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Abstract The paper studies bifurcations and complex

dynamics in a class of nonautonomous oscillatory cir-

cuits with a flux-controlled memristor and harmonic

forcing term. It is first shown that, as in the autonomous

case, the state space of any memristor circuit of the

class can be decomposed in invariant manifolds. It turns

out that the memristor circuit dynamics is given by the

collection of the dynamics of a family of circuits, with

a nonlinear resistor in place of the memristor, which is

parameterized by an additional constant input whose

value depends on the initial conditions of the memris-

tor circuit. This property makes it possible to employ

the Harmonic Balance Method in order to study the pe-

riodic solutions and their bifurcations due to changing

the amplitude and the frequency of the harmonic input

on a fixed manifold or due to changing the initial con-

ditions for a fixed harmonic input. The main result is

that in both these cases the Harmonic Balance Method

is quite effective to accurately predict period-doubling

bifurcations of the periodic solutions. Analytical predic-

tions are obtained in the cases of linear-plus-cubic and

piece-wise linear memristor flux-charge characteristics.

Keywords Harmonic balance · Memristor · Period

Doubling Bifurcation
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1 Introduction

The first electronic implementation of the memristor

(memory resistor), i.e., the fourth fundamental circuit

element introduced in 1971 by Prof. Leon Chua [1], has

been developed at the HP laboratories in 2008 [2]. Since

then memristor devices have attracted a huge atten-

tion from researchers because they have been seen as

fundamental nanoscale elements which can potentially

lead to a new analogue and non-Boolean computational

paradigma [3–7]. Memristor elements can indeed be ex-

ploited to build nanoscale interconnected and interact-

ing oscillators able to display rich dynamical behaviors,

including cooperative and collective dynamics [8–11].

In the last decade many contributions appeared in

the literature concerning various experimental, simula-

tive and theoretical aspects of memristors [4,5,12–15].

More specifically, an increasing interest has been ad-

dressed to memristor circuits and their extremely rich

dynamical behavior. Indeed, several authors have thor-

oughly investigated via numerical simulations the dy-

namics of specific memristor circuits [16–20], as well

as circuits containing other memristive devices, such

as memcapacitors [21–23] and meminductors [23,24],

pointing out their so-called “extreme multistability”.

The peculiar mathematical property of (ideal) mem-

ristor circuits is that their state space is foliated, i.e., it

amounts to a continuum of invariant manifolds where

the circuit exhibits different lower-order dynamics. As

an example, it is shown in [25,26] that the state space

of a third-order oscillatory circuit with a single ideal

memristor can be foliated in two-dimensional invariant

manifolds and that the circuit dynamics is topologically

equivalent to the reduced second-order dynamics on

each manifolds, although the latter dynamics depends

on an extra parameter that is function of the initial
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conditions. The reduced dynamics is also described by

a smoother vector field. The advantage is that such os-

cillators can be analyzed by means of known results for

planar linear systems. Moreover, for Piece-Wise Linear

(PWL) constitutive relations of the memristor, while

the memristor circuit dynamics is described by a discon-

tinuous vector field, the reduced dynamics is described

by a continuous PWL field, preventing from the need

to use the extended notion of solutions as that in the

Filippov sense. The method in [26] tries to use as far as

possible the standard current and voltage variables for

the memristor circuit analysis. Basically the same re-

sults can be naturally obtained via a more physical ap-

proach, named Flux-Charge Analysis Method (FCAM),

recently introduced in [27] as an alternative way to the

standard voltage-current approach for the analysis of

circuits including memristors. The use of FCAM makes

it possible, as illustrated in [28] for circuits featuring a

single ideal memristor, to obtain an equivalent dynam-

ical representation in the flux-charge domain in terms

of a reduced order model with an additional constant

input which depends on the initial conditions of each

dynamic element. Said another way, the original system

in the voltage-current domain turns out to be equiva-

lently described in the flux-charge domain via a family

of reduced order systems, containing a nonlinear resis-

tor in place of the memristor. The existence of invari-

ant manifolds is a natural consequence of the applica-

tion of FCAM and the use of the fundamental physi-

cal laws of conservation of charge or flux. This family

of reduced-order systems is parameterized by an addi-

tional constant external input whose value drives the

original system to different regimes, i.e., it decides the

actual invariant manifold where the memristor circuit

state moves on. FCAM can be naturally extended to

prove in a systematic way the existence of invariant

manifolds and coexisting reduced-order dynamics in a

broad class of nonlinear circuits with an arbitrary num-

ber of ideal memristors [29].

This new perspective made it clear why bifurcation

phenomena can be observed in a memristor circuit for

fixed values of its parameters, once the initial conditions

are changed. Hereafter, these phenomena will be shortly

referred to as “bifurcations without parameters”, just

to recall they happen without varying the circuit pa-

rameters. Indeed, since the initial conditions affect the

additional constant input of the reduced order model,

these bifurcation phenomena can be studied by consid-

ering variations of this input. More generally, it turns

out that bifurcations in memristor circuits can be in-

vestigated via standard bifurcation analysis tools ap-

plied to circuits containing nonlinear resistors in place

of memristors.

Along this line of reasoning, in [30], FCAM has been

applied together with the Harmonic Balance Method

(HBM), which is a well-known tool for limit cycles anal-

ysis in nonlinear systems [31–33], for approximately lo-

cating periodic oscillations and their period-doubling

bifurcations. More specifically, it is shown that an au-

tonomous memristor-based Chua’a circuit can be equiv-

alently described as a family of input-output reduced

order systems with an additional external constant in-

put, to which the HBM can be effectively applied to pre-

dict limit cycles and their period-doubling bifurcations.

Also, it is pointed out how these predictions can be

fruitfully exploited to locate regions where more com-

plex dynamics should be looked for.

In this paper, a class of nonautonomous memris-

tor oscillatory circuits forced by an external harmonic

signal is considered. Indeed, several forced memristor

circuits of this class have been investigated in the lit-

erature by showing a rich scenario of oscillatory and

more complex behaviors as the amplitude and the fre-

quency of the harmonic signal are varied [34–38]. Here,

it is first shown that these circuits admit an equivalent

input-output representation in terms of a feedback in-

terconnection of a linear time invariant system with a

static memoryless nonlinearity, subject to an external

harmonic signal and an additional constant input both

possibly filtered by linear time invariant systems (Sec-

tion 2). As in the autonomous case, the constant input,

which depends on the initial conditions of the mem-

ristor circuit, parameterizes the invariant manifolds of

the space composed by the circuit state and the time.

Then, the general application of the HBM to this input-

output class of forced systems for predicting periodic

solutions and characterizing period doubling bifurca-

tions, is briefly outlined (Section 3). For any given fre-

quency of the harmonic signal the predicted period dou-

bling bifurcation curves in the harmonic amplitude and

constant input plane are then computed for different

nonlinear flux-charge characteristics of the memristor

(Section 4). The effectiveness of the method and the

accuracy of the predicted period doubling curves are

discussed via some application examples, also to point

out how these predicted results can be used to locate

more complex behaviors via numerical simulations (Sec-

tion 5).

2 A class of input-output models for forced

memristor oscillatory circuits

In the literature, several authors have investigated the

dynamical behavior of nonautonomous memristor oscil-

latory circuits (see, e.g., [34–38] and references therein).

These papers provide very detailed analyses of complex
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Fig. 1 The considered class of input-output models.

behaviors and bifurcations induced by variations of the

amplitude and the frequency of an external harmonic

signal as well as circuit parameters. The considered cir-

cuits are basically obtained by replacing Chua’s diodes

or other nonlinear resistors with memristors. For in-

stance, memristor versions of the well-known classical

circuit in [39] are thoroughly considered in [34,35,37].

The many interesting complex behaviors discovered nu-

merically and verified experimentally make it clear that

memristor circuits display quite a richer complex dy-

namics than classical counterparts. However, a struc-

tural relation between the dynamics of classical nonlin-

ear circuits and their memristor versions has not been

provided yet. Also, a detailed investigation of how the

initial conditions of memristor circuits influence their

dynamical behavior has not been performed in an ana-

lytic way.

In this section we address these two issues by first

showing that these memristor circuits admit the input-

output representation of Fig. 1, where Li, i = 1, 2, 3,

are finite dimensional linear time-invariant dynamical

subsystems, N is a time-invariant memoryless nonlin-

ear subsystem, w is a scalar external harmonic signal

of amplitude M , frequency ω0, and phase shift θ0, i.e.,

w(τ) = M cos (ω0τ + θ0), X0 is a scalar constant in-

put and y is the scalar output. It is worth observing

that the system of Fig. 1 has an internal feedback in-

terconnection between the linear subsystem L1 and the

nonlinear subsystem N , while L2 and L3 are feedfor-

ward blocks driven by external harmonic and constant

signals, respectively. Among the several tools developed

to investigate the dynamical properties of systems en-

joying this structure, the HBM has been widely used

to predict periodic solutions and their bifurcations [40–

46,30]. Hence, once a forced nonautonomous memristor

oscillatory circuit is reduced in the form of Fig. 1, the

HBM can be fruitfully used to investigate its dynamical

properties.

