New rigid nicotine analogs, carrying a norbornane moiety, are potent agonists of α7 and α3* nicotinic receptors

Dina Manetti,a,* Alexandra Garifulina, b Gianluca Bartolucci, a Carla Bazzicalupi, c Cristina Bellucci, a Niccolò Chiaramonte, a Silvia Dei, a Lorenzo Di Cesare Mannelli, d Carla Ghelardini, d Paola Gratteri, e Ekaterina Spirova, b Irina Shelukhina, b Elisabetta Teodori, a Katia Varani, f Victor Tsetlin, b Maria Novella Romanelli a

a Department of Neuroscience, Psychology, Drug Research and Child’s Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
b Department of Molecular Basis of Neurosignaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, 117997 Moscow, Russia
c Department of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino.
d Department of NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Viale G Pieraccini 6, 50139 Firenze, Italy
e Department of NEUROFARBA, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, via Ugo Schiﬀ 6, I-50019 Sesto Fiorentino, Firenze, Italy.
f Institute of Pharmacology, University of Ferrara, Via Fossato di Mortara 17-19, 44100 Ferrara, Italy
Abstract

A 3D-database search has been applied to design a series of endo and exo 3-(pyridin-3-yl)bicyclo[2.2.1]heptan-2-amines as nicotinic receptor ligands. The synthesized compounds were tested in radioligand binding assay on rat cortex against [³H]-cytisine and [³H]-methyllycaconitine (MLA) to measure their affinity for α4β2* and α7* nicotinic receptors. The new derivatives showed some preference for the α4β2* over the α7* subtype, their affinity being dependent on the endo/exo isomerism and on the methylation degree of the basic nitrogen. The endo primary amines displayed the lowest Kᵢ values on both receptor subtypes. Selected compounds (1a, 2a, 3a and 6a) were tested on heterologously expressed α4β2, α7 and α3β2 receptors, and on SHSY-5Y cells. Compounds 1a and 2a showed α4β2 antagonistic properties while behaved as full agonists on recombinant α7 and on SHSY5Y cells. On the α3β2 subtype, only the chloro derivative 2a showed full agonist activity and submicromolar potency (EC₅₀ 0.43 μM). The primary amines described here represent new chemotypes for the α7 and α3* receptor subtypes.

Keywords

Nicotinic acetylcholine receptor; α4β2 antagonist; α7 agonist; α3 agonist; 3D-database search; molecular modeling.
Introduction

Nicotinic acetylcholine receptors (nAChRs) are considered as attractive targets for drug design due to their involvement in many pathophysiological processes in the CNS and also in non-neuronal systems.\textsuperscript{1-7} Several nicotinic ligands entered clinical trials, mainly for cognitive deficits associated with neurological diseases, smoking cessation and pain. Several other therapeutic applications are under study, and both agonists and antagonists may be useful depending on the targeted receptor subtype and pathology.\textsuperscript{8}

Of the seventeen nAChR subunits cloned so far (α1-10, β1-4, γ, δ, ε) only sixteen have been found in mammalian tissues (α8 has been found only in chicken). These subunits can assemble into functional pentamers in many different ways, giving a large number of possible subtypes, the high homology between them making the design of selective ligands difficult.\textsuperscript{8-9} The heteromeric α4β2* (* indicates the possible presence of other subunits) and the homomeric α7 receptors, the most abundant nAChRs in the CNS, are the most investigated subtypes. Some degree of selectivity for ligands targeting these two subtypes has been achieved, since structural requirements are somehow different. However, many nicotinic ligands, including compounds in clinical trials or approved for therapy, have mixed pharmacological profile: as an example varenicline (Chart 1), approved for smoking cessation, showed > 500-fold higher affinity for α4β2* over α7 receptors in binding experiments, but only 8-fold higher potency in functional assays.\textsuperscript{10-11} In functional studies, varenicline behaved as a partial agonist on α4β2* and full agonist on α7 receptors; it is possible that both activities, as well as interaction with other subtypes, contribute to the pharmacological effects of this compound.\textsuperscript{12-13} Other well characterized ligands have a mixed pharmacological profile, such as GTS-21, an α7 partial agonist and α4β2 antagonist,\textsuperscript{14} tested in clinical trials to treat cognitive deficit associated with Alzheimer’s disease, Attention-Deficit Hyperactivity Disorder or Schizophrenia (www.clinicaltrial.gov).
Other nAChR subtypes such as α3*, α5* and α6*, which are less abundant in the CNS,\textsuperscript{15-16} have been studied to a lesser extent, also owing to the shortage of selective ligands. Indeed these subtypes are also attractive targets, since they are involved in neurotransmitter release or in tobacco dependence.\textsuperscript{17-18} Moreover, the α3β4* subtype is widely expressed in the peripheral nervous system and also in non-neuronal tissues.\textsuperscript{19} In recent times, also compounds with selectivity for α3* receptors have been discovered, such as the α3β4* partial agonists AT-1001 and AT-1012 (Chart 1); AT-1001 gave promising results when tested in rat models of nicotine or cocaine addiction.\textsuperscript{20-21} Therefore, the design of new nicotinic modulators is still of interest.

Different strategies can be applied to search for new ligands endowed with improved activity or selectivity. Some years ago, we used a 3D database searching approach to discover novel lead compounds.\textsuperscript{22} The requirements for the nicotinic pharmacophore, i.e. a basic nitrogen atom and an H-bond acceptor group, their distance and orientation, were extracted from pyrido[3,4]hetotropane (PHT), a fully rigid α4β2 ligand (Chart 2).\textsuperscript{23-24} These features were then transformed into a query to search within the Cambridge Structural Database (CSD), and resulted in several hits;\textsuperscript{22} optimization of one of them resulted in quinoline analogues of nicotine.\textsuperscript{25-26}

With the aim to find new chemotypes for the nicotinic receptors, later we repeated a similar approach, and among the retrieved hits, the molecule LOYMOB (Chart 2) gave us the idea of using a simple bicyclo[2.2.1]heptane moiety as a spacer between the pyridyl ring (H-bond acceptor) and an aliphatic amino group (see compounds with general formula A). These molecules possess 4
stereogenic centres, leading to 4 possible diasteromeric racemates; however, only the trans derivatives shown in Chart 2 would comply with the criteria of nicotinic pharmacophore. In fact, in these trans isomers, differing in endo/exo arrangement of the amino group, the distance between the basic and the pyridyl nitrogen atoms is in the range of 4.9 - 5.6 Å, in accord with the well-known nicotinic pharmacophoric models. Therefore, a series of amines were designed (1a-b – 6a-b), differing in the endo (a) or exo (b) arrangement of the amino group, the presence of a Cl atom on the pyridyl ring, and the number of methyl groups on the amino moiety (0-2).

**Chart 2** Design of compounds 1-6 from the lead PHT

In this preliminary work we intended to assess the nicotinic potentiality of this new scaffold, leaving to a future time the optimization and the study of enantioselectivity. In fact, the norbornane ring is a structural feature also found in mecamylamine, a non competitive nicotinic antagonist, but we reckoned that the presence on the molecule of a pyridyl ring could allow the interaction with the orthosteric site, and possibly introduce agonistic properties. In addition, we were aware that the extraction from PHT of only the essential pharmacophoric features for binding to the nicotinic receptor could give new molecules which may not show subtype selectivity, since other important properties such as shape and volume have not been taken into account in the initial design.
Knowing these limitations, the designed compounds were synthesized and tested for their affinity on $\alpha_4\beta_2^*$ and $\alpha_7^*$ nicotinic receptors of rat brain. Since some of the new compounds displayed interesting affinity, their functional properties were also assessed in vitro in SHSY5Y cells and on the heterologously expressed individual $\alpha_4\beta_2$, $\alpha_7$ and $\alpha_3\beta_2$ subtypes.

**Methodology and results**

*3D search and design*

The pharmacophoric search was performed on the Cambridge Structural Database (CSD). The queries, showed in Figure 1, contained the geometrical features expected for a nicotinic agonist, i.e. a nitrogen atom, potentially cationic, and another heteroatom (as a pyridyl N, or a carbonyl O) as H-bond acceptor group. Some changes were introduced with respect to the first approach: 1) the H-bond acceptor moiety could be also an oxygen atom; 2) the distance between the two pharmacophoric heteroatoms has been defined without the addition of a “dummy” lone pair; 3) the distance ranges were chosen larger than those previously reported, in order to explore either flexible structures, or the so called “water-extension” concept, which suggests the bridging role of a water molecule in the binding of ligands to the receptor. R factor $\leq$ 0.05 was used as an additional filter to reduce the number of structures for consideration.

From the resulted hit list we have chosen LOYMOB (Chart 2): this molecule shows a carbonyl group as H-bond acceptor moiety, while the aromatic heterocycle could be replaced with (cyclo)alkyl groups carrying or incorporating a basic nitrogen. However, we realized that there could be other ways to modify this molecule: we replaced the aromatic ring with a pyridine moiety, transformed the keto function into an amine, and removed the methyl groups on the norbornane ring, leading to compounds with general formula $A$ (Chart 2). By this way, the two pharmacophoric moieties, a pyridine ring and a basic nitrogen, would be linked by a rigid spacer, the bicyclo[2.2.1]heptane ring.
Before the 3D structure of α4β2 nAChR X-ray structure was published in 2016 (XRD)\textsuperscript{31} and, more recently in 2018 (cryo-EM),\textsuperscript{32} comparative modeling was used by some of us to build the three-dimensional model of the N-terminal extracellular portion (Ligand Binding Domain, LBD) of the α4β2 nicotinic receptor.\textsuperscript{33} When our work started, this was the only chance to predict the binding ability of the designed compounds. This model was used to test possible interactions of compound 1\textsubscript{a} and 1\textsubscript{b} (see structure in Table 1) at the binding site formed by the α4 ((+)) side and β2 ((−) side) subunits. Hydrogen bond, electrostatic and cation-π interactions with α4Y204 and α4W156 (residue numbers according to 5KXI\textsuperscript{31}) stabilize the cationic head of compounds 1\textsubscript{a} and 1\textsubscript{b} while the pyridine ring extends in a hydrophobic cavity lined by residues from both subunits (Figure S1, Supporting Information). The computational study predicted that 1\textsubscript{a} and 1\textsubscript{b} could have high affinity for the α4β2 receptor, thus validating our design.

**Chemistry**

The key intermediates of the synthetic pathway were (E)-3-(2-nitrovinyl)pyridine 9\textsuperscript{34} and (E)-2-chloro-5-(2-nitrovinyl)pyridine 10\textsuperscript{35}; these compounds were synthesized by addition of nitromethane to the commercially available aldehydes, followed by dehydration of the alcoholic intermediates 7 and 8, according to Duursma\textsuperscript{36} (Scheme 1). Then, a Diels-Alder reaction of 9 and
10 with cyclopenta-1,3-diene, obtained after thermal decomposition and distillation of commercially available dicyclopentadiene,\textsuperscript{34} gave compounds 11 and 12.

