by column chromatography (CHCl3 9.4/MeOH 0.6).                

1H-NMR (DMSO-d6) 3.51 (m, 1H, CH), 3.78 (m, 1H, CH), 4.50 (m, 1H, CH), 7.35 (t, 1H, ar, J 
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= 7.3 Hz), 7.56 (t, 2H, ar, J = 8.00 Hz), 7.65 (br. s, 2H, NH2), 7.68 (d, 2H, ar, J = 8.6 Hz), 7.73 

(s, 1H, ar), 7.96 (d, 2H, ar, J = 8.6 Hz), 8.08 (d, 2H, ar, J = 8.00 Hz), 8.37 (s, 1H, NH), 10.26 

(s, 1H, NH). 13C-NMR (DMSO-d6) 32.79, 57.49, 101.26, 119.71, 119.84, 126.44, 126.76, 

129.66, 131.56, 132.18, 135.56, 137.96, 138.90, 147.62, 147.83, 169.11, 174.06. 

Anal.Calc. for C21H17N7O3S. 

 

(R)-N-(2-(4-(8-amino-3-oxo-2-phenyl-2,3-dihydro-[1,2,4]triazolo[4,3-a]pyrazin-6-

yl)phenoxy)ethyl)-2-oxothiazolidine-4-carboxamide (81). 

 

Yield 100%. m.p. 255-257 °C (EtOH/2-Methoxyethanol). 1H-NMR (DMSO-d6) 3.51 (q, 2H, 

CH2, J = 5.5 Hz), 3.67 (m, 1H, CH), 4.07 (t, 2H, CH2, J = 5.5 Hz), 4.32 (m, 1H, CH), 7.00 (d, 

2H, ar, J = 8.9 Hz), 7.35 (t, 1H, ar,  J = 7.4 Hz), 7.56 (m, 4H, ar + NH2), 7.67 (s, 1H, H-5), 7.92 

(d, 2H, ar, J = 8.8 Hz), 8.07 (d, 2H, ar, J = 7.8 Hz), 8.32 ( br s, 1H, NH), 8.37 (t, 1H, NH, J = 

5.4 Hz). Anal. Calc. for C23H21N7O4S. 

 

General procedure for the synthesis of the 5-(1,2-dithiolan-3-yl)pentanamide 

substituted 8-amino-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one derivatives (80, 82, 84).  

A mixture of the suitable triazolopirazine (39, 48, 51) (1.00 mmol), racemic lipoic acid 

(1.35 mmol), EDCI.HCl (1.35 mmol), HOBt monohydrate (1.35 mmol) and DIPEA (1.70 

mmol) in anhydrous DMF (3mL) was stirred at room temperature 24 h (TLC monitoring). 

The mixture was treated with water (20 mL). The obtained solid was collected by filtration, 

rinsed with Et2O and petroleum ether. The crude product was purified by recrystallization 

(80) or column chromatography (82, 84) 
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N-(4-(8-amino-3-oxo-2-phenyl-2,3-dihydro-[1,2,4]triazolo[4,3-a]pyrazin-6-yl)phenyl)-5-

(1,2-dithiolan-3-yl)pentanamide (80).  

 

Yield 99%. m.p. 229-233 °C (Nitromethane). 1H-NMR (DMSO-d6) 1.43 (m, 2H), 1.63 (m, 

2H), 1.71 (m, 2H), 1.88 (m, 1H, J = 6.6 Hz), 2.34 (t, 2H, J = 7.3 Hz),  2.43 (m, 1H, J = 6.3 Hz), 

3.14 (m, 1H), 3.19 (m, 1H), 3.64 (m, 1H, J = 6.2 Hz), 7.35 (t, 1H, ar, J = 7.4 Hz), 7.54 (br s, 

2H, NH2), 7.56 (t, 2H, ar, J = 8.1 Hz), 7.65 (d, 2H, ar, J = 8.7 Hz), 7.69 (s, 1H, H-5), 7.91 (d, 

2H, ar, J = 8.9 Hz), 8.08 (d, 2H, ar, J = 7.9 Hz), 9.96 (br s, 1H, NH). 13C-NMR (DMSO-d6) 25.35, 

28.82, 34.64, 36.74, 38.58, 56.58, 100.98, 119.30, 120.00, 126.31, 126.75, 129.67, 131.39, 

131.56, 135.75, 137.98, 139.68, 147.61, 147.79, 171.60. IR = 3431.36, 3311.78, 3207.62, 

1693.50, 1681.93 cm-1. Anal.Calc. for C25H26N6O2S2. 

 

N-(2-(4-(8-amino-3-oxo-2-phenyl-2,3-dihydro-[1,2,4]triazolo[4,3-a]pyrazin-6-

yl)phenoxy)ethyl)-5-(1,2-dithiolan-3-yl)pentanamide (82). 

 

Yield 82%. m.p. 202-204 °C. Purified by liquid chromatography (Cyclohexane 2/EtOAc 8). 

1H NMR (DMSO-d6) 1.35 (dd, 2H, J = 14.7, 7.5 Hz), 1.53 (dd, 3H, J = 15.1, 7.4 Hz), 1.64 (dd, 

1H, J = 13.5, 7.5 Hz), 1.75 – 1.90 (m, 1H), 2.11 (t, 2H, J = 7.1 Hz), 2.38 (dd, 1H, J = 12.5, 6.2 

Hz), 3.02 – 3.21 (m, 2H), 3.43 (d, 2H, J = 5.2 Hz), 3.53 – 3.64 (m, 1H), 4.02 (d, 2H, J = 5.0 

Hz), 6.99 (d, 2H, ar, J = 8.2 Hz), 7.36 (t, 1H, ar, J = 7.3 Hz), 7.49– 7.63 (m, 4H, ar + NH2), 

7.66 (s, 1H, H-5), 7.91 (d, 2H, ar, J = 8.1 Hz), 8.08 (m, 3H, ar + NH, J = 8.4 Hz). IR = 3358, 

3285, 3179, 1709,1628, 1541, 1462 cm-1. Anal. Calc. for C27H30N6O3S2. 
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N-(3-((4-(8-amino-3-oxo-2-phenyl-2,3-dihydro-[1,2,4]triazolo[4,3-a]pyrazin-6-

yl)phenyl)amino)-3-oxopropyl)-5-(1,2-dithiolan-3-yl)pentanamide (84). 

 

Yield 89%. m.p. 250-251 °C. Purified by column chromatography (DCM 9.7/MeOH 0.3). 1H 

NMR (DMSO-d6) 1.29-1.36 (m, 2H), 1.47-1.54 (m, 3H), 1.59-1.66 (m, 1H), 1.83 (m, 1H), 

2.07 (t, 2H, J = 7.2 Hz), 2.36 (m, 1H, J = 6.2 Hz), 3.04-3.11 (m, 1H), 3.12-3.19 (m, 1H), 3.52-

3.59  (m, 1H), 7.35 (t, 1H, ar, J = 7.4 Hz), 7.54-7.58  (m, 4H, ar + NH2), 7.65-7.69 (m, 3H, ar 

+ H-5), 7.92 (m, 3H, ar + NH), 8.08 (d, 2H, ar, J = 7.9 Hz), 10.03 (br s, 1H, NH).  Anal. Calc. 

for C28H31N7O3S2. 

 

General procedure for the Synthesis of substituted the 3,5-di-tert-butyl-4-

hydroxybenzamide 8-amino-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one derivatives (83, 85).  

A mixture of the suitable triazolopirazine (48, 51), 3,5-di-tert-butyl-4-hydroxybenzoic acid 

(2 mmol), EDCI. HCl (2 mmol), HOBt monohydrate (2 mmol), DIPEA (2 mmol) in anhydrous 

DMF (3 mL) was heated at 60 °C per 18 h. The mixture was treated with water (20 mL). 

The solid was collected by filtration, rinsed with Et2O and petroleum ether. The crude 

product was purified by recrystallization (83) or column chromatography (85). 

 

N-(3-((4-(8-amino-3-oxo-2-phenyl-2,3-dihydro-[1,2,4]triazolo[4,3-a]pyrazin-6-

yl)phenyl)amino)-3-oxopropyl)-3,5-di-tert-butyl-4-hydroxybenzamide (83). 

 

 Yield 90%. m.p. 250-252 °C (Nitromethane). 1H NMR (DMSO-d6) 1.41 (s, 18H, (CH3)3), 3.62 

(m, 2H, CH2),  4.15 (t, 2H, CH2, J = 5.8 Hz), 7.02 (d, 2H, ar, J = 8.8 Hz) 7.36 (t, 1H, ar, J = 7.4 

Hz) 7.39 (s, 1H, ar), 7.50-7.59 (m, 4H, ar + NH2), 7.63 (s, 2H, ar), 7.66 (s, 1H, ar, H-5), 7.91 



6.EXPERIMENTAL SECTION 

                                                                                                                                                                           

140 

(d, 2H, ar,  J = 8.6 Hz), 8.08 (d, 2H, ar, J = 7.9 Hz), 8.51 (t, 1H, NH, J = 5.5 Hz).13C NMR 

(DMSO-d6) 30.68, 35.03, 36.38, 37.19, 101.02, 119.45, 119.88, 124.47, 126.29, 126.75, 

129.64, 131.52, 131.57, 135.77, 137.99, 138.66, 139.58, 147.62, 147.80, 157.02, 167.64, 

170.19. Anal. Calc. for C35H39N7O4.  

 

N-(2-(4-(8-amino-3-oxo-2-phenyl-2,3-dihydro-[1,2,4]triazolo[4,3-a]pyrazin-6-

yl)phenoxy)ethyl)-3,5-di-tert-butyl-4-hydroxybenzamide (85). 

 

Yield 78%. m.p. 259-260°C. Purified by column chromatography (Cyclohexane 6/EtOAc 4). 

1H NMR (DMSO-d6) 1.41 (s, 18H, (CH3)3), 3.62 (d, 2H, CH2, J = 5.6 Hz), 4.15 (t, 2H, CH2, J = 

5.8 Hz), 7.02 (d, 2H, ar, J = 8.8 Hz), 7.36 (t, 1H, ar, J = 7.4 Hz), 7.39 (s, 1H, OH), 7.54–7.59 

(m, 4H, ar + NH2), 7.63 (s, 2H, ar), 7.66 (s, 1H, H-5), 7.91 (d, 2H, ar, J = 8.7 Hz), 8.08 (d, 2H, 

ar, J = 7.9 Hz), 8.51 (t, 1H, NH, J = 5.5 Hz). 13C NMR (DMSO-d6) 30.68, 35.05, 66.69, 114.90, 

119.87, 124.54, 125.97, 126.75, 127.33, 129.39, 129.64, 131.53, 135.84, 137.34, 137.98, 

138.69, 144.69, 147.61, 147.77, 157.14, 158.99, 167.75. IR = 3315, 3213, 1699, 1616, 1456 

1377, 1315, 1248, 1178 cm-1. Anal. Calc. for C34H38N6O4. 

 

Synthesys of N-(4-(8-amino-3-oxo-2-phenyl-2,3-dihydro-[1,2,4]triazolo[4,3-a]pyrazin-6-

yl)phenyl)-3-hydrazinylpropanamide (197). 

 

Hydrazine monohydrate (13.425 mmol) was added to a suspension of N-(4-(8-amino-3-

oxo-2-phenyl-2,3-dihydro-[1,2,4]triazolo[4,3-a]pyrazin-6-yl)phenyl)acrylamide 194 

(0.537 mmol) in anhydrous THF and the resulting mixture was refluxed for 21 h (TLC 



6.EXPERIMENTAL SECTION 

 

141 

monitoring, CHCl3 9/MeOH 1). The solvent was eliminated under reduced pressure and 

the residue was treated with Et2O (20 mL). The obtained solid was collected by filtration 

and rinsed with pethroleum ether (20 mL). Yield 78%. (Nitromethane). 1H NMR 

(DMSO-d6) 2.48 (t, 2H, CH2, J = 6.7 Hz ), 2.91 (t, 2H, CH2, J = 6.7 Hz), 7.35 (t, 1H, ar, J =7.4 

Hz), 7.54-7.58  (m, 4H, ar + NH2), 7.63-7.69 (m, 3H, ar + H-5), 7.91 (d, 2H, ar, J = 8.7 Hz), 

8.08 (d, 2H, ar, J = 7.6 Hz), 8.93 ( br s, 1H, NH), 10.17 (s, 1H, NH),   Anal. Calc. for C20H20N8O2. 

 

N-(4-(8-amino-3-oxo-2-phenyl-2,3-dihydro-[1,2,4]triazolo[4,3-a]pyrazin-6-yl)phenyl)-3-

(3-methyl-5-oxo-2,5-dihydro-1H-pyrazol-1-yl)propenamide (86). 

 

To a suspension of N-(4-(8-amino-3-oxo-2-phenyl-2,3-dihydro-[1,2,4]triazolo[4,3-

a]pyrazin-6-yl)phenyl)-3-hydrazinylpropanamide (197) (0.42 mmol) in EtOH (20 mL) ethyl 

acetoacetate (0.42 mmol) was added. The resulting mixture was heated at 60 °C for 2h 

(TLC monitoring). The solid was filtered off and the ethanolic organic layer was 

evaporated under reduced pressure. The obtained residue was taken up with Et2O (20 

mL) and the solid was collected by filtration. The crude product was purified by column 

chromatography (CHCl3/MeOH 1). Yield 56%. m.p. 226-228 °C. 1H NMR (DMSO-d6) 2.01 

(s, 3H, CH3), 2.77 (m, 2H, CH2), 4.05 (m, 2H, CH2), 5.14 (s, 1H), 7.35 (t, 1H, ar, J = 7.4 Hz), 

7.54-7.59  (m, 4H, ar + NH2), 7.63 (d, 2H, ar, J = 8.7 Hz), 7.70 (s, 1H, H-5), 7.90 (d, 2H, ar, J 

= 8.7 Hz), 8.06 (d, 2H, ar, J =7.6 Hz), 10.10 (s, 1H, NH), 10.69 ( br s, 1H, NH). Anal. Calc. for 

C24H22N8O3. 
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7. VISITING PERIOD AT THE LEIDEN CENTRE OF DRUG RESEARCH 
(LACDR) 
 

7.1 Introduction 

Between the second and third year of my PhD course, I spent six months (September 

2017-March 2018) at the Leiden Academic Centre for Drug Research (LACDR) in 

Netherlands, where I joined the research group of Prof. A.P. IJzerman, Professor of 

Medicinal Chemistry and Head of the Medicinal Chemistry group at the Division of Drug 

Discovery & Safety. The research topic assigned to me was the synthesis of non-

adenosine-like compounds designed to target the hA2AAR and based on the structure of 

LUF5833 (Figure 37). 

As largely anticipated in the “Introduction” chapter, A2AARs play an important role in a 

variety of physiopathogical conditions including both neurodegenerative disorders and 

inflammatory tissue damage. At present, it is well known the beneficial application of 

selective A2AARantagonists in the treatment of neurodegenerative disorders such as 

Parkinson’s disease379 (PD), Huntington’s disease378, and Alzheimer’s disease 382,383. 

However, several animal models of neurodegenerative disorders have given evidence 

that also the A2A AR agonists are able to exert   neuroprotective effect through the 

reduction of the excitatory neurotransmitter release, apoptosis, and inflammatory 

responses280,437. Also in the cardiovascular field a number of A2AAR agonists have been 

tested as candidate for myocardial perfusion since they are able to modulate the coronary 

arterial vasodilation446,447. A2A AR agonists could be also beneficial in the treatment of 

neuropathic pain, being capable of modulating the production of glial cytokines448. 

Moreover, a large body of evidence has clearly show that A2AAR agonists exert anti-

inflammatory properties modulating the activity of neutrophils, macrophages, and T 

lymphocytes446,449. A2AAR stimulation also inhibits neutrophil adherence to the 

endothelium, degranulation of neutrophils and monocytes, and superoxide anion 

generation280, thus indicating that A2AARs are involved in inflammation processes and 

selective agonists could be developed as potential therapeutic agents in the treatment 

allergic rhinitis, asthma, and chronic obstructive pulmonary disease446,450.  
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In the past, adenosine receptor agonists were usually associated to a adenosine-like 

structure where the ribose moiety was tought to play a crucial role for the agonistic 

functional activty451. Several studies, in fact, highlighted that in the agonist-bound crystal 

structure, the ribose moiety of the ligands inserts deeply into a predominantly hydrophilic 

region of the binding cavity and enganges contacts or hydrogen bonds with important 

amicnoacid residues at this level452-454. However, progress has been made and novel non-

nucleoside AR ligands belonging to the amino-3,5-dicyanopyridine series were identified. 

These compounds possessed both a significant affinity and efficacy toward different 

adenosine receptor subtypes275,276,455,456 and, among these derivatives, the 2-amino-4-

(phenyl/4-hydroxyphenyl)-6-(1H-imidazol-2-yl-methylsulfanyl)-pyridine-3,5-

dicarbonitrile (LUF5833, and LUF5834 Figure 37) turned out to be a high-affinity non-

adenosine partial agonists at the A2AAR276
 . 

 

Figure 37. Structure of the hA2A AR partial agonists LUF5833 and LUF5834 

Table 13. aInteraction of compounds LUF5833 and LUF5834 with the hA2A adenosine 

receptor, bStimulation (A2A) of cAMP production by the compounds LUF5833 and LUF5834 
compared to reference Agonist276.  
 

 ahA2A Ki (nM) cEfficacy 

LUF5833 8.13 ± 0.05 55 ± 20 

LUF5834 6.25 ± 0.08 55 ± 12 

                 

a Radioligand binding experiments were carried out on membranes made from HEK293 cells stably expressing 
the A2A with [3H]ZM241385 as radio ligand. bProduction of cAMP was studied in CHO cells stably expressing 
the hA2A adenosine receptor (n = 3). cEfficacy is expressed with respect to reference agonist CGS21680, 
compounds were tested at 100 times their Ki values. 
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7.2 Aim of the work 

Recently, a crystal structure of the hA2AAR containing the 2-((1H-imidazol-2-

yl)methylthio)-6-amino-4-phenylpyridine-3,5-dicarbonitrile (LUF5833, Figure 37) in the 

binding pocket has been obtained. Since the structural determinants involved in the 

functional activity of these compounds are largely unknown, the design and synthesis 

of compounds structurally related to LUF5833 have been undertaken to shed light on 

the hypothetical binding mode of these ligands at the A2AAR crystal structure. The 

project I worked on concerned the synthesis of the non-nucleoside compounds 

LUF7760, LUF7762 and LUF7763 (87-89) which were designed together with the 

pyrimidine derivatives LUF7724 and LUF7740 to target the hA2AAR (Figure 38). The 

triazine derivative 87 ensued from the replacement of the two CN groups of LUF5833 

with endocyclic nitrogen atoms, while the pyridine derivatives 88-89 derived from 

removal of the CN group(s) of the lead. Hopefully, combination of the synthetic and 

computational studies will led to valuable information about the role of the 

substituents and scaffold properties on the functional profile of A2AAR non-adenosine-

like agonists.                                                                                                                             

 

Figure 38. LUF5833-based structures of the newly synthetized derivatives. 
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It has to be pointed that compounds LUF7724 and LUF7740, were already synthesized 

and tested before I joined Professor’s IJzerman group and are herein reported as 

reference compounds. 

