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Understanding the properties of the conformational landscape of a biomolecule is of capital 
importance to understand its function. It is widely accepted that a statistical ensemble is far more 
representative than a single structure. The experimental data are the only handle on the 
conformational variability that the system is experiencing, but they are either time or ensemble 
averages. Since the available number of conformations largely outnumber the (independent) available 
experimental data, the latter can be equally well reproduced by a variety of ensembles. We have 
proposed the Maximum Occurrence (MaxOcc) approach to provide an upper bound of the statistical 
weight of each conformation. This method is expected to converge towards the true statistical 
weights by increasing the number of independent experimental datasets. In this paper we explore the 
ability of DEER (Double Electron Electron Resonance) data, which report on the distance distribution 
between two spin labels attached to a biomolecule, to restrain the MaxOcc values and its 
complementarity to previously introduced experimental techniques such as NMR and Small-Angle X-
ray Scattering. We here study the case of Ca2+ bound calmodulin (CaM) as a test case.  

Introduction 

The high level of complexity that is achieved in biological systems can be attributed, at least partly, 
to the considerable flexibility of biological macromolecules, such as nucleic acids and proteins. 
These molecules often perform their tasks by reorganizing their 3D structures, and such 
rearrangements can range from very small to very large, collectively defining the conformational 
space of the system under investigation.1-3 Intuitively, the dimensionality of the conformational 
space depends on the number of degrees of freedom that the system can explore. Most often, at 
physiological pressure, temperature, pH, and salinity, a system can experience quite an extensive 
conformational variability, rather than being confined into a single state.4-6 Therefore, a structural 
ensemble, i.e. a statistical ensemble of conformations together with their statistical weights, is 
more representative than a single structure. Pathological alterations of conditions, including 
mutations, may significantly alter the available conformational space.7, 8  
The only handle on the conformational heterogeneity experienced by a biological system is 
through experiment. However, a sample comprises a number of macromolecules of the order of 
the Avogadro’s constant, each occurring in a different state (ensemble average) and undergoing 
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several state transitions during the timeframe of the experiment (time average), with the overall 
result that a single experimental dataset is the outcome of the averaging over a potentially infinite 
number of conformations. Several ensemble reconstruction methods that combine experimental 
data and molecular models have been proposed to recover the conformational ensemble from 
the averaged experimental data.9,10 Ensemble reconstruction is an ill-posed inverse problem: 
infinite different ensembles can reproduce the experimental results equally well. The proposed 
methods to circumvent the problem can be divided into two classes: those determining a large 
ensemble, following the maximum entropy principle, and those determining a minimal set of 
conformations that fit the data, in the spirit of the maximum parsimony principle. We have 
developed the Maximum Occurrence (MaxOcc) approach, where the MaxOcc of a given 
conformation is defined as the highest fraction of time the system can spend in that 
conformation.11-15 This method provides an upper bound of the conformation’s statistical weight 
and converges (decreases) towards the true statistical weight by increasing the number of 
independent experimental restraints. As such the MaxOcc method does not yield a single 
ensemble solution to the problem. MaxOcc can be calculated for any sterically possible 
conformation, without imposing limits on how many conformations are sampled.16 We have 
observed that conformations with large MaxOcc are more frequently sampled in MD 
simulations,17 and we have also found that conformations with high MaxOcc are likely selected by 
sample-and-select methods.18 
As a test case, we have selected calmodulin (CaM), a small two domains protein, which is known 
to experience a sizeable interdomain mobility.19-21 We have previously described its 
conformational heterogeneity through paramagnetic Residual Dipolar Couplings (pRDCs)13 and 
Pseudocontact Shifts (PCSs) derived by NMR measurements,12 and later included Small-Angle X-
ray Scattering22 (SAXS) and Paramagnetic Relaxation Enhancements (PREs) obtained from 
pNMR.23  
In this work, we demonstrate the effect of including multiple distance distributions obtained by 
DEER (Double Electron-Electron Resonance, called also Pulsed ELectron DOuble Resonance 
(PELDOR)) measurements in the MaxOcc approach. The DEER data are recorded as modulation 
traces that depend on distance distributions in the 1.6-8 nm range (and up to 16 nm for deuterated 
proteins).24 They are usually carried out on frozen solutions at low temperatures and between 
pairs of usually identical spin labels that are attached at two different sites of a 
biomacromolecule.25 Nitroxide spin labels are employed most frequently, but paramagnetic metal 
ions such as Cu(II),26, 27 Mn(II) and Gd(III)28, 29 can also be used. In this work we used DEER Gd(III)-
Gd(III) distance measurements, which are best carried out at W-band (∼95 GHz) where the Gd(III) 
EPR signals are intense,30-38 and fit the DEER traces directly, not extracting the distances. Three 
different mutants were used, N53C-T110C, N53C-A103C, and T34C-T117C, where one Gd(III) label 
is situated in the C-terminal domain and the other in the N-terminal domain, specifically designed 
to probe the inter-domain distance distributions. We found that DEER is effective in restricting the 
allowed conformational space for calmodulin. 

