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Abstract Microvascular dysfunction can be demonstrated
in most patients with hypertrophic cardiomyopathy (HCM),
both in the hypertrophied and nonhypertrophied myocardial
walls, mostly due to intimal and medial hyperplasia of the
intramural coronary arteries and subsequent lumen reduc-
tion. As a consequence, regional myocardial ischemia may
be triggered by exercise, increased heart rate, or arrhyth-
mias, in areas which are unable to increase myocardial
blood flow. In patients with HCM, microvascular dysfunc-
tion leading to severe myocardial hypoperfusion during
maximal hyperemia represents a strong predictor of

unfavorable outcome, left ventricular remodeling with
progressive wall thinning, left ventricular dysfunction, and
heart failure. Accurate quantitative assessment of micro-
vascular dysfunction and myocardial ischemia is not easily
feasible in clinical practice. Although signs of inducible
myocardial ischemia may be detected by electrocardiogram,
echocardiography, or myocardial scintigraphy, the vasodi-
lator response to dipyridamole by positron emission
tomography is considered the method of choice for the
assessment of maximal regional and global flow. Cardiac
magnetic resonance provides further information, by late
gadolinium enhancement (LGE), which may show areas
where replacement fibrosis has occurred following micro-
vascular ischemia and focal necrosis. LGE areas colocalize
with severe regional microvascular dysfunction, are associ-
ated with increased prevalence of ventricular arrhythmias,
and show more extensive distribution in the late stages of
the disease, when heart failure is the dominant feature. The
present review aims to provide a concise overview of the
available evidence of microvascular dysfunction and ische-
mia eventually leading to disease progression and heart
failure in HCM patients.
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Hypertrophic cardiomyopathy (HCM), the most common
genetically determined heart disease, is characterized by a
wide range of clinical manifestations, from sudden and
unexpected cardiac death to a progressive clinical course
with functional limitation and heart-failure-related compli-
cations such as atrial fibrillation (AF) and stroke, ultimately
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leading to heart-failure-related death [9, 18, 25, 30, 48].
Myocardial ischemia occurring at the microvascular level is
a major determinant of the clinical outcome in HCM
patients and is held responsible for some of the adverse
manifestations of the disease ranging from myocardial
infarction to left ventricular (LV) remodeling, systolic
dysfunction, ventricular arrhythmias, and even sudden
death [2, 3, 33, 42]. However, the assessment of ischemia
in HCM patients is limited in clinical practice and is not yet
incorporated in the HCM management guidelines. This is
an important limitation to the understanding of the disease
pathophysiology and risk assessment in the individual
patient. However, recent advances in imaging technology
now provide a more comprehensive perspective in the
evaluation of the causes and consequences of ischemia at
the myocardial level. Here, we review the existing evidence
for microvascular dysfunction and ischemia and its causes
in HCM, as well as the impact it may have in the clinical
progression to systolic dysfunction and heart failure,
including the “end-stage phase.”

The Substrate: Myocardial Ischemia and Infarction Due
to Small Vessel Disease

In 1976, Bartoloni et al. described a case of acute
myocardial infarction leading to rapidly progressing heart
failure and death in an 8-year-old child with HCM, who
was playing football [2]. Postmortem examination of the
heart revealed massive asymmetrical hypertrophy of the
interventricular septum and evidence of recent extensive
anteroseptal necrosis in the area of a deeply tunneled left
anterior descending coronary artery [3]. At the microscopic
level, disarray of the myocardial fibers, areas of fibrosis,
and marked structural abnormalities of the intramural

coronary arteries were noted. The latter were characterized
by intima-medial thickening, causing deformation and
severe narrowing of the vessel lumen (Fig. 1). The authors
concluded that these vessel abnormalities justified a severe
chronic impairment of myocardial perfusion within the
interventricular septum, potentially exposing the patient to
repetitive ischemia and ultimately to myocardial infarction.
Such observation represents the earliest report describing
myocardial infarction in the context of small vessel disease
and tunneled left anterior descending in HCM. Subsequent-
ly, other postmortem studies on patients who died suddenly
showed frequent and often extensive areas of myocardial
necrosis, in the absence of atherosclerotic coronary artery
disease, associated with all stages of ischemic injury,
including a chronic-phase characterized by postnecrotic
replacement-type fibrosis [26, 33, 3]. Anatomical remodel-
ing of the intramyocardial coronary arterioles, characterized
by thickening of the vessel wall due to medial hypertrophy
and/or intimal hyperplasia, and perimysial and intra-arterial
fibrosis were associated with severely decreased luminal
area in the majority of cases. These features may be
observed both in the hypertrophied and nonhypertrophied
myocardial segments, with considerable regional variation
within the LV [33], and are commonly detected in surgical
specimens obtained in patients undergoing myectomy
(Fig. 2). The genesis of the small vessel abnormalities
observed in patients with HCM, which have not been
consistently reproduced in transgenic models of the disease,
still lacks a definite explanation.