 

7.3 Chemistry 

 

Synthesis of the 4-(((1H-imidazol-2-yl)methyl)thio)-6-phenyl-1,3,5-triazin-2-amine 1 

(LUF7760).  

 

The synthesis of the 4-(((1H-imidazol-2-yl)methyl)thio)-6-phenyl-1,3,5-triazin-2-amine 87 

(LUF7760), depicted in Scheme 15, started from the commercial cyanuric chloride which 

was reacted with phenylmagnesium bromide at room temperature in anhydrous THF to 

give the 2,6-dichloro-4-phenyl-1,3,5-triazine (198). Treatment of 198 with 25% aqueous 

ammonia in dichloromethane yielded the amino derivative 199 which was reacted with 

anhydrous sodium sulfide in DMF at 80 °C to give the corresponding 4-amino-6-phenyl-

1,3,5-triazine-2-thiol 200. Reaction of intermediate 200 with the properly synthesized 2-

(bromomethyl)-1H-imidazole276 in anhydrous DMF and in the presence of NaHCO3, at 

room temperature, afforded the desired triazine 87 (LUF7760). 

 

Scheme 15: a) Phenylmagnesium bromide, anhydrous THF, r.t.; b) NH3 25% in H2O, dichloromethane, r.t.; 

c) anhydrous Na2S, DMF, 80 °C; d) 2-Bromomethyl-(1H)-imidazole, NaHCO3, anhydrous DMF, r.t. 
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Synthesis of 6-(((1H-imidazol-2-yl)methyl)thio)-4-phenylpyridin-2-amine 2 (LUF7762). 

 

Scheme 16 shows the synthesis of 6-(((1H-imidazol-2-yl)methyl)thio)-4-phenylpyridin-2-

amine 88 (LUF7762). The 2,6-dichloro-4-phenylpyridine 201 was obtained from the 

commercial 2,6-dichloro-4-iodopyridine which was reacted with phenylboronic acid 

pinacol esther, Pd(PPh3)Cl2, Na2CO3 in H2O/MeCN at 70 °C, under Suzuki-Miyaura 

conditions. Treatment of 201 with 2-methyl-propanethiol, and Cs2CO3, in DMF at 80 °C 

afforded 202 intermediate whose reaction with t-butyl carbamate in anhydrous 1,4-

dioxane at 110 °C, and in presence of the couple Pd(OA)2, Xantphos and Cs2CO3, gave the 

tert-butyl-(6-(tert-butylthio)-4-phenylpyridin-2-yl)-carbamate 203. Deprotection of its 

amino-group, performed with TFA in dichloromethane at room temperature, yielded 

compound 204 which was allowed to react with boiling 37% hydrochloric acid to give the 

6-amino-4-phenylpyridine-2-thiol 205. Finally, the desired product LUF7762 was achieved 

by alkylating compound 205 with 2-(bromomethyl)-1H-imidazole, in presence of NaHCO3
 

in anhydrous DMF. 

 

 
Scheme 16. a) Phenylboronic acid pinacol esther, Pd(PPh3)Cl2,Na2CO3, H2O/acetonitrile, 70 °C;                        

b) 2-Methyl-propanethiol, Cs2CO3, DMF, 80 °C; c) Pd(OA)2, xantphos, Cs2CO3, t-butyl carbamate, anydrous 
1,4-dioxane, 110 °C; d) TFA, dichloromethane, reflux; e) 37% HCl, 100 °C; f) Bromomethyl-(1H)-imidazole, 
NaHCO3, anydrous DMF, r.t. 
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Synthesis of (2)6-(((1H-imidazol-2-yl)methyl)thio)-2(6)-amino-4-phenylnicotinonitrile 3 

(LUF7763).  

 

The synthetic pathway yielding the novel compound 89 (LUF7763) is outlined in Scheme 

17. The commercial ethyl benzoyl acetate, 2-cyanoacetamide and KOH were refluxed in 

EtOH to give the 2,6-dihydroxy-4-phenylnicotinonitrile 206 which was chlorinated to the 

corresponding 2,6-dichloro-4-phenylnicotinonitrile 207 with phosphorus oxychloride in 

autoclave at 130 °C. Treatment of 207 with t-butyl carbamate, under Buchwald-Hartwig 

conditions, i.e. in presence of Pd(OA)2/Xantphos, and Cs2CO3, in anhydrous 1,4-dioxane 

at 110 °C, gave the tert-butyl-(6-chloro-5-cyano-4-phenylpyridin-2-yl)-carbamate 208. 

Reaction of 208 with 2-methyl-propanethiol, Cs2CO3 in DMF at 80 °C afforded derivative 

209 which was deprotected with boiling 37% hydrochloric acid to give the intermediate 

6-amino-2-mercapto-4-phenylnicotinonitrile 210. The latter was alkylated with                              

2-(bromomethyl)-1H-imidazole, NaHCO3, in anhydrous DMF to give the desired 

compound 89 (LUF7763).  

 
 
Scheme 17: a) NaOH, EtOH, 80 °C, reflux; b) POCl

3, 
in autoclave, 180 °C; c) Pd(OA)

2
, xantphos, Cs2CO3, t-

butyl carbamate, anhydrous 1,4-dioxane 40 °C; d) 2-Methyl-propanethiol, Cs2CO3, DMF, 90 °C; e) 37% HCl, 
100 °C; f) 2-Bromomethyl-(1H)-imidazole, NaHCO3, anhydrous DMF, r.t. 

 
7.4 Structure affinity study 

All the synthesized compounds LUF7760 (87), LUF7762 (88) and LUF7763 (89) were 

investigated to determine their affinity at the human ARs. In particular, the affinity of 

these compounds for the A1, A2A, and A3 receptors stably expressed on Chinese hamster 



7.VISITING PERIOD AT LACDR  

                                                                                                                                                                           

148 

ovary cells (CHO) (A1, A3) or Human embryonic kidney 293 cells (HEK293) (A2A) was 

determined in radioligand binding studies with [3H]DPCPX (KD) 1.6 nM), [3H]ZM241385 

(KD) 1.0 nM), and [3H]PSB11 (17.3 nM) as radioligands, respectively.  

Analyzing the binding data (Table 14), the newly synthesized LUF7760 (87, pKi = 6.25) and 

LUF7763 (89, pKi = 5.99) showed a decreased binding activity at the hA2A AR, in 

comparison with those of the reference compounds LUF5833 (pKi = 8.13), LUF7724 and 

LUF7740 (pKi =7.17 and 8.00, respectively). A similar behavior can also be observed for 

the binding at the hA1 subtype, indeed, bothLUF7760 (pKi = 6.54) and LUF7763 (pKi = 6.95) 

showed lower affinity than the pyrimidine derivatives LUF7724, LUF7740 (pKi = 7.07 and 

pKi = 7.16 respectively) and were much less potent than the reference ligand (LUF5833, 

pKi = 8.54). With regard to the hA3 AR, all the synthesized compounds were endowed with 

very low affinity at this receptor showing a 8-91 fold reduced binding capability than 

LUF5833. These findings suggest that, in LUF5833, the two cyano groups are actively 

involved in binding to ARs so much so that their replacement with nitrogen atoms 

(LUF7724, LUF7760) or their partial removal (LUF7763, 89) result in much lower affinities 

towards the targeted proteins. The only exception was represented by the pyrimidine 

derivative LUF7740 which showed high affinity for the hA2A AR and a pKi value comparable 

with those of LUF5833. The absence of both the cyano moieties led to a completely lack 

of affinity for both the hA1 and hA2A ARs. In fact, the pyridine compound LUF7762 (88) 

was inactive at the investigated ARs (no displacement curves were performed).  

Table 14. Affinities of Synthesized Ligands for the Human Adenosine Receptorsa. 

Compound  hA1 pKi
b hA2A pKi

c hA3 pKi
d 

LUF5833 8.52±0.04 8.13±0.05 7.38±0.01 

LUF7724 7.07±0.01 7.17±0.08 6.46±0.06 

LUF7740 7.16±0.02 8.00±0.05 5.94±0.05 

LUF7760 6.54±0.05 6.25±0.08 5.42±0.06 

LUF7763 6.95±0.08 5.99±0.12 5.87±0.10 

 

aData are expressed as means ± SEM of three separate experiments. bAffinity expressed as pKi value, 
determined from displacement of specific [3H]DPCPX binding from the hA1R at 25 °C incubation. cAffinity 
expressed as pKi value, determined from displacement of specific [3H]ZM241385 binding from the hA2AR at 
25 °C incubation. dAffinity expressed as pKi value, determined from displacement of specific [3H]PSB11 
binding from the hA3R at 25 °C incubation. 
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7.5 Conclusion 

To summarize, during the six months I worked at LACDR, the syntheses of new suitably 

substituted triazine and pyridines (LUF7760, LUF7762 and LUF7763) structurally related 

to the hA2AAR partial agonist LUF5833 were successfully achieved. LUF7760 and LUF7763 

emerged as very weak ligands for the hA2AAR subtype while derivative LUF7762 turned 

out to be completely inactive at this receptor. Molecular modeling studies are currently 

ongoing to rationalize these binding data and shed light on the hypothetical binding mode 

of these derivatives at the hA2AAR. Moreover, with the aim to expand the SAR studies new 

compounds will be synthesized by introducing hydroxy or methoxy moieties at the meta 

or para position of the phenyl ring. 

 

7.6 Experimental section 

All solvents and reagents were purchased from commercial sources and were of analytical 

grade. TLC analysis was performed to monitor the reactions, using Merck silica gel F254 

plates. Grace Davison Davisil silica column material (LC60A, 30−200 μm) was used to 

perform column chromatography. Microwave reactions were performed in an Emrys 

Optimizer (Biotage AB, formerly Personal Chemistry). 1H and 13C NMR spectra were 

recorded on a Bruker DMX-400 (400 MHz) spectrometer, using tetramethylsilane as 

internal standard. Chemical shifts are reported in δ (ppm) and the following abbreviations 

are used: br = broad, s = singlet, d = doublet, dd = doublet of doublets, dt = doublet of 

triplets t = triplet, m = multiplet, tt = triplet of triplets. The analytical purity of the final 

compounds is 95% or higher and was determined by high-performance liquid 

chromatography (HPLC) with a Phenomenex Gemini 3 μm C18 110A column (50 mm × 4.6 

mm, 3 μm), measuring UV absorbance at 254 nm. The sample preparation and HPLC 

method was as follows: 0.3−0.6 mg of compound was dissolved in 1 mL of a 1:1:1 mixture 

of CH3CN/H2O/t-BuOH and eluted from the column within 15 min at a flow rate of 1.3 

mL/min. The elution method was set up as follows: 1−4 min isocratic system of 

H2O/CH3CN/1% TFA in H2O, 80:10:10; from the fourth min, a gradient was applied from 

80:10:10 to 0:90:10 within 9 min, followed by 1 min of equilibration at 0:90:10 and 1 min 

at 80:10:10. Liquid chromatography−mass spectrometry (LC−MS) analyses were 

performed using a Thermo Finnigan Surveyor-LCQ Advantage Max LC−MS system and a 
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Gemini C18 Phenomenex column (50 mm × 4.6 mm, 3 μm). The elution method was set 

up as follows: 1−4 min isocratic system of H2O/CH3CN/1% TFA in H2O, 80:10:10; from the 

fourth min, a gradient was applied from 80:10:10 to 0:90:10 within 9 min, followed by 1 

min of equilibration at 0:90:10 and 1 min at 80:10:10. The following abbreviation are used 

for solvents and reactive products: AcOH = Acetic acid, CDCl3 = Deuterated chloroform,  

DCM = Dichloromethane, DMF = Dimethylformamide, DMSO-d6 = Deuterated dimethyl 

sulfoxide, EtOAc = Ethyl acetate, Et2O = Diethyl ether, EtOH = Ethanol, HCl = Hydrochloric 

acid, MeOD = Deuterated methanol, MeOH = Methanol, TFA = Trifluoroacetic acid,  THF 

= Tetrahydrofuran.  

 

Synthesis of 2,6-Dichloro-4-phenyl-1,3,5-triazine (198) 

 

To a stirred suspension of cyanuric chloride (7.5 g, 40.7 mmol), in anhydrous THF (20 mL) 

at 0°C under nitrogen atmosphere, a 3M solution of phenylmagnesium bromide (0.993 

mL, 2.98 mmol) in THF (10 mL) was added dropwise (over 30 min). The mixture was stirred 

at room temperature for 6h (TLC monitoring, Petroleum ether 8/EtOAc 2) then it was 

treated with 10 % aqueous HCl (50 mL) and extracted with EtOAc (40 mL x 3). The 

combined organic layers were washed with water (30 mL), dried on MgSO4 and 

evaporated under reduced pressure to give a brown solid. The product was used for the 

next step without further purification. Yield 52,3 %. 1H NMR (400 MHz, CDCl3) 7.54 (t, J = 

7.8 Hz, 2H), 7.66 (dd, 1H, J = 11.7, 4.3 Hz,), 8.51 (m, 2H). Anal. Calc. for C9H5Cl2N3 
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Synthesis of 2-amino-6-chloro-4-phenyl-1,3,5-triazine (199) 

 

To a stirred solution of 2,6-dichloro-4-phenyl-triazine 198 (0.3 g, 1.327 mmol) in DCM (5 

mL), 25% aqueous ammonia was added dropwise (0.09 mL, 1.327 mmol). The resulting 

mixture was stirred at room temperature for 8h. (TLC monitoring, Petroleum Ether 8/ 

AcOEt 2). The suspended solid was filtered and rinsed wit DCM (30 mL). The combined 

mother liquors were evaporated under pressure to afford a pale orange solid (180 mg). 

The compound has been used in the next reaction without further purification. Yield 

65.6%. 1H NMR (400 MHz, CDCl3) 5.75 (br s, 2H, NH2), 7.51 (t, 2H, ar, J = 7.6 Hz), 7.61 (t, 

1H, ar, J = 7.3 Hz), 8.43 (d, 2H, ar, J = 7.5 Hz). LC-MS (ESI): 207.1 [M + H] +. Anal. Calc. for 

C9H7ClN4. 

 

Synthesis of 4-amino-6-phenyl-1,3,5-triazine-2-thiol (200) 

 

A suspension of 4-amino-6-phenyl-2-phenylthio-1,3,5-triazine 199 (0.68 g, 3.29 mmol), 

and sodium sulfide monohydrate (1.185 g, 4.93 mmol) in DMF (3 mL) was heated at 80 °C 

for 3h (TLC monitoring, EtOAc 8/Petroleum ether 2). The solvent was eliminated under 

reduced pressure (water bath 80 °C) and the residue was treated carefully with HCl 1M 

solution in EtOAc (10 mL). The resulting solid was collected by filtration and extracted 

with boiling EtOH (20 mL x 5). The collected organic layers were evaporated at reduced 

pressure to afford a pale yellow solid (240 mg) which was purified by recrystallization. 

Yield 28 %. (DCM) 1H NMR (400 MHz, DMSO-d6) 7.53 (m, 2H, ar), 7.60 (m, 1H, ar), 8.24 (m, 

2H, ar), 12.83 (s, 1H, SH). LC-MS (ESI): 205.1 [M + H] +. Anal. Calc. for C9H8N4S.  
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 Synthesis of 4-(((1H-imidazol-2-yl)methyl)thio)-6-phenyl-1,3,5-triazin-2-amine (87) 

LUF7760. 

 

A suspension of 4-amino-6-phenyl-1,3,5-triazine-2-thiol 200 (0.148 g, 0.725 mmol), 

NaHCO3 (0.061 g, 0.725 mmol) and 2-(bromomethyl)-1H-imidazole (0.263 g, 1.087 mmol) 

in DMF (1.5 mL) was stirred at room temperature for 3 h (TLC monitoring DCM 9/ MeOH 

1). Then the solvent was evaporated under reduced pressure (water bath 60 °C) and the 

resulting residue was treated with water (15 mL) and extracted with EtOAc (30 mL x 4). 

The combined organic layers were dried on MgSO4 and evaporated to afford a pale brown 

oil. (93 mg). Purification of the crude product by recrystallization afforded the pure 

compound as a white solid (7 mg).  Yield 3 %. (Petroleum ether/MeOH). 1H NMR (400 

MHz, MeOD) 4.49 (s, 2H, CH2), 6.97 (br s, 2H, imidazole protons), 7.45 (t, 2H, ar, J= 8.0 

Hz),  7.53 (tt, 1H, ar, J = 7.6, 1.2 Hz), 8.34 (d, 2H, ar, J = 8.0 Hz). HPLC: 97,2 %, RT 4.56 min, 

LC-MS (ESI): 285.1 [M + H] + Anal. Calc. for C13H12N6S. 
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Synthesis of 2,6-dichloro-4-phenylpyridine (201) 

 

A suspension of 2,6-dichlo-4-iodopyridine (1 g, 3.65 mmol), Na2CO3 (1.16 g, 10.95 mmol), 

phenylboronic acid pinacol esther (0.745 g, 3.65 mmol) and Pd(PPh3)2Cl2 (0.128 g, 0.183 

mmol) in a mixture of acetonitrile (12 mL) and water (8 mL) under N2 atmosphere was 

heated at 70 °C for 16 h (TLC monitoring, Petroleum ether 9.8/EtOAc 0.2). The obtained 

mixture was diluted with EtOAc (50 mL) and washed with brine (30 mL x 3). The organic 

layer was dried on MgSO4 and evaporated under reduced pressure to afford a brown oil 

which was purified by column chromatography (Petroleum ether 9.8/EtOAc 0.2). Yield 92 

%. 1H NMR (400 MHz, CDCl3) 7.50 (s, 2H, pyridine protons), 7.52-7.55 (m, 3H, ar), 7.60-

7.63 (m, 2H, ar). Anal. Calc. for C11H7Cl2N. 

 

Synthesis of 2-(tert-butylthio)-6-chloro-4-phenylpyridine (202) 

 

A suspension of 2,6-dichloro-4-phenylpyridine (0.2 g, 0.89 mmol), Cs2CO3 (0.58 g, 1.78 

mmol), and 2-methyl-propanethiol (0.0846 mg, 0.93 mmol) in DMF was heated at 80 °C 

overnight (TLC monitoring, Petroleum ether 9/EtOAc 1 and HPLC). The mixture was 

diluted with EtOAc (50 mL) and washed with brine (30 mL x 5). The organic phase was 

dried on MgSO4 and evaporated to afford a pale yellow oil (249 mg) which was used for 

the next step without purification. Quantitative yield. 1H NMR (400 MHz, CDCl3) 1.62 (s, 

9H, (CH3)3), 7.30 (d, 1H, pyridine proton, J = 1.3 Hz), 7.40 (d, 1H, pyridine proton, J = 1.3 
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Hz), 7.46 -7.54 (m, 3H, ar), 7.58-7.61 (m, 2H, ar). LC-MS (ESI): 277.9 [M + H] +. Anal. Calc. 

for C15H16ClNS. 