Denoting asD the differential operator (i.e.,Df(τ) =

ḟ(τ)), it turns out that the input-output relation of the

system of Fig. 1 can be written as

y(τ) = −L1(D)n(y(τ))

+ L2(D)M cos (ω0τ + θ0) + L3(D)X0 , (1)

where n : R → R is a static nonlinearity and Li(D),

i = 1, 2, 3, are real proper rational functions of the time-

derivative operator D, i.e.:

Li(D) =
Qi(D)

Pi(D)
(2)

with Qi(D) and Pi(D) denoting the numerator and the

denominator of Li(D), respectively. Observe that rela-

tion (1) can be rewritten equivalently as

P1(D)P2(D)P3(D)y(τ)

+Q1(D)P2(D)P3(D)n(y(τ)) =

P1(D)Q2(D)P3(D)M cos (ω0τ + θ0)

+ P1(D)P2(D)Q3(D)X0 , (3)

which shows that the time domain evolution of the sys-

tem of Fig. 1 is described by a nonautonomous nonlin-

ear differential equation.

Consider the well-known Murali–Lakshmanan–Chua

oscillatory memristor circuit of Fig. 2 (see, e.g., [34]). In

the voltage-current domain, the time evolution of the

state variables is described by the following equations
Cv̇C(t) = iL(t)− iM (t)

Li̇L(t) = −RiL(t) + u(t)− vC(t)

ϕ̇M (t) = vC(t)

(4)

which are defined for all t ≥ t0. The charge qM and the

flux ϕM of the memristor are related by the nonlinear

flux-charge characteristic q̂ : R→ R, i.e.:

qM = q̂(ϕM ) . (5)

The memristor relation in the voltage-current domain

is given by

iM (t) = q̂′(ϕM (t))vC(t) ∀t ≥ t0, (6)

where the derivative of the flux-charge characteristic

nonlinearity, i.e. q̂′(ϕM (t)), is known as the memcon-

ductance of the memristor.

The input voltage u(t) is assumed to be a harmonic

signal of amplitude M̂ , frequency ω̂, and phase shift θ̂,

i.e.:

u(t) = M̂ sin
(
ω̂t+ θ̂

)
∀t ≥ t0. (7)
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Fig. 2 The memristive Murali–Lakshmanan–Chua circuit.
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cos(ω̂t+ θ̂)
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)

+

iRNL
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Fig. 3 This nonlinear second-order circuit is equivalent to the third-order memristive circuit of Fig. 2 on the basis of Propo-
sition 1. Notice that the original memristor is replaced by a nonlinear resistor, and that a new generator X0 appears. This
latter acts as a constant input, and so the overall dynamics turns out parametrized by its value.

This circuit shows quite a rich dynamical behavior when

the amplitude M̂ and the frequency ω̂ of the harmonic

input and the initial conditions vC(t0), iL(t0), ϕM (t0),

are varied (see, e.g., [34]). The following result provides

the equivalent input-output representation (1) for the

circuit (4)-(7).

Proposition 1 Let Li(D), i = 1, 2, 3, and n be given

by

L1(D) =
LD +R

LCD2 +RCD + 1
(8a)

L3(D) =
1

LCD2 +RCD + 1
= −L2(D) (8b)

and

n = q̂, (9)

respectively, and set

M =
M̂

ω̂
; ω0 = ω̂; θ0 = θ̂. (10)

Then, the circuit (4)-(7) admits the equivalent input-

output representation (1) once the output and the time

variable are chosen as y = ϕM and τ = t, respectively,

and the constant input X0 is given by

X0 = LiL(t0) +RCvC(t0) + ϕM (t0)

+Rq̂(ϕM (t0)) +
M̂

ω̂
cos(ω̂t0 + θ̂) . (11)

Proof. We first show that equations (4) can be rear-

ranged in a state space form by using x = (vC , iL, ϕM )> ∈
R3 as the state vector. It is not difficult to show that

we get{
ẋ(t) = Ax(t) +Bu(t) + Eσ(t)

y(t) = Hx(t)
(12)

where the matrices A ∈ R3×3, B ∈ R3×1, E ∈ R3×1,

H ∈ R1×3 are

A =

 0 1
C 0

− 1
L −

R
L 0

1 0 0

 B =

 0
1
L
0

 (13a)

E =

− 1
C
0

0

 H =
(

0 0 1
)

(13b)
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and σ(t) is the time-derivative of q̂(ϕM (t)), i.e.:

σ(t) = Dq̂(ϕM (t)) . (14)

Since (12) is a completely controllable and observable

linear system driven by the two input signals u(t) and

σ(t), its time evolution is equivalently described by the

input-output relationship

y(t) = Lu(D)u(t) + Lσ(D)σ(t) (15)

where

Lu(D) = H(DI −A)−1B

=
1

D(LCD2 +RCD + 1)
, (16a)

Lσ(D) = H(DI −A)−1E

=
−(LD +R)

D(LCD2 +RCD + 1)
. (16b)

Hence, the output y(t) and the inputs u(t), σ(t) obey

to the following third order linear differential equation

D(LCD2 +RCD + 1)y(t) = u(t)− (LD +R)σ(t) .

(17)

By introducing the signal

û(t) = −D−1u(t) = −
∫ t

t0

u(σ)dσ

=
M̂

ω̂

(
cos(ω̂t+ θ̂)− cos(ω̂t0 + θ̂)

)
(18)

and taking into account that y(t) = ϕM (t) and σ(t) =

Dq̂(y(t)), the differential equation (17) can be equiva-

lently rewritten as

D
[
(LCD2 +RCD + 1)y(t) + û(t)

+ (LD +R)q̂(y(t))
]

= 0 . (19)

It turns out that the differential equation (19) can be

integrated by obtaining the following family of second

order differential equations

(LCD2 +RCD + 1)y(t) + û(t) + (LD +R)q̂(y(t)) = K ,

(20)

where K is a constant term given by

K = LCD2y(t0) +RCDy(t0) + y(t0)

+ LDq̂(y(t0)) +Rq̂(y(t0)) , (21)

where Dy(t0) stands for Dy(t)|t=t0 , and so do all the

other similar forms. To complete the proof, it is suffi-

cient to rewrite (20) into the following equivalent form

y(t) =
1

LCD2 +RCD + 1

(
−(LD +R)q̂(y(t))− M̂

ω̂
cos(ω̂t+ θ̂) +

M̂

ω̂
cos(ω̂t0 + θ̂) +K

)
(22)

and to observe that the following relations hold:

y(t0) = ϕM (t0) , Dy(t0) = vC(t0) ,

CD2y(t0) +Dq̂(y(t0)) = iL(t0) . (23)

ut

Remark 1 It can be shown that the input-output re-

lation provided by Proposition 1 is exactly the same

pertaining to the circuit of Fig. 3, which has the same

structure of the circuit of Fig. 2, with a nonlinear resis-

tor in place of the memristor and an additional constant

voltage input. Indeed, it is enough to write down the

relative state equations and proceed as in the first part

of the proof above. Hence, the original oscillatory mem-

ristor circuit is equivalent to a family of forced circuits

containing a nonlinear resistor, whose voltage-current

characteristic is given by q̂(·). The family is param-

eterized by the constant input voltage X0 which de-

pends upon the initial conditions vC(t0), iL(t0), ϕM (t0)

of the memristor circuit. Indeed, the proof makes it

clear that, for each value of X0, the manifold in the

four dimensional space composed by the state vector

(vC , iL, ϕM )> ∈ R3 and the time t given by

M0 =

{
(vC , iL, ϕM , t)

> ∈ R4 : LiL +RCvC

+ ϕM +Rq̂(ϕM ) +
M̂

ω̂
cos(ω̂t+ θ̂) = X0

}
(24)

is invariant. This can be seen as the extension to the

nonautonomous case of the well-known property of fo-

liation of the state space of autonomous memristor cir-

cuits [27,28]. Said another way, for each X0 the time

behavior of the circuit of Fig. 3 is exactly equal to

the time behavior of the original memristor circuit of

Fig. 2 restricted to the manifold M0. Finally, observe

that, if the flux-charge characteristic q̂( · ) is PWL, then

model (4)-(6) of the memristor circuit of Figure 2 is

discontinuous, while that of the circuit of Figure 3 is

Lipschitz continuous.
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Remark 2 Note that X0 acts as an additional param-

eter with respect to the circuit parameters R, L, C,

M̂ , ω̂, φ̂ for the representation (1). According to (11),

X0 is fixed only if the initial conditions of the cir-

cuit are fixed. For instance, if t0 = 0, θ̂ = −π/2 and

vC(t0) = iL(t0) = ϕM (t0) = 0, then X0 = 0 and the

dynamical behavior of the memristor circuit is exactly

that of the original nonlinear resistor circuit first intro-

duced in [39]. On the other hand, qualitatively different

dynamical behaviors, such as bifurcation phenomena,

can be induced by varying X0, i.e., by moving along

the different manifoldsM0 in (24). It turns out that X0

can be varied by modifying the initial conditions vC(t0),

iL(t0) ϕM (t0), while preserving constant the memristor

circuit parameters. As already said in Section 1, the re-

lated bifurcation phenomena are referred to as “bifur-

cations without parameters” throughout the paper.