In addition to the intrinsic structural remodeling of the
microcirculation, other potential relevant factors include
reduced capillary density, myocyte disarray, interstitial
fibrosis, and increased oxygen demand of the hypertrophied

Fig. 1 Microvascular remodeling in HCM. Abnormal intramural
coronary artery in a hypertrophied and extensively fibrosed region of
the ventricular septum. From Bartoloni Sant Omer [2]

Fig. 2 Intramural coronary artery with medial hypertrophy and
fibrosis, perimysial fibrosis, and markedly reduced lumen. The
specimen was obtained after extended myectomy performed in an
18-year-old HCM patient with an MYH7 missense mutation (trichro-
mic stain, ×10)
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cardiomyocytes [19–21]. Such abnormalities constitute the
anatomical basis for microvascular dysfunction and repre-
sent the substrate for ischemia in HCM patients. Regional
ischemia may develop when myocardial oxygen demand is
increased, ultimately leading to myocyte death and replace-
ment fibrosis (Fig. 3). In the long term, cardiomyocyte loss
and generation of fibrosis, in association with the primary
genetically determined myocyte functional abnormalities,
may result in disease progression characterized by adverse
LV remodeling, progressive wall thinning, and dysfunction
[32, 39].

Clinical Features

Most HCM patients complain of atypical chest pain or
tightness occurring at rest or during exercise. Typical
angina is rarely reported and should be carefully evaluated.
Coronary arteriography should be considered, in order to
exclude causes of ischemia involving the epicardial
coronary circulation, such as atherosclerotic disease in the
adults, myocardial tunneling, or anomalous origin of
coronary arteries in the young. However, myocardial
hypoperfusion and ischemia may be clinically silent, as
reflected by HCM patients with severe regional hypoperfu-
sion after dipyridamole injection and even after alcohol
injection in the course of septal alcohol ablation procedures
[4, 11, 22]. Occasionally, patients complain of angina
during supraventricular arrhythmias with rapid ventricular
response, and anecdotal reports clearly show the occurrence
of transmural ischemia, with ST segment elevation, during
paroxysmal AF, occasionally leading to ventricular fibrilla-
tion (Fig. 4) [47]. Less frequently, ischemia may be
associated with frequent ventricular ectopics or recurrent
runs of nonsustained ventricular tachycardia on ambulatory
electrocardiogram (ECG).

Assessment of Myocardial Ischemia

Over the last decades, several techniques have been
employed to show the occurrence of myocardial ische-
mia in patients with HCM but all share significant
limitations (Table 1). Ischemic ST-T changes on the
electrocardiogram have been documented during ambu-
latory ECG (Fig. 5), exercise testing, rapid atrial pacing,
AF with rapid ventricular response rate [14, 42, 47], and
stress echocardiography with dipyridamole [22]. After
alcohol is injected in the first or second septal artery for
septal ablation, most HCM patients show typical ST
elevation in anterior leads, but in some patients minor
ECG changes may be observed [11]. Unfortunately, the
ECG is neither a sensitive nor a specific marker of
ischemia, due to marked basal ST-T alterations secondary
to LV hypertrophy in most patients [14, 34]. Often, LV
wall motion abnormalities may be detected by stress 2D
echocardiography during dipyridamole or dobutamine
infusion. These may be suggestive of myocardial ische-
mia, but their detection is not easy and their clinical
significance remains unclear [24].

Conventional scintigraphic techniques have been repeat-
edly used in HCM patients [5, 12, 13]. Defects during
single-photon emission computed tomography (SPECT)
thallium-201 myocardial perfusion imaging are common.
Fixed defects are associated with increased LV cavity
dimensions and reduced systolic function and are usually
interpreted as areas of scarring. Reversible defects induced
by exercise have been interpreted as markers of myocardial
ischemia because of a high concordance with metabolic
evidence of ischemia. Unfortunately, they are not able to
provide absolute quantification of myocardial flow and fail
to correlate with symptoms and outcome, due to intrinsic
limitations of the technique [12].

Positron emission tomography (PET) allows noninva-
sive assessment of myocardial blood flow (MBF) in
patients with LV hypertrophy and HCM, both at rest
and in conditions of maximal vasodilatation induced by
dipyridamole infusion, by injection of tracers such as
13N-labeled ammonia or 15O-labeled water [4, 8, 23, 45,
46]. However, it must be emphasized that dipyridamole-
induced maximal vasodilation is not equivalent to
physiologic exercise, which, unfortunately, cannot be
used with PET, as PET requires relative absence of
movement during the study. Recent advances in tech-
nology greatly improved spatial resolution, which is
well superior to that of SPECT and allowed PET
noninvasive quantification of regional MBF. In the
majority of HCM patients studied with PET, while
resting MBF is not dissimilar from that of normal
controls, increase in MBF after dipyridamole infusion is
significantly reduced, even below resting MBF, suggest-