 

Synthesis of Tert-butyl-(6-(tert-butylthio)-4-phenylpyridin-2-yl)-carbamate (203) 

 

A suspension of 2-(tert-butylthio)-6-chloro-4-phenylpyridine 202 (0.23 g, 0.83 mmol), 

Cs2CO3 (0.54 g, 1.66 mmol), Xantphos (0,144 g, 0,25 mmol), Pd(OAc)2 (0,028 g, 0,124 

mmol), t-butylcarbamate (0,097 g, 0,83 mmol) in anhydrous 1,4-Dioxane (2,8 mL) under 

N2 atmosphere was heated at 110 °C overnight. The reaction progress was monitored by 

TLC (Petroleum ether 9.8/AcOEt 0.2) and HPLC. The mixture was treated with boiling 

acetone (25 mL) and filtered. The organic layer was evaporated to afford a red oil (478 

mg) which was purified by liquid chromatography (Petroleum ether 9.8/AcOEt 0.2). (80 

mg of a yellow solid). Yield 26.9 %. 1H NMR (400 MHz, DMSO-d6) 1.51 (s, 9H, (CH3)3), 1.55 

(s, 9H, (CH3)3), 7.17 (d, 1H, pyridine proton, J = 1.3 Hz), 7.46–7.54 (m, 3H, ar), 7.67-7.69 

(m, 2H, ar), 7.86 (d, 1H, pyridine proton, J = 1.3 Hz), 9.97 (br s, 1H, NH). LC-MS (ESI): 358.9 

[M + H] +. Anal. Calc. for C20H26N2O2S. 

 

Synthesis of 6-(tert-butylthio)-4-phenylpyridin-2-amine (204) 

 

To a solution of tert-butyl (6-(tert-butylthio)-4-phenylpyridin-2-yl)-carbamate 203 (0.25 g, 

0.697 mmol) in DCM (5 mL) TFA (0,266 mL, 3,48 mmol) was added. The mixture was 
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refluxed overnight (TLC monitoring, DCM 9.4/MeOH 0.6 and HPLC). The mixture was 

diluted with EtOAc (50 mL) and washed with water (25 mL x 4). The organic phase was 

dried on MgSO4 and evaporated to afford a brown oil. The crude compound was purified 

by liquid chromatography (Petroleum ether 5/EtOAc 5) to yield a pale yellow oil (135 mg). 

Yield 75%. 1H NMR (400 MHz, DMSO-d6) 1.47 (s, 9H, C(CH3)3), 6.78 (s, 1H, pyridine proton), 

6.96 (s, 1H, pyridine proton), 7.51-7.54 (m, 3H, ar), 7.68 (d, 2H, ar, J = 6.4 Hz). LC-MS (ESI): 

259.0 [M + H] +. Anal. Calc. for C15H18N2S. 

 

Synthesis of 6-amino-4-phenylpyridine-2-thiol (205) 

 

A stirred solution of 6-(tert-butylthio)-4-phenylpyridin-2-amine 204 (0.445 g, 1.722 mmol) 

in 37 % HCl (15 mL) was heated at 100 °C for 10 h (HPLC monitoring). The mixture was 

cooled to 0 °C and carefully neutralized to pH = 7 with NaHCO3 saturated solution. The 

resulting solution was extracted with EtOAc (40 mL x 5). The combined organic phases 

were dried on MgSO4 and evaporated to afford 135 mg of orange solid. The compound 

was used for the next reaction without further purification. Yield 39 %.1H NMR (400 MHz, 

DMSO-d6) 6.42 (s, 1H, pyridine proton), 6.87 (s, 1H, pyridine proton), 7.47-7.48 (m, 3H, 

ar), 7.57-7.59 (m, 2H, ar), 12.07 (br s, 1H, SH). LC-MS (ESI): 203.1 [M + H] +. Anal. Calc. for 

C11H10N2S. 
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Synthesis of 6-(((1H-imidazol-2-yl)methyl)thio)-4-phenylpyridin-2-amine (88) LUF7762  

 

To a suspension of 6-amino-4-phenylpyridine-2-thiol (0.145 g, 0.716 mmol) and NaHCO3 

(0.0602 g, 0,57 mmol) in anhydrous DMF (2 mL) was added bromo-methyl-(1H)-imidazole 

(0.225 g, 0.931 mmol). The mixture was stirred at room temperature for 23 h (HPLC 

monitoring). The solvent was evaporated under reduced pressure (water bath, 70 °C). The 

resulting residue was treated with water (20 mL) and extracted with EtOAc (30 mL x 4). 

The organic phase was dried on MgSO4 and evaporated to afford 282 mg of an orange oil. 

The compound was purified by liquid chromatography (DCM 9/MeOH 1). Yield 33 %. 1H 

NMR (400 MHz, MeOD) 4.39 (s, 2H, CH2), 6.50 (d, 1H, pyridine proton, J = 1.2 Hz), 6.70 (d, 

1H, pyridine proton, J = 1.2 Hz), 6.94 (s, 2H, imidazole protons), 7.32-7.46  (m, 3H, ar), 

7.54 (dd, 2H, ar, J = 8.0, 1.4 Hz). HPLC: 96,52 %, RT 4.30 min, LC-MS (ESI): 283.1 [M + H] +. 

Anal. Calc. for C15H14N4S. 

 

Synthesis of 2,6-dihydroxy-4-phenylnicotinonitrile (206)457 

 

A suspension of ethyl benzoyl acetate (3 g, 15.6 mmol), 2-cyanoacetamide (1.31 g, 15.6 

mmol) and KOH (0.96 g, 15.6 mmol) in EtOH (20 mL) was refluxed for 24 h (TLC monitoring, 

DCM 8/MeOH 2). The mixture was cooled to 0°C. The resulting solid was collected by 
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filtration and then dissolved in warm water (60 mL/60 °C). The alkaline solution was 

carefully treated with 37% HCl solution to pH = 1. The precipitate was collected by 

filtration and dried (1.3 g). Yield 33.6 %. 1H NMR (400 MHz, DMSO-d6) 5.81 (s, 1H, 

nicotinonitrile proton), 7.53 (s, 5H, ar). LC-MS (ESI): 213.1 [M + H] +. Anal. Calc. for 

C12H8N2O2. 

 

Synthesis of 2,6-dichloro-4-phenylnicotinonitrile (207) 

 

A suspension of 2,6-dihydroxy-4-phenylnicotinonitrile 206 (1.2 g, 5.657 mmol) in POCl3 

(5.3 mL, 56.6 mmol) was heated at 180 °C in autoclave for 16 h (HPLC monitoring). The 

mixture was cooled to 0 °C and treated with crushed ice. The suspended solid was 

collected by filtration, rinsed with Petroleum ether (30 mL) and dried (990 mg). The 

product has been used for the next step without further purification. Yield 70 %. 1H NMR 

(400 MHz, CDCl3) 7.47 (s, 1H, nicotinonitrile proton), δ 7.60–7.63 (m, 5H, ar). +. Anal. Calc. 

for C12H6Cl2N2. 

 

Synthesis of tert-butyl-(6-chloro-5-cyano-4-phenylpyridin-2-yl)-carbamate (208) 

 

To a suspension of 2,6-dichloro-4-phenylnicotinonitrile 207 (0.2 g, 0.806 mmol),                      

t-butylcarbamate (0.0944 g, 0.806 mmol), Cs2CO3 (0.54 g, 1.66 mmol) and Xantphos 

(0.139 g, 0.242 mmol) in anhydrous 1,4-dioxane (2.7 mL) under N2 atmosphere was added 
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Pd(OAc)2 (0.027 g, 0.121 mmol). The mixture was heated at 40 °C for 23 h (TLC monitoring, 

Petroleum ether 9.8/EtOAc 0.2). The mixture was treated with boiling acetone (25 mL) 

and filtered. The collected organic layer was evaporated to afford 90 mg of a pale brown 

solid. The product was used for the next reaction without further purification. Yield 33%. 

1H NMR (300 MHz, CDCl3) 1.55 (s, 9H, C(CH3)3), 7. 50 (br s, 1H, NH), 7.52-7.55 (m 3H, ar), 

7.62 – 7.65 (m, 2H, ar), 8.09 (s, 1H, 5-cyano-pyridine proton). LC-MS (ESI): 329.92 [M + H] 

+. Anal. Calc. for C17H16ClN3O2. 

 

Synthesis of tert-butyl (6-(tert-butylthio)-5-cyano-4-phenylpyridin-2-yl)-carbamate 

(209) 

 

A suspension of tert-butyl (6-chloro-5-cyano-4-phenylpyridin-2-yl)-carbamate 208 (0.09 

g, 0.273 mmol), 2-methyl-propanethiol (0.03 mL, 0.273 mmol) and Cs2CO3 (0.546 mmol) 

in DMF (2 mL) was heated at 90 °C for 20 h (HPLC monitoring). The mixture was cooled to 

room temperature, diluted with EtOAc (50 mL) and washed with brine (25 mL x 5). The 

organic layer was dried on MgSO4 and evaporated to afford an orange oil (93 mg). The 

compound was used for the next reaction without further purification. Yield: 89 %.  1H 

NMR (400 MHz, CDCl3) 1.56 (s, 9H, (CH3)3), 1.67 (s, 9H, (CH3)3), 7.34 (br s, 1H, NH), 7.46–

7.50 (m, 3H, ar), 7.58–7.61 (m, 2H, ar), 7.82 (s, 1H, 5-cyano-pyridine proton). LC-MS (ESI): 

384.00 [M + H] +. Anal. Calc. for C21H25N3O2S. 
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Synthesis of 6-amino-2-mercapto-4-phenylnicotinonitrile (210).  

 

A suspension of tert-butyl (6-(tert-butylthio)-5-cyano-4-phenylpyridin-2-yl)-carbamate 

209 (0.7 g, 1.825 mmol) in 37% HCl (7 mL) was heated at 100 °C for 2 h (HPLC monitoring). 

The mixture was cooled to room temperature and diluted with NaHCO3 saturated solution 

(7 mL). The resulting suspension carefully treated with solid NaHCO3 to pH = 7 and 

extracted with EtOAc (30 mL x 5). The combined organic phases were dried on MgSO4 and 

evaporated to afford an orange solid which was purified by column chromatography 

(Petroleum ether 6/EtOAc 4) and (DCM 9/MeOH 1). Pale yellow solid (156 mg). Yield 

37%.1H NMR (300 MHz, MeOD) 6.07 (s, 1H, 5-cyano-pyridine proton), 7.51-7.57 (m, 5H, 

ar). LC-MS (ESI): 228.08 [M + H] +. Anal. Calc. for C12H9N3S. 

 

Synthesis of 2-(((1H-imidazol-2-yl)methyl)thio)-6-amino-4-phenylnicotinonitrile (89) 

(LUF7763) 

 

A suspension 6-amino-2-mercapto-4-phenylnicotinonitrile 210 (0.096 g, 0.422 mmol), 

NaHCO3 (0.0202 g, 0.422 mmol), bromo-methyl-(1H)-imidazole (0.153 g, 0.633 mmol)  in 

anhydrous DMF (2,5 mL) was stirred at room temperature for 4 h (TLC monitoring, DCM 

9 /MeOH 1). The solvent was evaporated under reduced pressure (water bath 70 °C). The 

resulting residue was treated with water (10 mL) and extracted with EtOAc (30 mL x 5). 
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The organic layer was dried on MgSO4 and evaporated to afford a pale brown oil (116 mg). 

First, the crude product was purified by column chromatography (Petroleum ether 1/ 

AcOEt 7.8/MeOH 1.2) and then recrystallized (Et2O/MeOH) to give a yellow solid (10 mg). 

Yield 7.7 %. 1H NMR (400 MHz, MeOD) 4.53 (s, 2H, CH2), 6.28 (s, 1H, nicotinonitrile 

proton), 6.97 (s, 2H, imidazole protons) 7.48 (dt, 5H, ar, J = 6.8, 4.0 Hz). HPLC: 98,2 %, RT 

5.52 min, LC-MS (ESI): 308.1 [M + H] +. Anal. Calc. for C16H13N5S. 

 

7.7 Materials and method 

 

7.7.1 Chemicals and Reagents 

Chinese hamster ovary cells stably expressing the human adenosine A1 receptor 

(CHOhA1R) were kindly provided by Prof. Steve hill (University of Nottingham, UK); Human 

embryonic kidney 293 cells stably expressing the human adenosine A2A receptor 

(HEK293hA2AR) were kindly provided by Dr. J Wang (Biogen/IDEC, Cambridge, MA); Chinese 

hamster ovary (CHO) cells stably expressing the human adenosine A3 receptor (CHOhA3) 

were a gift from Dr. K-N Klotz (University of Würzburg, Germany). [3H]-1,3-dipropyl-8-

cyclopentyl-xanthine([3H]DPCPX, specific activity 120 Ci/mmol) was purchased from ARC. 

(St.Louis, USA); [3H 4-(-2-[7-amino-2-{2-furyl}{1,2,4}triazolo{2,3-a} {1,3,5}triazin-5-yl-

amino]ethyl) phenol ([3H]- ZM241385, specific activity 50 Ci/mmol) was purchased from 

ARC, Inc. (St. Louis, MO); [3H]8-Ethyl-4-methyl-2-phenyl-(8R)-4,5,7,8-tetrahydro-1H-

imidazo[2,1-i]-purin-5-one ([3H]PSB-11, specific activity 56 Ci/mmol) was obtained with 

the kind help of Prof. C.E. Müller (University of Bonn, Germany). 5’-N-

ethylcarboxamidoadenosine (NECA), N6-Cyclopentyladenosine (CPA) and Adenosine 

deaminase (ADA) were purchased from Sigma-Aldrich (Steinheim, Germany). Pierce 

Bicinchoninic acid (BCA) protein assay reagents were obtained from Pierce Chemical 

Company (Rockford, IL, USA). All other chemicals were of analytical grade and obtained 

from standard commercial sources. 

 

7.7.2 Cell Culture and Membrane Preparation 

CHOhA1R and CHOhA3R were Dulbecco’s Modified Eagles Medium (DMEM) and Ham’s 

F12 medium (1:1) supplemented with 10% (v/v) 10% newborn calf serum, 50 µg.mL-1 
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streptomycin, 50 IU.mL-1 penicillin, and 200 µg.mL-1 G418 at 37 oC and 5% CO2. CHOhA1R 

cells were subcultured twice a week at a ratio of 1:20 on 10 cm Ø plates and 15 cm Ø 

plates. CHOhA3 cells were subcultured twice a week at a ratio of 1:8 on 10 cm Ø plates 

and 15 cm Ø plates. HEK293hA2AR cells were grown in culture medium consisting of 

Dulbecco’s Modified Eagles Medium (DMEM) supplemented with 10% newborn calf 

serum, 50 µg.mL-1 streptomycin, 50 IU.mL-1 penicillin, and 500 µg.mL-1 G418 at 37 oC and 

7% CO2. Cells were subcultured twice a week at a ratio of 1:8 on 10 cm Ø plates and 15 

cm Ø plates. All cells were grown to 80-90% confluency and detached from plates by 

scraping them into 5 mL PBS. Detached cells were collected and centrifuged at 0.2 x g for 

5 min. Pellets derived from 100 15 cm Ø plates were pooled and resuspended in 70 mL of 

Ice-cold 50 mM Tris-HCl buffer, pH = 7.4. A Heidolph Diax 900 homogenizer was used to 

homogenize the cell suspension. Membranes and the cytosolic fraction were separated 

by centrifugation at 100 000x g in a Beckman Optima LE-80 K ultracentrifuge (Beckman 

Coulter, Fullerton, CA) at 4 oC for 20 min. The pellet was resuspended in 35 mL of the           

Tris-HCl buffer, and the homogenization and centrifugation steps were repeated. Tris-HCl 

buffer (25 mL) was used to resuspend the pellet, and ADA was added (0.8 U/mL) to break 

down endogenous adenosine. Membranes were stored in 250 µL and 500 µL aliquots at 

80 oC. Total protein concentrations were measured using the BCA method458 

 

7.7.3 Radioligand Displacement Assay 

Membrane aliquots containing 5 µg (CHOhA1R), or 30 µg (HEK293hA2AR) or 15 µg 

(CHOhA3R) were incubated in a total volume of 100 µL assay buffer (50 mM Tris-HCl, pH 

= 7.4) for  CHOhA1R and HEK293hA2AR; and assay buffer (50 mM Tris-HCl, pH = 8.0, 

supplemented with 10 mM MgCl2, 1 mM EDTA and 0.01% (w/v) CHAPS) for CHOhA3R at 

25 °C for 1 h (CHOhA1R and HEK293hA2AR) and 2 h (CHOhA3R). Radioligand displacement 

experiments were performed using 6 concentrations of competing ligand in the presence 

of 1.6nM [3H]DPCPX for CHOhA1R, 5.5 nM [3H]ZM241385 for HEK293hA2AR and 10 nM 

[3H]PSB11 for CHOhA3R. At these concentrations total radioligand binding did not exceed 

10% of that added to prevent ligand depletion. Nonspecific binding was determined in 

the presence of 100 µM CPA for CHOhA1R, 100 µM NECA for CHOhA1R and CHOhA3R. 

Incubations were terminated by rapid vacuum filtration to separate the bound and free 
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radioligand through prewetted 96-well GF/B filter plates using a PerkinElmer Filtermate-

harvester (Perkin Elmer, Groningen, the Netherlands). Filters were subsequently washed 

 12 times with ice-cold wash buffer (50 mM Tris-HCl, pH = 7.4) for CHOhA1R and 

HEK293hA2AR; and wash buffer for CHOhA3R (50 mM Tris-HCl supplemented with 10 mM 

MgCl2, 1mM EDTA, pH = 8.0). The plates were dried at 55 oC after which MicroscintTM-20 

cocktail was added (Perkin Elmer, Groningen, The Netherlands). After 3 h the filter-bound 

radioactivity was determined by scintillation spectrometry using a 2450 MicroBeta 

Microplate Counter (Perkin Elmer, Groningen, The Netherlands).  