\textbf{Scheme 1. Synthesis of endo and exo 3-(pyridin-3-yl)bicyclo[2.2.1]heptan-2-amines 1a,b-6a,b\textsuperscript{a}}

\begin{align*}
\text{CHO} & \xrightarrow{a} \text{OH} \\
\text{NO2} & \xrightarrow{b} \text{NO2} \\
\text{X} = \text{H} & \quad \text{X} = \text{Cl} \\
7 & \quad 9 \\
\text{X} = \text{H} & \quad \text{X} = \text{Cl} \\
10 & \quad 12 \\
\text{X} = \text{H} & \quad \text{X} = \text{Cl} \\
11a,b & \quad 12a,b
\end{align*}

\textsuperscript{a}Reagents and conditions: (a) CH\textsubscript{3}NO\textsubscript{2}, tBuOK, tBuOH; (b) (CF\textsubscript{3}CO\textsubscript{2})\textsubscript{O}, Et\textsubscript{3}N, -10°C; (c) cyclopenta-1,3-diene, CH\textsubscript{2}Cl\textsubscript{2}; (d) H\textsubscript{2}/Pd/C; abs EtOH; (e) chromatographic separation; (f) SnCl\textsubscript{2}.2H\textsubscript{2}O, abs EtOH, D; (g) ClCOOEt, Et\textsubscript{3}N, CH\textsubscript{2}Cl\textsubscript{2}; (h) LiAlH\textsubscript{4}, THF; (i) HCOOH, HCHO, abs EtOH.

The Diels-Alder reaction gave \textit{endo}/\textit{exo} mixtures, where the thermodynamically more stable \textit{endo} adduct was always the predominant isomer. The two isomers were clearly visible from the NMR spectra: in fact, in the \textit{endo} isomers, the proton geminal to the nitro group appears as a triplet at 4.97 ppm for 11a and at 4.91 ppm for 12a. On the contrary, in the \textit{exo} isomer the same proton appears as a doublet at higher fields (4.52 ppm for 11b and 4.45 ppm for 12b). The isomeric ratios and the overall yield were dependent on the solvent used: the Diels-Alder reaction performed
on 9 in toluene, 1,4-dioxane or dichloromethane gave endo/exo mixtures in 4.3:1 (68% yield), 7:1 (97% yield) and 6.4:1 (99% yield), respectively. The substituent on the pyridine nucleus had also a small effect: in dichloromethane the endo/exo ratios were 6.4:1 and 5.3:1 for 11 and 12, respectively.

Catalytic hydrogenation of the double bond of 11a,b and 12a,b gave compounds 13a,b and 14a,b, respectively;\textsuperscript{37} chromatographic separation was possible only on the former, giving 13a and 13b. Reduction of nitro group with SnCl\textsubscript{2} in abs ethanol,\textsuperscript{38} and chromatographic separation gave the desired primary amines 1a, 2a, and 1b, 2b. Reaction with ethyl chloroformate, followed by reduction of the intermediate carbamates gave monomethyl derivatives 3a, 3b and 4a; these reactions were not performed on 2b, due to its low amount. Reaction with formaldehyde and formic acid on 1a, 1b, 2a and 2b gave tertiary amines 5a, 5b, 6a and 6b.

For biological tests, all compounds were transformed into the HCl salts.

Radioligand binding studies on rat brain.

To evaluate their affinity for the neuronal nAChRs, the synthesized compounds were tested in vitro on rat brain in competition binding experiments according to a previously applied protocol\textsuperscript{26}; the results are reported in Table 1. [\textsuperscript{3}H]-Cytisine was used to detect binding to the \(\alpha_4\beta_2^*\) receptor, while [\textsuperscript{3}H]-methyllycaconitine (MLA) allowed to measure the interaction with the \(\alpha_7^*\) subtype. Nicotine and MLA were taken as reference compounds.

As a general remark, amines 1-6 were more active on \(\alpha_4\beta_2^*\) than on \(\alpha_7^*\) nicotinic receptors. The \(K_i\) values of all compounds were in the nanomolar range for the \(\alpha_4\beta_2^*\) subtype, while for some of them (1b, 3b, 5a, 5b, 6a and 6b) the affinity constants were not calculated on the \(\alpha_7^*\) subtype, since at 1 \(\mu\)M concentration the amount of displaced [\textsuperscript{3}H]-MLA from rat midbrain was below 33%. Some compounds displayed also a moderate selectivity: the endo secondary amines 3a and 4a showed, respectively, a 34- and 37-fold higher affinity on \(\alpha_4\beta_2^*\) than on \(\alpha_7^*\) nicotinic receptors.
*Endo-exo* isomerism plays a crucial role in binding affinity: on both subtypes the *endo* compounds 1a, 2a, 3a, 5a and 6a showed higher affinity than their *exo* isomers 1b, 2b, 3b, 5b and 6b; potency ratios ranged, on the α4β2* subtype, from 7 for 6a-6b, to 79 for 1a-1b; on α7* nicotinic receptors the highest difference (22 times) was for 2a-2b. *Endo-exo* isomers differ in the spatial orientation of the bicycloheptane moiety (shown in Figure 2), suggesting a limited space available within the binding site for the bulky spacer.

As far as methylation on the basic nitrogen atom is concerned, primary amines were more potent than secondary and tertiary ones, in both *endo* and *exo* series; on the α7 subtype, tertiary amines 5a,b and 6a,b showed poor interaction. Methylation affected also subtype selectivity: as mentioned before, *endo* secondary amines 3a and 4a showed the highest selectivity ratios, while in the *exo* series, the primary amine 2b showed the highest preference for α4β2* over α7* receptors (8 times). This rank order of affinity is somehow unexpected, since removal of N-methyl groups of nicotinic ligands often resulted in a lower activity.\(^{39}\) N-methylation should influence basicity and, as a consequence, the extent of protonation of the amino group, but the prediction of pKa values (see below) suggests for all amines a degree of protonation >99%. This detrimental effect of methylation on the activity can be explained by an increase of steric hindrance, which is better tolerated on α4β2 rather than on α7 receptors. However, the presence of more than one NH\(^+\) moiety can give additional interactions. In fact, while testing protonated secondary amines, Post et al found evidence for a double involvement of the ammonium group, which established NH\(^+\)⋯π interactions not only with the tryptophan residue in loop B but also with a tyrosine residue in loop C.\(^{40}\) These authors suggested that a smaller cation head could allow for stronger interactions with loop C in the binding site, an hypothesis that could explain also the results of this study.

The insertion of a 6-Cl atom on the pyridine ring increased the affinity for both α4β2* and α7* subtypes, even if the increment was small. The highest increase was found for the *exo* primary amine 2b on both α4β2* (Ki\(_{1b}/Ki\(_{2b}\) = 6) and α7* (Ki\(_{1b}/Ki\(_{2b}\) >4). The small increase in affinity
slightly enhanced selectivity (compare 2b-1b, 4a-3a, 6a-5a and 6b-5b), with the exception of primary amine 2a: the Ki_{α7}/Ki_{α4β2} ratio for this compound was 8, while that of the unsubstituted compound 1a was 22.

### Table 1: Binding affinity of compounds 1-6 on α4β2* and α7* receptors of rat brain, and functional activity of compounds 1a, 2a, 3a and 6a.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>N =</th>
<th>X</th>
<th>R1</th>
<th>R2</th>
<th>α4β2* K_i (nM)</th>
<th>α7* K_i (nM)</th>
<th>K_i (α7)/K_i (α4β2)</th>
<th>ha7c EC50 (μM)</th>
<th>ra7d EC50 (μM)</th>
<th>ha3β2 EC50 (μM)</th>
<th>SH-SY5Y cells EC50 (μM)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>2.11 ± 0.18</td>
<td>46.0 ± 4.0</td>
<td>22</td>
<td>0.048 ± 0.013</td>
<td>5.98 ± 1.50</td>
<td>6.32 ± 1.07</td>
<td>1.92 ± 0.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1b</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>166 ± 14</td>
<td>&gt;1000</td>
<td>6</td>
<td>&gt;0.006</td>
<td>0.30</td>
<td>0.10</td>
<td>±0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2a</td>
<td>Cl</td>
<td>H</td>
<td>H</td>
<td>1.31 ± 0.19</td>
<td>10.53 ± 1.12</td>
<td>8</td>
<td>0.024 ± 0.006</td>
<td>2.71 ± 0.30</td>
<td>0.43</td>
<td>0.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2b</td>
<td>Cl</td>
<td>H</td>
<td>H</td>
<td>28 ± 2</td>
<td>227 ± 24</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3a</td>
<td>H</td>
<td>H</td>
<td>CH₃</td>
<td>10.22 ± 1.09</td>
<td>352 ± 32</td>
<td>34</td>
<td>2.29 ± 0.94</td>
<td>&gt;10</td>
<td>65.53 ± 5.74</td>
<td>N.d.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3b</td>
<td>H</td>
<td>H</td>
<td>CH₃</td>
<td>206 ± 18</td>
<td>&gt;1000</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4a</td>
<td>Cl</td>
<td>H</td>
<td>CH₃</td>
<td>3.12 ± 0.27</td>
<td>116 ± 12</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5a</td>
<td>H</td>
<td>CH₃</td>
<td>CH₃</td>
<td>59 ± 6</td>
<td>&gt;1000</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5b</td>
<td>H</td>
<td>CH₃</td>
<td>CH₃</td>
<td>554 ± 49</td>
<td>&gt;1000</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6a</td>
<td>Cl</td>
<td>CH₃</td>
<td>CH₃</td>
<td>43 ± 4</td>
<td>&gt;1000</td>
<td>23</td>
<td>6.45 ± 0.41</td>
<td>&gt;10</td>
<td>2.86 ± 0.17</td>
<td>N.d.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6b</td>
<td>Cl</td>
<td>CH₃</td>
<td>CH₃</td>
<td>294 ± 28</td>
<td>&gt;1000</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nicotine</td>
<td>2.31 ± 0.19</td>
<td>-</td>
<td>-</td>
<td>4.71 ± 1.44</td>
<td>-</td>
<td>22.47 ± 3.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nicotine: EC50 = 2.31 ± 0.19 μM.
<table>
<thead>
<tr>
<th>Methyllycaconitine</th>
<th>1.42±0.17</th>
</tr>
</thead>
</table>

* Displacement of [³H]-cytisine from rat cerebral cortex; $K_i$ values are expressed as mean ±SEM (n = 4 independent experiments).  
* Displacement of [³H]-MLA from rat midbrain; $K_i$ values are expressed as mean ±SEM (n = 4 independent experiment). Square brackets: % inhibition of [³H]-MLA binding at 1 µM.  
* Increase in intracellular [Ca²⁺] on Neuro2a cells expressing hα7 receptor, in the presence of PNU 120596 (10 µM).  
* Electrophysiology on *Xenopus* oocytes, expressing rat α7 nAChR.  
* Electrophysiology on *Xenopus* oocytes, expressing human α3β2 nAChR  
* Increase in intracellular [Ca²⁺] on SH-SY5Y cells.  
* From ref.41. N.d: not determined.

**Molecular modeling**

The binding ability of the synthesized compounds was analyzed using the X-ray structure of the human α4β2 nicotinic receptor, by means of docking simulations. Compounds 1a and 1b were taken as representatives for all the derivatives reported in Table 1. Since these derivatives have been tested only as racemates, both enantiomers of each compound, i.e. (1R,2R,3S,4S)-1a (1a₁), (1S,2S,3R,4R)-1a (1a₂), (1S,2R,3S,4R)-1b (1b₁) and (1R,2S,3R,4S)-1b (1b₂, see structures in Figure S2, Supporting Information) were submitted to docking simulations. Overall, the docked compounds give rise to poses showing strong analogies with nicotine in the 5KXI crystal structure, and possibly differing in the orientation of the pyridine ring which can be tilted by 180°. The obtained poses and the selected contacts are shown in Figure 2 and Figure S3 (Supporting Information), and distances/angles for each contact are listed in Table 2.
**Figure 2.** Predicted poses for the enantiomers of 1b (A,B) and 1a (D-F) in comparison with nicotine (C) (PDB 5KXI). The nitrogen atom of the pyridine ring is oriented towards α4Y204; poses with the pyridine group tilted by 180° are reported in Figure S3 (Supporting Information). (A): 1b1; (B): 1b2; (C): cognate nicotine in 5KXI; (D): 1a1; (E): 1a2 (pose I); (F): 1a2 (pose II). The molecular surface formed by residues lining the hydrophobic pocket which accommodate the pyridine ring is shown in panel A and represented in grey.