Fig. 3 Diffuse myocardial disarray and interstitial fibrosis (in blue) in
the same patient (trichromic stain, ×10)
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ing absolute hypoperfusion (Fig. 6) [4]. On average, after
dipyridamole injection, HCM patients are able to increase
their global mean MBF less than twofold, and sometimes
as low as 1 or even less, compared to an average fourfold
in healthy human volunteers. The reduction of coronary

artery reserve, which is the ratio between the maximal and
basal MBF, is independent of age and maximal wall
thickness [4, 23]. It must also be emphasized that MBF
impairment is characterized by marked regional and
individual variability. Thus, each patient may exhibit

Table 1 Clinical relevance and limitations of different techniques for the assessment of microvascular dysfunction and ischemia in HCM.
Reproduced from Maron et al. [29]

Method Finding Clinical Relevance Limitations

Clinical history Nonanginal chest pain Ongoing microvascular ischemia Poor sensitivity and specificity. Should prompt
investigation for alternative causes if severe (CAD,
bridging)

Troponin I Increased serum levels Acute myocyte injury Limited utility in HCM due to frequent lack of symptoms
during ischemia. If markedly elevated in association with
symptoms, should also prompt exclusion of CAD

Holter ECG ST-T changes Ongoing ischemia Poor sensitivity; baseline ECG abnormalities often limit
reliability

Exercise testing ST-T changes/
symptoms

Inducible ischemia Poor sensitivity; baseline ECG abnormalities often limit
reliability

Stress
echocardiography

Regional wall motion
abnormalities

Inducible ischemia Limited experience in HCM; likely poorly sensitive

SPECT Regional perfusion
abnormalities

Regional microvascular dysfunction,
may predict end-stage progression

Lack of MBF quantitation; suboptimal sensitive

Coronary
angiography

Myocardial bridging/
tunneling of LAD,
associated CAD

Exclusion of associated causes of
ischemia

Not practical for assessment of microvascular function

Coronary lactate
(serum) levels

Lactate production Anaerobic metabolism/ischemia Invasive, not applicable in routine clinical practice

PET Reduced coronary
reserve/blunted
maximal MBF

Extent and distribution of
microvascular dysfunction, predicts
outcome and LV remodeling

Limited availability and expensive. Radiation exposure

CMR stress
perfusion

Reduced coronary
reserve/blunted
maximal MBF

Extent and distribution of
microvascular dysfunction

Still not widely available; time consuming/expensive.
Validation less robust than PET

CMR late
gadolinium

Delayed contrast
enhancement

Replacement scarring after recurrent
ischemia

Prognostic significance still under investigation

CAD coronary artery disease, CMR cardiovascular magnetic resonance, ECG electrocardiogram, HCM hypertrophic cardiomyopathy, LAD left
anterior descending coronary artery, LV left ventricular, MBF myocardial blood flow, PET positron emission tomography, SPECT single-photon
emission computed tomography

Fig. 4 Atrial fibrillation inducing myocardial ischemia and VF in a
young patient (27 years old) successfully resuscitated from a cardiac
arrest. During EP study, atrial pacing induced AF with rapid AV

conduction; acute ischemia with ST elevation occurred, followed by
ventricular fibrillation. Reproduced with permission of the American
College of Cardiology; from [47]
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severe impairment of MBF in certain areas of the
myocardium, adjacent to other in which perfusion may
be somehow preserved. Moreover, in agreement with the
diffuse abnormalities of the intramural coronary arterioles
described by pathologists, dipyridamole MBF may be
markedly impaired not only in the hypertrophied ventric-
ular septum, but also in the nonhypertrophied or less
thickened free wall of the left ventricle [4, 17].

Cardiac magnetic resonance (CMR), besides represent-
ing a gold standard for morphological assessment and
increasing the diagnostic sensitivity, can now provide
quantification on myocardial flow [35, 43], although it is
still time consuming and not available in clinical practice.
CMR, however, provides further insight into the effects of
regional hypoperfusion and ischemia in HCM patients, by

late gadolinium enhancement (LGE), which is believed to
reflect areas of edema or fibrosis resulting from recurrent
microvascular ischemia and is associated with an increased
incidence of arrhythmias [1].

In a recent study by our group, flow impairment was on
average more severe in LV regions with or adjacent to areas
of LGE [46], suggesting a causal role of microvascular
dysfunction in producing ischemia and replacement fibro-
sis, as originally postulated by some authors [33]. LGE was
shown to colocalize with microvascular dysfunction. In
segments without LGE but contiguous to fibrotic areas,
maximum flow following dipyridamole infusion was
significantly lower than in those remote from LGE.
Although there is no strong evidence that local microvas-
cular dysfunction is responsible for the occurrence of focal

Fig. 5 ECG ambulatory moni-
toring recording at rest (a) and
during mild effort (walking; b)
in a 48-year-old woman with
HCM. During activity, marked
ST-T segment downsloping
appears, associated with angina
and mild dyspnea
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necrosis and replacement fibrosis, considerable indirect
evidence that increasing degrees of coronary microvascular
dysfunction might play a causative role for myocardial
fibrosis in patients with HCM supports this hypothesis
(Fig. 7) [46].