Experimental  

 

Graphical representation of the model system. In order to simplify the visualization of several 
conformations within the same figure, each conformation is schematized as follows: the N-
terminal domain, considered fixed in an arbitrary reference frame,16 is represented as a ribbon. 
The C-terminal domain of each conformation is represented as a triad of axes centered in its 
center of mass and color-coded according to its MaxOcc value. The orientation of the triad of axes 
is with respect to a reference position, which is arbitrarily selected. In the reference position the 
triad of axes corresponds to the axes of the PDB file (i.e.: (1,0,0;0,1,0;0,0,1)) if the C-terminal is in 
the extended conformation as in the 1CLL structure.39 The calcium ions are shown as light blue 
spheres and the lanthanide ion replacing the calcium ion to obtain PCSs and RDCs as an orange 
sphere. Fig. 1 shows the representation of a single conformation, with the C-terminal domain 
shown both explicitly as a ribbon and implicitly as a triad of axis.  
 

Experimental data. As experimental restraints we used NMR, SAXS and DEER data.  



The paramagnetic NMR data (PCS and RDC for Tb3+, Tm3+, and Dy3+) have been taken from Bertini 
et al.12 and SAXS data from Bertini et al.,22 where CaM was dissolved in 20 mM MES and 400 mM 
KCl, pH 6.5.  
 

 
Fig. 1 Explanation of the representation of the different conformations: the N-terminal is 
represented as a solid ribbon, the C-terminal is represented both as a transparent ribbon and as 
a triad of axes placed in its center of mass and indicating the domain orientation. The 
paramagnetic metal ion is shown as an orange sphere and the calcium ions as light blue spheres. 
 
The DEER datasets were acquired on samples of the mutants of human calmodulin N53C-T110C, 
N53C-A103C and T34C-T117C, whose expression and purification will be described elsewhere. The 
labeling of the mutants with Gd3+ DOTA-maleimide (DOTA-M) was carried out as described 
earlier.40 The final CaM concentration was 50 𝜇M (in a 20 mM phosphate buffer, pH 6.8) in a 
mixture of D2O/glycerol-d8 (8/2, v:v). DEER traces were recorded on a home-built W-band 
spectrometer operating at 94.9 GHz at 10 K.41,42 The dead-time free 4-pulse DEER sequence, 
(𝜋/2)mw1-τ-(𝜋)mw1-t-τ-(𝜋)mw2-T+τ-t-(𝜋)mw1-T-echo was used. The observed pulse 𝜋/2 and π 
microwave lengths were 15 ns and 30 ns, respectively, the pump pulse 15 ns, τ 350 ns and the 
repetition time 0.8 ms. The value of T varied depending on the experiment. In order to maximize 
the modulation depth, the DEER experiments were carried out by setting the pump pulse 
frequency on the maximum of the Gd3+ spectrum. The detection pulses frequency was 100 MHz 
higher. As an estimate of the uncertainty in each DEER datapoint, for the N53C-T110C and N53C-
A103C datasets we used the standard deviation of the consecutive differences between 60 and 
160 ns. The data for T34C-T117C were obtained as average over three different measurements 
and the uncertainty was in this case taken as the largest difference between the three curves. 
 