Interestingly, the two enantiomers of compound 1b (1b1 and 1b2, exo configuration) gave a fairly good overlap with nicotine in the crystal structure,31 with the position of the C - NH3⁺ group corresponding to the N – CH₃ of the nicotine. The ammonium function in all poses gives rise to H-bonds with both α4W156 and α4S155 carbonyl oxygens, as well as α4Y100 phenol oxygen. Indeed, α4W156, which is involved in the most important contacts in the nicotine complex, still plays an important role. As a matter of fact, the NH⁺⋯π contact formed by the ligand in the X-ray structure with the indole ring of W156 (Figure 2C) is replaced in each pose of enantiomer 1b1 by a CH⁺⋯π contact (Figure 2A). The 1b2 isomer points its CH bond towards the aromatic ring of Y204 (Figure 2B).

As far as compound 1a (endo configuration) is concerned, different poses can be observed for the two enantiomers. While 1a1 is always placed very similarly to 1b1 (Figure 2A and 2D, Table 2),
for 1a2 two different poses are possible. In one of them (1a2(I), Figure 2E), the ammonium group still matches the position of the nicotine N-methyl group and gives the contacts previously discussed for the exo enantiomers 1b1 and 1b2, namely the α4W156 carbonyl oxygens, the α4Y100 phenol oxygen, and the Y204 aromatic ring. On the contrary, in the other pose (1a2(II), Figure 2F) it does not match this position but it is involved in a very interesting NH+···π contact with the indole ring of α4W156, thus restoring the pivotal π-cation interaction, and giving a possible explanation for the difference in α4β2 affinity between 1a and 1b. Additional considerations could be made regarding the pyridine group. Notably, in all poses found for 1a and 1b, the pyridine group occupies a position mostly similar to that of the same group in the nicotine crystal structure. However, some docking solutions orient the pyridine nitrogen in a similar fashion as the pyridine nitrogen in the nicotine, and, as found in the crystal structure, apparently it doesn’t give any contact (Table 2, Figure 2C and Figure S3C, Supporting Information). On the other hand, the poses of Figure 2 have the pyridine group tilted by 180° and the nitrogen atom located about 3 Å apart from the phenol oxygen of α4Y204.

Therefore, the outcome of computational studies can rationalize the difference in affinity for exo/endo isomerism on the α4β2 subtype, and predicts a bifurcated H-bonds with several oxygen atoms surrounding the cationic primary amine, possibly increasing binding strength.

Table 2. Selected contacts for the pose obtained from the MM calculations

<table>
<thead>
<tr>
<th></th>
<th>N(py)−O</th>
<th>NH+−O</th>
<th>NH+−O=C</th>
<th>NH+−π (centroid)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>d(Å)</td>
<td>d(Å)/angle DH-A(°)</td>
<td>d(Å)/angle(°)</td>
<td>d(Å)</td>
</tr>
<tr>
<td>α4Y204</td>
<td>α4Y100</td>
<td>α4W156</td>
<td>α4S155</td>
<td>α4W156</td>
</tr>
<tr>
<td>1a1</td>
<td>-</td>
<td>2.2/122</td>
<td>2.3/137</td>
<td>2.9/128</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>2.1/130</td>
<td>2.4/131</td>
<td>2.9/128</td>
</tr>
<tr>
<td>1b1</td>
<td>-</td>
<td>2.2/155</td>
<td>2.3/145</td>
<td>3.1/131</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>2.2/153</td>
<td>2.2/147</td>
<td>3.1/132</td>
</tr>
</tbody>
</table>
The calculated physicochemical properties of the compounds are reported in Table 3. Ligand efficiency (LE) has been computed by the equation of Hopkins,\textsuperscript{42} considering the binding affinity (Ki) for \(\alpha_4\beta_2^*\) and \(\alpha_7^*\); it gives information on how efficiently a compound occupies the binding site. As reported in Table 3, all the new derivatives possess LE values in the range 0.53-0.85 Kcal/mol for the \(\alpha_4\beta_2^*\) and 0.59-0.73 Kcal/mol for the \(\alpha_7^*\) subtype. On the latter, LE was calculated only for compounds showing a Ki value. These values are higher than the mean value (0.45) calculated for oral drugs\textsuperscript{43}

A series of physicochemical properties involved in the CNS penetration were also calculated, such as molecular weight (MW), polar surface area (PSA), basicity on the aliphatic (pKa1) and aromatic (pKa2) nitrogen atoms, and lipophilicity (clogP). All derivatives have a MW<270 Da and PSA< 40 Å². ClogP is in the range 1.7-3.2; however, according to Ghose\textsuperscript{44} only compounds 2a, 2b, 4a, 5a, 5b, 6a and 6b have lipophylicity values predictive of a good blood-brain barrier penetration (suggested range: 2.1-4-4). The logBB evaluation, as calculated by Clark\textsuperscript{45} combining the two variables PSA and clogP, predicts that primary amines (logBB< 0) may have a medium distribution to the brain, while compounds as 6a/6b with logBB >0.3 should readily cross the blood-brain barrier.\textsuperscript{46}

**Table 3. Calculated physicochemical properties of compounds 1-6**
<table>
<thead>
<tr>
<th>N</th>
<th>LE $\alpha_4\beta_2^*$ [Kcal/mol]</th>
<th>LE $\alpha_7^*$ [kcal/mol]</th>
<th>MW [Da]</th>
<th>clogP</th>
<th>PSA [Å$^2$]</th>
<th>logBB</th>
<th>pKa1/pKa2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>0.85</td>
<td>0.72</td>
<td>188.13</td>
<td>1.703</td>
<td>38.91</td>
<td>-0.178</td>
<td>10.03/3.74</td>
</tr>
<tr>
<td>1b</td>
<td>0.66</td>
<td>-</td>
<td>188.13</td>
<td>1.703</td>
<td>38.91</td>
<td>-0.178</td>
<td>10.03/3.74</td>
</tr>
<tr>
<td>2a</td>
<td>0.81</td>
<td>0.73</td>
<td>222.09</td>
<td>2.500</td>
<td>38.91</td>
<td>-0.056</td>
<td>10.03/-0.30</td>
</tr>
<tr>
<td>2b</td>
<td>0.69</td>
<td>0.60</td>
<td>222.09</td>
<td>2.500</td>
<td>38.91</td>
<td>-0.056</td>
<td>10.03/-0.30</td>
</tr>
<tr>
<td>3a</td>
<td>0.73</td>
<td>0.59</td>
<td>202.14</td>
<td>1.849</td>
<td>24.92</td>
<td>0.051</td>
<td>10.32/3.54</td>
</tr>
<tr>
<td>3b</td>
<td>0.61</td>
<td>-</td>
<td>202.14</td>
<td>1.849</td>
<td>24.92</td>
<td>0.051</td>
<td>10.32/3.54</td>
</tr>
<tr>
<td>4a</td>
<td>0.73</td>
<td>0.59</td>
<td>236.10</td>
<td>2.646</td>
<td>24.92</td>
<td>0.172</td>
<td>10.29/-0.50</td>
</tr>
<tr>
<td>5a</td>
<td>0.62</td>
<td>-</td>
<td>216.16</td>
<td>2.385</td>
<td>16.13</td>
<td>0.262</td>
<td>9.81/4.17</td>
</tr>
<tr>
<td>5b</td>
<td>0.53</td>
<td>-</td>
<td>216.16</td>
<td>2.385</td>
<td>16.13</td>
<td>0.262</td>
<td>9.81/4.17</td>
</tr>
<tr>
<td>6a</td>
<td>0.59</td>
<td>-</td>
<td>250.12</td>
<td>3.182</td>
<td>16.13</td>
<td>0.383</td>
<td>9.77/0.13</td>
</tr>
<tr>
<td>6b</td>
<td>0.53</td>
<td>-</td>
<td>250.12</td>
<td>3.182</td>
<td>16.13</td>
<td>0.383</td>
<td>9.77/0.13</td>
</tr>
</tbody>
</table>

LE: Ligand binding efficacy as reported by Hopkins.\[^{45}\] LE = ΔG/NHEA = -RTlnKi/NHEA = 1.372[-log K_i(mol)]/NHEA where NHEA is the number of non-hydrogen atoms. MW molecular weight and clogP were calculated from Chembiodraw Ultra 14.0. PSA Polar Surface Area and pKa1/pKa2 were calculated at [www.chemicalize.org](http://www.chemicalize.org). logBB was calculated from Clark's equation:\[^{45}\] logBB = -0.0148 PSA + 0.152 clogP + 0.139.

*Functional studies on α4β2 receptor*
Figure 3. A) Representative nicotine (Nic)-evoked current traces mediated by human α4β2 nAChR in the presence of 50 μM of 1a, 2a, 3a or 6a. B) Bar graph for 1a, 2a, 3a and 6a (50 μM) inhibition of nicotine (20 μM)-evoked currents mediated by human α4β2 nAChR. Data are presented as mean ± SEM, n = 4 – 5. One-way ANOVA with Tukey’s HSD test, black asterisks denote significant difference (p < 0.05) between normalized nicotine-evoked current in the presence of 1a, 2a, 3a or 6a and normalized nicotine-evoked current in the absence of compounds, p = 0.00000146

In order to measure the functional properties of the new ligands, some molecules (1a, 2a, 3a and 6a) were chosen for further tests. Compound 2a was selected because in the binding tests it showed the highest affinity on both subtypes, while 1a, 3a and 6a were chosen for their selectivity ratios
(Table 1). Due to low availability, no exo isomer was selected. These compounds were tested on human α4β2 receptors expressed in Xenopus laevis oocytes. Two-electrode voltage clamp was used to determine their mode of action. No direct activation of human α4β2 was detected upon application of the compounds (data not shown). Application of 20 μM nicotine after 5 min incubation with the tested compounds resulted in a decrease of agonist-evoked current, revealing their antagonistic properties (Fig. 3). The most effective compounds were primary amines 1a and 2a, in accord with binding data (Table 1): a 50 μM concentration of these compounds was able to block 91% and 81%, respectively, of nicotine-evoked currents. Compounds 3a and 6a demonstrated a lower inhibitory activity on α4β2 nAChR: they were able to block 53% and 69% of nicotine-evoked currents, respectively.

**Functional studies on α7 receptors**

**Figure 4** Functional activity of compounds 1a, 2a, 3a and 6a on α7 nAChR. A) Calcium rise of 1a (open red squares), 2a (open black circles), 3a (open green triangles) or 6a (open blue triangles) on human α7 nAChR expressed in Neuro2 cells. Peak amplitudes of compound-evoked currents were normalized to current produced by acetylcholine (100 μM). The cells were preincubated with 10 μM PNU120596, a positive allosteric modulator of α7 nAChR, for 20 minutes before agonist application. B) Agonist activity of 1a (open red squares), 2a (open black circles), 3a (open green
triangles), and 6a (open blue triangles), (0.025, 0.25, 2.5, 25, 250 μM) on rat α7 nAChR expressed in Xenopus oocytes. Peak amplitudes of compound-evoked currents were normalized to acetylcholine (100 μM)-evoked peak current amplitude (grey dash line). Data are presented as mean ± SEM, n = 3. EC_{50} values are reported in Table 1.