The Triggers: Exercise, Sinus Tachycardia,
Supraventricular Arrhythmias, LV Intraventricular
Obstruction

The documentation of microvascular dysfunction is not per
se equivalent to demonstrating myocardial ischemia [29].
However, an impaired capacity to increase flow on demand
at the microvascular level sets the stage for recurrent
myocardial ischemia, whenever myocardial oxygen require-
ments exceed regional blood flow. The most important and
common triggers acting upon the substrate of microvascular
dysfunction to produce ischemia in HCM are represented
by sinus tachycardia or increased ventricular rate, which
may occur during physical exercise, supraventricular
arrhythmias such as paroxysmal AF, and other specific or
nonspecific conditions increasing oxygen consumption,
such as dynamic LV intraventricular obstruction, anemia,
uncontrolled arterial hypertension, and hyperthyroidism

In patients with HCM, coronary sinus lactate production
is greatly increased during atrial pacing as a consequence of
myocardial ischemia, sometimes associated with angina.
Moreover, coronary sinus blood taken after dipyridamole
infusion showed a significant Ph reduction, which was
interpreted as a sign of dipyridamole-induced myocardial
ischemia [14]. Sports involving intense effort and anaerobic

isometric activities resulting in rapid heart rate acceleration
are expected to bear the most adverse ischemic consequen-
ces, also due to a critical reduction in the diastolic time
critical for myocardial perfusion. These considerations
therefore provide a rationale for exercise limitation and
pharmacological control of maximal heart rates in young
active patients, in order to prevent asymptomatic myocar-
dial ischemia.

Supraventricular arrhythmias and in particular AF are the
most common complication of HCM, occurring in about
20–25% of patients in a 10-year follow-up [7, 38]. The
onset of paroxysmal AF is almost never well tolerated by
HCM patients, unless they are on active treatment with
atrioventricular blocking agents, such as diltiazem, verap-
amil, or β-blockers. In some patients, the combination of
loss of atrial contraction and rapid ventricular response may
trigger a vicious circle of low cardiac output, regional
hypoperfusion, and acute myocardial ischemia, which may
generate malignant ventricular arrhythmias (Fig. 4) [47]. To
a less dramatic extent, patients with permanent AF may
also be exposed to recurrent ischemia in the presence of a
significantly impaired coronary flow reserve, if their
ventricular rate is not adequately controlled in their daily
activities. Moreover, MBF is significantly reduced in
patients with at least one episode of atrial fibrillation,
suggesting an association and possibly a causal role for
microvascular dysfunction and myocardial hypoperfusion
in determining the arrhythmia [45].

Finally, in the presence of resting or provocable dynamic
LVoutflow obstruction, observed in more than two thirds of
HCM patients [31], the pathological increase in intra-
cavitary pressures may substantially contribute to myocar-

Nuclear Medicine -University of Florence

Mean MBF during coronary vasodilation (dipyridamole 0.56 mg/kg over 4 min)
=1,29 mg/ml/min [0.9 (anterior mid-septal)  -2.1 (basal infero-lateral)] 

Fig. 6 Polar map of regional
quantitative myocardial perfu-
sion after dipyridamole injection
by PET in the same patient as in
Figs. 2 and 3. As shown, max-
imal MBF ranged from 0.82 to
2.68 ml/mg per minute. The
color scale shows highest values
of flow in yellow and lowest in
dark red
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dial hypoperfusion at the subendocardial level and adverse
outcome [20, 27, 28]. Such consequences appear to be
particularly adverse in patients with midventricular obstruc-
tion, in whom progressive apical dilatation may occur with
scar formation, which may further progress to LV dilata-
tion, dysfunction, and heart failure [10, 16]. Therefore,
although related to a number of other pathophysiological
effects, the remarkable clinical benefits of surgical myectomy
may be partly mediated by a reduction of microvascular
dysfunction and ischemia at the subendocardial level [6, 40].

Disease Progression to Heart Failure and the End-Stage
Phase as a Consequence of Ischemia

Severe microvascular dysfunction has an impact on long-
term outcome in HCM patients. In a cohort of 51 HCM
patients prospectively followed for more than 8 years after
a PET flow study, a dipyridamole MBF value in the lowest
tertile (<1.11 mg/ml per minute) was the most powerful
independent predictor of cardiovascular mortality, after

adjustment for other clinically relevant variables. Relative
risk for the composite end point of death, stroke, or
progression to New York Heart Association class III–IV
was almost 20-fold in the lowest tertile of flow (Fig. 8) [8].
Of note, at the time of PET, only few of these patients
would have been considered at high risk based on the
current guidelines [27, 28], as severe microvascular
dysfunction could be demonstrated several years before
their clinical progression [8]. Furthermore, patients with the
most impaired microvascular response to dipyridamole
showed a significantly higher incidence of long-term
adverse LV remodeling, with chamber dilatation, wall
thinning, and decline in systolic function (Fig. 9) [39]. All
patients in this cohort who subsequently developed severe
heart failure symptoms and progressed to the end stage
originally belonged to the lowest tertile of dipyridamole
MBF. Therefore, severe microvascular dysfunction seems to
be a critical risk factor for systolic dysfunction, disease
progression, and heart failure in HCM patients, and assess-
ment of maximal MBF after dipyridamole injection represents
a valuable tool for the identification of patients at higher risk.