 

7.7.4 Data analysis 

All experimental data was analyzed by using GraphPad Prism 7.0 (GraphPad Software Inc., 

San Diego, CA). IC50 values obtained from competition displacement binding data were 

converted into Ki values using the Cheng-Prusoff equation459. The KD value of [3H]DPCPX 

at CHOhA1R membrane was taken from Kourounakis, A. et al. Biochem. Pharmacol. G1 

(2001) 137-144. The KD value (1.0 nM) of [3H]ZM241385 at hA2AR membranes and the KD 

value (17.3nM) of [3H]PSB11 at CHOhA3R membranes were taken from in-house 

determination.
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8. ACRONYMS AND ABBREVIATIONS 

The following acronyms and abbreviations are used for the NMR spectra: 

ar = Aromatic protons 

br = Broad 

d = Doublet 

dd = Doublet of doublets 

dt = Doublet of triplets 

m = Multiplet 

q = Quartet 

s = Singlet  

t = Triplet 

tt = Triplet of triplets 

 

The following acronyms and abbreviations are used for solvents and chemical reagents:  

AcOH = Acetic acid 

CDCl3 = Deuterated chloroform 

DIPEA = N,N-Diisopropylethylamine 

DCM = Dichloromethane 

DMF = Dimethylformamide 

DMSO-d6 = Deuterated dimethyl sulfoxide 

EDCI.HCl = N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride 

EDTA = Ethylenediaminetetraacetic acid 

EtOAc = Ethyl acetate 

Et2O = Diethyl ether 

EtOH = Ethanol 

HCl = Hydrochloric acid 

HOBt = Hydroxybenzotriazole 

MeOH = Methanol 

MeOD = Deuterated methanol 

TFA = Trifluoroacetic acid 

THF = Tetrahydrofuran 



8. ACRONYMS AND ABBREVIATIONS   
 

                                                                                                                                                                           

164 

t-BuOH = Tert-butanol 

 

Other acronyms and abbreviations: 

ADP = Adenosine diphosphate 

AMP = Adenosine monophosphate 

cAMP = Cyclic adenosine monophosphate 

ATP = Adenosine triphosphate 

EC50 = Half maximal effective concentration 

g = Gram 

mg = Milligram 

µg = Micrograms 

HPLC = high-performance liquid chromatography 

Hz = Hertz 

IC50 = Half maximal inhibitory concentration 

IR = Infrared radiation 

IU = International Unit 

LC-MS = Liquid chromatography−mass spectrometry 

mL = Milliliter 

μL = Microliter 

mM = Millimolar 

μM = Micromolar 

nM = Nanomolar 

m.p. = Melting point 

mw = Microwave 

NMR = Nuclear magnetic resonance 

PBS = Phosphate-buffered saline 

ppm = Parts per million 

r.t. = Room temperature 

TLC = Thin layer chromatography



9.REFERENCES 

 

165 

9.REFERENCES 
 

1.Yacoubian, Y.A. Neurodegenerative disorders: why do we need new therapies?                                                             
Drug Discovery Approaches for the Treatment of Neurodegenerative Disorders. 2017. 

2.Stockwell, J., et al. Adenosine A1 and A2A Receptors in the Brain: Current Research and Their Role in 
Neurodegeneration. Molec. 2017, 22, 676.  
 
3. Drury, A.N., et al. The physiological activity of adenine compounds with special reference to their action 
upon the mammalian heart. J. Physiol. 1929, 68, 213–237.  
 
4. Belhassen, B., et al. Electrophysiologic effects of adenosine triphosphate and adenosine on the 
mammalian heart: clinical and experimental aspects. J. Am. Coll. Cardiol. 1984, 4, 414–424. 
 
 5. Delacrétaz, E., et al. Clinical practice. Supraventricular tachycardia. N. Engl. J. Med. 2006, 354, 1039– 
1051 
 
 6. Fredholm, B.B., et al. International Union of Pharmacology. XXV. Nomenclature and classification of 
adenosine receptors. Pharmacol. Rev. 2001, 53, 527–552. 
 
 7. Fredholm, B.B., et al. International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and 
classification of adenosine receptors — an update. Pharmacol. Rev. 2011, 63, 1–34. 
 
8. Eltzschig, H.K., et al. Purinergic signaling during inflammation. N. Engl. J. Med. 2012, 367, 2322–2333. 
 
9. Eltzschig, H.K., et al. Adenosine: an old drug newly discovered. Anesthesiology. 2009, 111, 904–915.  
 
10 Johansson, S. M., et al. Eliminating the antilipolytic adenosine A1 receptor does not lead to compensator 
changes in the antilipolytic actions of PGE2 and nicotinic acid. Acta. Physiol. 2007, 190, 87–96.  
 
11. Grenz, A. et al. Equilibrative nucleoside transporter 1 (ENT1) regulates postischemic blood flow during   
acute kidney injury in mice. J. Clin. Invest. 2012, 122, 693–710.  
 
12. Sun, D., et al. Mediation of tubuloglomerular feedback by adenosine: evidence from mice lacking 
adenosine 1 receptors. Proc. Natl. Acad. Sci. 2001, 98, 9983–9988.  
 
13. Rosenberger, P. et al. Hypoxia-inducible factor-dependent induction of netrin-1 dampens inflammation 
caused by hypoxia. Nature. Immunol. 2009, 10, 195–202. 
 
 14. Huang, Z. L. et al. Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nature 
Neurosci. 2005, 8, 858–859. 
 
 15. Lazarus, M. et al. Arousal effect of caffeine depends on adenosine A2A receptors in the shell of the 
nucleus accumbens. J. Neurosci. 2011, 31, 10067–10075.  
 
16. Liu, X. L. et al. Genetic inactivation of the adenosine A2A receptor attenuates pathologic but not 
developmental angiogenesis in the mouse retina. Invest. Ophthalmol. Vis. Sci. 2010, 51, 6625–6632.  
 
17. Hasko, G., et al. Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. 
Nature Rev. Drug Discov. 2008, 7, 759–770.  
 
18. Eltzschig, H. K., et al. Hypoxia and inflammation. N. Engl. J. Med. 2011, 364, 656–665.  
 
19. Eltzschig, H. K., et al. Ischemia and reperfusion — from mechanism to translation. Nature Med. 2011, 
17, 1391–1401.  
 



9.REFERENCES 

 

                                                                                                                                                                           

166 

20. Fredholm, B. B., et al. Adenosine, an endogenous distress signal, modulates tissue damage and repair. 
Cell Death Differ. 2007, 14, 1315–1323.  
 
21.Borea, P.A., et al. Pharmacology of adenosine receptors: the state of art.                                                                   
Physiol. Rev. 2018, 98, 1591-1625.  
 
22. MacDonald, P., et al. Release of small transmitters through kiss-and-run fusion pores in rat pancreatic 
β cells. Cell Metab. 2006, 4, 283–290.  
 
23. Zhang, Z., et al. Regulated ATP release from astrocytes through lysosome exocytosis.                                         
Nature Cell Biol. 2007, 9, 945–953.  
 
24. Chekeni, F. B., et al. Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability 
during apoptosis. Nature. 2010, 467, 863–867.  
 
25. Elliott, M., R. et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic 
clearance. Nature. 2009, 461, 282–286.  
 
26. Anselmi, F., et al. ATP release through connexin hemichannels and gap junction transfer of second 
messengers propagate Ca2+ signals across the inner ear. Proc. Natl. Acad. Sci. 2008, 105, 18770–18775.  
 
27. Kanneganti, T. D., et al. Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin 
inflammasome independent of Toll-like receptor signaling. Immunity. 2007, 26, 433–443.  
 
28. Faigle, M., et al. ATP release from vascular   endotheliaoccurs across Cx43 hemichannels and is 
attenuated during hypoxia. PLoS ONE 3, e2801 (2008).  
 
29. Chen, JF., et al. Adenosine receptors as drug targets–what are the challenges? Nat. Rev. Drug. Discov. 
2013, 12, 265–286.  
 
30. Deussen, A., et al. Metabolic flux rates of adenosine in the heart. Naunyn. Schmiedebergs. Arch. 
Pharmacol. 2000, 362, 351–363.  
 
31. Deussen, A., et al. Formation and salvage of adenosine by macrovascular endothelial cells. Am. J. 
Physiol. Heart Circ Physiol. 1993, 264, H692–H700.  
 
32 Deussen, A., et al. Quantification of extracellular and intracellular adenosine production: understanding 
the transmembranous concentration gradient. Circulation. 1999, 99, 2041–2047. 
 
33. Antonioli, L., et al. Immunity, inflammation and cancer: a leading role for adenosine. Nat. rev. canc. 
2013, 13, 842-857. 
 
34. Peleli, M., et al. Pharmacological targeting of adenosine receptor signaling. Mol Aspects Med. 2017, 55, 
4–8.  
 
35. Fredholm, B.B., et al. International Union of Pharmacology. XXV. Nomenclature and classification of 
adenosine receptors. Pharmacol. Rev. 2001, 53, 527–552.  
 
36. Fredholm, B.B., et al. Structure and function of adenosine receptors and their genes. Naunyn 
Schmiedebergs Arch. Pharmacol. 2000, 362, 364–374.   
 
37. Klotz K.N. Adenosine Receptors and Their Ligands. Naunyn. Schmiedebergs. Arch. Pharmacol. 2000, 362, 
382–391.  
 
38. Van Calker D., et al. Adenosine regulates, via two different types ofreceptors, the accumulation of cyclic 
AMP in cultured brain cells.,33,. J. Neurochem. 1979, 33, 999-1005.  



9.REFERENCES 

 

167 

39. Londos C., et al. Subclasses of external adenosine receptors. Biochem. 1979, 77, 2551-2554.  
 
40. Daly J.W., et al. Subclasses of adenosine receptors in the central nervous system: interaction with 
caffeine and related methylxanthines. Cell. Mol. Neurobiol. 1983, 3, 69-80.  
 
41. Zhou Q.Y., et al. Molecular cloning and characterization of an adenosine receptor: the A3 adenosine 
receptor. Proc. Natl. Acad. Sci. USA. 1992, 89, 7432-7436. 
 
42. Brugarolas, M., et al. G-protein-coupled receptor heteromers as key players in the molecular 
architecture of the central nervous system. CNS. Neurosci. Ther. 2014,  20, 703–709.  
 
43. Ferré, S., et al. Adenosine-cannabinoid receptor interactions. Implications for striatal function. Br. J. 
Pharmacol. 2010, 16, 443–453.  
 
44. Ferré, S., et al. G protein-coupled receptor heteromers as new targets for drug development. Prog Mol 
Biol Transl Sci. 2010, 91, 41–52.  
 
45. Navarro, G., et al. Quaternary structure of a G-protein-coupled receptor heterotetramer in complex 
with Gi and Gs. BMC Biol. 14, 26, 2016,  
 
46. Navarro, G., et al. Interactions between intracellular domains as key determinants of the quaternary 
structure and function of receptor heteromers. J Biol Chem. 2010, 285, 27346–27359.  
 
47. Navarro, G., et al.  Direct involvement of sigma-1 receptors in the dopamine D1 receptor-mediated 
effects of cocaine. Proc Natl Acad Sci USA. 2010, 107, 18676–18681. 
 
48. Cristóvão-Ferreira, S., et al.. A1R-A2AR heteromers coupled to Gs and G i/0 proteins modulate GABA 
transport into astrocytes. Purinergic Signal. 2013, 9, 433–449.  
 
49. Hill, S.J., et al. Allosteric interactions at adenosine A(1) and A(3) receptors: new insights into the role of 
small molecules and receptor dimerization. Br. J. Pharmacol. 2014, 171, 1102–1113.  
 
50. Kim, S-K., et al. Computational prediction of homodimerization of the A3 adenosine receptor.                                   
J Mol. Graph. Model. 2006, 25, 549–561.  
 
51 Fuxe, K., et al. Adenosine A2A and dopamine D2 heteromeric receptor complexes and their function.                      
J Mol Neurosci. 2005, 26, 209–220.  
 
52. Fuxe, K., et al. Adenosine receptor-dopamine receptor interactions in the basal ganglia and their 
relevance for brain function. Physiol. Behav. 2007, 92, 210–217. 
 
53. Navarro, G., et al. Purinergic signaling in Parkinson’s disease. Relevance for treatment. 
Neuropharmacology. 2016, 104, 161–168.   
 
54. Gessi, S., et al. Adenosine receptor targeting in health and disease. Expert. Opin. Investig. Drugs. 2011, 
 20, 1591–1609,  
 
55. Sawynok, J., et al. Adenosine receptor targets for pain. Neuroscience. 2016, 338, 1–18.  
 
56. Stenberg, D., et al. Sleep and its homeostatic regulation in mice lacking the adenosine A1 receptor. J. 
Sleep Res. 2003, 12, 283–290.  
 
57. Dhalla, A.K., et al. A1 adenosine receptor: role in diabetes and obesity. Handb Exp Pharmacol. 2009, 
193, 271–295.  
 
58. Merighi, S., et al. Adenosine receptors and diabetes: Focus on the A(2B) adenosine receptor subtype. 
Pharmacol. Res. 2015, 99, 229–236.  



9.REFERENCES 

 

                                                                                                                                                                           

168 

59. Prystowsky, E.N., et al. Termination of paroxysmal supraventricular tachycardia by tecadenoson                   
(CVT-510), a novel A1-adenosine receptor agonist. J. Am. Coll. Cardiol. 2003, 42, 1098–1102.  
 
 60. Rabadi, M.M., et al. Adenosine receptors and renal ischaemia reperfusion injury.                                                     
Acta Physiol (Oxf). 2015, 213, 222–231. 
 
61. Sun, D., et al. Mediation of tubuloglomerular feedback by adenosine: evidence from mice lacking 
adenosine 1 receptors. Proc. Natl. Acad. Sci. USA. 2001, 98, 9983–9988. 
 
62. Vallon, V., et al. Adenosine and kidney function. Physiol. Rev. 2006, 86, 901–940.  
 
63. Vincenzi, F., et al. The anti-tumor effect of A3 adenosine receptors is potentiated by pulsed 
electromagnetic fields in cultured neural cancer cells. PLoS One. 2012, 7, e39317. 
 
64. Hua, X., et al. Involvement of A1 adenosine receptors and neural pathways in adenosine-induced 
bronchoconstriction in mice. Am. J. Physiol. Lung. Cell. Mol. Physiol. 2007, 293, L25–L32.  
 
65. Ponnoth, D.S., et al. Involvement of A1 adenosine receptors in altered vascular responses and 
inflammation in an allergic mouse model of asthma. Am. J. Physiol. Heart. Circ. Physiol. 2010, 299, H81–H87  
  
66. Wilson, C.N., et al. Adenosine receptors and asthma. Handb Exp Pharmacol. 2009, 193, 329–362. 
 
67. Schulte, G., et al. Human adenosine A(1), A(2A), A(2B), and A(3) receptors expressed in Chinese hamster 
ovary cells all mediate the phosphorylation of extracellular- regulated kinase 1/2. Mol. Pharmacol. 2000, 
58, 477–482. 
 
68. Schulte G., et al. Signalling from adenosine receptors to mitogen-activated protein kinases.                                   
Cell. Signal. 2003, 15, 813–827.  
 
69. Gundlfinger, A., et al. Adenosine modulates transmission at the hippocampal mossy fibre synapse via 
direct inhibition of presynaptic calcium channels. J. Physiol. 2007, 582, 263–277.  
 
70. Wu, L.G., et al. Adenosine inhibits evoked synaptic transmission primarily by reducing presynaptic 
calcium influx in area CA1 of hippocampus. Neuron. 1994, 12, 1139– 1148.  
 
71. Von Lubitz, D.K., et al.  Chronic administration of selective adenosine A1 receptor agonist or antagonist 
in cerebral ischemia. Eur. J. Pharmacol. 1994, 256, 161–16.  
 
 72. Von Lubitz, D.K., et al.  Chronic adenosine A1 receptor agonist and antagonist: effect on receptor 
density and N-methyl-D-aspartate induced seizures in mice. Eur. J. Pharmacol. 1994, 253, 95–99.  
 
73. Yoon, K.W., et al. Adenosine inhibits excitatory but not inhibitory synaptic transmission in the 
hippocampus. J. Neurosci. 1991, 11, 1375–1380.  
 
74. Borea, P.A., et al.  Adenosine as a Multi-Signalling Guardian Ange in Human Diseases: When, Where 
and How Does it Exert its Protective Effects? Trends. Pharmacol. Sci. 2016, 37, 419–434.  
 
75. Hargus, N.J., et al.  Enhanced actions of adenosine in medial entorhinal cortex layer II stellate neurons 
in temporal lobe epilepsy are mediated via A(1)-receptor activation. Epilepsia. 2012, 53, 168–176.  
 
76. Masino, S.A., et al.   A ketogenic diet suppresses seizures in mice through adenosine A1 receptors.                             
J. Clin. Invest. 2011, 121, 2679–2683.  
 
77. Lusardi, T.A., et al.   Ketogenic diet prevents epileptogenesis and disease progression in adult mice and 
rats. Neuropharmacology. 2015, 99, 500–509.  
 



9.REFERENCES 

 

169 

78. Boison, D., et al.   Adenosine kinase: exploitation for therapeutic gain. Pharmacol. Rev. 2013, 65,                
906–943.  
 
79. Williams-Karnesky, R.L., et al.   Epigenetic changes induced by adenosine augmentation therapy 
prevent epileptogenesis. J. Clin. Invest. 2013, 123, 3552–3563.  
 
80. Kashfi, S., et al.   A1 Adenosine Receptor Activation Modulates Central Nervous System Development 
and Repair. Mol. Neurobiol. 2017, 54, 8128–8139.  
 
81. Constantino, L.C., et al. Adenosine A1 receptor activation modulates Nmethyl- D-aspartate (NMDA) 
preconditioning phenotype in the brain. Behav Brain Res. 2015, 282, 103–110.  
 
82. Fredholm, B.B., et al. How does adenosine inhibit transmitter release? Trends. Pharmacol. Sci. 1988, 9, 
130-134.  
 
83. Corradetti, R., et al.  Adenosine decreases aspartate and glutamate release from rat hippocampal slices. 
Eur. J. Pharmacol. 1984, 104, 19-26. 
 
84. Dunwiddie, T.V., et al. Adenosine A1 receptors inhibit adenyl cyclase activity and neurotransmitter 
release and hyperpolarize pyramidal neurons in rat hippocampus. J. Pharmacol. Exp. Ther. 1989, 249, 31-
37. 
 
85. Cotman, C.W., et al.  N-Methyl-D-aspartate receptors and Alzheimer’s disease. Neurobiol. Aging. 1989, 
10, 603-605. 
 
86 Greenamyre, J.T., et al. Excitatory amino acids and Alzheimer’s disease. Neurobiol. Aging. 1989, 10, 593-
602. 
 
87. de Mendonça, A., et al.  2-Chloroadenosine decreases long-term potentiation in the hippocampal CA1 
area of the rat. Neurosci. Lett. 1990, 118, 107-111. 
 
88. de Mendonça, A., et al.  Endogenous adenosine attenuates long-term depression and depotentiation 
in the CA1 region of the rat hippocampus. Neuropharmacology. 1997,36, 161-167.  
 
89. Bliss, T.V., et al. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993, 
361, 31-39. 
 
90. de Mendonca, A., et al. Adenosine and synaptic plasticity. Drug. Dev. Res. 2001, 52, 283-290. 
 
91. Corodimas, K.P., et al.  Adenosine A1 receptor activation selectively impairs the acquisition of contextual 
fear conditioning in rats. Neuroscience. 2001, 115, 1283-1290. 
 
92. Hauber, W., et al. Facilitative effects of an adenosine A1/A2 receptors blockade on spatial memory 
performance of rats: selective enhacements of reference memory retention during the light period. Behav. 
Brain Res. 2001, 118, 43-52. 
 
93. Kopf, S.R., et al. Adenosine and memory storage: effect of A(1) and A(2) receptor antagonist. 
Psychopharmacology. (Berl). 1999, 146, 214-219. 
 