The activity of compounds 1a, 2a, 3a and 6a was then examined on the human α7 nAChR heterologously expressed in the neuroblastoma Neuro2a cell line, where the agonist-induced increase in intracellular Ca^{2+} concentration ([Ca^{2+}]_{i}) is registered in the presence of PNU120596 (10 μM), a positive allosteric modulator (PAM). Nicotine was taken as positive control (Fig. S4, Supporting Information). As shown in Fig. 4A, the tested compounds behaved as agonists: receptor activation, amplified by PAM co-application, produced a [Ca^{2+}]_{i} rise, with maximal activity similar to that elicited by 100 μM ACh. Under these conditions the potency of the tested compounds was in the nanomolar (1a and 2a) and micromolar (3a and 6a) range (Table 1).

The agonistic properties of the compounds were further confirmed in electrophysiological assay on rat α7 receptors expressed in Xenopus laevis oocytes (Fig. 4B). In this test, performed in the absence of PNU120596, compounds 1a and 2a were full agonists, showing potency in the micromolar range (Table 1) and high efficacy: as a matter of fact, 1a and 2a were able to elicit a current three-times higher than that induced by 100 μM ACh (Fig. 4B). Compounds 3a and 6a were confirmed to be less potent also under these conditions.

Functional studies on α3β2 receptor

The agonist properties of the compounds were further tested in Xenopus oocytes, expressing human α3β2 nAChR (Fig. 5). In two-electrode voltage clamp experiments, all compounds were able to activate the receptor, although with different efficacy. Compound 2a was the most potent (EC_{50} 0.43 μM) and behaved as full agonist, with maximal activity about 160% with respect to
nicotine at a rather high concentration, 50 μM.\textsuperscript{51} On the contrary, 1a was a partial agonist showing maximal activity about 70% with respect to nicotine, while 3a and 6a activated the α3β2 nAChR only marginally.

![Graph showing agonist activity of compounds](image)

**Figure 5.** Agonist activity of 1a (open red squares), 2a (open black circles), 3a (open green triangles), and 6a (open blue triangles) on human α3β2 nAChR expressed in Xenopus oocytes. Peak amplitudes of compound-evoked currents were normalized to nicotine (50 μM)-evoked peak current amplitude (grey dash line). Data are presented as mean of three different oocytes ± SEM. EC\textsubscript{50} values are reported in Table 1.

**Functional studies on nicotinic receptors in SH-SY5Y cells**

The pronounced agonistic activity of compounds 1a and 2a on heterologously expressed α7 and α3β2 nAChR encouraged us to check their ability to activate nicotinic receptors in human neuroblastoma SH-SY5Y cell line. This cell line endogenously expresses the α3, α5, α7, β2 and β4 subunits; according to literature data, homopentameric α7 and heteropentameric α3β2, α3α5β2, α3β2β4, α3α5β2β4, α3β4 and α3α5β4 can be present.\textsuperscript{51} In calcium imaging experiments compounds 1a and 2a behaved as full agonists (Fig. 6), being able to produce a [Ca\textsuperscript{2+}]\textsubscript{i} rise, with EC\textsubscript{50} 1.92±0.66 μM and 0.22±0.04 μM, respectively, while nicotine EC\textsubscript{50} was several times higher.
(22.47±3.06 μM). The chloro derivative 2a was about 8 times more potent than the unsubstituted analogue 1a. No increase of [Ca²⁺]ᵢ was observed after application of 3a and 6a.

**Figure 6.** Agonist activity of 1a (open red squares), 2a (open black circles), and nicotine (open yellow triangles) on nicotinic receptors endogenously expressed in SH-SY5Y cells. Peak amplitudes of compound-evoked responses were normalized to response amplitude produced by nicotine (100 μM). Data are presented as mean of three independent experiments ± SEM. Each experiment includes 5-6 fluorescence measurements of one cell population (>10000 cells).

**Discussion**

In this work we report a new series of rigid nicotinic receptor ligands, in which the two pharmacophoric groups, the pyridyl ring and the basic amine, are separated by a bulky bicyclic spacer. The compounds represent rigid analogues of nicotine, the most potent being primary amines. It can be noticed that some primary amines have been described as high affinity α4β2 ligands, only for few of them the interaction with the α7 subtype has been measured and found negligible. The *endo* primary amines reported here thus represent new chemotypes for the α7 and α3* subtypes.
The tested compounds have a mixed pharmacological profile, being antagonists at the α4β2 receptor (Fig. 3) and agonists on human and rat α7 receptors. Agonist activity towards the α7 subtype was detected in calcium-imaging experiments on Neuro2a cell line (Fig. 4) in the presence of the positive allosteric modulator PNU 120596, and confirmed also in two-electrode voltage clamp studies on the rat α7 receptors expressed in Xenopus laevis oocytes. It must be highlighted that the activity on this subtype was also revealed in competition binding experiments on rat brain, as well as by calcium imaging on the human α7 receptor in the presence of the positive allosteric modulator PNU 120596. This is important, because nicotinic receptors of the same subtype may greatly differ depending on the receptor environment; for example, the natural product 6-bromohypaphorin behaved as an agonist in the presence of PNU 120596 with the α7 receptor heterologously expressed in the Neuro2a cell line, but did not reveal agonistic properties on the chicken α7/GlyR chimera expressed in Xenopus oocytes. Another factor may be the receptor species specificity: for example, α-conotoxin Rg1A was considered as potential analgesic but it was found that its affinity for the human α9α10 receptor is about 100-lower than for the rat receptor.

Of special interest is the activity of compounds 1a and 2a against α3β2 nAChR detected in electrophysiology experiments (Fig. 5). The exact role of this subtype in the CNS is not completely understood: in rodents this subtype has been found located in specific areas of CNS (habenula-interpeduncular way, cerebellum, lateral geniculate nucleus and superior colliculus). Compounds which either potentiate or inhibit their activity are of undoubted value.

Since for a number of our compounds we detected the activities against three subtypes of nAChRs, it was of interest to check their effects on the different cell lines either of normal or malignant cells which contain the respective nAChRs in their “native” environment and may be a better approximation for assessing the suitability of these compounds as potential drugs or at least hints to drugs. We took the human neuroblastoma SH-SY5Y cell line which is known to express several nAChR subunits including α7, α3, β2. Fig. 6 shows that the increase in Ca^{2+} concentration can be induced by nicotine and, no less efficiently, by compounds 1a and 2a. Since without adding
positive allosteric modulator PNU 120596 the α7 nAChR in this line cannot be activated, the increase in Ca\(^{2+}\) concentration can be ascribed to the action on the α3β2 receptor, especially in view of Fig 5, demonstrating ion currents due to activation of this heterologously expressed receptor subtype; however, the involvement of other α3* subtypes cannot be ruled out.

**Conclusions**

In this work we reported a series of endo/exo 3-pyridyl-bicyclo[2.2.1]heptan-2-amines, designed starting from the α4β2-selective ligand PHT. Their affinity was measured by means of binding experiments on the α4β2* and α7* receptors of rat brain. The new compounds displayed nanomolar affinity for the α4β2* subtype; on the α7* receptor the affinity was lower, but some compounds (1a, 2a, 4a) were active in the low-medium nanomolar range. On both receptor subtypes the order of potency was primary > secondary > tertiary amines, the endo series being more active than the exo one.

In electrophysiological studies, several compounds (1a, 2a, 3a and 6a) displayed antagonistic properties on hα4β2 receptors expressed in *Xenopus laevis* oocytes, whereas calcium imaging experiments revealed agonist properties on the human and rat α7 subtypes. Interestingly, electrophysiological experiments for several compounds showed an agonistic activity towards α3β2 nAChR which agrees with their Ca\(^{2+}\) increasing concentration revealed in the neuroblastoma SH-SY5Y cells. Thus, although none of the novel synthesized primary amines possesses a strict selectivity towards one distinct nAChR subtype, still they represent a novel chemotype for several subtypes of neuronal nAChRs which also may be of value. Work is underway to probe in more detail the structure-activity relationships of this class of compounds, including enantioselectivity, in order to improve their potency and selectivity toward the α3* receptor.
Experimental Section

1. Chemistry

Melting points were determined on a Büchi apparatus and are uncorrected. NMR spectra were recorded on a Brucker Avance 400 spectrometer (400 MHz for $^1$H NMR, 100 MHz for $^{13}$C). $^1$H and $^{13}$C NMR spectra were measured at room temperature (25°C) in an appropriate solvent. $^1$H and $^{13}$C chemical shifts are expressed in ppm (δ) referenced to TMS. Spectral data are reported using the following abbreviations: s = singlet, bs= broad singlet, d = doublet, dd = doublet of doublets, t = triplet, app t= apparent triplet, m = multiplet, and coupling constants are reported in Hz, followed by integration. Chromatographic separations were performed on a silica gel column by gravity chromatography (Kieselgel 40, 0.063-0.2000 mm; Merck) or flash chromatography (Kieselgel 40, 0.040-0.063 mm; Merck). Analytical TLC was performed on silica gel (200-300 mesh) GF/UV 254 plates, and the chromatograms were visualized under UV light at 254 nm. Yields are given after purification, unless otherwise stated. The purity of the final compounds was determined by Agilent 1200 liquid chromatography system composed by autosampler, binary pumps, column oven and diode-array detector (LC-DAD) operating in UV range (210-400 nm). The analysis were carried out using a Phenomenex Luna PFP column 100 mm length, 2 mm internal diameter and 3 µm of particle size. The analyte separation were ensured employing as mobile phase 10 mM ammonium acetate solution (phase A) and methanol (phase B) in gradient elution. The time program elution was as follows: initial 5% phase B for 1 min, then increase to 95% phase B in 18 min and kept for 6 min. The analysis performed at constant flow of 0.35 mL min$^{-1}$, temperature of 40°C and injecting 10 µL of a 10 µg mL$^{-1}$ solution of each analyte. The obtained results displayed that all the studied compound show a purity equal or major than 95%. The chromatographic profiles of LC-DAD analysis and corresponding UV spectra were reported in Supporting Information (Figures S6-S8, Supporting Information). High resolution mass spectrometry (HR-MS) analysis were performed with a Thermo Finnigan LTQ Orbitrap mass spectrometer equipped with an
electrospray ionization source (ESI). The analysis were carried out introducing, via syringe pump at 10 µL min⁻¹, the sample solution (1.0 µg mL⁻¹ in mQ water:acetonitrile 50:50), in positive ion mode. These experimental conditions allow the monitoring of protonated molecules of the studied compounds ([M+H]⁺ species), that they were measured with a proper dwell time to achieve 60,000 units of resolution at Full Width at Half Maximum (FWHM). Elemental composition of compounds were calculated on the basis of their measured accurate masses, accepting only results with an attribution error less than 5 ppm and a not integer RDB (double bond/ring equivalents) value, in order to consider only the protonated species. When reactions were performed under anhydrous conditions, the mixtures were maintained under nitrogen and the solvents were purified and dried by standard methods. Compounds were named following IUPAC rules as applied by Reaxys (version 2.19790.2) software. For biological tests, amines were transformed into the corresponding hydrochlorides, which were obtained as white solid, after crystallization from abs. ethanol/anhydrous diethyl ether.