Transmural
DCE

Non 
Transmural 

DCE

Contiguous

Remote

LV

b

d

a

d

Fig. 7 Relationship of dipyridamole MBF to delayed contrast
enhancement (DCE) in a 28-year-old female patient with HCM. a
NH3 PET short-axis slice at the level of the basal level LV segments.
The color scale shows highest values of flow in red and lowest in
green. b First pass magnetic resonance short-axis slice at the base of
the LV, showing diffuse septal hypertrophy. c Following gadolinium
infusion, extensive DCE is evident (white signal), involving the
interventricular septum and extending into the anterior wall. There is

close agreement between DCE and areas of reduced flow at PET. d
Diagram illustrating the nomenclature employed for the classification
of myocardial segments with regard to the extent and proximity of
DCE, as follows: (1) transmural DCE; (2) nontransmural DCE; (3)
without DCE but contiguous to the DCE segments; (4) without DCE
and remote from DCE; numbers in italic indicate hMBF (ml/min per
gram) in the segment. Reproduced with permission from [46]
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Management of Microvascular Dysfunction

At present, no specific treatment has been shown to
significantly improve impaired microvascular function. In
clinical practice, control of potential triggers of ischemia
still represents the most effective strategy. Avoidance of
intense competitive sports and strenuous physical effort,
control of heart rate by AV node blocking agents, relief of

LV outflow obstruction, and management of comorbidity
such as anemia, thyroid dysfunction, and hypertension are
all likely to be beneficial, although no randomized studies
are available for evidence-based implementation. Diltiazem,
verapamil, and β-blockers are known to improve symptoms
[25, 44], as in patients with coronary artery disease,
probably via a reduction in heart rate and oxygen
consumption. Treatment with verapamil did not show
improvement in MBF and coronary flow reserve in HCM
patients, although it led to improved redistribution of
transmural MBF and increased subendocardial perfusion
[17]. Recent studies of the no-reflow phenomenon follow-
ing myocardial infarction have confirmed a clinically
relevant vasodilator capacity of verapamil on the coronary
microcirculation [41]. In patients at risk of developing atrial
fibrillation, the prophylactic use of amiodarone may
improve symptoms and also prevent arrhythmic recurren-
ces. Angiotensin-converting enzyme (ACE) inhibitors have
also been shown to improve transmural myocardial perfu-
sion and restore impaired subendocardial flow in a canine
model of dilated cardiomyopathy, by virtue of a nitric-
oxide-dependent mechanism [37]. In a small pilot study,
ACE inhibitors have been shown to reverse small vessel
changes, improve endothelial function, and reduce peri-
arteriolar fibrosis in hypertensive patients [36]. Spironolac-
tone is also a potentially useful drug in this context, for its
capability of interacting with the renin–angiotensin system,
reducing both coronary microvascular remodeling and
fibrosis [29]. Recently, nebivolol has been shown to
significantly improve microvascular function in patients with
idiopathic dilated cardiomyopathy [15]. Therefore, pharmaco-
logical treatment may in fact improve the status of the

Mean MBF  <  1,11 (mg/ml/min) 

defines the subgroup at higher risk

of CV death (RR 9,6)    and  

unfavourable outcome (RR 20,1)

due to microvascular dysfunction

Fig. 8 Microvascular dysfunc-
tion is associated with adverse
outcome. Evidence that dipyri-
damole MBF by PET predicts
adverse disease outcome in
patients with HCM. Cardiovas-
cular mortality was greatest in
HCM patients with a dipyrida-
mole MBF value in the lowest
tertile. Reproduced with per-
mission of Massachusetts Medi-
cal Society; from [8]

Fig. 9 Microvascular dysfunction and LV remodeling. Comparison of
LV end diastolic dimension and ejection fraction at the time of PET
study and at final evaluation expressed as tertiles of MBF after
dipyridamole infusion. Patients with a dipyridamole MBF value in the
lowest tertile showed the greatest change in cavity size and ejection
fraction. Vertical bars indicate mean ± SD for each group. Symbols:
*= p<0.05 versus same group at the time of PET scan; †=p<0.05
versus patients in the highest tertile; ‡=p<0.05 versus patients in other
tertiles. Reproduced with permission [39]
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coronary microcirculation in HCM. However, further research
is much needed in this field, leading to the development of
novel agents truly capable of reversing microvascular dys-
function and its long-term consequences in HCM patients.