94. Fastbom, J., et al. Adenosine A1 receptors in the human brain: a quantitative autoradiographic study. 
Neuroscience. 1987, 22, 827-839. 
 
95. Angulo, E., et al. A1 adenosine receptors accumulate in neurogenerative structures in Alzheimer disease 
and mediate both amyloid precursor protein processing and tau phosphorylation and translocation. Brain. 
Pathol. 2003, 13, 440-451. 
 



9.REFERENCES 

 

                                                                                                                                                                           

170 

96. Ikeda, M., et al. Differential alterations in adenosine A1 and Kappa 1 opioid receptors in the striatum in 
Alzheimer’s disease. Brain. Res. 1993, 616, 211-217. 
 
97.  Ułas, J., et al. Reduced density of adenosine A1 receptors and preserved coupling of adenosine A1 
receptors to G proteins in Alzheimer hippocampus: a quantitative autoradiographic study. Neuroscience. 
1993, 52, 843-854.  
 
98. Kalaria, R.N., et al. Hippocampal adenosine A1 receptors are decreased in Alzheimer’s disease. Neurosci. 
Lett. 1990, 118, 257-260. 
 
99. Hyman, B.T., et al. Perforant pathway changes and the memory impairment of Alzheimer’s disease. 
Ann. Neurol. 1986, 20, 472-481. 
 
100. Albasanz, J.L., et al. Up-regulation of adenosine receptors in the frontal cortex in Alzheimer’s disease. 
Brain Pathol. 2008, 18, 211-219. 
 
101. Arendash, G.W., et al. Caffeine protects Alzheimer’s mice against cognitive impairment and reduce 
brain β−amyloid production. Neuroscience. 2006, 142, 941-952. 
 
102. Sveningsson, P., et al. Distribution of adenosine receptors in the postmortem human brain: an 
extended autoradiographic study. Synapse. 1997, 27, 322−335. 
 
103. Kimura, Y., et al. Quantitative analysis of adenosine A1 receptors in human brain using positron 
emission tomography and [1-methyl-11C]8-dicyclopropylmethyl-1-methyl-3-propylxanthine.                               
Nuclear Med. Biol. 2004, 31, 975−981. 
 
104. Ballarin, M., et al. Effect of locally infused 2-cholroadenosine, an A1 receptor agonist, on spontaneous 
and evoked dopamine release in rat neostriatum. Neurosci. Lett. 1995, 185, 29−32. 
 
105. Rebola, N., et al. Subcellular localization of adenosine A1 receptors in nerve terminal and synapses of 
the rat hippocampus. Brain. Res. 2003, 987, 49−58. 
 
106. Maemoto, T., et al. Pharmacological characterization of FR194921, a new potent, selective, orally 
active antagonist for central adenosine A1 receptors. J. Pharmacol. Sci. 2004, 96, 42−52. 
 
107. Yonishi, S., et al. A. Preparation of pyrazines as adenosine A1 and A2A receptor antagonists and their 
pharmaceutical compositions. PCT Int. Appl. WO 2005040151, 2005. 
 
108. Mihara, T., et al. A novel adenosine A1 and A2A receptor antagonist ASP5854 ameliorates motor 
impairment in MPTP-treated marmosets: Comparison with existing anti- Parkinson's disease drugs.                          
Behav. Brain Res. 2008, 194, 152−161. 
 
109. Mihara, T., et al. Brain adenosine A2A receptor occupancy by a novel A1/A2A receptor antagonist, 
ASP5854, in rhesus monkeys: Relationship to anticataleptic effect. J. Nucl. Med. 2008, 49, 1183−1188. 
 
110 Mihara, T., et al. Pharmacological characterization of a novel, potent adenosine A1 and A2A receptor 
dual antagonist, 5-[5-amino-3-(4-fluorophenyl)pyrazin-2- yl]-1-isopropylpyridine-2(1H)-one (ASP5854), in 
models of Parkinson’s disease and cognition. J. Pharmacol. Exp. Ther. 2007, 323, 708− 719. 
 
111 Bjorklund, O., et al. Adenosine A(1) and A(3) receptors protect astrocytes from hypoxic damage.                        
Eur J Pharmacol. 2008, 596, 6–13. 
 
112 Ciccarelli, R., et al. Molecular signalling mediating the protective effect of A1 adenosine and mGlu3 
metabotropic glutamate receptor activation against apoptosis by oxygen/glucose deprivation in cultured 
astrocytes. Mol. Pharmacol. 2007, 71, 1369–1380. 
 



9.REFERENCES 

 

171 

113.  D’Alimonte, I., et al. Staurosporine induced apoptosis in astrocytes is prevented by A1 adenosine 
receptor activation. Neurosci. Lett. 2007, 418, 66–71. 
 
114. Tsutsui, S., et al. A1 adenosine receptor upregulation and activation attenuates neuroinflammation 
and demyelination in a model of multiple sclerosis. J. Neurosci. 2004, 24, 1521–1529. 
 
115. Synowitz, M., et al. A1 adenosine receptors in microglia control glioblastoma–host interaction. Cancer. 
Res. 2006, 66, 8550–8557. 
 
116. Martin, E.D., et al. Adenosine released by astrocytes contributes to hypoxia-induced modulation of 
synaptic transmission. Glia. 2007, 55, 36–45. 
 
117. Halassa, M.M., et al. Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep 
loss. Neuron. 2009, 61, 213–219. 
 
118. Day, Y-J., et al. Renal protection from ischemia mediated by A2A adenosine receptors on bone marrow-
derived cells. J. Clin. Invest. 2003, 112, 883-891.  
 
119. Kull, B., et al. Adenosine A2A receptors are colocalized with and activate golf in rat striatum. Mol. 
Pharmacol. 2000, 58, 771–777.  
 
120. Preti. D., et al. History and perspectives of A2A adenosine receptor antagonists as potential 
therapeutic agents. Med Res Rev. 2015, 35, 790-848.  
 
121. Baraldi P.G., et al. Adenosine receptor antagonists: translating medicinal chemistry and 
pharmacology into clinical utility. Chem. Rev. 2008, 108, 238–263.  
  
122 Chen, J.F., et al. Adenosine receptors as drug targets–what are the challenges? Nat. Rev. Drug. Discov. 
2013, 12, 265–286.  
 
123 Burgueño, J., et al.  The adenosine A2Areceptor interacts with the actin-binding protein alpha-actinin.         
J. Biol. Chem. 2003, 278, 37545–37552. 
 
124. Morelli, M., et al. Adenosine A2A receptors and Parkinson's disease. Handb. Exp. Pharmacol. 2009, 193, 
589–615. 
 
125. Azdad, K., et al. Dopamine D2 and adenosine A2A receptors regulate NMDA-mediated excitation in 
accumbens neurons through A2A-D2 receptor heteromerization. Neuropsychopharmacology. 2009, 34, 972–
986. 
 
126. Higley, M. J.,et al. Competitive regulation of synaptic Ca2+ influx by D2 dopamine and A2A adenosine 
receptors. Nat. Neurosci. 2010, 13, 958–966. 
 
 127. Ferré, S., et al. An update on adenosine A2A-dopamine D2 receptor interactions. Implications for the 
function of G protein-coupled receptors. Curr. Pharm. Des. 2008, 14, 1468–1474. 
 
128. Tozzi, A., et al. The distinct role of medium spiny neurons and cholinergic interneurons in the D2/A2A 
receptor interaction in the striatum: Implications for Parkinson's disease. J. Neurosci. 2011, 31, 1850–1862. 
 
129. Ungerstedt, U., et al. 6-Hydroxydopamine-induced degeneration of central monoamine neurons. Eur. 
J. Pharmacol. 1968, 5, 107–110.  
 
130. Ungerstedt, U., et al. Quantitative recording of rotational behavior in rats after 6-hydroxy-dopamine 
lesions of the nigrostriatal dopamine system. Brain. Res. 1970, 24, 485–493. 
 
131. Bankiewicz, K. S., et al. MPTP-induced parkinsonism in nonhuman primates.                                                       
Methods Neurosci. 1991, 7, 168–182.  

https://www.sciencedirect.com/science/article/pii/0006899370901873#!


9.REFERENCES 

 

                                                                                                                                                                           

172 

132. Jakowec, M.W., et al. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine- induced lesion model of 
Parkinson’s disease, with emphasis on mice and nonhuman primates. Comp. Med. 2004, 54, 497–513.   
 
133. Chen, J. F., et al.  Neuroprotection by caffeine and A2A adenosine receptor inactivation in a model of 
Parkinson’s disease. J. Neurosci. 2001, 21, RC143/ 1–RC143/6.  
 
134. Grondin, R., et al. Antiparkinsonian effect of a new adenosine A2A receptor antagonist in MPTP-treated 
monkeys. Neurology. 1999, 52, 1673–1677. 
 
 135. Ongini, E., et al. Dual actions of A2A adenosine receptor antagonists on motor dysfunction and                             
neurodegenerative processes. Drug Dev. Res. 2001, 52, 379–386. 
 
136. El Yacoubi, M., et al. Adenosine A2A receptors and depression. Neurol. 2003, 61, S82–S87. 
 
137. El Yacoubi, M., et al.  Adenosine A2A receptor antagonists are potential antidepressants: Evidence 
based on pharmacology and A2A receptor knockout mice. Br. J. of Pharm. 2001, 134, 68–77. 
 
138. Palacios, N., et al. Caffeine and risk of Parkinson’s disease in a large cohort of men and women.                    
Movement Disorders: Official Journal of the Movement Disorder Society. 2012, 27, 1276–1282. 
 
139. Vickers, J.C., et al. The cause of neuronal degeneration in Alzheimer’s disease. Prog. Neurobiol. 2000, 
60, 139-165. 
 
140. Dall'Igna, O. P., et al. Neuroprotection by caffeine and adenosine A2A receptor blockade of beta-
amyloid neurotoxicity. Br. J. Pharmacol. 2003, 138, 1207-1209. 
 
141.Geiger, J.D., et al. Role of adenosine in the control of inflammatory events associated with acute and 
chronic neurodegenerative disorders. In: Cronstein, B., Szabo, C., Hasko, G. (Eds.) Adenosine receptors: 
Therapeutic aspects for inflammatory and immune diseases. Taylor and Francis. 2006. 
 
142. Cunha, R.A., et al. Potential therapeutic interest of adenosine A2A receptors in psychiatric disorders. 
Curr. Pharm. Des. 2008, 14, 1512-1524 
 
143. Schiffmann, S.N., et al. Adenosine A2A receptors and basal ganglia physiology. Prog. Neurobiol. 2007, 
83, 277- 292.  
 
144. Dall'Igna, O.P., et al. Caffeine and adenosine A(2a) receptor antagonists prevent beta-amyloid (25-35) 
induced cognitive deficits in mice. Exp. Neurol. 2007, 203, 241-245. 
 
145. Cunha, G.M.A., et al. Blocked of adenosine A2A receptors prevents amyloid (Aβ1−42)-induced 
synaptotoxicity and memory impairment in rodents. Purinergic. Signal. 2006, 2, 135-136. 
 
146. Wong, P.T., et al. Ornithine aminotransferase in Huntington's disease. Brain Res. 1982, 231, 466–471. 
 
147. Behrens, P.F., et al. Impaired glutamate transport and glutamate-glutamine cycling: downstream 
effects of the Huntington mutation. Brain. 2002, 125, 1908–1922. 
 
148. Shin, J.-Y., et al. Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity.           
J. Cell Biol. 2005, 171, 1001–1012. 
 
149. Fan, M.M.Y., et al. N-methyl-D-aspartate (NMDA) receptor function and excitotoxicity in Huntington's 
disease. Prog. Neurobiol. 2007, 81, 272–293. 
 
150. Zeron, M.M., et al. Increased sensitivity to N-methyl-D-aspartate receptor mediated excitotoxicity in 
a mouse model of Huntington's disease. Neuron. 2002, 33, 849–860. 



9.REFERENCES 

 

173 

151. Li, L., et al.  Role of NR2B-type NMDA receptors in selective neurodegeneration in Huntington disease. 
Neurobiol. Aging. 2003, 24, 1113–1121. 
 
152. Li, L., et al. Enhanced striatal NR2Bcontaining N-methyl-D-aspartate receptor-mediated synaptic 
currents in a mouse model of Huntington disease. J. Neurophysiol. 2004, 92, 2738–2746. 
 
153. Rosin, D.L., et al. Immunohistochemical localization of adenosine A2A receptors in the rat central 
nervous system. J. Comp. Neurol. 1998, 401, 163–186. 
 
154. Hettinger, B.D., et al. Ultrastructural localization of adenosine A2A receptors suggests multiple cellular 
sites for modulation of GABAergic neurons in rat striatum. J. Comp. Neurol. 2001, 431, 331–346. 
 
155. Ciruela, F., et al.   Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A 
receptor heteromers. J. Neurosci. 2006, 26, 2080–2087. 
 
156. Rodrigues, R.J., et al.   Co-localization and functional interaction between adenosine A(2A) and 
metabotropic group 5 receptors in glutamatergic nerve terminals of the rat striatum. J. Neurochem. 2005, 
92, 433–441.  
 
157. Coney, A.M., et al.  Role of adenosine and its receptors in the vasodilatation induced in the cerebral 
cortex of the rat by systemic hypoxia. J. Physiol. 1998, 509, (Pt 2) 507–518. 
 
158. Ngai, A.C., et al. Receptor subtypes mediating adenosine-induced dilation of cerebral arterioles. Am. 
J. Physiol. Heart Circ. Physiol. 2001, 280, H2329–H2335. 
 
159. Fields, R.D., et al. Purinergic signalling in neuron–glia interactions, Nat. Rev. Neurosci. 2006, 7, 423–
436. 
 
160. Varani, K., et al.  Aberrant amplification of A(2A) receptor signaling in striatal cells expressing mutant 
huntingtin. FASEB J. 2001, 15, 1245–1247. 
 
161. Blum, D., et al., et al. Striatal and cortical neurochemical changes induced by chronic metabolic 
compromise in the 3- nitropropionic model of Huntington's disease. Neurobiol. Dis. 2002, 10, 410–426. 
 
162. Chiang, M.-C., et al. YcAMP-response element-binding protein contributes to suppression of the A2A 
adenosine receptor promoter by mutant Huntingtin with expanded polyglutamine residues. J. Biol. Chem. 
2005, 280, 14331–14340. 
 
163. Tarditi, A., et al. Early and transient alteration of adenosine A2A receptor signaling in a mouse model 
of Huntington disease. Neurobiol. Dis. 2006, 23, 44–53. 
 
164. Dhaenens, C.-M., et al.  SA genetic variation in the ADORA2A gene modifies age at onset in 
Huntington's disease. Neurobiol. Dis. 2009, 35, 474–476. 
 
165. Lei, W., et al.  Evidence for differential cortical input to direct pathway versus indirect pathway striatal 
projection neurons in rats. J. Neurosci. 2004, 24, 8289–8299. 
 
166. Corsi, A. C., et al.  Striatal A2A adenosine receptor antagonism differentially modifies striatal glutamate 
outflow in vivo in young and aged rats. Neuro. Report. 2000, 11, 2591–2595. 
 
167. Pintor, D. A., et al.  SCH 58261 an adenosine A (2A) receptor antagonist reduces, only at low doses, 
K(+)-evoked glutamate release in the striatum. Eur. J. Pharmacol. 2001, 421, 177–180. 
 
168. Popoli, P., et al. Blockade of striatal adenosine A2A receptor reduces, through a presynaptic 
mechanism, quinolinic acid-induced excitotoxicity: possible relevance to neuroprotective interventions in 
neurodegenerative diseases of the striatum. J. Neurosci. 2002, 22, 1967–1975. 



9.REFERENCES 

 

                                                                                                                                                                           

174 

169. Tebano, M.T., et al. A. Adenosine A2A receptor blockade differentially influences excitotoxic 
mechanisms at pre- and postsynaptic sites in the rat striatum. J. Neurosci. Res. 2004, 77, 100–107. 
 
170. Li, X.X., et al. Adenosine enhances glial glutamate efflux via A2A adenosine receptors. Life Sci. 2001, 68, 
1343–1350. 
 
171. Nishizaki, T., et al. A new neuromodulatory pathway with a glial contribution mediated via A(2A) 
adenosine receptors. Glia. 2002, 39, 133–147. 
 
172. Nishizaki, T., et al. ATP- and adenosine-mediated signaling in the central nervous system: adenosine 
stimulates glutamate release from astrocytes via A2A adenosine receptors. J. Pharmacol. Sci. 2004, 94, 100–
102. 
 
173. Pintor, A., et al. Adenosine A2A receptor antagonists prevent the increase in striatal glutamate levels 
induced by glutamate uptake inhibitors. J. Neurochem. 2004, 89, 152–156. 
 
174. Wirkner, K., et al.  Inhibition by adenosine A(2A) receptors of NMDA but not AMPA currents in rat 
neostriatal neurons. Br. J. Pharmacol. 130, 2000, 259–269. 
 
175. Ferrante, A., et al. Influence of CGS 21680, a selective adenosine A(2A) receptor agonist, on NMDA 
receptor function and expression in the brain of Huntington's disease mice. Brain. Res. 1323, 2010, 184–
191. 
 
176. Martire, A., et al.  Remodeling of striatal NMDA receptors by chronic A(2A) receptor blockade in 
Huntington's disease mice. Neurobiol. Dis. 2010, 37, 99–105. 
 
177. Nörenberg, W., et al. Effect of adenosine and some of its structura analogues on the conductance of 
NMDA receptor channels in a subset of rat neostriatal neurons. Br. J. Pharmacol. 122, 1997, 71–80. 
 
178. Popoli, P., et al. Functions, dysfunctions and possible therapeutic relevance of adenosine A2A receptors 
in Huntington's disease. Prog. Neurobiol. 81, 2007, 331–348. 
 
179. Lubitz, D.K.V., et al. Cerebral ischemia in gerbils: effects of acute and chronic treatment with adenosine 
A2A receptor agonist and antagonist. Eur. J. Pharmacol. 1995, 287, 295–302. 
 
180. Gao, Y., et al. JCGS 15943, an adenosine A2 receptor antagonist, reduces cerebral ischemic injury in 
the Mongolian gerbil. Life Sci. 1994, 55, PL61–PL65. 
 
181. Phillis, J.W., et al. The effects of selective A1 and A2a adenosine receptor antagonists on cerebral 
ischemic injury in the gerbil. Brain Res. 1995, 705, 79–84. 
 
182. Monopoli, A., et al. Blockade of adenosine A2A receptors by SCH 58261 results in neuroprotective 
effects in cerebral ischaemia in rats. NeuroReport. 1998, 9, 3955–3959. 
 
183. Chen, J.F., et al. A(2A) adenosine receptor deficiency attenuates brain injury induced by transient focal 
ischemia in mice. J. Neurosci. 1999, 19, 9192–9200. 
 
184. Cunha, R.A., et al. Neuroprotection by adenosine in the brain: from A(1) receptor activation to A (2A) 
receptor blockade. Purinergic Signal. 2005, 1, 111–134. 
 