The equivalent input-output representation (1) can be

devised also for other memristor circuits along the same

line followed for the circuit of Fig. 2. Table 1 reports

the rational functions Li(D), i = 1, 2, 3, for some cir-

cuits which have been investigated in the literature (see,

e.g., [34,36,47–49], and references therein)1. For the cir-

cuit studied in [48], the rational function L2(D) is ob-

tained once a real harmonic voltage input (u(t) + Rs)

is connected in parallel to the memristor (cf. Fig. 1

of [48]). For the first four circuits the memristor is

flux-controlled, and hence y = ϕM and n = q̂, while

in [49] the memristor is charge-controlled which implies

y = qM and n = ϕ̂. In all the cases expressions similar

to (11) are obtained for X0.

Our aim is to investigate the dynamical features of

the steady-state periodic output solutions displayed by

the input-output system of Fig. 1 once the constant in-

put X0 and the harmonic input amplitude M and fre-

quency ω0 are varied. In particular, we are interested

in the problem of locating the set of values of X0, M

and ω0 at which the periodic solutions undergo to some

kind of bifurcations.

It is well known that this is quite a difficult task which

can be in general pursued only via numerical simula-

tions. Hence, we look for an approach which allows us

to compute the sought bifurcating values of X0, M and

ω0 in an approximate way. Indeed, we resort to the Har-

monic Balance Method (HBM), which is a well-known

tool for predicting steady-state periodic solutions in

nonlinear systems (see [33] and references therein). No-

tably, it has been succesfully applied also to predict bi-

furcations of periodic solutions and even to locate com-

plex attractors [40–45,30].

1 For space limitations, L1(D) and L2(D) are expressed in
terms of the related L3(D).

Specifically, we consider the periodic steady-state input-

output relation of (1) which amounts to:

y(τ) = −L1(D)n(y(τ))

+ L2(ω0)M cos (ω0τ + θ0) + L3(0)X0 , (25)

where y(τ) and n(y(τ)) are assumed to be periodic

of period 2π
ω0

, while L2(ω0) and L3(0) denote the fre-

quency gains of the rational functions L2(D) and L3(D)

at ω0 and zero, respectively. To avoid degenerate cases,

we assume that both L2(ω0) and L3(0) are bounded

and not null. Also, it is assumed that n(y(τ)) can be

expressed in a Fourier exponential form once y(τ) is pe-

riodic.

In the next sections, it is shown how the set of couples

(X0,M) at which the HBM predicts period doubling bi-

furcations2, can be analytically obtained for any given

frequency ω0. Also, an index to measure the accuracy of

these predicted period doubling bifurcations is provided

in a closed form.

3 Application of the HBM to the class of

input-output models

We first recall the basic HBM to compute the so-called

Predicted Periodic Solutions (PPSs), also providing a

standard measure of their accuracy. Then, the method

is applied to predict period doubling bifurcations of the

PPSs.

3.1 Computation of PPSs via the HBM

According to the Harmonic Balance (HB) paradigma,

a PPS of the following form

y0(τ) = A+B cos(ω0τ + θ0 − Φ0)

= A+
1

2
Be(ω0τ+θ0−Φ0) +

1

2
Be−(ω0τ+θ0−Φ0)

(26)

is looked for to approximate the periodic solutions of

period 2π/ω0 of the system of Fig. 1. The frequency

ω0 is assumed to be a given positive constant due to

the periodic input, while the offset A, the amplitude B,

B > 0, and the phase difference Φ0, Φ0 ∈ [0, 2π), be-

tween y0(τ) and the harmonic forcing term in (25) are

unknown.

The HBM consists in first substituting the approxima-

tion (26) into (25), then balancing the continuous and

the first harmonic terms, and finally solving for A, B

and Φ0 the resulting system of equations. To proceed,

2 Similar results can be obtained for other kinds of bifur-
cations along the lines developed in [43].
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Circuit L1(D) L2(D) L3(D)

[34] (LD +R)L3(D) −L3(D) 1
LCD2+RCD+1

[36] (LRC2D2 + LD +R)L3(D) L3(D) 1
LRC1C2D3+L(C1+C2)D2+RC1D+1

[47] LDL3(D) L
R
L3(D) R

LRCD2−LD+R

[48] Rs(R2−R1R3C1D)
R2

L3(D) R2−R1R3C1D
R2

L3(D) R2

RsR2C1C2D2+(RsR2(C1+C2)−R1R3C1)D+R2

[49] CDL3(D) CL3(D) 1
LCD2+1

Table 1 Input-output equivalent description of forced memristive circuits.

let us express n(y0(τ)) in its Fourier exponential form,

i.e.:

n(y0(τ)) =

∞∑
h=−∞

phe
hω0τ , (27)

where

ph =
1

2π

∫ π

−π
n(y0(τ))e−hω0τdω0τ h = 0, 1, . . . (28)

and p−h = p?h, h = 1, 2, . . ., with the star operator

standing for complex conjugate. In particular, by in-

troducing the standard nonlinear HB gains reported in

Table 2 it turns out that (27) can rewritten as

n(y0(τ)) = N0(A,B)A

+
1

2
N?

1 (A,B)Be−(ω0τ+θ0−Φ0)

+
1

2
N1(A,B)Be(ω0τ+θ0−Φ0)

+

+∞∑
h=2

(
p?h(A,B)e−hω0τ + ph(A,B)ehω0τ

)
, (30)

thus making explicit the constant and the first har-

monic terms as well as the dependence of ph from A

and B. Now, substituting (26) and (30) into (25) and

considering the steady-state periodic outputs of the lin-

ear subsystems L1 of Fig. 1, restricted to the constant

and first harmonic terms, we get the following relation:

A+
1

2
Be−(ω0τ+θ0−Φ0) +

1

2
Be(ω0τ+θ0−Φ0)

= −L1(0)N0(A,B)A

− 1

2
L1(−ω0)N?

1 (A,B)Be−(ω0τ+θ0−Φ0)

− 1

2
L1(ω0)N1(A,B)Be(ω0τ+θ0−Φ0)

+
1

2
L2(−ω0)Me−(ω0τ+θ0)

+
1

2
L2(ω0)Me(ω0τ+θ0) + L3(0)X0 . (31)

Hence, by balancing the continuous terms in (31) we

get the real equation

A (1 + L1(0)N0(A,B)) = L3(0)X0 , (32)

while balancing the first harmonic terms we obtain the

complex equation

B (1 + L1(ω0)N1(A,B)) = L2(ω0)eΦ0M . (33)

Equations (32)-(33) are the well-known HB equations

which have to be solved for A, B and Φ0 to obtain the

PPSs (26) for given ω0, M , X0.

For the development of next Proposition 2, it is impor-

tant to note that for given constant A, amplitude B

and frequency ω0, the corresponding values of X0, M

and Φ0 ensuring the solution of (32)-(33) are readily

obtained as

X0 =
A

L3(0)
(1 + L1(0)N0(A,B))

= X0(A,B) , (34)

M = B
|1 + L1(ω0)N1(A,B)|

|L2(ω0)|
= M(A,B, ω0) , (35)

Φ0 = arg

{
B (1 + L1(ω0)N1(A,B))

L2(ω0)M(A,B, ω0)

}
= Φ0(A,B, ω0) . (36)

Note that the first two equations above provide the val-

ues of the constant input X0 and of the amplitude M

of the harmonic term which are compatible with a PPS

of type (26), while the third equation provides the cor-

responding admissible values of phase difference Φ0.