1.1 Procedure A: synthesis of nitrovinyl pyridine (9-10)

Step 1. To a stirring solution of the proper aldehyde (1 equiv) in anhydrous THF (5 mL) under nitrogen, tert-butyl alcohol (2.8 equiv) was added at rt. After cooling at 0°C, potassium tert-butoxide (0.05 equiv) was added. The mixture was stirred at rt under nitrogen for 24 h; then it was quenched with a saturated water solution of NaCl and extracted with CH₂Cl₂. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure to give alcohols 7-8, which were used as such for the following step.

2-Nitro-(pyridin-3-yl)ethan-1-ol (7): from nicotinaldehyde (2g, 0.018 mol). Oil (2.98 g, 98.5% yield). ¹H NMR (400 MHz, CDCl₃) δ 4.53-4.61 (m, 2H, CH₂); 5.50 (dd, J=9.6 Hz, J=3.2 Hz, 1H, CH); 7.33 (t, J=2.8 Hz, 1H, Ar); 7.80 (d, J=8.0 Hz, 1H, Ar); 8.44 (d, J=4.8 Hz, 1H, Ar); 8.50 (d, J=2.0 Hz, 1H, Ar).

1-(6-Chloropyridin-3-yl)-2-nitroethan-1-ol (8): from 6-chloro-nicotinaldehyde (2g, 0.014 mol). Oil, (2.02 g, 71% yield). ¹H NMR (400 MHz, CDCl₃) δ 3.99 (bs, 1H, OH); 4.54-4.60 (m, 2H,
(E)-3-(2-nitrovinyl)pyridine, (9): from 7 (2.98 g, 0.017 mol). Pale-yellow solid, mp 145-146 °C, (1.7 g, 64% yield). $^1$H NMR (400 MHz, CDCl$_3$) δ 7.40 (dd, $J=7.2$ Hz, $J=4.8$ Hz, 1H, Ar); 7.62 (d, $J=13.6$ Hz, 1H, CH=CH); 7.87 (d, $J=7.2$ Hz, 1H, Ar); 8.00 (d, $J=13.6$ Hz, 1H, CH=CH); 8.71 (d, $J=4.8$ Hz, 1H, Ar); 8.79 (s, 1H, Ar).

(E)-2-chloro-5-(2-nitrovinyl)pyridine, (10): from 8 (2.02 g, 0.010 mol). Pale-yellow oil (1.34 g, 73.2% yield). $^1$H NMR (400 MHz, CDCl$_3$) δ 7.44 (d, $J=8.0$ Hz, 1H, H$_4$Ar); 7.60 (d, $J=13.6$ Hz, 1H, CH=CH); 7.82 (d, $J=6.8$ Hz, 1H, H$_3$Ar); 7.96 (d, $J=13.6$ Hz, 1H, CH=CH); 8.57 (s, 1H, H$_6$Ar). $^{13}$C NMR (100 MHz, CDCl$_3$) δ 120.89 (C); 125.13 (CH); 129.01 (C); 134.03 (CH); 137.38 (CH); 138.75 (CH); 150.33 (CH).

1.2 Procedure B: Diels-Alder reaction, formation of bicyclic nucleus

To a stirred solution of (E)-3-(2-nitrovinyl)pyridine or (E)-2-chloro-5-(2-nitrovinyl)pyridine (9-10, 1 equiv), in anhydrous CH$_2$Cl$_2$, cyclopenta-1,3-diene (1 equiv), obtained after thermal decomposition and distillation of commercial dicyclopentadiene dymer, was added. After 72 hours stirring at rt, the solvent and the unreacted dymer were removed under reduced pressure to give the desired compound as a mixture of endo/exo isomers. The following compounds were prepared:

3-(3-nitrobicyclo[2.2.1]hept-5-en-2-yl)pyridine (11a,b): from 9 (1.18 g, 7.87 mmol), cyclopenta-1,3-diene (0.52 g, 7.87 mmol) and CH$_2$Cl$_2$ (8 mL). Orange oil (1.68 g, 99% yield),
mixture of endo/exo isomers (6.4:1). $^1$H NMR (400 MHz, CDCl$_3$) δ 1.59 (d, $J=9.2$ Hz, 1H, $1H_{ax}$ endo); 1.67-1.70 (m, 2H, $1H_{eq}$ endo + $1H_{ax}$ exo); 1.98 (d, $J=9.2$ Hz, $1H_{eq}$ exo); 3.01 (s, 1H, CH, endo); 3.09 (s, 1H, CH, exo); 3.24 (s, 1H, CH, endo); 3.34 (s, 1H, CH, exo); 3.47 (s, 1H, CH, endo); 3.75 (s, 1H, CH, exo); 4.52 (d, $J=3.6$ Hz, 1H, CHNO$_2$, exo); 4.97 (app t, $J=4.0$ Hz, 1H, CHNO$_2$, endo); 5.97 (dd, $J=5.6$ Hz, $J=2.8$ Hz, 1H, CH=CH, endo); 6.05 (dd, $J=5.6$ Hz, $J=2.8$ Hz, 1H, CH=CH, exo); 6.12 (app t, $J=5.6$ Hz, $J=3.2$ Hz, 1H, CH=CH, exo); 6.43 (dd, $J=5.6$ Hz, $J=3.2$ Hz, 1H, CH=CH, endo); 7.05 (dd, $J=8.0$ Hz, $J=4.8$ Hz, 1H, exo); 7.12 (dd, $J=8.0$ Hz, $J=4.8$ Hz, 1H, endo); 7.24 (dd, $J=8.0$ Hz, $J=5.2$ Hz, 1H, exo); 7.35 (d, $J=8.0$ Hz, 1H, exo); 7.52 (d, $J=7.6$ Hz, 1H, endo); 8.32 (s, 1H endo); 8.45 (s, 1H endo); 8.62 (s, 1H, exo).

2-chloro-5-(3-nitrobicyclo[2.2.1]hept-5-en-2-yl)pyridine (12a,b): from 10 (226.5 mg, 1.23 mmol), cyclopenta-1,3-diene (81.24 mg, 1.23 mmol) and CH$_2$Cl$_2$ (6 mL). Oil (288.7 mg, 93.8% yield), mixture of endo /exo isomers (5.3:1). $^1$H NMR (400 MHz, CDCl$_3$) δ 1.78-1.85 (m, 2H, CH$_2$ endo); 1.87 (dd, $J=9.2$ Hz, $J=1.6$ Hz, 1H, $1H_{ax}$ exo); 2.14 (d, $J=9.2$ Hz, 1H, $1H_{eq}$ exo); 3.17 (d, $J=1.6$ Hz, 1H, CH, endo); 3.24 (s, 1H, CH, exo); 3.38 (d, $J=3.6$ Hz, 1H, CH, endo); 3.53 (s, 1H, CH, exo); 3.65 (s, 1H, CH, endo); 3.89 (t, $J=3.6$ Hz, 1H, CH, exo); 4.45 (dd, $J=4.4$ Hz, $J=1.2$ Hz, 1H, CHNO$_2$, exo); 4.91 (app t, $J=8.0$ Hz, $J=4.0$ Hz, 1H, CHNO$_2$, endo); 6.15 (dd, $J=5.6$ Hz, $J=2.8$ Hz, 1H, CH=CH, endo); 6.21 (dd, $J=5.6$ Hz, $J=2.8$ Hz, 1H, CH=CH, exo); 6.29 (app t, $J=5.6$ Hz, $J=3.2$ Hz, 1H, CH=CH, exo); 6.58 (dd, $J=5.6$ Hz, $J=3.6$ Hz, 1H, CH=CH, endo); 7.26 (s, 1H, H$_4$Ar, exo); 7.30 (d, $J=8.4$ Hz, 1H, H$_4$Ar, endo); 7.46 (dd, $J=8.4$ Hz, $J=2.4$ Hz, 1H, H$_3$Ar, exo); 7.63 (dd, $J=8.4$ Hz, $J=2.4$ Hz, 1H, H$_6$Ar, exo); 8.23 (d, $J=2.4$ Hz, 1H, H$_6$Ar, exo); 8.36 (d, $J=2.4$ Hz, 1H H$_6$Ar, endo).

1.3 Procedure C: hydrogenation of double bond

To a stirred solution of the suitable 3-nitrobicyclo[2.2.1]heptene derivative, in absolute EtOH (20 mL), 1.3 g Pd/C (10%) were added and the mixture was hydrogenated at 27 psi for 1 h. Filtration and removal of the solvent gave a residue which was purified by chromatography or used as such for the next step. The following compounds were prepared:
endo 3-(3-nitrobicyclo[2.2.1]heptan-2-yl)pyridine (13a) and exo 3-(3-nitrobicyclo[2.2.1]heptan-2-yl)pyridine (13b): from 11a,b (201 mg, 0.93 mmol), after separation by column chromatography (hexane/AcOEt 1/1).

13a (125.7 mg, 62% yield): \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 1.31-1.38 (m, 1H, H\(_5\)ax); 1.48-1.59 (m, 3H, H\(_5\)eq + H\(_6\)ax + H\(_7\)); 1.67-1.79 (m, 2H H\(_6\)eq + H\(_7\)); 2.53 (d, J=3.3 Hz, 1H, H\(_4\)); 2.95 (s, 1H, H\(_1\)); 3.48 (d, J=2.8 Hz, 1H, H\(_2\)); 4.74 (app t, J=8.2 Hz, J=3.8 Hz, 1H, H\(_3\)); 7.16 (dd, J=7.8 Hz, J=4.8 Hz, 1H, H\(_5\)Ar); 7.48 (d, J=7.9 Hz, 1H, H\(_4\)Ar); 8.38 (d, J=4.2 Hz, 1H, H\(_6\)Ar); 8.45 (s, 1H, H\(_2\)Ar). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 22.25 (C\(_5\)); 29.49 (C\(_6\)); 36.78 (C\(_7\)); 42.53 (C\(_4\)); 42.92 (C\(_1\)); 47.64 (C\(_2\)); 94.16 (C\(_6\)); 148.16 (C\(_6\)); 148.53 (C\(_2\)).

13b (14.8 mg, 7.3% yield): \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 1.21-1.33 (m, 2H, CH\(_2\) exo); 1.38-1.48 (m, 1H, H\(_5\)eq); 1.59 (dd, J=10.5 Hz, J=1.4 Hz, 1H, H\(_7\)); 1.76-1.82 (m, 1H, H\(_6\)eq); 2.00-2.08 (m, 2H, H\(_4\)eq + H\(_5\)eq exo); 2.61 (d, J= 3.6 Hz, 1H, CH\(_2\) exo); 2.61 (d, J= 3.6 Hz, 1H, endo); 2.71 (s, 1H, exo); 2.98 (d, J=4.4 Hz, 1H, exo); 3.06 (s, 1H, endo); 3.56 (d, J= 4.4 Hz, 1H, exo); 4.55 (d, J=5.2 Hz, 1H, CHNO\(_2\), exo); 4.75 (app t, J=4.8 Hz, 1H, CHNO\(_2\), endo); 7.29 (d, J=8.0 Hz, 1H, H\(_4\)Ar, endo); 7.32 (d, J=8.4 Hz, 1H, H\(_4\)Ar, exo); 7.54-7.58 (m, 2H, H\(_1\) exo + 1H endo, H\(_3\)Ar); 8.28 (s, 1H, H\(_6\)Ar, exo); 8.30 (s, 1H, H\(_6\)Ar, endo).