Calculations. We made use of a pre-defined pool of conformations over which the experimental 
observables were calculated. For the present work we have used a pool of sterically allowed 
conformations16, 22 obtained by rigidly moving the C-terminal domain with respect to the N-
terminal domain, around the backbone bonds of the residues 78-81 of the linker (identified as 
mobile by NMR relaxation measurements19). For each conformation we predicted and stored the 
values of the experimental observables that would have been measured if the system assumed 
solely this conformation. Paramagnetic NMR data (PCSs and RDCs) arise from the magnetic 
susceptibility anisotropy of terbium(III), dysprosium(III), and thulium(III) ions that were 
substituted for one of the calcium(II) ions in the N-terminal domain. 
PCSs provide information on the coordinates of any given proton in the reference frame provided 
by the magnetic susceptibility anisotropy tensor 𝕏 (hence on the orientation of the C-terminal 
domain and its distance from the N-terminal domain) and are calculated as: 
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where 𝐫(𝐻𝑗𝑀)
𝑖
 is the distance vector between the observed j-th nucleus 𝐻 and the metal ion 𝑀 for 

the i-th conformation.  

RDCs provide information about the orientation of each 𝑁𝐻 pair in the reference frame provided 

by the magnetic susceptibility anisotropy (hence reflecting the orientation of the C-terminal 

domain) and are calculated as: 
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where the 𝐫(𝐻𝑗𝑁𝑗)
𝑖
 is the distance vector between the two coupled nuclei 𝑁𝑗  and 𝐻𝑗, 𝕏 is the 

magnetic susceptibility tensor, and 𝑘𝑅𝐷𝐶  is the constant (which depends on the residual 

alignment, in turn proportional to the square of the field):  

 

𝑘𝑅𝐷𝐶 = −
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where 𝐵0 is the magnetic field and 𝑇 is the absolute temperature. 
SAXS profiles provide information on the overall shape of the molecule and are calculated as:43 
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where 𝐴1𝑖  is the scattering amplitude from the i-th conformation in vacuum, 𝐴2𝑖  from the 
excluded volume by the i-th conformation, and 𝐴3𝑖  from the border layer by the i-th conformation; 
𝛺 represents the solid angle in the reciprocal space, 𝑠𝑗 is each increment in the momentum 
transfer, 𝜌0 and 𝜌𝑏 are the average scattering densities of the solvent and of the hydration shell, 
respectively. 
For predicting the DEER data, we have to explicitly consider the intrinsic mobility of the DOTA-M 
tag. To do so, we have modelled it using X-plor-NIH44,45 as described in reference 46: we have 
generated 100 tag conformations for the N-terminal domain and 100 for the C-terminal domain 
in its reference position. For each pre-determined conformation, we rotated rigidly all the 100 
tags conformations together with the C-terminal domain. Then we calculated the distance 
distribution 𝑝(𝑟) (100 tags in the N-terminal x 100 tags in the C-terminal = 10000 distances) that 
pertains to each individual conformation, excluding all the tags with significant steric clashes. 
For the sake of simplicity, we have assumed an ideal model for the DEER dipolar evolution, 
including the assumption that the dipolar couplings are in the weak coupling limit. With this 
assumption, the predicted distance distribution for the i-th conformer 𝑝(𝑟𝑖𝑘) is transformed into 
the prediction matrix 𝐷𝑖𝑗:47 
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This corresponds to assuming that the modulation depth 𝜆 is 1 (vide infra). 
The application of a more rigorous treatment which takes into account the pseudo-secular terms 
of the dipolar interaction along with the zero-field splitting48 would yield a better description at 
short distances, hence would most likely reduce the MaxOcc values for closed conformations, 
which are already strongly discouraged by the PCSs (see considerations in reference 23); 
therefore, this is not expected to impact substantially on the MaxOcc values.  