The problem of accuracy of the PPSs has been in-

vestigated since long time, also providing conditions for

the existence of a true periodic solution close to the

predicted one (see [33] and references therein). A re-

quirement at the basis of these conditions is that L1(s)

is a low-pass filter and the nonlinearity n(·) does not
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N0(A,B) =
1

2πA

∫ π

−π
n(A+B cos(ω0τ))dω0τ (29a)

N1(A,B) =
1

πB

∫ π

−π
n(A+B cos(ω0τ))e−ω0τdω0τ (29b)

Table 2 Nonlinear HB gains of n(·).

generate large higher-order harmonics. A quantitative

measure of the accuracy of a PPS is the so-called dis-

tortion index, which is defined as [31]

D(A,B, ω0) =
‖ỹ0(τ)− y0(τ)‖2
‖y0(τ)‖2

(37)

where ‖ · ‖2 denotes the standard L2-norm of periodic

signals and ỹ0(τ) is the (steady-state) periodic output

of the system (25) of Fig. 1 once the input of n(·) is

assumed to be exactly equal to the PPS y0(τ) in (26),

i.e., exploiting (31):

ỹ0(τ) = −L1(0)N0(A,B)A

− 1

2
L1(−ω0)N?

1 (A,B)Be−(ω0τ+θ0−Φ0)

− 1

2
L1(ω0)N1(A,B)Be(ω0τ+θ0−Φ0)

−
∞∑
h=2

(
L1(−hω0)p?h(A,B)e−hω0τ

+ L1(hω0)ph(A,B)ehω0τ
)

+
1

2
L2(−ω0)Me−(ω0τ+θ0)

+
1

2
L2(ω0)Me(ω0τ+θ0) + L3(0)X0 . (38)

It is not difficult to verify that D(A,B, ω0) admits the

following expression

D(A,B, ω0) =

√√√√√√
∞∑
h=2

2|L1(hω0)|2|ph(A,B)|2

A2 +B2/2
(39)

where ph, h = 2, 3, . . ., are computed according to (28)

and clearly depend on the actual values of A and B of

the PPS. Obviously, the accuracy of the PPS increases

as D(A,B, ω0) decreases to zero.

3.2 Characterization of period doubling bifurcations

via the HBM

The HBM has been applied to predict bifurcations in

nonlinear systems since long time [40–43]. In particular,

for the case of period doubling bifurcations, the HBM

assumes that the nominal solution (26) is perturbed as

follows

y(τ) = y0(τ) + δy(τ) , (40)

where y0(τ) is the PPS solving the HB equations (32))-

(33) and δy(τ) is a small periodic perturbation which

represents the birth of the subharmonic term generated

by a period doubling bifurcation. Therefore, the HBM

considers the perturbation

δy(τ) = ε cos
(ω0

2
τ + θ0 − Φ0 + ψ0

)
, (41)

where ε is a small positive constant and ψ0 represents

the phase difference between y0(τ) and δy(τ).

Clearly, the perturbed periodic solution (40) has twice

the period of the PPS y0(t). The bifurcation condition

in the HB approach is obtained by imposing that y(τ)

is a solution of (25) and then balancing the constant

term and the harmonic terms at ω0 and ω0/2 by letting

ε tending to zero.

Observing that

n(y0 + δy) = n(y0) + n′(y0)δy + . . . , (42)

the application of the HBM to (25) yields the following

equation:

y0(τ) + δy(τ) = −L1(D)n(y0(τ))

+ L2(ω0)M cos (ω0τ + θ0) + L3(0)X0

− L1(D)n′(y0)δy(τ) + . . . . (43)

Clearly, since δy(τ) is small (ε goes to zero), equat-

ing the constant terms and the harmonic terms at fre-

quency ω0 of (43) leads to equations (32)-(33). Then,

the additional condition characterizing the period dou-

bling bifurcation is obtained by balancing the harmonic

terms at frequency ω0/2 of the remaining equation:

δy(τ) = − L1(D)n′(y0(τ))δy(τ) . (44)

To this aim, note that n′(y0(τ)) is periodic of period

2π/ω0 and thus it admits an exponential Fourier repre-

sentation containing the continuous term and the har-

monic term at frequency ω0.
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F0(A,B) =
1

2π

∫ π

−π
n′(A+B(cosω0τ))dω0τ (45a)

F1(A,B) =
1

2π

∫ π

−π
n′(A+B(cosω0τ))e−ω0τdω0τ , (45b)

Table 3 Nonlinear HB gains of n′(·).

Then, by introducing the HB gains in Table 3 and

taking into account that both sides of equation (44)

are linear in ε, it can be shown that that the sought

HB period doubling equation amounts to

1 + L1

(

ω0

2

) (
F0(A,B) + F1(A,B)e−2ψ0

)
= 0 , (46)

where, to avoid degenerate cases, L1

(
ω0

2

)
is assumed

to be bounded and not null.

In the HB approach, if the offset A and the amplitude B

of a PPS are such that there exists ψ0 solving the com-

plex equation (46), then the PPS is said to undergo to a

Predicted Period Doubling (PPD) bifurcation at ε = 0.

Hence, for any given frequency ω0, PPD bifurcation

points in the (X0,M)-plane are obtained by first com-

puting the couples (A,B) which solve (46) for suitable

ψ0 and then substituting the found couples into equa-

tions (34)-(35). The corresponding values of X0 and

M provide the sought PPD bifurcation points in the

(X0,M)-plane.

4 Predicted Period Doubling (PPD)

bifurcations in the class of input-output models

In this section we show how the PPD bifurcation points

can be computed. We first consider the case of a gen-

eral nonlinearity n(·), while linear-plus-cubic and PWL

nonlinearities are dealt with in subsection 4.1 and 4.2,

respectively.

The complex equation (46) can be split into two real

equations, one for the phase and the other for the mag-

nitude. The phase equation amounts to

ψ0 = −1

2
arg

{
−L
−1
1

(
ω0

2

)
+ F0(A,B)

F1(A,B)

}
= ψ0(A,B, ω0) , (47)

and it provides the perturbation phase shift as a func-

tion of the forcing frequency ω0 and the offset A and

amplitude B of PPS. The magnitude equation, instead,

reads∣∣∣L−11

(

ω0

2

)
+ F0(A,B)

∣∣∣ = |F1(A,B)| , (48)

and it represents, for any given ω0, a condition which

every couple (A,B) must satisfy for the PPD bifurca-

tion to happen. Now, let us introduce the following set

Sω0 =

{
A ∈ R, B ∈ R+ :∣∣∣L−11

(

ω0

2

)
+ F0(A,B)

∣∣∣ = |F1(A,B)|
}
, (49)

i.e., the set of all couples of (A,B) solving (48) for a

given ω0. The following result pertains to Sω0 .

Proposition 2 The PPS y0(τ) in (26) undergoes to

a PPD if and only if the corresponding offset A and

amplitude B are such that

(A,B) ∈ Sω0
. (50)

Moreover, the PPD bifurcation manifold in the (X0,M)-

plane is given by

MX0,M =
{

(X0,M) : X0 = X0(A,B),

M = M0(A,B, ω0), (A,B) ∈ Sω0

}
(51)

where X0(A,B) and M0(A,B, ω0) are as in (34)-(35),

respectively.

Proof. The proof readily follows by observing that the

PPS y0(τ) exists if and only if A, B, ω0 are such that

X0 = X0(A,B), M = M0(A,B, ω0), Φ0 = Φ0(A,B, ω0)

(see (36)) and it undergoes to a PPD if and only if A,

B, ω0 are such that (50) holds. ut

Remark 3 The above Proposition makes it clear that

PPD bifurcations exist if and only if the one-dimensional

manifold Sω0 is not empty. Said another way, PPD bi-

furcations are completely characterized once the set Sω0

is obtained. In general, computing Sω0
amounts to solv-

ing a nonlinear equation in two unknowns. This clearly

means that Sω0
is in general a one-dimensional set.

Remark 4 Note that the PPD bifurcation manifold in

the (X0,M)-plane is directly obtained as the image of

Sω0
via relations (34)-(35). Also, observe that for small

values of ε the corresponding nearly bifurcated periodic

solutions (40)-(41) are obtained once Φ0 and ψ0 are

found by (36) and (47), respectively.
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Im[s]Im[s]Im[s]

Re[s]Re[s]Re[s]

1

−π/2

π/2

π/4

(a) (b)

Fig. 4 Graphical interpretation of PPD bifurcation manifold in the (X0,M) space. a) Conditions (59) and (60) for nonlinear-
ity (52). b) Condition (83) for nonlinearity (73).

Remark 5 The PPD bifurcation manifold in the three-

dimensional (X0,M, ω0) space can be computed by col-

lecting the two-dimensional sets (51) generated by all

the non-empty sets Sω0 . For the nonlinearities consid-

ered in the next subsections, it will be shown that the

intervals of ω0 such that Sω0
6≡ ∅ can be readily singled

out.