2-chloro-5-(3-nitrobicyclo[2.2.1]heptan-2-yl)pyridine (14a,b): from 12a,b (631.4 mg, 2.52 mmol). Oil (590.0 mg, 92.7% yield), mixture of endo/exo isomers (5.8:1). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 1.21-1.35 (m, 2H, CH\(_2\) exo); 1.41-1.48 (m, 1H, H\(_{ax}\) endo); 1.60 (m, 2H, CH\(_2\), endo); 1.65-1.71 (m, 1H, H\(_{ax}\) exo); 1.77-1.82 (m, 2H, H\(_{eq}\) + H\(_{ax}\) endo, H\(_{ax}\) + H\(_{eq}\) exo); 2.00-2.08 (m, 2H, 1H\(_{eq}\) endo + H\(_{eq}\) exo); 2.61 (d, J= 3.6 Hz, 1H, endo); 2.71 (s, 1H, exo); 2.98 (d, J=4.4 Hz, 1H, exo); 3.06 (s, 1H, endo); 3.56 (d, J= 4.4 Hz, 1H, endo); 3.82 (s, 1H, exo); 4.55 (d, J=5.2 Hz, 1H, CHNO\(_2\), exo); 4.75 (app t, J=4.8 Hz, 1H, CHNO\(_2\), endo); 7.29 (d, J=8.0 Hz, 1H, H\(_4\)Ar, endo); 7.32 (d, J=8.4 Hz, 1H, H\(_4\)Ar, exo); 7.54-7.58 (m, 2H, H\(_1\) exo + 1H endo, H\(_3\)Ar); 8.28 (s, 1H, H\(_6\)Ar, exo); 8.30 (s, 1H, H\(_6\)Ar, endo).
1.4 Procedure D: reduction of nitro group

To a stirring solution of nitro derivative (1 equiv) in abs EtOH (7 mL), SnCl₂ 2H₂O (7 equiv) was added and the mixture was heated under reflux at 80 °C for 3h. After cooling, the solution was made alkaline with K₂CO₃ (saturated solution in water), filtered over celite and extracted with CH₂Cl₂. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure to give a residue that was purified by flash chromatography. The following compounds were prepared:

endo 3-(pyridin-3-yl)bicyclo[2.2.1]heptan-2-amine (1a): from 13a (474.5 mg, 2.17 mmol); eluent: CH₂Cl₂/CH₃OH/NH₃ 90/10/1. Oil (315.0 mg, 77% yield). ¹H NMR (400 MHz, CDCl₃) δ 1.24-1.43 (m, 3H, H₅'ax+ H₆'ax + H₇'); 1.44-1.51 (m, 2H, H₅'eq+ H₆'eq); 1.53-1.65 (m, 1H, H₇'); 1.85 (d, J=5.2 Hz, 1H, H₂'); 2.02 (s, 1H, H₄'); 2.18 (d, J=3.2 Hz, 1H, H₁'); 3.00 (app t, J=8.4 Hz, J=4.4 Hz, 1H, H₃'); 7.00 (dd, J=8.0 Hz, J=5.0 Hz, 1H, H₅Ar); 7.38 (d, J=8.0 Hz, 1H, H₄Ar); 8.20 (d, J=4.4 Hz, 1H, H₆Ar); 8.32 (d, J=1.6 Hz, 1H, H₂Ar). ¹³C NMR (100 MHz, CDCl₃) δ 19.73 (C₇'); 30.97 (C₅'); 36.88 (C₆'); 43.30 (C₁'); 55.21 (C₂'); 62.61 (C₃'); 123.19 (C₅Ar); 133.81 (C₄Ar); 141.12 (C₃Ar); 146.99 (C₆Ar); 148.44 (C₂Ar). ESI-HRMS (m/z) calculated for [M+H]⁺ ion species C₁₂H₁₇N₂= 189.1386, found 189.1383.

1a.2HCl (prepared according to Procedure G): mp 145-146°C.

exo 3-(Pyridin-3-yl)bicyclo[2.2.1]heptan-2-amine (1b): from 13b (210.0 mg, 0.96 mmol); eluent CH₂Cl₂/CH₃OH/NH₃ 90/10/1. Oil (54.3 mg, 30% yield). ¹H NMR (400 MHz, CDCl₃) δ 1.13-1.18 (m, 2H, H₅'eq+ H₇'); 1.23-1.27 (m, 1H, H₇'); 1.39 (d, J=10.0 Hz, 1H, H₆'ax); 1.56-1.61 (m, 1H, H₅'eq); 1.87 (d, J=9.6 Hz, 1H, H₆'eq); 2.13 (d, J=4.4 Hz, 1H, H₂'); 2.44 (bs, 1H, H₄'); 2.76 (bs, 1H, H₁'); 3.06 (d, J=3.6 Hz, 1H, H₃'); 3.30 (bs, 2H, NH); 7.20 (dd, J=8.0 Hz, J=4.8 Hz, 1H, H₅Ar); 7.50 (d, J=7.6 Hz, 1H, H₄Ar); 8.41 (d, J=4.8 Hz, 1H, H₆Ar); 8.46 (s, 1H, H₂Ar). ¹³C NMR (100 MHz, CDCl₃) δ 21.6 (C₇'); 27.07 (C₆'); 36.69 (C₅'); 42.11 (C₄'); 45.63 (C₂'); 55.44 (C₁'); 59.13 (C₃'); 123.07 (C₅Ar); 135.41 (C₄Ar); 136.66 (C₃Ar); 147.31 (C₆Ar); 149.68 (C₂Ar). ESI-HRMS (m/z) calculated for [M+H]⁺ ion species C₁₂H₁₇N₂= 189.1386, found 189.1385.

1b.2HCl (prepared according to Procedure G): mp >260°C.
endo 3-(6-chloropyridin-3-yl)bicyclo[2.2.1]heptan-2-amine (2a) and exo-3-(6-chloropyridin-3-yl)bicyclo[2.2.1]heptan-2-amine (2b): from 14a,b (822.6 mg, 3.26 mmol); after separation by column chromatography eluent: CH$_2$Cl$_2$/CH$_3$OH/NH$_3$ 97/3/0.3. Oils.

endo 2a (194.3 mg, 27.0% yield): $^1$H NMR (400 MHz, CDCl$_3$) $\delta$ 1.35-1.45 (m, 2H, CH$_2$); 1.48-1.53 (m, 1H, CH); 1.63-1.71 (m, 4H, NH$_2$+ 2CH); 1.76-1.83 (m, 1H, CH); 2.03 (app t, $J$=4.4 Hz, $J$=1.2 Hz, 1H, CH); 2.23 (s,1H, CH); 2.29 (d, $J$=3.6 Hz, 1H, CH); 3.16 (app t, $J$=4.4 Hz, $J$=4.0 Hz, 1H, CH); 7.22 (d, $J$=8.0 Hz, 1H, H$_4$Ar); 7.54 (dd, $J$=8.0 Hz, $J$=2.4 Hz, 1H, H$_5$Ar); 8.26 (d, $J$=2.4 Hz, 1H, H$_5$Ar). $^{13}$C NMR (100 MHz, CDCl$_3$) $\delta$ 19.73 (CH$_2$); 31.26 (CH$_2$); 36.87 (CH$_2$); 43.33 (CH); 43.56 (CH); 54.63 (CH); 62.96 (CH); 123.89 (CH); 137.06 (CH); 140.19 (C); 148.20 (CH); 148.85 (C). ESI-HRMS (m/z) calculated for [M+H]$^+$ ion species C$_{12}$H$_{16}$ClN$_2$= 223.0997, found 223.0995.

2a.2HCl (prepared according to Procedure G): mp >260°C.

exo 2b (17.3 mg, 2.4% yield): $^1$H NMR (400 MHz, CDCl$_3$) $\delta$: 1.11-1.18 (m, 2H, CH$_2$); 1.27-1.31 (m, 1H, CH); 1.40 (d, $J$=10.0 Hz, 1H, CH); 1.55-1.61 (m, 1H, CH); 1.62 (s, 2H, NH$_2$); 1.82 (d, $J$=9.6 Hz, 1H, CH); 2.07 (s, 1H, CH); 2.44 (s, 1H, CH); 2.66 (s, 1H, CH); 2.96 (d, $J$=4.0 Hz, 1H, CH); 7.24 (d, $J$=8.4 Hz, 1H, H$_4$Ar); 7.49 (d, $J$=8.4 Hz, 1H, H$_5$Ar); 8.24 (s, 1H, H$_2$Ar). $^{13}$C NMR (100 MHz, CDCl$_3$) $\delta$ 21.57 (CH$_2$); 27.06 (CH$_2$); 36.60 (CH$_2$); 41.91 (CH); 45.89 (CH); 54.93 (CH); 59.71 (CH); 123.66 (CH); 136.03 (C); 137.98 (CH); 148.86 (C); 149.38 (CH). ESI-HRMS (m/z) calculated for [M+H]$^+$ ion species C$_{12}$H$_{16}$ClN$_2$= 223.0997, found 223.0998.

2b.2HCl (prepared according to Procedure G): mp >260°C.

1.5 Procedure E: Amino Monomethylation

To a stirred solution of the suitable primary amine (1 equiv) in anhydrous CH$_2$Cl$_2$ (5mL) cooled at 0°C, anhydrous triethylamine (1,1 equiv) and ethyl chloroformate (1,1 equiv) were added. The mixture was stirred at rt for 24 h under nitrogen, then it was quenched with a saturated solution of Na$_2$CO$_3$ and extracted twice with CH$_2$Cl$_2$. The organic layers were dried over Na$_2$SO$_4$ and
concentrated under reduced pressure to give a residue, which was used as such for the next step. The crude mixture was cooled at 0°C and, under nitrogen, treated with anhydrous THF (5 mL) and LiAlH₄ (2 equiv). After heating under reflux for 4h, and stirring for 12 h at rt the reaction mixture was quenched with H₂O, and NaOH (10% in H₂O) was added; the lithium salts were removed by filtration and the solution was extracted twice with CH₂Cl₂. The organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography with the appropriate eluent. The following compounds were prepared:

**endo N-methyl-3-(pyridin-3-yl)bicyclo[2.2.1]heptan-2-amine (3a):** from 1a (150.0 mg, 0.8 mmol); eluent: CH₂Cl₂/CH₃OH/NH₃ 95/6/0.8. Pale-yellow oil (80.8 mg, 50% yield). ¹H NMR (400 MHz, CDCl₃) δ 1.32-1.39 (m, 3H, H₅'ax + H₆'ax + H₇'); 1.61-1.69 (m, 3H, H₅'eq + H₆'eq + H₇'); 1.88 (bs, 1H, NH); 2.08 (dd, J= 5.3 Hz, J=1.5 Hz, 1H, H₂'); 2.21 (d, J=3.8 Hz, 1H, H₁'); 2.27 (s, 3H, CH₃N); 2.41 (s, 1H, H₂'); 2.98-3.00 (m, 1H, H₃'); 7.16 (dd, J=7.9 Hz, J=4.8 Hz, 1H, H₅Ar); 7.54 (d, J=7.9 Hz, 1H, H₄Ar); 8.36 (dd, J= 4.8 Hz, J=1.5 Hz, 1H, H₆Ar); 8.48 (d, J=2.2 Hz, 1H, H₂Ar). ¹³C NMR (100 MHz, CDCl₃) δ 20.01 (CH₂); 31.26 (CH₂); 35.28 (CH₃); 36.23 (CH₂); 39.37 (C₄'); 43.52 (C₁'); 53.73 (C₂'); 70.20 (C₃'); 123.29 (C₅Ar); 134.24 (C₄Ar); 141.45 (C₃Ar); 147.23 (C₆Ar); 148.90 (C₂Ar). ESI-HRMS (m/z) calculated for [M+H]⁺ ion species C₁₃H₁₉N₂= 203.1543, found 203.1547.