Conclusions

Microvascular dysfunction is an important feature in
patients with HCM, although it is rarely considered in
clinical practice. Its assessment, through the value of
maximal blood flow after dipyridamole injection by PET,
predicts long-term clinical outcome and LV remodeling.
Myocardial ischemia may develop in underperfused myo-
cardial areas and contribute to the development of the
“dilated or end-stage phase.” The clinical armamentarium
to improve MBF is currently limited, although novel drugs
are expected in the near future.

References

1. Adabag, A. S., Maron, B. J., Appelbaum, E., Harrigan, C. J.,
Buros, J. L., Gibson, C. M., et al. (2008). Occurrence and
frequency of arrhythmias in hypertrophic cardiomyopathy in
relation to delayed enhancement on cardiovascular magnetic
resonance. Journal of the American College of Cardiology, 51,
1369–1374.

2. Bartoloni Saint Omer, F., Gori, F., Marchi, F., & Pagnini, P.
(1976). Infarto miocardico acuto settale in bambino di otto anni
con miocardiopatia ipertrofica ostruttiva. Archivio “De Vecchi”,
LXI, 41–54.

3. Basso, C., Thiene, G., Corrado, D., et al. (2000). Hypertrophic
cardiomyopathy and sudden death in the young: pathologic
evidence of myocardial ischemia. Human Pathology, 31, 988–98.

4. Camici, P. G., Chiriatti, G., Lorenzoni, R., et al. (1991). Coronary
vasodilation is impaired in both hypertrophied and nonhypertro-
phied myocardium of patients with hypertrophic cardiomyopathy:
A study with nitrogen-13 ammonia and positron emission
tomography. Journal of the American College of Cardiology, 17,
879–886.

5. Cannon, R. O., Dilsizian, V., O'Gara, P. T., et al. (1991).
Myocardial metabolic, hemodynamic, and electrocardiographic
significance of reversible thallium-201 abnormalities in hypertro-
phic cardiomyopathy. Circulation, 83, 1660–67.

6. Cannon, R. O., McIntosh, C. L., Schenke, W. H., et al. (1989).
Effect of surgical reduction of left ventricular outflow tract
obstruction on hemodynamics, coronary flow and myocardial
metabolism in hypertrophic cardiomyopathy. Circulation, 79,
766–775.

7. Cecchi, F., Olivotto, I., Betocchi, S., et al. (2005). The Italian
Registry for hypertrophic cardiomyopathy: A nationwide survey.
American Heart Journal, 150(5), 947–954.

8. Cecchi, F., Olivotto, I., Gistri, R., et al. (2003). Coronary
microvascular dysfunction and prognosis in hypertrophic cardio-
myopathy. New England Journal of Medicine, 349, 1027–1035.

9. Cecchi, F., Olivotto, I., Montereggi, A., et al. (1995). Hypertro-
phic cardiomyopathy in Tuscany: Clinical course and outcome in
an unselected regional population. Journal of the American
College of Cardiology, 26, 1529–1536.

10. Cecchi, F., Olivotto, I., Nistri, S., Antoniucci, D., & Yacoub, M.
H. (2006). Midventricular obstruction and clinical decision-
making in obstructive hypertrophic cardiomyopathy. Herz, 31(9),
871–876.

11. Coakley, E., Steinberg, D. H., Tibrewala, A., Asch, F., Pichard, A.
D., Kent, K. M., et al. (2008). Effect of alcohol septal ablation in
patients with hypertrophic cardiomyopathy on the electrocardio-
graphic pattern. American Journal of Cardiology, 102(5), 621–
624.

12. Dilsizian, V. (2008). 18F-FDG uptake as a surrogate marker for
antecedent ischemia. Journal of Nuclear Medicine, 49(12), 1909–
1911.

13. Dou, K. F., Yang, M. F., Yang, Y. J., Jain, D., & He, Z. X. (2008).
Myocardial 18F-FDG uptake after exercise-induced myocardial
ischemia in patients with coronary artery disease. Journal of
Nuclear Medicine, 49(12), 1986–1991.

14. Elliott, P. M., Kaski, J. C., Prasad, K., Seo, H., et al. (1996). Chest
pain during daily life in patients with hypertrophic cardiomyop-
athy: An ambulatory electrocardiographic study. European Heart
Journal, 17, 1056–64.

15. Erdogan, D., Gullu, H., Caliskan, M., et al. (2007). Nebivolol
improves coronary flow reserve in patients with idiopathic dilated
cardiomyopathy. Heart, 93, 319–324.

16. Fighali, S., Krajcer, Z., Edelman, S., et al. (1987). Progression of
hypertrophic cardiomyopathy into a hypokinetic left ventricle:
Higher incidence in patients with midventricular obstruction.
Journal of the American College of Radiology, 9(2), 288–294.

17. Gistri, R., Cecchi, F., Choudhury, L., Montereggi, A., Sorace, O.,
Salvadori, P. A., et al. (1994). Effect of verapamil on absolute
myocardial blood flow in hypertrophic cardiomyopathy. American
Journal of Cardiology, 74, 363–368.