4.1 Predicted Period Doubling (PPD) bifurcations:

linear plus cubic case

In this subsection we assume that the nonlinear func-

tion n(·) in (25) has the following form

n(y) = m0y +m1y
3 , (52)

where m0 and m1 are given constants such that m1 6= 0.

The HB gains N0, N1 in (29) and F0, F1 in (45) turn

out to have the following expressions:

N0(A,B) = m0 +m1A
2 +

3

2
m1B

2 , (53a)

N1(A,B) = m0 + 3m1A
2 +

3

4
m1B

2 , (53b)

F0(A,B) = m0 + 3m1A
2 +

3

2
m1B

2 , (53c)

F1(A,B) = 3m1AB . (53d)

Then, equations (47) and (48) boil down to

ψ0(ω0, A,B) = −1

2
arg

{
− m0

3m1AB
− 1

3m1AB
L−11

(

ω0

2

)
− A

B
− B

2A

}
, (54)

|3m1AB| =
∣∣∣∣L−11

(

ω0

2

)
+m0 + 3m1A

2 +
3

2
m1B

2

∣∣∣∣ , (55)

respectively. As already underlined, equation (54) pro-

vides ψ0 and it only serves to get the bifurcated pe-

riodic solution approximation. Equation (55), instead,

characterizes the set Sω0
according to Proposition 2. To

obtain this set, it is convenient to rewrite (55) as

|3m1AB| (56)

=

∣∣∣∣−m1α(ω0)− m1β(ω0) + 3m1A
2 +

3

2
m1B

2

∣∣∣∣ ,
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where

α(ω0) = −
Re
[
L−11

(

ω0

2

)]
+m0

m1
(57)

and

β(ω0) = −
Im
[
L−11

(

ω0

2

)]
m1

(58)

are constants for a given ω0. Note that α(ω0) and β(ω0)

depends on the gain of the rational transfer function

L1(s) at s = ω0/2 and the constants m0 and m1 of the

nonlinear function (52).

The following result provides an analytic description of

the set Sω0 .

Proposition 3 If conditions

|α(ω0)| ≥ |β(ω0)| (59)

and

α(ω0) > 0 (60)

hold, then

Sω0 =

{
A ∈ R, B ∈ R+ :

(
A2 − k(ω0)

)2
+

(
B2

2
− k(ω0)

)2

= h2(ω0)

}
, (61)

where

k(ω0) =
α(ω0)

3
(62)

h(ω0) =

√
α2(ω0)− β2(ω0)

3
. (63)

Otherwise, Sω0 is empty.

Proof. By making the squares of (56) we get the equiv-

alent relation

9m2
1A

2B2 =

(
−m1α(ω0) + 3m1A

2 +
3

2
m1B

2

)2

+m2
1β

2(ω0) (64)

which, since m1 6= 0, can be rearranged as

9

(
A2 − α(ω0)

3

)2

+
9

4

(
B2 − 2α(ω0)

3

)2

= α2(ω0)− β2(ω0) . (65)

Hence, if condition (59) does not hold, then equation (65)

has no solutions, implying that the set Sω0 is empty. If
condition (59) holds, then (65) can be rewritten in the

following equivalent form

(
A2 − k(ω0)

)2
+

(
B2

2
− k(ω0)

)2

= h2(ω0) , (66)

where k(ω0) and h(ω0) are as in (62) and (63), respec-

tively. Now, equation (66) describes a circle of center

(k(ω0), k(ω0)) and radius h(ω0) in the (A2, B
2

2 )-plane.

Moreover, since the radius h(ω0) is not larger than the

absolute value of the center k(ω0), it turns out that the

circle entirely lies in a quadrant of the plane. Hence, the

set Sω0
is not empty if and only if the center belongs to

the positive quadrant, i.e., if and only if condition (59)-

(60) hold. ut

Remark 6 The proof makes it clear that the set Sω0

either it is empty or it is composed of two closed curves

which can be described parametrically as{
A,B : A = A(λ) = ±

√
k(ω0) + h(ω0) cos(λ),

B = B(λ) =
√

2k(ω0) + 2h(ω0) sin(λ),

λ ∈ [0, 2π)
}
. (67)

Note the two curves are symmetric in the (A,B)-plane

with respect to the B-axis. Also, if h(ω0) = 0 the two

curves collapse to two single points.

Proposition 3 allows for the next analytical characteri-

zation of the PPD bifurcation manifold MX0,M .

Proposition 4 Let conditions (59) and (60) hold.

Then, MX0,M in (51) is given once

X0(A,B) = L−13 (0)

(
1 + L1(0)

(
m1A

2 +m0 +
3

2
m1B

2

))
A , (68)

M(A,B, ω0) =

∣∣1 + L1(ω0)(m0 + 3m1A
2 + 3

4m1B
2)
∣∣B

|L2(ω0)| (69)

and (A,B) ∈ Sω0
.
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Proof. The proof directly follows from Proposition 2

once the expressions of N0 and N1 in (53) are substi-

tuted in (34) and (35), respectively. ut

Remark 7 By substituting the expressions A(λ) and

B(λ) of (67) into (68) and (69), we get an analytical

representation ofMX0,M in terms of two closed curves

(possibly collapsing into two single points if h(ω0) =

0) in the (M,X0)-plane, which are parameterized by

X0(λ) and M(λ) for λ ∈ [0, 2π). Note that the two

curves are generated by assuming A(λ) = −|A(λ)| and

A(λ) = |A(λ)| and thus, from (68)-(69), it turns out

that the two curves have the same value for M(λ) while

opposite values for X0(λ). Said another way, the two

curves are symmetric with respect the M -axis.

Remark 8 Observe that the existence of these two PPD

bifurcation curves is ensured by conditions (59) and (60),

which have a simple geometrical interpretation in the

complex plane (see Fig. 4.a). Indeed, if we consider the

region of the complex plane

Slc =
{
s ∈ C : | arg s| ≤ π

4

}
, (70)

then (59) and (60) are satisfied if and only if

−
L−11

(

ω0

2

)
+m0

m1
∈ Slc . (71)

It is worth noting that (71) only depends on the gain at

s = ω0/2 of the transfer function L1(s) and on the pa-

rameters m0 and m1 of the nonlinearity 52. Moreover,

the intervals of ω0 such that Sω0 6≡ ∅ can be readily

computed via the graphical condition (71). According

to Remark 5, this permits to obtain the PPD bifur-

cation manifold in the three-dimensional (X0,M, ω0)-

space.

Remark 9 The accuracy of the PPD bifurcation curves

can be evaluated by computing the distortion index

D(A,B, ω0) in (39). It turns out that only p2 and p3
are non-zero and indeed we get

D(A,B, ω0) =

√√√√√√
9

8
m2

1A
2B4|L1(2ω0)|2 +

1

32
m2

1B
6|L1(3ω0)|2

A2 +
B2

2

, (72)

which shows that in general the accuracy of PPSs is

higher when |L1(2ω0)|, |L1(3ω0)| and m1 are small,

thus ensuring the well-known filtering hypothesis along

the internal feedback loop of the system of Fig. 1 [31].

Note that, once the expressions A(λ) and B(λ) of (67)

are substituted into (72), the value D(A(λ), B(λ), ω0)

provides a measure of the accuracy of the correspond-

ing PPD bifurcation point (X0(A(λ), B(λ)),M(A(λ),

B(λ)) in the (M,X0)-plane.

4.2 Predicted Period Doubling (PPD) bifurcations:

PWL case

In this subsection we assume that the nonlinear func-

tion n(·) in (25) is PWL. Moreover, we consider the

following nonlinearity

n(y) =

{
m0y if y ≤ 1

m0 +m1(y − 1) if y > 1
, (73)

where the constants m0 and m1 are such that m1 6= m0.

Clearly, the PPSs of interest are those containing inside

their range the point y = 1, which implies that A and

B are such that |1 − A| ≤ B. Under this assumption,

the gains N0, N1 in (29) and F0, F1 in (45) turn out to

have the expressions reported in Table 4.