**3a.2HCl** (prepared according to Procedure G): low melting solid.

**exo N-methyl-3-(pyridin-3-yl)bicyclo[2.2.1]heptan-2-amine (3b):** from 1b (54.0 mg, 0.28 mmol); eluent: CH₂Cl₂/CH₃OH/NH₃ 90/10/1. Oil (11.6 mg, 20% yield). ¹H NMR (400 MHz, CDCl₃) δ 1.12-1.31 (m, 3H, H₆'ax + 2H₇'); 1.42-1.45 (m, 1H, CH/H Ax); 1.65-1.69 (m, 1H, CH/H-Eq); 2.01 (d, J=8.8 Hz, 1H, CH/H-Eq); 2.40 (s, 3H, CH₃N); 2.44 (s, 1H, H₄'); 2.48 (d, J=4.4 Hz, 1H, H₁'); 2.91 (d, J=4.4 Hz, 1H, H₃'); 3.00 (s, 1H, H₂'); 7.21-7.24 (m, 1H, H₅Ar); 7.50 (d, J=8.0 Hz, 1H, H₄Ar); 8.45 (d, J=4.8 Hz, 1H, H₆Ar); 8.47 (s, 1H, H₂Ar). ¹³C NMR (100 MHz, CDCl₃) δ 21.90 (C₇'); 27.15 (CH₂); 33.11 (CH₃N); 37.42 (CH₂); 41.21 (CH); 42.85 (CH); 52.36 (C₂'); 66.76 (C₃');
123.23 (C₅Ar); 135.31 (C₄Ar); 136.23 (C₃Ar); 147.74 (C₆Ar); 149.55 (C₂Ar). ESI-HRMS (m/z) calculated for [M+H]⁺ ion species C₁₁H₁⁹N₂= 203.1543, found 203.1544.

3b.2HCl (prepared according to Procedure G): low melting solid.

endo N-methyl-3-(6-chloropyridin-3-yl)bicyclo[2.2.1]heptan-2-amine (4a): from 2a (30.3 mg, 0.14 mmol); eluent: CH₂Cl₂/CH₃OH/NH₃ 95/5/0.5. Oil (8 mg, 24.8% yield). ¹H NMR (400 MHz, CDCl₃) δ 1.37-1.46 (m, 3H, H₅ax+ H₆ax+H₇ax); 1.63-1.75 (m, 3H, H₅eq+ H₆eq+H₇eq) 1.78 (bs, 1H, NH); 2.14-2.16 (d, J= 8.3 Hz, 1H, CH); 2.23 (s, 1H, CH); 2.31 (s, 3H, CH₃); 2.46 (s, 1H, CH); 2.95 (s, 1H, CH); 7.24 (d, J=6.7 Hz, 1H, H₄Ar); 7.56 (dd, J=8.2 Hz, J=2.2 Hz, 1H, H₅Ar); 8.28 (s, 1H, H₂Ar). ¹³C NMR (100 MHz, CDCl₃) δ 19.94 (CH₂); 31.20 (CH₂); 35.27 (CH₃); 36.21 (CH₂); 39.38 (CH); 43.69 (CH); 53.05 (CH); 70.43 (CH); 123.86 (CHAr); 137.29 (CHAr); 141.45 (CAr); 148.45 (CAr); 148.85 (CAr). ESI-HRMS (m/z) calculated for [M+H]⁺ ion species C₁₁H₁₈ClN₂= 237.1153, found 237.1154.

4a.2HCl (prepared according to Procedure G): low melting solid.

1.6 Procedure F: transformation of primary amines into N,N-dimethyl derivatives

To a stirring solution of the suitable primary amine (1 equiv) in EtOH 96% (4 mL), HCOOH (17 equiv) and CH₂O at 40% (5 equiv) were added and the solution was refluxed for 4h at 80°C. Then, the reaction mixture was alkalized with a saturated solution of NaHCO₃ and was extracted with CH₂Cl₂. The organic layers were dried over Na₂SO₄ and concentrated under reduced pressure to give the desired derivative, which usually did not require further purification. The following compounds were prepared:

endo N,N-dimethyl-3-(pyridin-3-yl)bicyclo[2.2.1]heptan-2-amine (5a): from 1a (160.0 mg, 0.85 mmol). Pale-yellow oil (164.1 mg, 89.3% yield). ¹H NMR (400 MHz, CDCl₃) δ 1.24-1.27 (dd, J=9.2 Hz, J=1.2 Hz, 1H, H₆ax); 1.37-1.44 (m, 1H, H₇); 1.47-1.53 (m, 1H, H₅ax); 1.57-1.62 (m, 1H, H₅eq); 1.71 (d, J= 10.4 Hz, 1H, H₆eq ); 1.81-1.88 (m, 1H, H₇); 2.04 (d, J=3.2 Hz, 1H, H₂); 2.08 (s, 6H, 2CH₃); 2.37 (d, J=3.6 Hz, 1H, H₁); 2.45-2.49 (m, 2H, H₃ + H₄); 7.19 (dd, J=8.0 Hz,
$J$ = 4.8 Hz, 1H, C$_5$Ar); 7.58 (d, $J$ = 8.0 Hz, 1H, C$_4$Ar); 8.40 (d, $J$ = 4.4 Hz, 1H, C$_6$Ar); 8.53 (s, 1H, C$_2$Ar). $^{13}$C NMR (100 MHz, CDCl$_3$) $\delta$ 21.07 (CH$_2$); 31.23 (CH$_2$); 36.34 (CH$_2$); 40.22 (C$_3$'); 45.20 (CH$_3$); 46.75 (C$_2$'); 53.16 (CH-N C$_1$'); 75.29 (C$_4$'); 123.17 (C$_5$Ar); 134.64 (C$_4$Ar); 141.82 (C$_3$Ar); 148.07 (C$_6$Ar); 150.03 (C$_2$Ar). ESI-HRMS (m/z) calculated for [M+H]$^+$ ion species C$_{14}$H$_{21}$N$_2$ = 217.1699, found 217.1702.

5a.2HCl (prepared according to Procedure G): mp 204-205$^\circ$C

exo $N,N$-dimethyl-3-(pyridin-3-yl)bicyclo[2.2.1]heptan-2-amine (5b): from 1b (27.0 mg, 0.14 mmol). Oil (28.7 mg, 92.5% yield). $^1$H NMR (400 MHz, CDCl$_3$) $\delta$ 1.13-1.24 (m, 3H, H$_{6'ax}$ + 2H$_{7'}$); 1.36 (d, $J$ = 9.6 Hz, 1H, H$_{5'ax}$); 1.62-1.67 (m, 1H, H$_{6'eq}$); 1.90 (d, $J$ = 9.2 Hz, 1H, H$_{5'eq}$); 2.14 (s, 6H, 2CH$_3$); 2.21 (d, $J$ = 4.4 Hz, 1H, H$_2$'); 2.33 (s, 1H, H$_1'$); 2.49 (d, $J$ = 4.4 Hz, 1H, H$_4$'); 2.95 (d, $J$ = 4.0 Hz, 1H, H$_3$'); 7.21 (dd, $J$ = 7.8 Hz, $J$ = 4.8 Hz, 1H, C$_5$Ar); 7.52 (d, $J$ = 7.8 Hz, 1H, C$_4$Ar); 8.42 (d, $J$ = 4.6 Hz, 1H, C$_6$Ar); 8.50 (s, 1H, C$_2$Ar). $^{13}$C NMR (100 MHz, CDCl$_3$) $\delta$ 22.11 (C$_7'$); 27.70 (C$_6'$); 37.75 (C$_5'$); 39.78 (C$_4'$); 43.62 (C$_1''$); 43.83 (CH$_3$); 52.14 (C$_3'$); 74.04 (C$_3'$); 122.97 (C$_5$Ar); 135.47 (C$_4$Ar); 137.79 (C$_3$Ar); 147.38 (C$_6$Ar); 150.05 (C$_2$Ar). ESI-HRMS (m/z) calculated for [M+H]$^+$ ion species C$_{14}$H$_{21}$N$_2$ = 217.1699, found 217.1696.

5b.2HCl (prepared according to Procedure G): mp 210-211$^\circ$C.

endo $N,N$-dimethyl-3-(6-chloropyridin-3-yl)bicyclo[2.2.1]heptan-2-amine (6a): from 2a (58.0 mg, 0.26 mmol). Oil (56.7 mg, 86% yield). $^1$H NMR (400 MHz, CDCl$_3$) $\delta$ 1.27-1.30 (m, d, 1H, H$_{6'ax}$); 1.40-1.46 (m, 1H, H$_{6'ax}$); 1.48-1.53 (m, 1H, H$_{1eq}$); 1.55-1.59 (m, 1H, H$_{1eq}$); 1.68 (d, $J$ = 10.0 Hz, 1H, 1H$_{ax}$); 1.82-1.90 (m, 1H, H$_{1eq}$); 2.03 (s, 1H, CH); 2.06 (s, 6H, 2CH$_3$); 2.38 (s, 1H, CH); 2.44 (s, 1H, CH); 2.47 (s, 1H, CH); 7.23 (d, $J$ = 8.0 Hz, 1H, H$_4$Ar); 7.56 (d, $J$ = 6.4 Hz, 1H, H$_5$Ar); 8.31 (s, 1H, H$_2$Ar). $^{13}$C NMR (100 MHz, CDCl$_3$) $\delta$ 20.7 (CH$_2$); 31.2 (CH$_2$); 45.8 (CH$_2$); 40.24 (CH); 45.19 (2CH$_3$); 46.70 (CH); 52.48 (CH); 75.52 (CH); 123.73 (CH); 137.62 (CH); 140.82 (C); 148.92 (C); 148.98 (CH). ESI-HRMS (m/z) calculated for [M+H]$^+$ ion species C$_{14}$H$_{20}$ClN$_2$ = 251.1310, found 251.1310.

6a.2HCl (prepared according to Procedure G): mp > 260 $^\circ$C.
exo N,N-dimethyl-3-(6-chloropyridin-3-yl)bicyclo[2.2.1]heptan-2-amine (6b): from 2b (15.0 mg, 0.068 mmol). Oil (15.3 mg, 90% yield). $^1$H NMR (400 MHz, CDCl$_3$) $\delta$ 1.12-1.24 (m, 2H, 1H$_{ax}$ +1H$_{eq}$, CH$_2$); 1.25-1.32 (m, 1H, 1H$_{ax}$); 1.36 (d, $J$=9.9 Hz, 1H, 1H$_{ax}$); 1.62-1.69 (m, 1H, 1H$_{eq}$); 1.88 (d, $J$=9.8 Hz, 1H, 1H$_{eq}$); 2.14 (s, 6H, 2CH$_3$); 2.15 (s, 1H, CH); 2.31 (d, $J$=10.5 Hz, 1H, CH); 2.49-2.51 (m, 1H, CH); 2.96 (s, 1H, CH); 7.25 (d, $J$=8.0 Hz, 1H, H$_4$Ar); 7.49 (d, $J$=8.2 Hz, 1H, H$_5$Ar); 8.27 (s, 1H, H$_2$Ar). $^{13}$C NMR (100 MHz, CDCl$_3$) $\delta$ 22.11 (CH$_2$); 27.70 (CH$_2$); 37.75 (CH$_2$); 39.78 (CH); 43.62 (CH); 43.83 (2CH$_3$); 52.14 (CH); 74.04 (CH); 122.97 (CH); 136.93 (C); 138.46 (CH); 149.05 (C); 149.62 (CH). ESI-HRMS (m/z) calculated for [M+H]$^+$ ion species C$_{14}$H$_{20}$ClN$_2$= 251.1310, found 251.1309.