18. Harris, K. M., Spirito, P., Maron, M. S., et al. (2006). Prevalence,
clinical profile and significance of left ventricular remodeling in
the end-stage phase of hypertrophic cardiomyopathy. Circulation,
114, 216–225.

19. Johansson, B., Mörner, S., Waldenström, A., & Stål, P. (2008).
Myocardial capillary supply is limited in hypertrophic cardiomy-
opathy: A morphological analysis. International Journal of
Cardiology, 126(2), 252–257.

20. Kofflard, M. J., Michels, M., Krams, R., Kliffen, M., Geleijnse,
M. L., Ten Cate, F. J., et al. (2007). Coronary flow reserve in
hypertrophic cardiomyopathy: Relation with microvascular dys-
function and pathophysiological characteristics. Netherlands
Heart Journal, 15(6), 209–215.

21. Krams, R., Kofflard, M. J., Duncker, D. J., Von Birgelen, C.,
Carlier, S., Kliffen, M., et al. (1998). Decreased coronary flow
reserve in hypertrophic cardiomyopathy is related to remodeling
of the coronary microcirculation. Circulation, 97(3), 230–233.

22. Lazzeroni, E., Picano, E., Morozzi, L., Maurizio, A. R., Palma,
G., Ceriati, R., et al. (1997). Dipyridamole-induced ischemia as a
prognostic marker of future adverse cardiac events in adult
patients with hypertrophic cardiomyopathy. Echo Persantine
Italian Cooperative (EPIC) Study Group, Subproject Hypertrophic
Cardiomyopathy. Circulation, 96, 4268–4272.

23. Lorenzoni, R., Gistri, R., Cecchi, F., Olivotto, I., Chiriatti, G.,
Elliott, P., et al. (1997). Syncope and ventricular arrhythmias in
hypertrophic cardiomyopathy are not related to the derangement
of coronary microvascular function. European Heart Journal, 18,
1946–1950.

24. Losi, M. A., Betocchi, S., Aversa, M., Lombardi, R., Miranda, M.,
Cacace, A., et al. (2003). Dobutamine stress echocardiography in
hypertrophic cardiomyopathy. Cardiology, 100, 93–100.

25. Maron, B. J. (2002). Hypertrophic cardiomyopathy: A systematic
review. JAMA, 287, 1308–1320.

26. Maron, B. J., Epstein, S. E., & Roberts, W. C. (1979).
Hypertrophic cardiomyopathy and transmural myocardial infarc-

460 J. of Cardiovasc. Trans. Res. (2009) 2:452–461



tion without significant atherosclerosis of the extramural coronary
arteries. American Journal of Cardiology, 43, 1086–1102.

27. Maron, B. J., McKenna, W. J., Danielson, G. K., Kappenberger,
L. J., Kuhn, H. J., Seidman, C. E., et al. (2003). American College
of Cardiology/European Society of Cardiology Clinical Expert
Consensus Document on Hypertrophic Cardiomyopathy. A report
of the American College of Cardiology Foundation Task Force on
Clinical Expert Consensus Documents and the European Society
of Cardiology Committee for Practice Guidelines. European
Heart Journal, 24(21), 1965–1991.

28. Maron, M. S., Olivotto, I., Betocchi, S., et al. (2003). Effect of left
ventricular outflow tract obstruction on clinical outcome in
hypertrophic cardiomyopathy. New England Journal of Medicine,
348, 295–303.

29. Maron, M. S., Olivotto, I., Maron, B. J., Prasad, S. K., Cecchi, F.,
Udelson, J. E., et al. (2009). The case for myocardial ischemia in
hypertrophic cardiomyopathy. Journal of the American College of
Cardiology, 54(9), 866–875.

30. Maron, B. J., Olivotto, I., Spirito, P., et al. (2000). Epidemiology
of hypertrophic cardiomyopathy-related death: Revisited in a large
non-referral-based patient population. Circulation, 102, 858–864.

31. Maron, M. S., Olivotto, I., Zenovich, A. G., Link, M. S., Pandian,
N. G., Kuvin, J. T., et al. (2006). Hypertrophic cardiomyopathy is
predominantly a disease of left ventricular outflow tract obstruc-
tion. Circulation, 114, 2232–2239.

32. Maron, B. J., & Spirito, P. (1998). Implications of left ventricular
remodeling in hypertrophic cardiomyopathy. American Journal of
Cardiology, 81, 1339–1344.

33. Maron, B. J., Wolfson, J. K., Epstein, S. E., et al. (1986).
Intramural (“small vessel”) coronary artery disease in hypertro-
phic cardiomyopathy. Journal of the American College of
Cardiology, 8, 545–557.