To obtain the set Sω0
of Proposition 2, we observe

that (48) boils down to√
1−

(
1−A
B

)2

=

∣∣∣∣ᾱ(ω0) + β̄(ω0)− arccos

(
1−A
B

)∣∣∣∣ , (78)

where

ᾱ(ω0) = − π

m1 −m0

(
Re
[
L−11

(

ω0

2

)]
+m0

)
(79)

and

β̄(ω0) = − π

m1 −m0
Im
[
L−11

(

ω0

2

)]
(80)

are constants for any given ω0. By introducing the phase

variable

θ̄ = arccos

(
1−A
B

)
, (81)

equation (78) can be equivalently rewritten as an equa-

tion involving only θ̄, i.e.:

sin2 θ̄ = (θ̄ − ᾱ(ω0))2 + β̄2(ω0) . (82)
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N0(A,B) = m0 −
m1 −m0

πA

(1−A) arccos

(
1−A
B

)
−B

√
1−

(
1−A
B

)2
 (74)

N1(A,B) = m0 −
m1 −m0

πB

(1−A)

√
1−

(
1−A
B

)2

−B arccos

(
1−A
B

) (75)

F0(A,B) = m0 +
m1 −m0

π
arccos

(
1−A
B

)
(76)

F1(A,B) =
m1 −m0

π

√
1−

(
1−A
B

)2

(77)

Table 4 Nonlinear HB gains for nonlinearity (73).

Hence, the computation of the set Sω0
is reduced to

solve (82) for θ̄ ∈ [0, π] and then to recover the corre-

sponding values of A and B from (81). Indeed, we have

the following result.

Proposition 5 If condition∣∣∣∣ᾱ(ω0)− arcsin
√
|β̄(ω0)|

∣∣∣∣
≤
√
|β̄(ω0)|

√
1− |β̄(ω0)| (83)

holds, then

Sω0 =
{
A ∈ R, B ∈ R+ : A+B cos θ̄1 − 1 = 0

}⋃{
A ∈ R, B ∈ R+ : A+B cos θ̄2 − 1 = 0

}
, (84)

where θ̄1 and θ̄2 are the two solutions of (82). Other-

wise, Sω0 is empty.

Proof. We first observe that if (82) is solved for some

θ̄ then
{
A ∈ R, B ∈ R+ : A+B cos θ̄ − 1 = 0

}
∈ Sω0

.

Hence, to prove (84) it is enough to show that if (83)

holds then (82) admits two solutions, while no solutions

exist if (83) does not hold.

It turns out that any solution θ̄ of (82) can be obtained

as the intersection of the following two functions

f(θ̄) = θ̄2 − sin2 θ̄ ,

l(θ̄) = 2ᾱ(ω0)θ̄ − ᾱ2(ω0)− β̄2(ω0) . (85)

Since f(θ̄) is a nonnegative nondecreasing function and

l(θ̄) is an affine linear function such that f(0) ≥ l(0) and

f(π) > l(π) for all ᾱ(ω0) and β̄(ω0), it turns out that

f(θ̄) and l(θ̄) have either two intersections or no inter-

sections. More specifically, there exist two distinct in-

tersections if and only if l(θ̄) > f(θ̄) for some θ̄ ∈ (0, π)

and two coincident intersections if f(θ̄) and l(θ̄) are

tangent. By imposing the tangency condition between

f(θ̄) and l(θ̄), we get

2θ̄ − 2 sin θ̄ cos θ̄ = 2ᾱ(ω0)

and, from (82),

sin2 θ̄ = sin2 θ̄ cos2 θ̄ + β̄2(ω0) ,

which boils down to

sin4 θ̄ = β̄2(ω0) .

Hence, f(θ̄) and l(θ̄) are tangent at θ̄ = θ̄?, with

θ̄? = arcsin
√
|β̄(ω0)| ,

if and only |β̄(ω0)| ≤ 1 and

ᾱ(ω0) =



ᾱ+(ω0) = arcsin
√
|β̄(ω0)|

+
√
|β̄(ω0)|

√
1− |β̄(ω0)|

ᾱ−(ω0) = arcsin
√
|β̄(ω0)|

−
√
|β̄(ω0)|

√
1− |β̄(ω0)|

. (86)

Observe that the following relations

l(θ̄?) = 2ᾱ−(ω0)θ̄? − ᾱ2
−(ω0)− β̄2(ω0)

= 2ᾱ+(ω0)θ̄? − ᾱ2
+(ω0)− β̄2(ω0) (87)

hold. Moreover, the derivative of l(θ̄?) with respect to

ᾱ(ω0) evaluated at ᾱ(ω0) = ᾱ−(ω0) and ᾱ(ω0) = ᾱ+(ω0)

is given by

dl(θ̄?)

dα(ω0)

∣∣∣∣
α(ω0)=α−(ω0)

= 2(θ̄? − ᾱ−(ω0))

= 2
√
|β̄(ω0)|

√
1− |β̄(ω0)| (88)
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and

dl(θ̄?)

dα(ω0)

∣∣∣∣
α(ω0)=α+(ω0)

= 2(θ̄? − ᾱ+(ω0))

= −2
√
|β̄(ω0)|

√
1− |β̄(ω0)| ,

(89)

respectively. As a consequence, l(θ̄?) increases if α(ω0)

is greater than α−(ω0) and smaller than α+(ω0), i.e.,

we have the relations

l(θ̄?) > f(θ̄?) if α(ω0) > α−(ω0)

and

l(θ̄?) > f(θ̄?) if α(ω0) < α+(ω0) .

Taking into account that, for any given β̄(ω0) 6= 0,

f(θ̄) and l(θ̄) have no intersections for α(ω0) = 0 and

α(ω0) = +∞ and that, by varying α(ω0), intersections

can appear/disappear only if a tangency condition hap-

pens, the above relations imply that there exist two in-

tersections if and only if α(ω0) ∈ [α−(ω0), α+(ω0)], thus

concluding the proof. ut

From the proof of Proposition 5 it is clear that the

set Sω0 either it is empty or it is composed of two

half straight lines. This allows for the following analyt-

ical characterization of the PPD bifurcation manifold

MX0,M .

Proposition 6 Let condition (83) hold. Then

MX0,M = M(1)
X0,M

∪M(2)
X0,M

(90)

where M(i)
X0,M

, i = 1, 2, are given by

M(i)
X0,M

=
{

(X0,M) : X0 = X
(i)
0 (λ) ,

M = M (i)(λ), λ > 0
}
, (91)

with

X
(i)
0 (λ) =

1

L3(0)

(
1 + L1(0)m0 −

(
(1 + L1(0)m0) cos θ̄i + L1(0)

m1 −m0

π

(
θ̄i cos θ̄i − sin θ̄i

))
λ

)
(92)

M (i)(λ) =
1

|L2(ω0)|

∣∣∣∣1 + L1(ω0)

(
m0 −

m1 −m0

π

(
cos θ̄i sin θ̄i − θ̄i

))∣∣∣∣λ . (93)

Proof. Observe that the couples (A,B) ∈ Sω0
can be

parameterized as A = 1 − λ cos θ̄i, B = λ with λ > 0

and θ̄i, i = 1, 2, solutions of (82). Hence, the proof di-

rectly follows once the expressions of N0 and N1 in (74)

and (75) are computed according to this parameteriza-

tion and substituted into (34) and (35). ut

Remark 10 Observe that the PPD bifurcation mani-

folds M(i)
X0,M

, i = 1, 2, are half straight lines. Their

existence is ensured by condition (83) which has a sim-

ple geometrical interpretation in the complex plane (see

Fig. 4.b). Indeed, if we consider the region of the com-

plex plane

Spwl =
{
s ∈ C :

∣∣∣Re[s]− arcsin
√
|Im[s]|

∣∣∣
≤
√
|Im[s]|

√
1− |Im[s]|, |Im[s]| ≤ 1

}
,

(94)

then (83) is satisfied if and only if

− π

m1 −m0

(
L−11

(

ω0

2

)
+m0

)
∈ Spwl , (95)

which only depends on the constants m0 and m1 of the

PWL nonlinearity and on the complex value of L1(s)

at s = ω0/2. Also, the accuracy at any point λ of

M(i)
X0,M

, i = 1, 2, can be evaluated by computing the

corresponding value of D(A(λ), B(λ), ω0) via (39).

Remark 11 If we consider the symmetric case of the

PWL nonlinearity (73), i.e.,

n(y) =


−m0 +m1(y + 1) if y < −1

m0y if − 1 ≤ y ≤ 1

m0 +m1(y − 1) if y > 1

, (96)

it turns out that the PPSs can also be symmetric and

can contain inside their range either both the points y =

1 and y = −1 or a single point. In particular, in the lat-

ter case the PPSs containing only y = 1 (i.e., A−B ≥
−1) are exactly those found previously for the nonlin-

earity (73). Clearly, due to the symmetry the PPSs con-

taining only y = −1 can be obtained by simply replac-

ing A with −A. Along this line, we can characterize the

PPD bifurcation manifolds related to PPSs containing

inside their range a single point only. Indeed, if condi-

tion 83 holds, then MX0,M is as in (90) once

M(i)
X0,M

=

{
(X0,M) : X0 = ±|X(i)

0 (λ)| ,

M = M (i)(λ), λ ∈
(

0,
2

1 + cos θ̄i

]}
,

(97)
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andX
(i)
0 (λ) andM (i)(λ), i = 1, 2, are as in (92) and (93),

respectively. The ± sign is due to the symmetry of the

nonlinearity (96) which implies that for any given λ

there exist four PPSs with A = ±(1 − λ cos θ̄i) and

B = λ, i = 1, 2, which undergo to a PPD bifurcation.