185. Chen, J.F., et al. Adenosine A2A receptors and brain injury: broad spectrum of neuroprotection, 
multifaceted actions and “fine tuning” modulation. Prog. Neurobiol. 2007, 83, 310–331 
 
186. Chen, J.F., et al. Modulation of ischemic brain injury and neuroinflammation by adenosine A2A 
receptors. Curr. Pharm. Des. 2008, 14, 1490–1499. 
 



9.REFERENCES 

 

175 

187. de Mendonça, A., et al. Therapeutic opportunities for caffeine in Alzheimer's disease and other 
neurodegenerative disorders. J. Alzheimers Dis. 2010, 20, 1–2. 
 
188. Carta, A.R., et al. Inactivation of neuronal forebrain A receptors protects dopaminergic neurons in a 
mouse model of Parkinson's disease. J. Neurochem. 2009, 111, 1478–1489. 
 
189. Dai, S.-S., et al. Local glutamate level dictates adenosine A2A receptor regulation of neuroinflammation 
and traumatic brain injury. J. Neurosci. 2010, 30, 5802–5810. 
 
190. Yu, L., et al. Adenosine A2A receptor antagonists exert motor and neuroprotective effects by distinct 
cellular mechanisms. Ann. Neurol. 2008, 63, 338–346. 
 
191. Gui, L., et al. Adenosine A 2A receptor deficiency reduces striatal glutamate outflow and attenuates 
brain injury induced by transient focal cerebral ischemia in mice. Brain Res. 2009, 1297, 185–193. 
 
192. Melani, A., et al. Selective adenosine A2A receptor antagonism reduces JNK activation in 
oligodendrocytes after cerebral ischaemia. Brain. 2009, 132, 1480–1495. 
 
193. Chen, X., et al. Caffeine blocks disruption of blood brain barrier in a rabbit model of Alzheimer's 
disease. J. Neuroinflammation. 2008, 5, 12. 
 
194. Chen, X., et al. Caffeine protects against MPTP induced blood-brain barrier dysfunction in mouse 
striatum. J. Neurochem. 2008, 107, 1147–1157. 
 
195. Yu, L., et al. Selective inactivation or reconstitution of adenosine A2A receptors in bone marrow cells 
reveals their significant contribution to the development of ischemic brain injury. Nat. Med. 2004, 10,                           
1081–1087. 
 
196. Zhao, X., et al. Caffeinol at the receptor level: anti-ischemic effect of N-methyl-D-aspartate receptor 
blockade is potentiated by caffeine. Stroke. 41, 2010, 363–367. 
 
197. Dash, P.K., et al. Post trauma administration of caffeine plus ethanol reduces contusion volume and 
improves working memory in rats. J. Neurotrauma. 2004, 21, 1573–1583. 
. 
198. Pickel V.M., et al. Subcellular distributions of adenosine A1 and A2A receptors in the rat dorsomedial 
nucleus of the solitary tract at the level of the area postrema. Synapse. 2006, 60, 496–509. 
 
199. Svenningsson, P., et al. Distribution, biochemistry and function of striatal adenosine A2A receptors. 
Prog Neurobiol. 1999, 59, 355–396 
 
200. Hasko, G., et al. Adenosine receptor signaling in the brain immune system.                                                               
Trends Pharmacol. Sci. 2005, 26, 511–516. 
 
201. Hindley, S., et al. Stimulation of reactive astrogliosis in vivo by extracellular adenosine diphosphate or 
an adenosine A2 receptor agonist. J. Neurosc. Res. 1994, 38, 399–406. 
 
202. Brambilla, R., et al. Blockade of A2A adenosine receptors prevents basic fibroblast growth factor-
induced reactive astrogliosis in rat striatal primary astrocytes. Glia. 2003, 43, 190–194. 
 
203. Brodie, C., et al. Activation of the A2A adenosine receptor inhibits nitric oxide production in glial cells. 
FEBS Lett. 1998, 429, 139–142. 
 
204. Fiebich B.L., et al. Cyclooxygenase-2 expression in rat microglia is induced by adenosine A2A-receptors. 
Glia. 1996, 18, 152–160. 
 
205. Saura, J., et al. Adenosine A2A receptor stimulation potentiates nitric oxide release by activated 
microglia. J. Neurochem. 2005, 95, 919–929. 



9.REFERENCES 

 

                                                                                                                                                                           

176 

206. Heese, K., et al. Nerve growth factor (NGF) expression in rat microglia is induced by adenosine A2A-
receptors. Neurosci. Lett. 1997, 231, 83–86.  
 
207. Abebe, W., et al. Effects of adenosine analogs on inositol 1,4,5-trisphosphate production in porcine 
coronary artery. Vascul. Pharmacol. 2002, 39, 89–95.  
 
208. Teng, B., et al. Involvement of p38-mitogen-activated protein kinase in adenosine receptor-mediated 
relaxation of coronary artery. Am. J. Physiol. Heart. Circ. Physiol. 2005, 288, H2574–H2580.  
 
209. Ray, C.J., et al.  The cellular mechanisms by which adenosine evokes release of nitric oxide from rat 
aortic endothelium. J. Physiol. 2006, 570, 85–96. 
 
210. Jordan, J.E., et al. Adenosine A2 receptor activation attenuates reperfusion injury by inhibiting 
neutrophil accumulation, superoxide generation and coronary endothelial adherence. J. Pharmacol. Exp. 
Ther. 1997, 280, 301–309,  
 
211. Llach, A., et al. Abnormal calcium handling in atrial fibrillation is linked to up-regulation of adenosine 
A2A receptors. Eur. Heart. J. 2011, 32, 721–729.  
 
212. Molina, C.E., et al. Prevention of adenosine A2A receptor activation diminishes beat-to-beat alternation 
in human atrial myocytes. Basic. Res. Cardiol. 2016, 111, 5.  
 
213. Fredholm, B.B., et al. Aspects of the general biology of adenosine A2A signalling.                                                           
Prog. Neurobiol. 2007, 83, 263–276. 
 
214. Mayr, B., et al. Transcriptional regulation by the phosphorylationdependent factor CREB.                                     
Nat. Rev. Mol. Cell. Biol. 2001, 2, 599–609. 
 
215. Lin, M.C., et al. Shear stress induction of the tissue factor gene. J. Clin. Invest. 1997, 99, 737–744. 
 
216. Kawasaki, H., et al. A family of cAMP-binding proteins that directly activate Rap1.                                                        
Science. 1998, 282, 2275–2279. 
 
217. Sands, W.A., et al. Exchange protein activated by cyclic AMP (Epac)-mediated induction of suppressor 
of cytokine signalling 3 (SOCS-3) in vascular endothelial cells. Mol. Cell. Biol. 2006, 26, 6333–6346. 
 
218. Yoshimura, A., et al. SOCS proteins, cytokine signaling and immune regulation.                                                                  
Nat. Rev. Immunol. 2007, 7, 454–465. 
 
219. Khoa, N.D., et al. Inflammatory cytokines regulate function and expression of adensoine A2A receptors 
in human monocytic THP-1 cells. J. Immunol. 2001; 167:4026–4032. 
 
220. Murphee, L.J., et al. Lipolpolysaccharide rapidly modify adenosine receptor transcripts in murine and 
human macrophages: role of NF-κB in A2A adenosine receptor induction. Biochem J. 2005, 391, 575–580. 
 
221. Capecchi, P.L., et al. Up-regulation of A2A adenosine receptor expression by TNF-alpha in PBMC of 
ptients with CHF: a regulatory mechanism of inflammation. J Card Fail. 2005, 11(1), 67–73. 
 
222. Morello, S., et al. IL-1beta and TNF-α regulation of the adenosine receptor (A2A) expression: differential 
requirement for NF-kappa B binding to the proximal promoter. J. Immunol. 2006, 177 (10), 7173–7183. 
 
223. Sullivan, G.W., et al. The specific type IV phosphodiesterase inhibitor rolipram combined with 
adenosine reduces tumor necrosis factor-alpha-primed neutrophil oxidative activity.                                                             
Int. J. Immunopharmacol. 1995, 17(10), 793–803. 
224. Haskó, G., et al. Shaping of monocyte and macrophage function by adenosine receptors.                         
Pharmacol Ther. 2007, 113, 264–275. 



9.REFERENCES 

 

177 

 
225. Cadieux, J.S., et al. Potentiation of neutrophil cyclooxygenase-2 by adenosine: an early anti-
inflammatory signal. J. Cell Sci. 2005, 118 (7), 1437–1447. 
 
226. Flamand, N., et al. Cyclic AMP-mediated inhibition of 5-lypoxigenase translocation and leukotriene 
biosynthesis in human neutrophils. Mol. Pharmacol. 2002, 62(2), 250–256. 
 
227. Pouliot, M., et al. Adenosine up-regulatescyclooxigenase-2 in human granulocytes: impact of the 
balance of eicosanoid generation. J. Immunol. 2002, 169 (9), 5279–5286. 
  
228. McColl, S.R., et al. Immunomodulatory impact of the A2A adenosine receptor on the profile of 
chemokine produced by neutrophils. FASEB J. 2006, 20(1), 187–189. 
 
229. St-Onge, M., et al.  Impact of anti-inflammatory agents on the gene expression profile of stimulated 
human neutrophils: unravelling endogenous resoltution pathways. Plos ONE. 2009, 3, e4902. 
 
230. Ferre, S., et al. Stimulation of high-affinity adenosine A2 receptors decreases the affinity of dopamine 
D2 receptors in rat striatal membranes. Proc. Natl. Acad. Sci. USA. 1991, 88, 7238–7241.  
 
231. Koupenova, M., et al. A2B adenosine receptor regulates hyperlipidemia and atherosclerosis. 
Circulation. 2012, 125, 354–363.  
 
232. Pedata, F., et al. Purinergic signalling in brain ischemia. Neuropharmacology. 2016, 104, 105–130.  
 
233. Sun, Y., et al. Adenosine A2B Receptor: From Cell Biology to Human Diseases. 2016, Front Chem 4, 37. 
2016,  
 
234. Rosenberger, P., et al. Hypoxia-inducible factor-dependent induction of netrin-1 dampens 
inflammation caused by hypoxia. Nat. Immunol. 2009, 10, 195–202.  
 
235. Sun, Y., et al. A novel mechanism of control of NF_B activation and inflammation involving A2B 
adenosine receptors. J Cell Sci. 2012, 125, 4507–4517.  
 
236. Moriyama, K., et al. Adenosine A2A receptor is involved in cell surface expression of A2B receptor. J. 
Biol. Chem. 2010, 285, 39271–39288. 
 
237. Gessi, S., et al. A(1) and A(3) adenosine receptors inhibit LPS-induced hypoxia-inducible factor-1 
accumulation in murine astrocytes. Pharmacol, Res. 2013, 76, 157–170.  
 
238. Gu, L., et al. Early activation of nSMase2/ ceramide pathway in astrocytes is involved in ischemia-
associated neuronal damage via inflammation in rat hippocampi. J. Neuroinflammation. 2013, 10, 879.  
 
 239. Eltzschig, H.K., et al. Coordinated adenine nucleotide phosphohydrolysis and nucleoside signaling in 
posthypoxic endothelium: role of ectonucleotidases and adenosine A2B receptors. J. Exp. Med. 2003, 198. 
783–796.  
 
240. Hu, X., et al.  Sustained Elevated Adenosine via ADORA2B Promotes Chronic Pain through 
Neuroimmune Interaction. Cell. Reports. 2016, 16, 106–119.  
 
241. Merighi, S., et al. A2B adenosine receptors stimulate IL-6 production in primary murine microglia 
through p38 MAPK kinase pathway. Pharmacol. Res. 2017, 117, 9–19.  
 
242. Koscsó, B., et al.  Adenosine augments IL-10 production by microglial cells through an A2B adenosine 
receptor- mediated process. J. Immunol. 2012, 188, 445– 453.  
243. Merighi, S., et al. A2A and A2B adenosine receptors affect HIF-1α signaling in activated primary 
microglial cells. Glia. 2015, 63, 1933–1952.  
 



9.REFERENCES 

 

                                                                                                                                                                           

178 

244. Janes, K., et al. A3 adenosine receptor agonist prevents the development of paclitaxel-induced 
neuropat.hic pain by modulating spinal glial-restricted redox-dependent signaling pathways. Pain. 2014, 
155, 2560–2567.  
 
245. Borea, P.A., et al. The A3 adenosine receptor: history and perspectives. Pharmacol Rev. 2015, 67, 74–
102.  
 
246. Fishman, P., et al.  A3 adenosine receptor as a target for cancer therapy. Anticancer Drugs. 2002, 13, 
437–443.  
 
247. Melani, A., et al. Adenosine receptors in cerebral ischemia. Int. Rev. Neurobiol. 2014, 119, 309–348.  
 
248. Pugliese, A.M., et al. Role of adenosine A3 receptors on CA1 hippocampal neurotransmission during 
oxygen-glucose deprivation episodes of different duration. Biochem. Pharmacol. 2007, 74, 768–779.  
 
249. Choi, I.Y., et al. A3 adenosine receptor agonist reduces brain ischemic injury and inhibits inflammatory 
cell migration in rats. Am. J. Pathol. 2011, 179, 2042–2052.  
 
250. Lee, J.Y., at al.  Activation of adenosine A3 receptor suppresses lipopolysaccharide-induced TNF-α 
production through inhibition of PI 3-kinase/Akt and NF-kB activation in murine BV2 microglial cells. 
Neurosci Lett. 2006, 396, 1–6.  
 
251. Ohsawa, K., et al. Adenosine A3 receptor is involved in ADP-induced microglial process extension and 
migration. J. Neurochem. 2012, 121, 217–227.  
 
252. Janes, K., et al. Identification of A3 adenosine receptor agonists as novel non-narcotic analgesics. Br. J. 
Pharmacol. 2016, 173, 1253–1267.  
 
253. Sawynok, J., et al. Adenosine A3 receptor activation produces nociceptive behaviour and edema by 
release of histamine and 5-hydroxytryptamine. Eur J Pharmacol. 1997, 333, 1–7.  
 
254. Wu, W-P., et al. Decreased inflammatory pain due to reduced carrageenan-induced inflammation in 
mice lacking adenosine A3 receptors. Neuroscience. 2002, 114, 523–527.  
 
255. Chen, Z., et al. Controlling murine and rat chronic pain through A3 adenosine receptor activation. 
FASEB J. 2012, 26, 1855–1865.  
 
256. Little, J.W., et al. Endogenous adenosine A3 receptor activation selectively alleviates persistent pain 
states. Brain. 2012, 138, 28–35.  
 
257. Janes, K., et al. Spinal neuroimmune activation is independent of T-cell infiltration and attenuated by 
A3 adenosine receptor agonists in a model of oxaliplatin-induced peripheral neuropathy. Brain. Behav. 
Immun. 2015, 44, 91–99.  
 
258. Varani, K., et al. The stimulation of A(3) adenosine receptors reduces bone-residing breast cancer in a 
rat preclinical model. Eur. J. Cancer. 2013, 49, 482–491.  
 
259. Chabre, M., et al. Monomeric G-protein-coupled receptor as a functional unit. Biochemistry. 2005, 44, 
9395–9403. 
 
260. Whorton, M.R., et al. A monomeric G protein-coupled receptor isolated in a high density lipoprotein 
particle efficiently activates its G protein. Proc. Natl. Acad. Sci. USA. 2007, 104, 7682–7687. 
 
261. Whorton, M.R., et al. Efficient coupling of transducing to monomeric rhodopsin in a phospholipid 
bilayer. J. Biol. Chem. 2008, 283, 4387–4394 
 



9.REFERENCES 

 

179 

262. White, J.F., et al. Dimerization of the class A G protein-coupled neurotensin receptor NTS1 alters G 
protein interaction. Proc. Natl. Acad. Sci. USA. 2007, 104, 12199–12204. 
 
263. Ciruela, F., et al. Immunological identification of A1 adenosine receptors in brain cortex.                                               
J. Neurosci. Res. 1995, 42, 818–828. 
 
264. Yoshioka, K., et al. Hetero-oligomerization of adenosine A1 receptors with P2Y1 receptors in rat brains. 
FEBS. Lett. 2002, 531, 299–303. 
 
265. Briddon, S.J., et al. Plasma membrane diffusion of G protein-coupled receptor oligomers.                          
Biochim Biophys Acta. 2008, 1783, 2262–2268. 
 
266. Vidi, P.A., et al. Ligand-dependent oligomerization of dopamine D2 and adenosine A2A receptors in 
living neuronal cells. Mol Pharmacol. 2008 (a), 74, 544–551. 
 
267. Vidi, P.A., et al. Adenosine A2A receptors assemble into higher-order oligomers at the plasma 
membrane. FEBS Lett. 2008 (b), 582, 3985–3990. 
 
268. Cristovao-Ferreira, S., et al. Modulation of GABA transport by adenosine A1R-A2AR heteromers, which 
are coupled to both Gs- and G(i/o)-proteins. J. Neurosci. 2011, 31, 15629–15639.  
 
269. Cristovao-Ferreira, S., et al. A1R-A2AR heteromers coupled to Gs and Gi/0 proteins modulate GABA 
transport into astrocytes. Purinergic Signal. 2013, 9, 433–449.  
 
270. Hillion, J., et al. Coaggregation, cointernalization, and codesensitization of adenosine A2A receptors 
and dopamine D2 receptors. J. Biol. Chem. 2002, 277, 18091–18097. 
 
271. Kamiya, T., et al. Oligomerization of adenosine A2A and dopamine D2 receptors in living cells.                   
Biochem Biophys. Res. Commun. 2003, 306, 544–549. 
 
272. Canals, M., et al. Adenosine A2A-dopamine D2 receptorreceptor heteromerization: qualitative and 
quantitative assessment by fluorescence and bioluminescence energy transfer. J. Biol. Chem. 2003, 278, 
46741–46749. 
 
273. Canals, M., et al. Homodimerization of adenosine A2A receptors: qualitative and quantitative 
assessment by fluorescence and bioluminescence energy transfer. J. Neurochem. 2004, 88, 726–734. 
 
274. Orru, M., et al.  Striatal pre- and postsynaptic profile of adenosine A2A receptor antagonists.                             
PLoS One. 2011, 6, e16088. 
 
275. Inventors; Bayer Aktiengesellschaft, Rosentreter, U., et al. Substituted 2-thio-3,5-dicyano-4-aryl-6-
aminopyridines and the use thereof as adenosine receptor ligands. World patent WO01025210. 2001 Apr 
12.  
 
276. Beukers, M.W., et al. New, non-adenosine, high Potency agonists for the human adenosine A2B 

receptor with an improved selectivity profile compared to the reference agonist N-
ethylcarboxamidoadenosine. J. Med. Chem. 2004, 47, 3707–3709.  
 
277. Yan, L., et al. Adenosine receptor agonists: from basic medicinal chemistry to clinical development.                   
Exp. Opin. Emerg. Drugs. 2003, 8 537–576. 
 