As previously mentioned, the determination of the MaxOcc of a single conformation corresponds 
to finding the largest weight that a selected conformer can have and still ensure a good agreement 
with the experimental data:5   
 

argmin
𝐰

[‖ℙ𝐰 − 𝐝‖2
2 + 𝜉1(‖𝐰‖1 − 1)2 − 𝜉2𝑤𝑐] , 𝑠. 𝑡.   𝐰 ≥ 0 (1) 

where ℙ is the predicted data matrix, 𝐰 is the weights vector, 𝐝 is the experimental data vector, 
and the values of the multipliers 𝜉1 and 𝜉2 are adjusted by an L-curve-like approach.49 The 
numerical value of 𝑤𝑐 is the Maximum Occurrence of the c-th conformation out of the entire 
conformational space. In this case MaxOcc is implemented as a Matlab script.  
Since we are combining multiple datasets, we have used literature approaches to select the 
relative weight of each dataset in the least squares problems. For quantifying the agreement for 
paramagnetic NMR data, we have used the 𝑞-factor50 which is defined as: 
 

𝑞 =
‖ℙ𝐰 − 𝐝‖2

‖𝐝‖2
 

where ℙ is the matrix of the predicted data (𝔸 for PCSs and 𝔹 for RDCs), 𝐰 is the weights vector, 
and 𝐝 is the vector of the experimental data (for either PCSs or RDCs). Whereas for SAXS and DEER 
we have used the reduced 𝜒2, defined as:43 
 

𝜒2 =
1

𝑁
‖(𝑐ℙ𝐰 − 𝐝) ⊘ 𝜎‖2
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where 𝑁 is the number of data points, ⊘ is the Hadamard division, 𝑐 is a scaling factor, 𝐰 is the 
weights vector, ℙ and 𝐝 are, respectively, the predicted matrix (𝕀 for SAXS, 𝔻 for DEER) and the 
experimental data vector of the observable of interest, and 𝜎 is the standard deviation of the 
points of the curve. The scaling factor 𝑐 is needed because, while paramagnetic NMR data 
magnitudes are fixed by the magnitude of the magnetic susceptibility anisotropy tensor and thus 
ℙ𝐰 is directly comparable to 𝐝, SAXS and DEER have arbitrary scales. 
For SAXS 𝑐 is calculated as:43 
 

𝑐 =
‖ℙ𝐰2 ∘ 𝐝‖1

‖ℙ𝐰2 ∘ ℙ𝐰2‖1
 

where ℙ and 𝐝 are, respectively, the predicted matrix and the experimental data vector of SAXS, 
and ∘ is the Hadamard product. This formula corresponds to the zero in the first derivative in 𝑐 of 
‖𝑐ℙ𝐰2 − 𝐝‖2. 
In DEER an arbitrary scaling is needed to match the experimental modulation depth. To do so, we 

use the same approach used for SAXS, with the following modification: first we calculate 𝕄 = ℙ −

𝕁 and 𝐦 = 𝐝 − 𝟏 (𝕁 and 𝟏 are, respectively, a matrix and a vector of ones), then the modulation 

depth, is calculated according to:  𝜆 =
‖𝕄𝐰2∘𝐦‖1

‖𝕄𝐰2∘𝕄𝐰2‖1
.  

This ensures a good quality fit (see Fig. 2). 

 

 



 
 
Fig. 2 W-band DEER data after background removal and their best fit (solid line) obtained with 
equation (1), imposing 𝜉2 = 0. 

Results and discussion  

A brief description of the MaxOcc approach and how it is implemented in practice is given in the 
calculations section. We have calculated the MaxOcc values for 1000 calmodulin conformations 
using different combinations of different experimental datasets, as listed in Table 1, and 
summarized the results in Fig. 3-5 and S1-S7. All panels (a) in Fig. 3-5 and S1-S7 show the MaxOcc 
values for the 1000 selected conformations, sorted according to the MaxOcc values calculated 
with dataset A only (MaxOccA). 
 
Table 1 Combinations of datasets used for the calculations. 
 
Dataset Id Fig. 
NMR (3 datasets) = PCS + 
RDC  

A 3 

NMR + SAXS + DEER (3 
datasets) 

B 4 

NMR + DEER C 5,S8 
SAXS D S1 
DEER E S2 
SAXS + DEER F S3 
NMR + SAXS G S4 
NMR + N53C-T110C H S5,S8 
NMR + N53C-A103C I S6 
NMR + T34C-T117C L S7 
NMR + N53C-T110C + N53C-
A103C 