To complete the PPD bifurcation manifold in this sym-

metric case, we need to consider also PPSs including

both the points y = 1 and y = −1. In this case we can

resort to Proposition 2, thus computing the set Sω0 ac-

cording to (49) along with the constraint A − B ≤ −1

and then using (51).

Remark 12 Section 4 and its Subsections 4.1 and 4.2

provide systematic procedures to compute PPSs and

PPD manifolds for linear-plus-cubic and PWL nonlin-

earities, respectively. For the linear-plus-cubic case, the

procedure can be summarized as follows.

i For a given forcing input of frequency ω0, check the

graphical condition (71) to assess if the PPD man-

ifold MX0,M is not empty, i.e., if there exist PPSs

which undergo a period doubling bifurcation.

ii Use (67) to compute the offset and amplitude cou-

ples (A,B) of the PPSs to which a PPD bifurcation

pertains.

iii Use (68) and (69) to determine all the amplitudes

M of the forcing term, and the constant inputs X0

characterizing the PPD bifurcation manifoldMX0,M .

iv Use (72) to compute the distortion index for evalu-

ating the accuracy of the PPD bifurcation manifold

MX0,M .

The PWL case can be approached similarly by using

the graphical condition (95) in place of (71) and for-

mulas (92) and (93) in place of (68) and (69). It is

worth stressing that with respect to standard continu-

ation techniques, which rely on heavy numerical com-

putations (see [50] and references within), the proposed

procedures allow one to predict period doubling bifur-

cations of periodic solutions of frequency ω0, by using

closed form formulas.

5 Numerical examples

In this section we focus on the memristor circuit of

Fig. 2 as a vehicle to illustrate the results of Section 4.

As already said, the circuit is known to show a rich

dynamics as the amplitude and the frequency of the

harmonic voltage input u are varied and the initial con-

ditions are properly chosen.

Proposition 1 guarantees that the circuit dynamics is

described by the input-output relation (1), once y =

ϕM , τ = t and the rational functions Li(D), i = 1, 2, 3,

the nonlinearity n(·), the harmonic signal amplitude M ,

frequency ω0, phase θ0, the constant input X0 are as

in (8), (9), (10), (11), respectively.

The aim is to compute for a given frequency ω0 the

PPD bifurcation manifold MX0,M for both nonlineari-

ties (52) and (73) according to the procedure presented

in Remark 12. Also, the accuracy of these predicted

manifolds is evaluated by computing numerically the

distortion index and by comparing MX0,M with the

true period doubling bifurcation manifold.

The development of the next subsections should make

it clear that similar conclusions can be also drawn for

other memristor circuits, as the ones reported in Ta-

ble 1.

5.1 Linear plus cubic nonlinearity

In the case of nonlinearity (52), the manifold MX0,M

is not empty if and only if condition (71) of Remark 8

holds. Hence, according to point (i) of Remark 12, for

the memristor circuit of Fig. 2 we get

−

(
1− LCω

2
0

4
+m0R

)
+ 

ω0

2
(RC +m0L)

m1

(
R+ L

ω0

2

) ∈ Slc .

(98)

Observe that this condition provides quite a simple

characterization of the values of the circuit parame-

ters for which Sω0 and hence MX0,M are not empty.

Also, since the left hand side term of (98) depends con-

tinuously on the system parameters, it turns out that

MX0,M enjoys a robustness property, in the sense that

it is not destroyed for small variations of the circuit pa-

rameters. Once the circuit parameters satisfy this con-

dition, the PPD bifurcation manifold MX0,M can be

analytically computed exploiting Proposition 4 as ex-

plained in points (ii) and (iii) of Remark 12. To pro-

ceed, let us consider the following numerical values for

the circuit parameters:

R = 1, L = 1, C = 1,

m0 = −1.225, m1 = 0.206, θ̂ = 0 . (99)

By plotting the resulting left hand side term of (98) as

a function of ω0, we get that the graphical condition is

satisfied for all ω0 ∈ (0, 2.698), as shown in Fig. 5. Let

us consider the specific value of ω0 = 1.2 at which the

left hand side term of 98 assumes the complex value

2.377 −  0.771 which is marked with ? in Fig. 5. Ac-

cording to Proposition 4 and Remark 7, the two closed

curves composing manifold MX0,M can be computed

analytically for λ ∈ [0, 2π).
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Fig. 5 Graphical interpretation of condition (98) for varying ω0 (see also Fig. 4a). The circle correspond to ω0 = 0, while the
square to ω0 = 2.698. The star relates to a chosen value of ω0 used to exemplify the PPD manifold in the (X0,M) space.

Figure 6 reports the closed curve (dashed line) cor-

responding to −|A(λ)| (the one pertaining to |A(λ)| is

symmetric with respect to the M -axis) in the (M,X0)-

plane, where the points corresponding to λ = 0, π/2,

π, 3π/2 are denoted with the symbols ◦,+, ∗,♦, respec-

tively. Note that the bifurcations points can be obtained

by fixing X0 and varying M or fixing M and varying

X0. The first case corresponds to fix the initial condi-

tions of the memristor circuits and varying the ampli-

tude of the harmonic voltage input. More specifically,

for X0 = 0, PPD bifurcations occur at M = 0.385 and

M = 1.075. The second case concerns to the so-called

“bifurcations without parameters” since it corresponds

to vary only the initial conditions of the circuit. For

instance, if M = 0.8 (vertical straight line) then PPD

bifurcations occur at X0 = −0.237 and X0 = 0.027. Re-

mark 6 ensures that a bifurcated PPS pertain to each

point (X0(λ),M(λ)) of the closed curve, whose offset

−|A(λ)| and amplitude B(λ) can be computed ana-

lytically according to (67). The accuracy of PPSs can

be evaluated by computing the distortion index (72)

which can be obtained as an analytical function D(λ)

for λ ∈ [0, 2π). Figure 7 makes it possible to single out

that (3.03, 5.48) is the range of λ to which correspond

smaller values of D(λ) (less than 0.05) and hence more

reliable PPSs. Hence, it is expected that the PPD bi-

furcations points are more accurate in the part of the

dashed closed curve of Fig. 6 which is comprised be-

tween the marks ∗ and ♦. This is indeed confirmed by

the comparison in Fig. 6 where the true (numerically

obtained by means of the Matlab continuation toolbox

MatCont [50]) and PPD bifurcation curves are com-

pared.

Finally, we observe that the PPD bifurcation curve

can be used to locate more complex motions. Indeed,

Fig. 8 reports the dynamical behaviors pertaining to

the marked points on the vertical red line which corre-

spond to different vaules of X0, i.e., different initial con-

ditions of the memristor circuit of Fig. 2 where u(t) =

0.8 cos(1.2 t) and the circuit parameters are as in (99).

Similar complex behaviors can be obtained by consid-

ering nearby different points in the (M,X0)-plane.

5.2 PWL nonlinearity

In the case of nonlinearity (73), condition (95) for non-

empty MX0,M reduces to

−
π

(
1− LCω

2
0

4
+m0R

)
+ 

πω0

2
(RC +m0L)

(m1 −m0)
(
R+ L

ω0

2

) ∈ Spwl .

(100)

Let us now consider the following numerical values

of the circuit parameters:

R = 1, L = 1, C = 1,

m0 = −1.02, m1 = −0.4, θ̂ = 0 . (101)

It turns out that condition (100) is satisfied for all ω0 ∈
(0.218, 1.269), as shown in Fig. 9. Let us consider the

specific value of ω0 = 1 which yields the point marked

with ? in Fig. 9. According to Proposition 5 we get θ̄1 =
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symbols refer to the values of λ illustrated in Fig. 6 at ω0 = 1.2.

0.708 and θ̄2 = 1.910. Hence, Proposition 6 provides the

PPD bifurcation manifold MX0,M which is composed

of two straight half lines parametrically described by

λ ∈ (0,+∞), according to (92)-(93).