278. Gao, Z.G., et al. N6-Substituted adenosine derivatives: selectivity, efficacy, and species differences at 
A3 adenosine receptors. Biochem. Pharmacol. 2003, 65, 1675–1684. 
279. Kiesman, W.F., et al. A1 adenosine receptor antagonists, agonists, and allosteric enhancers.                     
Handb. Exp. Pharmacol. 2009, 193, 25–58 Review 
 



9.REFERENCES 

 

                                                                                                                                                                           

180 

280. Müller, C.E., et al. Recent developments in adenosine receptor ligands and their potential as novel 
drugs. Bioch. Bioph. Act. 2011, 1808, 1290–1308 
 
281. Lauro, C., et al.  Adenosine A1 receptors and microglial cells mediate CX3CL1-induced protection of 
hippocampal neurons against Glu-induced death. Neuropsychopharmacology. 2010, 35, 1550–1559. 
 
282. Knutsen, L.J., et al.  N-Substituted adenosines as novel neuroprotective A1 agonists with diminished 
hypotensive effects, J. Med. Chem. 1999, 42, 3463–3477. 
 
283. Zablocki, J.A., et al. Partial A1 adenosine receptor agonists from a molecular perspective and their 
potential use as chronic ventricular rate control agents during atrial fibrillation (AF). Curr. Top. Med. Chem. 
2004, 4, 839–854. 
 
284. Al Jaroudi, W., et al. Regadenoson: a new myocardial stress agent. J. Am. Coll. Cardiol. 54, 2009, 1123–
1130. 
 
285. Mantell, S.J., et al.  SAR of a series of inhaled A2A agonists and comparison of inhaled pharmacokinetics 
in a preclinical model with clinical pharmacokinetic data. Bioorg. Med. Chem. Lett. 2009, 19, 4471–4475. 
 
286. El-Tayeb, A., et al. Nucleoside-5′-monophosphates as prodrugs of adenosine A2A receptor agonists 
activated by ecto-5′-nucleotidase. J. Med. Chem. 2009, 52, 7669–7677. 
 
287. Awad, A.S., et al.  Adenosine A2A receptor activation attenuates inflammation and injury in diabetic 
nephropathy. Am. J. Physiol. Renal. Physiol. 2006, 290, F828–F837. 
 
288. Desai, A., et al. Adenosine A2A receptor stimulation increases angiogenesis by down-regulating 
production of the antiangiogenic matrix protein thrombospondin 1. Mol. Pharmacol. 2005, 67, 1406–1413. 
 
289. Udelson, J.E., et al.  Gibbons, Randomized, controlled dose-ranging study of the selective adenosine 
A2A receptor agonist binodenoson for pharmacological stress as an adjunct to myocardial perfusion imaging. 
Circulation. 2004, 109, 457–464. 
  
290. Cerqueira, M.D., et al. Advances in pharmacologic agents in imaging: new A2A receptor agonists. Curr. 
Cardiol. Rep. 2006, 8, 119–122. 
 
291. Iskandrian, A.E., et al.  Adenosine versus regadenoson comparative evaluation in myocardial perfusion 
imaging: results of the ADVANCE phase 3 multicenter international trial. J. Nucl. Cardiol. 2007, 14, 645–658. 
 
292. Müller, C.E., et al. Xanthines as adenosine receptor antagonists. In Methylxanthines. In Handbook of 
Experimental Pharmacology, B.B. Fredholm, ed., Springer, 2011, 200, 151–199. 
 
293. Slawski, M.T., et al. Rolofylline: a selective adenosine 1 receptor antagonist for the treatment of heart 
failure. Exp. Opin. Pharmacother. 2009, 10, 311–322. 
 
294. Jacobson, K.A., et al. Adenosine receptors as therapeutic targets.                                                                                          
Nat. Rev. Drug Discov. 2006, 5, 247–264. 
 
295. Arispe, N., et al. Direct activation of cystic fibrosis transmembrane conductance regulator channels by 
8-cyclopentyl-1,3-dipropylxanthine (CPX) and 1,3-diallyl-8-cyclohexylxanthine (DAX). J. Biol. Chem. 1998, 
273, 5727–5734.  
 
296. Wilson, C.N., et al. Adenosine receptors and asthma in humans. Br. J. Pharmacol. 2008, 155, 475–486. 
 
297. Müller, C.E., et al. A1-adenosine receptor antagonists. Exp. Opin. Ther. Pat. 1997, 7, 419–440. 
298. Hess, S., et al. Recent advances in adenosine receptor antagonist research. Exp. Opin. Ther. 2001, Pat. 
11, 1533–1561. 



9.REFERENCES 

 

181 

 
299. Hocher, B., et al. Adenosine A1 receptor antagonists in clinical research and development.                                       
Kidney Int. 2010, 78, 438–445.  
 
300. Müller, C.E., et al. Blocking striatal adenosine A2A receptors: a new strategy for basal ganglia disorders. 
Recent Pat. CNS Drug Discov. 2007, 2, 1–21. 
 
301. Müller, C.E., et al. Blocking striatal adenosine A2A receptors: a new strategy for basal ganglia disorders. 
Frontiers in CNS Drug Discov. 2010, 1, 304–341. 
 
302. Shah, U., et al. Recent progress in the discovery of adenosine A2A receptor antagonists for the 
treatment of Parkinson's disease. Curr. Opin. Drug Discov. 2010, 13, 466–480. 
 
303. Sauer, R., et al. Water-soluble phosphate prodrugs of 1-propargyl-8-styrylxanthine derivatives. A2A-
selective adenosine receptor antagonists. J. Med. Chem. 2000, 43, 440–448. 
 
304. Vollmann, K., et al. Synthesis and properties of a new water-soluble prodrug of the adenosine A2A 
receptor antagonist MSX-2, Molecules. 2008, 13, 348–359. 
 
305. Bilkei-Gorzo, A., et al. Adenosine receptor subtype-selective antagonists in inflammation and 
hyperalgesia. Naunyn-Schmiedebergs Arch. Pharmacol. 2008, 377, 65–76. 

306. Mott, A.M., et al. The adenosine A2A antagonist MSX-3 reverses the effects of the dopamine antagonist 
haloperidol on effort-related decision making in a T-maze cost/benefit procedure. Psychopharmacology. 
2009, 204, 103–112. 
 
307. Alexander, S.P., et al.  [3H]ZM241385 — an antagonist radioligand for adenosine A2A receptors in brain. 
Eur. J. Pharmacol. 2001 411, 205–210. 
 
308. Hauser, R.A., et al. Tozadenant (SYN115) in patients with Parkinson’s disease who have motor 
fluctuations on levodopa: a phase 2b, double-blind, randomised trial. Lancet Neurol. 13, 2014, 767–776.  
 
309. Kachroo, A., et al. Adenosine A2A receptor gene disruption protects in an α-synuclein model of 
Parkinson’s disease. Ann. Neurol. 71, 2012, 278–282.  
 
310. Ferreira, D.G., et al. Adenosine A2A Receptors Modulate α-Synuclein Aggregation and Toxicity.                              
Cereb Cortex. 2017, 27, 718–730.  
 
311. Hu, Q., et al. Aberrant adenosine A2A receptor signaling contributes to neurodegeneration and 
cognitive impairments in a mouse model of synucleinopathy. Exp. Neurol. 2016, 283, 213–223.  
 
312. Li, J., et al. Oxidative stress and neurodegenerative disorders. Int. J. Mol. Sci. 2013, 14, 24438-24475. 
 
313. Charoco, M., et al. A review on antioxidants, prooxidants and related controversy: Natural and 
synthetic compounds, screening and analysis methodologies and future perspectives. Food and Chemical 
Toxicology. 2013, 51, 15–25 
 
314. Turrens, J.F., et al. Mitochondrial formation of reactive oxygen species. J. Physiol. 2003, 552, 335–344. 
 
315. Coon, M.J., et al. Ding, X.; Pernecky, S.J.; Vaz, A.D.N. Cytochrome P450: Progress and predictions. 
FASEB J. 1992, 6, 669–673. 
 
316. Reed, J.R., et al. Backes, W.L. Formation of P450·P450 complexes and their effect on P450 function. 
Pharmacol. Ther. 2012, 133, 299–310. 317. DeLeo, F.R., et al. Assembly of the phagocyte NADPH oxidase: 
Molecular interaction of oxidase proteins. J. Leukoc. Biol. 1996, 60, 677–691. 
 
318. Finkel, T. et al. Redox-dependent signal transduction. FEBS Lett. 2000, 476, 52–54. 



9.REFERENCES 

 

                                                                                                                                                                           

182 

 
319. Gandhi, S., et al. Mechanism of oxidative stress in neurodegeneration. Oxid. Med. Cell. Longev. 2012, 
2012, 428010. 
 
320. Chance, B., et al. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 1979, 59, 527–605. 
 
321. Packer, M.A., et al. Superoxide production by mitochondria in the presence of nitric oxide forms 
peroxynitrite. Biochem. Mol. Biol. Int. 1996, 40, 527–534. 
 
322. Bringold, U., et al. Peroxynitrite formed by mitochondrial NO synthase promotes mitochondrial Ca2+ 
release. Free Radic. Biol. Med. 2000, 29, 343–348. 
 
323. Stanley, B.A., et al. Thioredoxin reductase-2 is essential for keeping low levels of H2O2 emission from 
isolated heart mitochondria. J. Biol. Chem. 2011, 286, 33669–33677. 
 
324. Lu, J., et al. The thioredoxin antioxidant system. Free Radic. Biol. Med. 2013,  
 
325. Massaad, C.A., et al. Reactive oxygen species in the regulation of synaptic plasticity and memory.                    
Antioxid. Redox Signal. 2011, 14, 2013–2054. 
 
326. Barros, A.I.R.N.A., et al. Effect of cooking on total vitamin C contents and antioxidant activity of sweet 
chestnuts (Castanea sativa Mill.). Food Chem. 2011, 128, 165–172. 
 
327. Burton, G.W., et al. Vitamin E: antioxidant activity, biokinetics, and bioavailability.                                                    
Annu. Rev. Nutr. 1990, 10, 357–382. 
 
328. Halpner, A.D., et al. Protection by vitamin C of oxidant-induced loss of vitamin E in rat hepatocytes.                   
J. Nutr. Biochem. 1998, 9, 355–359. 
 
329. Ross, D., et al. The generation and fate of glutathionyl radicals in biological systems, in Poli, G., et al., 
Free radicals in liver injury. IRL Press. Oxford. 1987, 17-20. 
 
330. Prutz, W.A. Chemical repair in DNA solutions containing thiols/or disulphides. Further evidence for 
disulphide radical anions acting as electron donors. Int. J. Radiat. Biol. 1989, 56, 21-33. 
 
331. Shindo, Y. Et al. Dose-response effects in acute ultraviolet irradiation on antioxidants and molecular 
markers of oxidation in murine epidermis. J. Invest. Dermatol. 1994, 104, 470-475. 
 
332. Valko, M., et al. Free radicals and antioxidants in normal physiological functions and human disease. 
Int. J. Biochem. Cell Biol. 2007, 39, 44–84. 
 
333. Rochette, L., et al. Direct and indirect antioxidant properties of α-lipoic acid and therapeutic potential. 
Mol. Nutr. Food. Res. 2013, 57, 114–125. 
 
334. Raddatz, G., et al. Receptor site and stereospecifity of dihydrolipoamide dehydrogenase for R- and S-
lipoamide: a molecular modeling study. J. Biotechnol. 1997, 58, 89−100. 
 
335. Fujiwara, K., et al. Lipoylation of Acyltransferase Components of α-Ketoacid Dehydrogenase 
Complexes. J. Biol. Chem. 1996, 271, 12932−12936. 
 
336. Akiba, S., et al. Assay of Protein- Bound Lipoic Acid in Tissues by a New Enzymatic Method. Anal. 
Biochem. 1998, 258, 299−304. 
 
337. Wollin, S. D., et al. α-Lipoic Acid and Cardiovascular Disease. J. Nutr. 2003, 133, 3327−3330. 
 



9.REFERENCES 

 

183 

338. Packer, L., et al. Vitamin E and alpha-lipoate: Role in antioxidant recycling and activation of the NF-κB 
transcription factor. Mol. Aspects. Med. 1993, 14, 229−239. 
 
339. Packer, L., et al. Alpha-lipoic acid as a biological antioxidant. Free Radical Biol. Med. 1995, 19, 227−250. 
 
340. Packer, L., et al. Alpha-lipoic acid: a metabolic antioxidant and potential redox modulator of 
transcription. Adv. Pharmacol. 1997, 38, 79−101. 
 
341. Packer, L., et al. α-Lipoic acid: A metabolic antioxidant which regulates NF-κB signal transduction and 
protects against oxidative injury. Drug Metab. Rev. 1998, 30, 245−275. 
 
342. Trujillo, M., et al. Peroxynitrite reaction with the reduced and the oxidized forms of lipoic acid: new 
insights into the reaction of peroxynitrite with thiols. Arch. Biochem. Biophys. 2002, 397, 91–98. 
  
343. Ou, P., et al.  Thioctic (lipoic) acid: a therapeutic metal-chelating antioxidant? Biochem. Pharmacol. 
1995, 50, 123–126. 
 
344. Suh, J. H., et al. Dietary supplementation with (R)-alpha-lipoic acid reverses the age-related 
accumulation of iron and depletion of antioxidants in the rat cerebral cortex. Redox. Rep. 2005, 10, 52–60. 
 
345. Bush, A. I., et al. Metal complexing agents as therapies for Alzheimer’s disease. Neurobiol. Aging. 2002, 
23, 1031– 1038. 
 
346. Nagamatsu, M., et al. Lipoic acid improves nerve blood flow, reduces oxidative stress, and improves 
distal nerve conduction in experimental diabetic neuropathy. Diabetes Care. 1995, 18(8), 1160–1167.  
 
347. Ziegler, D., et al. Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic 
acid: a meta-analysis. Diabet Med. 2004, 21(2), 114–121.  
 
348. Mijnhout, G.S., et al. Alpha lipoic Acid for symptomatic peripheral neuropathy in patients with 
diabetes: a meta-analysis of randomized controlled trials. Int. J. Endocrinol. 2012, 2012, 1–8.  
 
349. Li, Q.R., et al. Epalrestat protects against diabetic peripheral neuropathy by alleviating oxidative stress 
and inhibiting polyol pathway. Neural. Regen. Res. 2016, 11(2), 345–351.  
 
350. Li, P., et al. Clinical efficacy and safety of epalrestat in diabetic neuropathy-A multicenter randomized 
controlled clinical trial. Chinese Journal of Endocrinology and Metabolism. 2015, 31(9), 743–747.  
 
351. Hotta, N., et al. Long-term clinical effects of epalrestat, an aldose reductase inhibitor, on diabetic 
peripheral neuropathy: the 3-year, multicenter, comparative Aldose Reductase Inhibitor-Diabetes 
Complications Trial. Diabetes Care. 2006, 29(7), 1538–1544. 
 
352. Guo, Y., et al. Analysis the effect of lipoic acid combined with epalrestat in Chinese people with 
diabetes peripheral neuropathy. Journal of Practical Diabetology. 2017,13(01), 15–18. 
 
353. Wiernsperger, N.F., et al. Oxidative stress as a therapeutic target in diabetes: revisiting the 
controversy. Diabetes Metab. 2003, 29, 579–585 
 
354. Lü, J.M., et al. Chemical and molecular mechanisms of antioxidants: Experimental approaches and 
model systems. J. Cell. Mol. Med. 2010, 14, 840–860. 
 
355. Cooke, M.S., et al. Does measurement of oxidative damage to DNA have clinical significance?                             
Clin. Chim. Acta. 2006, 365, 30–49. 
 
356. Perez, M., et al. Phosphorylated, but not native, tau protein assembles following reaction with the 
lipid peroxidation product, 4-hydroxy-2-nonenal. FEBS Lett. 2000, 486, 270–274. 
 



9.REFERENCES 

 

                                                                                                                                                                           

184 

357. Wataya, T., et al. High molecular weight neurofilament proteins are physiological substrates of 
adduction by the lipid peroxidation product hydroxynonenal. J. Biol. Chem. 2002, 277, 4644–4648. 
 
358. Misonou, H., et al. Oxidative stress induces intracellular accumulation of amyloid beta-protein (Abeta) 
in human neuroblastoma cells. Biochemistry. 2000, 39, 6951–6959. 
 
359. Gabuzda, D., et al. Inhibition of energy metabolism alters the processing of amyloid precursor protein 
and induces a potentially amyloidogenic derivative. J. Biol. Chem. 1994, 269, 13623–13628. 
 
360. Apelt, J., et al. Aging related increase in oxidative stress correlates with developmental pattern of beta-
secretase activity and beta-amyloid plaque formation in transgenic Tg2576 mice with Alzheimer like 
pathology. Int. J. Dev. Neurosci. 2004, 22, 475–484. 
 
361. Ghiso, J., et al. Cerebral amyloidosis, amyloid angiopathy, and their relationship to stroke and 
dementia. J. Alzheimers Dis. 2001, 3, 65–73. 
 
362. Coma, M., et al. Oxidative stress triggers the amyloidogenic pathway in human vascular smooth muscle 
cells. Neurobiol. Aging. 2008, 29, 969–980. 
 
363. Xiang, W., et al. Oxidative stress-induced posttranslational modifications of alpha-synuclein: Specific 
modification of alpha-synuclein by 4-hydroxy-2-nonenal increases dopaminergic toxicity. Mol. Cell. 
Neurosci. 2013, 54, 71–83. 
 
364. Nekooki-Machida, Y., et al. Distinct conformations of in vitro and in vivo amyloids of huntingtin-exon1 
show different cytotoxicity. Proc. Natl. Acad. Sci. USA 2009, 106, 9679–9684. 
 
365. Mitomi, Y., et al. Post-aggregation oxidation of mutant huntingtin controls the interactions between 
aggregates. J. Biol. Chem. 2012, 287, 34764–34775. 
 
366. Goswami, A., et al. Oxidative stress promotes mutant huntingtin aggregation and mutant huntingtin-
dependent cell death by mimicking proteasomal malfunction. Biochem. Biophys. Res. Commun. 2006, 342, 
184–190. 
 
367. Zhuo, M., et al. Neuronal mechanism for neuropathic pain. Mol. Pain. 2007, 3, 14.  
 
368. Ma, W., et al. Does COX2-dependent PGE2 play a role in neuropathic pain? Neurosci. Lett. 2008, 437, 
165-169. 
 
369. Tal, M., et al. A novel antioxidant alleviates heat hyperalgesia in rats with an experimental painful 
peripheral neuropathy. Neur. Report. 1996, 7, 4-1382. 
 
370. Khalil, Z., et al. Free radicals contribute to the reduction in peripheral vascular responses and the 
maintenance of therma hyperalgesia in rats with chronic constriction injury. Pain. 1999, 79, 7-31. 
 
371. Kim, H.K., et al. Reactive oxygen species (ROS) play an important role in rat model of neuropathic pain. 
Pain. 2004, 111, 24-1116. 
 