34. Miyai, N., Kawasaki, T., Taniguchi, T., Kamitani, T., Kawasaki,
S., & Sugihara, H. (2005). Exercise-induced ST-segment depres-
sion and myocardial ischemia in patients with hypertrophic
cardiomyopathy: Myocardial scintigraphic study. Journal of
Cardiology, 46(4), 141–147.

35. Moon, J. C., McKenna, W. J., McCrohon, J. A., Elliott, P. M.,
Smith, G. C., & Pennell, D. J. (2003). Toward clinic risk
assessment in hypertrophic cardiomyopathy with gadolinium
cardiovascular magnetic resonance. Journal of the American
College of Cardiology, 41, 1561–1567.

36. Mourad, J. J., Hanon, O., Deverre, J. R., et al. (2003). Improvement
of impaired coronary vasodilator reserve in hypertensive patients by
low-dose ACE inhibitor/diuretic therapy: A pilot PET study.
Journal of the Renin–Angiotensin–Aldosterone System, 4, 94–95.

37. Nikolaidis, L. A., Doverspike, A., Huerbin, R., Hentosz, T., &
Shannon, R. P. (2002). Angiotensin-converting enzyme inhibitors

improve coronary flow reserve in dilated cardiomyopathy by a
bradykinin-mediated, nitric oxide-dependent mechanism. Circula-
tion, 105, 2785–2790.

38. Olivotto, I., Cecchi, F., Casey, S. A., Dolara, A., Traverse, J. H., &
Maron, B. J. (2001). Impact of atrial fibrillation on the clinical
course of hypertrophic cardiomyopathy. Circulation, 104, 2517–
2524.

39. Olivotto, I., Cecchi, F., Gistri, R., Lorenzoni, R., Chiriatti, G.,
Vargiu, D., et al. (2006). Relevance of coronary microvascular
flow impairment to long-term remodeling and systolic dysfunction
in hypertrophic cardiomyopathy. Journal of the American College
of Cardiology, 47, 1043–1048.

40. Ommen, S. R., Maron, B. J., Olivotto, I., et al. (2005). Long-term
effects of surgical septal myectomy on survival of patients with
obstructive hypertrophic cardiomyopathy. Journal of the Ameri-
can College of Cardiology, 46, 470–476.

41. Parodi, O., Neglia, D., Palombo, C., Sambuceti, G., Giorgetti, A.,
Marabotti, C., et al. (1997). Comparative effects of enalapril and
verapamil on myocardial blood flow in systemic hypertension.
Circulation, 96, 864–873.

42. Pasternac, A., Noble, J., Streulens, Y., et al. (1982). Pathophys-
iology of chest pain in patients with cardiomyopathies and normal
coronary arteries. Circulation, 62, 778–789.

43. Petersen, S. E., Jerosch-Herold, M., Hudsmith, L. E., Robson, M.
D., Francis, J. M., Doll, H. A., et al. (2007). Evidence for
microvascular dysfunction in hypertrophic cardiomyopathy: New
insights from multiparametric magnetic resonance imaging.
Circulation, 115, 2418–2425.

44. Rosing, D. R., Idanpaan-Heikkila, U., Maron, B. J., Bonow, R. O.,
& Epstein, S. E. (1985). Use of calcium-channel blocking drugs in
hypertrophic cardiomyopathy. American Journal of Cardiology,
55, 185B–195B.

45. Sciagrà, R., Sotgia, B., Olivotto, I., Cecchi, F., et al. (2009).
Relationship between atrial fibrillation and blunted hyperemic
myocardial blood flow in patients with hypertrophic cardiomyop-
athy. Journal of Nuclear Cardiology, 16, 92–96.

46. Sotgia, B., Sciagrà, R., Olivotto, I., Casolo, G., Rega, L., Betti, I.,
et al. (2008). Spatial relationship between coronary microvascular
dysfunction and delayed contrast enhancement in patients with
hypertrophic cardiomyopathy. Journal of Nuclear Medicine, 49,
1090–1096.

47. Stafford, W. J., Trohman, R. G., Bilsker, M., et al. (1986). Cardiac
arrest in an adolescent with atrial fibrillation and hypertrophic
cardiomyopathy. Journal of the American College of Cardiology,
7, 701–704.

48. Wigle, E. D., Rakowski, H., Kimball, B. P., et al. (1995).
Hypertrophic cardiomyopathy: Clinical spectrum and treatment.
Circulation, 92, 1680–1692.

J. of Cardiovasc. Trans. Res. (2009) 2:452–461 461


	Microvascular Dysfunction, Myocardial Ischemia, and Progression to Heart Failure in Patients with Hypertrophic Cardiomyopathy
	Abstract
	The Substrate: Myocardial Ischemia and Infarction Due to Small Vessel Disease
	Clinical Features
	Assessment of Myocardial Ischemia
	The Triggers: Exercise, Sinus Tachycardia, Supraventricular Arrhythmias, LV Intraventricular Obstruction
	Disease Progression to Heart Failure and the End-Stage Phase as a Consequence of Ischemia
	Management of Microvascular Dysfunction
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