6b.2HCl (prepared according to Procedure G): mp > 260 °C.

1.7 General procedure for the synthesis of hydrochlorides (procedure G)

To obtain the hydrochloride salt, an excess of acetyl chloride (2 eq for each basic nitrogen atom in the molecule) was added to anhydrous methanol (2-3 mL), then the amine (1 eq) was dissolved in this solution. After stirring for 15 min, the solvent was removed under vacuum and the solid residue was dried under vacuum and recrystallized from absolute ethanol/anhydrous diethyl ether.

2. Radioligand binding Studies

The affinity of the synthesized compounds for the $\alpha$4$\beta$2* receptor was measured on rat cerebral cortex using $[^3]$H-cytisine as radioligand, according to previously published protocol. The affinity of the synthesized compounds for the $\alpha$7* subtype was measured on rat brain (minus cortex, striatum and cerebellum) using $[^3]$H-methyllycaconitine as radioligand, according to literature procedures. All the assays were performed as 4 independent experiments in duplicate. Amines were tested as hydrochlorides.
3. Electrophysiology

Plasmid pcDNA3.1 construct of rat α7 nAChR subunit was linearized with \( XbaI \) (NEB, USA), plasmid pSP64 construct of human α4 nAChR subunit – with \( BamHI \) (NEB, USA), plasmid pT7TS constructs of human nAChR α3 and β2 subunit – with \( XbaI \) (NEB, USA); and plasmid TMEM35-pCMV6-XL5 construct with the chaperone NACHO – with \( XmaI \) (NEB, USA). Linearized plasmid constructs were subjected to in vitro cRNA transcription using the T7 (rat α7 nAChR, human α3 nAChR, human β2 nAChR, and NACHO) or SP6 (human α4 nAChR) mMessage mMachine® transcription kit (AMBION, USA). Stage V-VI *Xenopus laevis* oocytes were defolliculated with 2 mg/mL collagenase Type I (Life Technologies, USA) at room temperature (21-24 °C) for 2 h in Ca2+-free Barth’s solution composed of (in mM) 88 NaCl, 1.1 KCl, 2.4 NaHCO₃, 0.8 MgSO₄ and 15 HEPES-NaOH at pH 7.6. Oocytes were injected with 9.2 ng of cRNAs of human α3 and β2 nAChR subunits (in a ratio 1:1), human α4 and β2 nAChR subunits (in a ratio 1:1), or rat α7 nAChR subunit along with chaperone NACHO (in a ratio 2:1). Oocytes were incubated at 18ºC in regular Barth’s solution composed of (in mM) 88 NaCl, 1.1 KCl, 2.4 NaHCO₃, 0.3 Ca(NO₃)₂, 0.4 CaCl₂, 0.8 MgSO₄ and 15 HEPES-NaOH at pH 7.6, supplemented with 40 μg/mL gentamicin and 100 μg/mL ampicillin for 4-5 days before electrophysiological recordings. Two-electrode voltage clamp recordings were made using a turbo TEC-03X amplifier (Npi electronic, Germany) and Patch master software (HEKA, Germany), at a holding potential of -60 mV. Oocytes were briefly washed with normal frog Ringer’s solution composed of (in mM) 115 NaCl, 2.5 KCl, 1.8 CaCl₂, 10 HEPES at pH 7.2 followed by an agonist application. Washout with normal frog Ringer’s solution was done for 5 min between agonist applications. Oocytes expressing human α4β2 nAChR were pre-incubated with 1a, 2a, 3a, or 6a for 5 min followed by its co-application with nicotine. Peak current amplitudes of agonist-evoked responses were measured before and after pre-incubation of oocytes with 1a, 2a, 3a, or 6a. The ratio between these two measurements was used to assess the activity of compounds on human α4β2 nAChR. Data are presented as mean ± SEM for the indicated number of biological replicates (n). Statistical analysis (One-way ANOVA with Tukey’s HSD test) was
performed using OriginPro 9.0 software (OriginLab Corporation, Northampton, MA, USA). In the test, \( p < 0.05 \) was taken as significant.

4. Calcium imaging

Mouse neuroblastoma Neuro2a cells grown in black 96-well plate in DMEM (Paneco, Russia) supplemented with 10% FBS (ThermoFisher Scientific, USA) were transiently transfected with plasmids coding human \( \alpha_7 \) nAChR (\( \alpha_7 \) nAChR-pCEP4), chaperone NACHO (TMEM35-pCMV6-XL5, OriGene, USA) and a fluorescent calcium sensor Case12 (pCase12-cyto vector, Evrogen, Russia) following lipofectamine transfection protocol (Invitrogen, USA). The intracellular calcium concentration \([\text{Ca}^{2+}]_i\) measurements were performed on mouse neuroblastoma Neuro2a cells transfected with human \( \alpha_7 \) nAChR, using an already reported protocol.26, 41 The procedure of calcium imaging was performed in a buffer containing 140 mM NaCl, 2 mM CaCl\(_2\), 2.8 mM KCl, 4 mM MgCl\(_2\), 20 mM HEPES, 10 mM glucose; pH 7.4. Transfected Neuro2a cells were incubated with \( \alpha_7 \) nAChR positive allosteric modulator PNU120596 (10 mM, Tocris, UK) for 20 min at room temperature before ligand addition.

Human neuroblastoma cells SH-SY5Y grown in DMEM/F12 medium (ThermoFisher Scientific, USA) supplemented with 10% fetal bovine serum (FBS) (ThermoFisher Scientific, USA), were plated at a density of 5000-10000 cells per well in a 96-well black plate (Corning, USA). Cells were grown in a CO\(_2\) incubator for 48-72 h before testing the functional activity of natively expressed nAChRs by calcium imaging. SH-SY5Y cells were loaded with a fluorescent dye Fluo-4, AM (1.824 \( \mu \)M, ThermoFisher Scientific, USA) and a water-soluble probenecid (1.25 mM, ThermoFisher Scientific, USA) according to the manufacturer's protocol.

To test the agonistic properties compounds \( 1a, 2a, 3a \) and \( 6a \) were added immediately before measuring the fluorescence of the calcium sensor. Fluorescence of the calcium sensor was detected by the multimodal microplate reader Hidex Sence (Hidex, Turku, Finland) (ex/em = 485/535 nm) every 2s for three minutes. Responses were measured as peak intensity minus basal fluorescence.
one and were expressed as a percentage of the maximal response obtained to agonist. Data files were analyzed using Hidex Sense software (Hidex, Turku, Finland) and OriginPro 9.0 software (OriginLab, MA, USA).

5. Molecular Modeling

The CSD was scanned through the ConQuest search engine using queries containing of the following elements:

(i) a (potentially cationic) nitrogen (N);
(ii) a hydrogen bond acceptor (N belonging to a heteroaromatic ring or O=C); a generic Qa atom (Qa=C,N) connected to the heteroaromatic nitrogen or to the carbonyl carbon
(iii) a plane defined by the C–N–Qa or C-(C=O)-Qa substructure.
(iv) the distance between potentially cationic nitrogen and the potential H-bond acceptor falling in the range 3.9-6.6
(v) the distance between potentially cationic nitrogen and the plane defined by the C–N–Qa or C-(C=O)-Qa substructure falling in the range 0.7-1.7.

The X-ray structure of the α4β2 receptor in complex with nicotine (pdb code 5KXI) was prepared according to the Protein preparation wizard protocol in Maestro (v.10.5) that consists in the preliminary pre-treatment by adjusting the bond orders, evaluating the ionization states (Epik, v.3.5), adding hydrogen atoms, refining loop region (Prime, v.4.3) and energy minimization (Impact, v.7.0). 3D structures of diastereoisomers of compounds 1-10 were prepared using Maestro, evaluated for their ionization states at pH 7.4 ± 0.5 with Epik. OPLS-2005 force field in Macromodel was used for energy minimization for a maximum number of 2500 conjugate gradient iterations and setting a convergence criterion of 0.05 kcal mol⁻¹ Å⁻¹. All docking computations were performed with the Glide program (v.7.0). Grids for docking were centered in the centroid of the complexed ligand, considering only one binding site, i.e. that one at chain D-E.
interface. The standard precision (SP) mode of the GlideScore function was applied to evaluate the predicted binding poses. The pictures were generated with Maestro.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS publications website http://pubs.acs.org.

Docked orientation of compounds 1a and 1b in the homology model of the α4β2 nicotinic receptor. Chemical structure of the enantiomers of compounds 1a and 1b. Predicted poses for the enantiomers of compound 1b (exo) and 1a (endo) and cognate nicotine in 5KXI. Calcium rise obtained with nicotine on α7 receptors expressed in neuroblastoma Neuro2a cell line. 1H and 13C NMR spectra of some selected endo compounds. Chromatographic profiles of LC-DAD analysis and corresponding UV spectra (PDF).

Molecular formula strings with pharmacological data (CSV).

PDB ID atomic coordinates: Authors will release the atomic coordinates upon article publication.

AUTHOR INFORMATION

Corresponding author

E-mail: dina.manetti@unifi.it

ACKNOWLEDGMENTS

This work was supported by grants from MUR (PRIN 2009, 2009ESXPT2_002), from University of Florence (RICATEN15, RICATEN16) and Russian Foundation for basic Research (RFBR 18-04-00844).

ABBREVIATIONS USED

MLA, [3H]-methyllycaconitine; SH-SY5Y, human neuroblastoma cell line; CSD, Cambridge Structural Database; PHT, pyrido[3,4]homotropane; abs, absolute; SEM, standard error of the mean; logBB, log blood/brain; NHEA, number of non-hydrogen atoms; HSD, Honestly Significant
Difference; ANOVA, analysis of variance; FWHM, full width at half maximum; RDB, double bond/ring equivalents; HEPES, 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid; FBS, fetal bovine serum; DMEM, Dulbecco’s Modified Eagle Medium; SP, standard precision.

REFERENCES


(3) Quik, M.; Wonnacott, S. $\alpha_6\beta2^*$ and $\alpha_4\beta2^*$ nicotinic acetylcholine receptors as drug targets for Parkinson's disease. *Pharmacol. Rev.* **2011**, *63* (4), 938-966.


achieving binding and functional selectivity for the α3β4 nicotinic acetylcholine receptor subtype.


(49) Szabo, A. K.; Pesti, K.; Mike, A.; Vizi, E. S. Mode of action of the positive modulator PNU-120596 on alpha7 nicotinic acetylcholine receptors. *Neuropharmacology* 2014, 81, 42-54.


(57) Kasheverov, I.; Shelukhina, I.; Kudryavtsev, D.; Makarieva, T.; Spirova, E.; Guzii, A.; Stonik, V.; Tsetlin, V. 6-Bromohypaphorine from marine nudibranch mollusk hermissenda

(58) Azam, L.; McIntosh, J. M. Molecular basis for the differential sensitivity of rat and human α9α10 nAChRs to α-conotoxin RgIA. *J. Neurochem.* **2012**, *122* (6), 1137-1144.


(64) *Schrödinger Suite Release 2016-1*, Schrödinger, LLC, New York, NY, 2016, New York, 2016. (a) Maestro v.10.5; (b) Epik, v.3.5; (c) Impact, v.7.0; (d) Prime, v.4.3; (e) Macromodel v.11.1. (f) Glide, v.7.0.
Table of Contents graphic