372. Naik, A.K., et al. Role of oxidative stress in pathophysiology of peripheral neuropathy and modulation 
by N-acetyl-L-cysteine in rats. Eur. J. Pain. 2006, 10, 573–579.  
 
373. Gamelin, E., et al. Clinical aspects and molecular basis of oxaliplatin neurotoxicity: Current 
management and development of preventive measures. Semin. Oncol. 2002, 29, 21-33.  
 
374. Di Cesare Mannelli, L., et al. Oxaliplatin-Induced Neuropathy: Oxidative Stress as Pathological 
Mechanism. Protective Effect of Silibinin. The Journal of Pain. 2012, 13, 276-284. 
 



9.REFERENCES 

 

185 

375. Costenla, A.R., et al. Caffeine, adenosine receptors, and synaptic plasticity. J. Alzheimer’s Dis. 2010, 
20, 25–34.  
 
376. Costenla, A.R., et al. Adenosine modulates synaptic plasticity in hippocampal slices from aged rats. 
Brain Res. 1999, 851, 228–234.  
 
377. Costenla, A.R., et al.  Enhanced role of adenosine A(2A) receptors in the modulation of LTP in the rat 
hippocampus upon ageing. Eur. J. Neurosci. 2011, 34, 12–21. 
 
378.  Li, W., et al. Inactivation of adenosine A2A receptors reverses working memory deficits at early stages 
of Huntington’s disease models. Neurobiol. Dis. 2015, 79, 70−80. 
 
379. Armentero, M. T., et al. Past, present and future of A2A adenosine receptor antagonists in the therapy 
of Parkinson’s disease. Pharmacol. Ther. 2011, 132, 280−299.  
 
380.  Preti, D., et al. History and perspective of A2A adenosine receptor antagonists as potential therapeutic 
agents. Med. Res. Rev. 2015, 35, 790−848. 
 
381. Mohamed, R. A., et al. Role of adenosine A2A receptor in cerebral ischemia reperfusion injury: signaling 
to phosphorylated extracellular signal-regulated protein kinase (pERK1/2). Neuroscience. 2016, 314, 
145−159. 
 
382. Faivre, E., et al. Beneficial Effect of a Selective Adenosine A2AReceptor Antagonist in the 
APPswe/PS1dE9 Mouse Model of Alzheimer’s Disease. Front. Mol. Neurosci. 2018, 11, 235 
 
383. Silva, A.C., et al. Blockade of adenosine A2A receptors recovers early deficits of memory and plasticity 
in the triple transgenic mouse model of Alzheimer's disease. Neurob. of Dis. 2018, 117, 72–81.  
 
384. Atack, J., et al. JNJ-40255293, a novel adenosine A2A/A1 antagonist with efficacy in preclinical models 
of Parkinson’s disease. ACS Chem. Neurosci. 2014, 5, 1005−1019. 
 
385. Cechova, S, et al. A1 receptors self regulate adenosine release in the striatum: evidence of autoreceptor 
characteristics. Neuroscience. 2010, 171, 1006−1015. 
 
386. Borycz, J., et al. Differential glutamate-dependent and glutamate independent adenosine A1 receptor-
mediated modulation of dopamine release in different striatal compartments. J. Neurochem. 2007, 101, 
355−363. 
  
387. Colotta, V., et al. 1,2,4-Triazolo[4,3-a]quinoxalin-1-one moiety as an attractive scaffold to develop new 
potent and selective human A3 adenosine receptor antagonists: synthesis, pharmacological and ligand-
receptor modeling studies. J. Med. Chem. 2004, 47, 3580−3590. 
 
388. Colotta, V., et al. Synthesis of 4-Amino-6-(hetero)- arylalkylamino-1,2,4-triazolo[4,3-a]quinoxalin-1-
one derivative as potent A2A adenosine receptor antagonists. Bioorg. Med. Chem. 2003, 11, 5509−5518. 
 
389. Lenzi, O., et al. 4-Amido-2-aryl-1,2,4-triazolo[4,3-a]quinoxalin- 1-ones as new potent and selective 
human A3 adenosine receptor antagonists. Synthesis, pharmacological evaluation and ligand-receptor 
modeling studies. J. Med. Chem. 2006, 49, 3916−3925. 
 
390. Morizzo, E., et al. Scouting human A3 adenosine receptor antagonist binding mode using a molecular 
simplification approach: from triazoloquinoxaline to a pyrimidine skeleton as a key study. J. Med. Chem. 
2007, 50, 6596−6606. 
 
391. Colotta, V., et al. Synthesis, ligand-receptor modeling studies and pharmacological evaluation of novel 
4-modified-2-aryl- 1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives as potent and selective human A3 
Adenosine Receptor Antagonists. Bioorg. Med. Chem. 2008, 16, 6086−6102. 
 



9.REFERENCES 

 

                                                                                                                                                                           

186 

392. Squarcialupi, L., et al. Exploring the 2- and 5-positions of the pyrazolo[4,3-d]pyrimidin-7-amino 
scaffold to target human A1 and A2A adenosine receptors. Bioorg. Med. Chem. 2016, 24, 2794-2808. 
 
393. Krimmel, B., et al. OH-radical induced degradation of hydroxybenzoic- and hydroxycinnamic acids and 
formation of aromatic products – a gamma radiolysis study. Radiat. Phys. Chem. 2010, 79, 1247– 1254. 
 
394. Terpinc, P., et al. Antioxidant properties of 4-vinyl derivatives of hydroxycinnamic acids.                            
Food Chem. 2011, 128, 62–68. 
 
395. Hilton, J.W., et al. Antioxidants: function, types and necessity of inclusion in pet foods.                                           
Can. Vet. J. 1989, 30, 682-684. 
 
396. Amorati, R., et al. Antioxidant activity of obisphenols: the role of Intramolecular hydrogen bonding.                
J. Org. Chem. 2003, 68, 5198-5204. 
 
397. Lazer, E.S., et al. Antiinflammatory 2,6-di-tert-butyl-4-(2-arylethenyl)phenols. J. Med. Chem. 1989, 32, 
100-104. 
 
398. Cummings, S.W., et al. Metabolism of 3-tert-butyl-4-hydroxyanisole by microsomal fractions and 
isolated rat hepatocytes. Canc. Res. 1985, 45, 5617-5624. 
 
399. Dacre, J.C., et al. The metabolism of 3,5-di-tert-butyl-4-hydroxytoluene and 3,5-ditert-butyl-4-
hydroxybenzoic acid in the rabbit. Biochem. J. 1961, 78, 758-766. 
 
400. Suh, J.H., et al. Decline in transcriptional activity of Nrf2 causes age related loss of glutathione 
synthesis, which is reversible with lipoic acid. Proc. Natl. Acad. Sci. U.S.A. 2004, 101(10), 3381–3386.  
 
401. Kerksick, C., et al. The antioxidant role of glutathione and N-acety-L-cysteine supplements and 
exercise-induced oxidative stress. J. Int. Soc. Sports.Nutr. 2005, 2, 38–44. 
 
402. Jain, S.K., et al. L-cysteine supplementation lowers blood glucose, glycated hemoglobin, CRP, MCP-1, 
and oxidative stress and inhibits NF-κB activation in the livers of Zucker diabetic rats. Free. Radic. Biol. Med. 
2009, 46, 1633–1638.  
 
403. Burton, G. W., et al. Autoxidation of biological molecules. 1. Antioxidant activity of vitamin E and 
related chainbreaking phenolic antioxidants in vitro. J. Am. Chem. Soc. 1981, 103, 6472−6477.  
 
404. Watanabe, T., et al. Protective effects of MCI-186 on cerebral ischemia: Possible involvement of free 
radical scavenging and antioxidant actions. J. Pharmacol. Exp. Ther. 1994, 268, 1597–1604.  
 
405. Wu, T., et al. Myocardial protection of MCI-186 in rabbit ischemia reperfusion.                                                                 
Life. Sci. 2002, 71, 2249–2255. 
 
406. Banno, M., et al. The radical scavenger edaravone prevents oxidative neurotoxicity induced by 
peroxynitrite and activated microglia. Neuropharm. 2005, 48, 283–290. 
 
407. Abe, S., et al. The reaction rate of edaravone(3-methyl-1-phenyl-2-pyrazolin-5-one (MCI-186)) with 
hydroxyl radical. Chem. Pharm. Bull. 2004, 52, 186–191,408. Nakagawa, H., et al. Radical scavenging by 
edaravone derivatives: efficient scavenging by 3-methyl-1-(pyridine-2-yl)-5-pyrazolone with an 
intramolecular base. Bioorg. Med. Chem. Lett. 2006, 16, 5939–5942. 
 
409. Ono, S., et al. Density functional study of the radical reactions of 3-methyl-1-phenyl-2-pyrazolin-5-one 
(MCI-186): implication for the biological function of MCI-186 as a highly potent antioxidative radical 
scavenger. J. Phys. Chem. A. 1997, 101, 3769–3775. 
 



9.REFERENCES 

 

187 

410. Falsini, M., et al. The 1,2,4-triazolo[4,3-a]pyrazin-3-one as a versatile scaffold for the design of potent 
adenosine human receptor antagonists. Structural investigations to target the A2A receptor. J. Med. Chem. 
2017, 60, 5772-5790. 
 
411. Shawali, A. S., et al. Kinetics and mechanism of dehydrochlorination of N-aryl-C-
ethoxycarbonylformohydrazidoyl chlorides. Can. J. Chem. 1986, 64, 871−875. 
 
412. Lozinskii, M. O., t al. Ethyl arylazochloroacetates and their reactions with morpholine and hydrazine 
hydrate. Ukr. Khim. Zh. 1967, 33, 1295−1296. 
 
413. Abbotto, A., et al. Diheteroarylmethanes. 8.1 Mapping charge and electron-withdrawing power of the 
1,2,4-triazol-5-yl substituent. J. Org. Chem. 1999, 64, 6756−6763.  
 
414. Sharp, D. B., et al. Derivatives of 1,2,4-triazole and pyrazole. J. Am. Chem. Soc. 1946, 68, 588−590.  
 
415. Matiychuk, V. S.; et al. A New method for the synthesis of 1-aryl-1,2,4-triazole derivatives.                                    
Synthesis. 2011, 2011, 1799−1813. 
 
416.  Inventors; Ironwood pharmaceuticals, Inc., Renhowe, P.A., et al. World patent WO2015/089182A1. 
2015 Jun 18. 
 
417. El Maatougui, A., et al. Discovery of potent and highly selective A2B adenosine receptor antagonist 
chemotypes. J. Med. Chem. 2016, 59, 1967−1983. 
 
418. Alnouri, M. W., et al. Selectivity is species-dependent: Characterization of standard agonists and 
antagonists at human, rat, and mouse adenosine receptors. Purinergic. Signalling. 2015, 11, 389−407. 
 
419. Molecular Operating Environment; C.C.G., Inc.: 1255 University Street, Suite 1600, Montreal, Quebec, 
Canada, H3B 3X3, 2014. 
 
420. Jones, G. et al. Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. Development and validation of a genetic 
algorithm for flexible docking. J. Mol. Biol. 1997, 267, 727−748. 
 
421. Huey, R., et al. Morris, G. M.; Olson, A. J.; Goodsell, D. S. A semiempirical free energy force field with 
charge-based desolvation. J. Comput. Chem. 2007, 28, 1145−1152. 
 
422. Morris, G. M., et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor 
flexibility. J. Comput. Chem. 2009, 30, 2785−2791. 
 
423. Jaakola, V. P., et al. The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to 
an antagonist. Science. 2008, 322, 1211−1217. 
 
424. Dal Ben, D., et al. Adenosine receptor modeling: what does the A2A crystal structure tell us? Curr. Top. 
Med. Chem. 2010, 10, 993−1018. 
 
425. Liu, W., et al. Structural basis for allosteric regulation of GPCRs by sodium ions. Science. 2012, 337, 
232−236. 
 
426. Squarcialupi, L., et al.  7-Amino-2-phenylpyrazolo[4,3-d]pyrimidine derivatives: structural 
investigations at the 5-position to target A1 and A2A adenosine receptors. Molecular modeling and 
pharmacological studies. Eur. J. Med. Chem. 2014, 84, 614−627. 
 
427. Scatena, A., et al. 3-(Fur-2-yl)-10- (2-phenylethyl)-[1,2,4]triazino[4,3-a]benzimidazol-4(10H)-one, a 
novel adenosine receptor antagonist with A2A-mediated neuroprotective effects. ACS Chem. Neurosci. 2011, 
2, 526−535. 
 



9.REFERENCES 

 

                                                                                                                                                                           

188 

428. Zhao, Q., et al. Protection against MPP+-induced neurotoxicity in SH-SY5Y cells by tormentic acid via 
the activation of PI3-K/Akt/GSK3 pathway. Neurochem. Int. 2016, 97, 117−123. 
 
429. Giunta, S., et al. Dual blockade of the A1 and A2A adenosine receptor prevents amyloid beta toxicity in 
neuroblastoma cells exposed to aluminium chloride. Int. J. Biochem. Cell Biol. 2014, 5, 122-136. 
 
430. Yamada, K., et al. Antidepressant activity of the adenosine A2A receptor antagonist, istradefylline (KW-
6002) on learned helplessness in rats. Psychopharmacology. 2014, 231, 2839−2849. 
 
431. Kadowaki Horita, T., et al. Effects of the adenosine A2A antagonist istradefylline on cognitive 
performance in rats with a 6-OHDA lesion in prefrontal cortex. Psychopharmacology. 2013, 230, 345−352. 
 
432. Ikeda, K., et al. Neuroprotection by adenosine A2A receptor blockade in experimental models of 
Parkinson’s disease. J. Neurochem. 2002, 80, 262−270. 
 
433. Gyoneva, S., et al. Adenosine A2A receptor antagonism reverses inflammation-induced impairment of 
microglial process extension in a model of Parkinson’s disease. Neurobiol. Dis. 2014, 67, 191−202. 
 
434. Blum, D., et al. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: 
contribution to the apoptotic theory in Parkinson’s disease. Prog. Neurobiol. 2001, 65, 135−172. 
 
435. Caulkett, P. W. R., et al. Preparation of (Amino)heteroaryl[1,2,4]triazolo[1,5-a]triazine and related 
compounds as adenosine A2 receptor antagonists. EP 459702, May 23, 1991. 
 
436. Hutchison, A. J., et al. CGS21680, an A2 selective adenosine receptor agonist with preferential 
hypotensive activity. J. Pharmacol. Exp. Ther. 1989, 251, 47−55. 
 
437. Rivera-Oliver, M., et al. Using caffeine and other adenosine receptor antagonists and agonists as 
therapeutic tools against neurodegenerative diseases. a review, Life Sci. 2014, 101, 1-9. 

438. Xu, K., et al. Neuroprotection by caffeine in the MPTP model of Parkinson’s disease and its dependence 
on adenosine A2A receptors. Neuroscience. 2016, 322, 129–137. 

439. Eskelinena, Marjo H., et al. Caffeine as a Protective Factor in Dementia and Alzheimer’s Disease. 
Journal of Alzheimer’s Disease.  2010, 20, S167–S174. 

440. Kolahdouzan, M., et al. The neuroprotective effects of caffeine in neurodegenerative diseases. CNS 
Neurosci Ther. 2017, 23, 272–290. 

441. Dall’Igna, O. P., et al. Caffeine and adenosine A2A receptor antagonist prevent β-amyloid (25-35)-
induced cognitive deficits in mice. Experimental Neurology. 2007, 203, 241-245. 

442. Di Cesare Mannelli, L., et al. Oxaliplatin-induced oxidative stress in nervous system-derived cellular 
models: could it correlate with in vivo neuropathy? Free. Radic. Biol. Med. 2013, 61, 143-50. 

443. Faria, J. Et al. Comparative study of the neurotoxicological effects of tramadol and tapentadol in                   
SH-SY5Y. cells. Toxicology. 2016, 359, 1-10. 

444. Branca, J.J.V., et al. Selenium and zinc: Two key players against cadmium-induced neuronal toxicity. 
Toxicol In Vitro. 2018, 48, 159-169. 

445. Zanardelli, M., et al. Oxaliplatin Neurotoxicity Involves Peroxisome Alterations. PPARγ Agonism as 
Preventive Pharmacological Approach. Plos ONE. 2014, 9(7), e102758. 
 
446. de Lera Ruiz, M., et al. Adenosine A2A receptor as a drug discovery target.                                                                                  
J. Med. Chem. 2013, 57, 3623−3650. 
 
447. Headrick, J. P., et al. Cardiovascular adenosine receptors: expression, actions and interactions. 
Pharmacol. Ther. 2013, 140, 92−111. 

https://www.ncbi.nlm.nih.gov/pubmed/23548635
https://www.ncbi.nlm.nih.gov/pubmed/29408665


9.REFERENCES 

 

189 

 
448. Gao, Z. G., et al. Emerging adenosine receptor agonists. Expert Opin. Emerging Drugs. 2007, 12, 
479−492. 
 
449. Lappas, C. M., et al. Adenosine A2A agonists in development for the treatment of inflammation.                     
Expert Opin. Invest. Drugs. 2005, 14, 797−806. 
 
450. Varani, K., et al. Oxidative/nitrosative stress selectively altered A2B adenosine receptors in chronic 
obstructive pulmonary disease. FASEB J. 2010, 24, 1192−1204.  
 
451. Soudijn, W., et al. Medicinal chemistry of adenosine A1 receptor ligands.                                                                          
Curr Top Med Chem. 2003, 3, 355–367. 
 
452. Gao, Z.G., et al. Site-directed mutagenesis studies of human A(2A) adenosine receptors: involvement 
of glu(13) and his(278) in ligand binding and sodium modulation. Biochem Pharmacol. 2000, 60, 661–668. 
 
453. Kim, S.K., et al. Modeling the adenosine receptors: comparison of the binding domains of A2A agonists 
and antagonists. J. Med. Chem. 2003, 46, 4847–4859. 
 
454. Jacobson, K.A., et al.  A neoceptor approach to unraveling microscopic interactions between the 
human A2A adenosine receptor and its agonists. Chem. Biol. 2005, 12, 237–247. 
 
455. Inventors; Bayer Aktiengesellschaft, Rosentreter, U., et al. Preparation of 2-heteroarylmethyltio-3,5-
dicyano-4-phenyl-6-aminopyridines as adenosine receptor selective ligands. World patent WO03008384. 
200.3 Jan 30. 
 
456. Chang, L.C., et al. A series of ligands displaying a remarkable agonistic-antagonistic profile at the 
adenosine A1 receptor. J. Med. Chem. 2005, 48, 2045–2053. 
 
457. Galli, U., et al. The Guareschi Pyridine Scaffold as a Valuable Platform for the Identification of Selective 
PI3K Inhibitors. Molec. 2015, 20, 17275-17287. 
 
458. Smith, P.K. et al. Measurement of Protein Using Bicinchoninic Acid.                                                                                        
Anal. Biochem. 1985, 150, 76-85. 
 
459. Cheng, Y., et al. Relationship between the inhibition constant (K1) and the concentration of inhibitor 
which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973, 22, 3099-
3108. 
 