M S8 

 
MaxOcc is defined as the maximum statistical weight that can be associated with any 
conformation and still preserve the agreement with the experimental restraints (see the 
Experimental section). Since this method does not provide the statistical weights themselves but 
only an upper bound, the addition of further restraints is expected to be reflected by a general 
decrease of Maximum Occurrence. Indeed, our results clearly indicate that the larger the number 
and the complementarity of the different experimental restraints, the higher is the decrease of 
the MaxOcc values. Fig. 4 shows that DEER data are extremely effective in differentiating the 
MaxOcc values for different conformers. In particular, our calculations indicate that the mutant 
N53C-A103C (Fig. S6) yields the best discrimination, followed by the N53C-T110C (Fig. S5), then by 
the T34C-T117C (Fig. S7), however it is important to stress that the more mutants are 
simultaneously used, the more the MaxOcc values decrease (Fig. S8). The improved discrimination 
of DEER over SAXS behavior is most likely linked to the fact that, as the tag is not positioned in the 



center of the domain, the DEER information also depends on the orientational degrees of 
freedom. For most of the conformations there is a significant decrease of the MaxOcc value, 
whereas those that have high MaxOccA values are relatively less affected (Fig. 4). This can be 
observed considering, for example, the conformations with MaxOcc values ≥ 25% (396) and 30% 
(131) calculated with only NMR restraints (Table 2). The 396 conformations with MaxOcc values ≥ 
25% become 161 and 68 when either SAXS or DEER data are included and 50 when both SAXS and 
DEER data are added. Analogously, the 131 conformations with MaxOcc values ≥ 30% become 24 
or 18 when either SAXS or DEER data are included and 9 (explicitly represented in Fig. S9) when 
both SAXS and DEER data are added. 
 
Table 2 Number of conformations (out of 1000) with MaxOcc values ≥ 25% and 30%. 
 

Dataset Id MaxOcc≥25
% 

MaxOcc≥30
% 

NMR A 396 131 
NMR + 
SAXS 

G 161 24 

NMR + 
DEER 

C 68 18 

NMR + 
SAXS + 
DEER 

B 50 9 
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Fig. 3 (a) MaxOccA values for 1000 conformations, sorted by ascending value. This order will be 
used for all the other MaxOcc calculations to allow for the comparison between the different 
datasets; (b) representation of the 1000 MaxOccA values of the selected conformations. Each 
conformation is color coded according to the MaxOccA from low (< 5%, blue) to high (> 34%, red) 
MaxOcc values; (c) conformations with MaxOccA ≥ 30%.  
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Fig. 4 (a) MaxOccA, MaxOccG, and MaxOccB values for 1000 conformations, sorted by ascending 
MaxOccA; (b) representation of the 1000 MaxOccB values of the selected conformations (color 
coding as in Fig. 3); (c) conformations with MaxOccA ≥ 30% color-coded according to MaxOccB. 
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Fig. 5 (a) MaxOccC values for 1000 conformations, sorted by ascending MaxOccA; (b) 
representation of the 1000 MaxOccC values of the selected conformations (color coding as in Fig. 
3); (c) conformations with MaxOccA ≥ 30% color-coded according to MaxOccC 



 
One representative conformation is shown in Fig. 6, compared with two X-ray determined 
structures: the extended, dumbbell conformation (1CLL)39 and one CaM-peptide complex closed 
in the canonical orientation (1YR5).51 The conformations that retain the highest MaxOcc values 
are, in general, open, with the C-terminal bent towards the first helix of the N-terminal domain. 
Although open, they do not correspond to the classical elongated, dumbbell-shaped 
conformation, nor to the closed canonical conformations. Furthermore, they do not correspond 
to averages between the two X-ray extremes. 
 
 
 

(a) 

 

 
(b) 

 
 
Fig. 6 Comparison (cross-eye stereo) of the conformation with the highest MaxOcc value (red) 
with two X-ray determined structures (1CLL in violet and 1YR5 in green). The paramagnetic metal 
ion is shown as an orange sphere and the calcium ions as light blue spheres.  
 
 
 

Conclusions 

In conclusion, our results confirm that DEER is highly complementary to NMR and SAXS in better 
defining the conformations that can be sampled for longer times, compatibly with the 
experimental data. As expected, the MaxOcc values are decreased by the addition of further 
experimental dataset, but it is remarkable to observe how the different datasets consistently 
favour a subset of conformations that share common domain arrangements. 
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