Fig. 10 shows the PPD bifurcation manifold (dashed

curve) together with the true one (solid curve), com-

puted using MatCont toolbox and a smooth approx-

imation of the PWL function [51]. Observe that the

predictions are more accurate for the lower straight

line and hence the PPSs are expected to be more reli-

able for this straight line. This is indeed confirmed by

computing the distortion index D(i)(λ) for each point

(X
(i)
0 (λ),M (i)(λ)) of the two straight lines by putting

to A = 1 − λ cos θ̄i and B = λ in (39). Fig. 11 shows
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Fig. 8 Dynamical behaviors along the vertical line (M = 0.8) of Fig. 6. From top-left to bottom-right: simple periodic solution
for X0 = −0.26 (point N in Fig. 6); period-2 solution for X0 = −0.145 (J); period-4 solution for X0 = −0.12 (�); chaotic
solution for X0 = −0.105 (H); period-3 solution for X0 = 0 (I) and another simple periodic solution for X0 = 0.15 (F). The
considered state variables are the inductor charge (qL) and the memristor flux (ϕM ).

D(1)(λ) and D(2)(λ) for the lower and upper straight

lines of the PPD bifurcation manifold, respectively.

Finally, we can compute the PPD bifurcation man-

ifold for the PWL symmetric nonlinearity (96) with

m0 = −1.02 and m1 = −0.4 proceeding as described in

Remark 11. Fig. 12 reports the closed curve correspond-

ing to |X(i)
0 (λ)| in (97) (the one pertaining to−|X(i)

0 (λ)|
is symmetric with respect to the M -axis) together with

the true curve, showing quite a good accuracy also in

the symmetric case.

6 Conclusions

This paper considers a class of memristor circuits which

are known from simulations and experiments to display

quite a rich dynamical behavior once the amplitude and

the frequency of an external harmonic signal are var-

ied. It is first shown that each circuit of the class ad-

mits an equivalent input-output representation in terms

of a family of harmonically forced nonlinear feedback

systems parameterized by an additional constant input

which depends on the initial conditions of the memris-

tor circuit. This property permits to clarify both the

relation between classical nonlinear circuits and their

memristor versions as well as the influence of memris-

tor circuit initial conditions on its dynamical behavior.

Successively, the input-output representation is investi-

gated via the Harmonic Balance Method (HBM) to de-

termine Predicted Periodic Solutions (PPSs) and their

Predicted Period Doubling (PPD) bifurcations as the

amplitude and frequency of the external harmonic sig-

nal and the additional constant input are varied. It is

shown that for any given frequency the PPD bifurca-

tion manifolds in the harmonic amplitude and constant

input space can be readily computed. For the cases of

linear-plus-cubic and PWL nonlinearities quite simple

graphical tests are provided to compute the range of
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Fig. 9 Graphical interpretation of condition (100) for varying ω0 (see also Fig. 4b). The circle correspond to ω0 = 0.218, while
the square to ω0 = 1.269. The star relates to a chosen value of ω0 used to exemplify the PPD manifold in the (X0,M) space.
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Fig. 10 True (solid line) and predicted (dashed line) PPD manifolds in the (X0,M) space for asymmetric PWL nonlinearity
at ω0 = 1. The lower dashed half line is obtained for θ̄1 = 0.708, while the upper half for θ̄2 = 1.910.

frequencies to which correspond non-empty PPD bifur-

cation manifolds. Moreover, it is shown that these pre-

dicted manifolds can be obtained in a closed form. Also,

their accuracy can be evaluated by computing the dis-

tortion index pertaining to the related bifurcated PPSs.

Finally, two numerical examples are presented to illus-

trate the proposed results and their effectiveness. It is

also shown how the PPD bifurcation manifolds can be

used to locate more complex dynamical behaviors.

Conflict of Interest

The authors declare that they have no conflict of inter-

est.

Ethical approval

This article does not contain any studies with human

participants or animals performed by any of the au-

thors.

Informed consent

Informed consent was obtained from all individual par-

ticipants included in the study.



20 Giacomo Innocenti et al.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

λ

λ

D
(1
) (
λ
)

D
(2
) (
λ
)

Fig. 11 The distortion index (72) evaluated at ω0 = 1 over parameter λ, namely D(λ) for λ ∈ [0, 2π], as explained in Remark 8.
Upper diagram: Distortion along the upper dashed line of Fig. 10. Lower diagram: Distortion along the lower dashed line of
Fig. 10.

References

1. L. O. Chua. Memristor-The missing circuit element.
IEEE Trans. Circuit Theory, 18(5):507–519, Sep. 1971.

2. D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S.
Williams. The missing memristor found. Nature,
453(7191):80–83, May 2008.

3. P. Mazumder, S. M. Kang, and Waser, R. (Eds.). Special
issue on memristors: devices, models, and applications.
Proc. IEEE, 100(6), Jun. 2012.

4. R. Tetzlaff (Ed.). Memristors and Memristive Systems.
Springer, New York, 2014.

5. A. Adamatzky and L. Chua (Eds.). Memristor Networks.
Springer, New York, 2014.

6. F. L. Traversa and M. Di Ventra. Universal memcom-
puting machines. IEEE Trans. Neural Netw. Learn. Syst.,
26(11):2702–2715, 2015.

7. L. Chua. Everything you wish to know about memristors
but are afraid to ask. Radioengineering, 24(2):319–368,
2015.

8. M. Itoh and L. O. Chua. Memristor oscillators. Int. J.

Bifurcat. Chaos, 18(11):3183–3206, Nov. 2008.
9. S. Kumar, J. P. Strachan, and R. S. Williams. Chaotic

dynamics in nanoscale NbO2 Mott memristors for ana-
logue computing. Nature, 2017.

10. F. Corinto, A. Ascoli, and M. Gilli. Nonlinear dynamics
of memristor oscillators. IEEE Trans. Circuits Syst. I, Reg.
Papers, 58(6):1323–1336, Jun. 2011.

11. L. V. Gambuzza, A. Buscarino, L. Fortuna, and
M. Frasca. Memristor-based adaptive coupling for con-
sensus and synchronization. IEEE Trans. Circuits Syst. I:
Reg. Papers, 62(4):1175–1184, Apr. 2015.

12. A. Ascoli, R. Tetzlaff, Z. Biolek, Z. Kolka, V. Biolkova,
and D. Biolek. The art of finding accurate memristor
model solutions. IEEE J. Emerg. Select. Topics Circuits

Syst., 5(2):133–142, Jun. 2015.
13. H. Kim, M. Sah, C. Yang, T. Roska, and L. O. Chua.

Memristor bridge synapses. Proc. IEEE, 100(6):2061–
2070, 2012.

14. S. Kvatinsky, M. Ramadan, E. G. Friedman, and
A. Kolodny. VTEAM: A general model for voltage-
controlled memristors. IEEE Trans. Circuits Syst. II,
62(8):786–790, 2015.

15. B. Muthuswamy. Implementing memristor based chaotic
circuits. Int. J. Bifurc. Chaos, 20(05):1335–1350, 2010.

16. Q. Li, S. Hu, S. Tang, and G. Zeng. Hyperchaos and
horseshoe in a 4D memristive system with a line of equi-
libria and its implementation. Int. J. Circuit Theory Appl.,
42(11):1172–1188, 2014.

17. M. C. Scarabello and M. Messias. Bifurcations leading to
nonlinear oscillations in a 3D piecewise linear memristor
oscillator. Int. J. Bifurc. Chaos, 24(1):1430001, 2014.

18. M. Messias, C. Nespoli, and V. A. Botta. Hopf bifurcation
from lines of equilibria without parameters in memris-
tor oscillators. Int. J. Bifurcation Chaos, 20(02):437–450,
2010.

19. B. Bao, T. Jiang, Q. Xu, M. Chen, H. Wu, and Y. Hu.
Coexisting infinitely many attractors in active band-
pass filter-based memristive circuit. Nonlinear Dynamics,
86(3):1711–1723, 2016.

20. E. Ponce, A. Amador, and J. Ros. A multiple focus-
center-cycle bifurcation in 4d discontinuous piecewise lin-
ear memristor oscillators. Nonlinear Dynamics, Sep 2018.

21. F. Yuan, G. Wang, Y. Shen, and X. Wang. Coexisting at-
tractors in a memcapacitor-based chaotic oscillator. Non-

linear Dynamics, 86(1):37–50, 2016.
22. K. Rajagopal, S. Jafari, A. Karthikeyan, A. Srinivasan,

and B. Ayele. Hyperchaotic memcapacitor oscillator with
infinite equilibria and coexisting attractors. Circuits Syst.

Signal Process., 37(9):3702–3724, Sep 2018.
23. F. Yuan, G. Wang, and X. Wang. Chaotic oscillator con-

taining memcapacitor and meminductor and its dimen-
sionality reduction analysis. Chaos, 27(3), 2017.

24. B. Xu and Y. Wang, G. Shen. A simple meminductor-
based chaotic system with complicated dynamics. Non-
linear Dynamics, 88(3):2071–2089, May 2017.



Prediction of Period Doubling bifurcations in harmonically forced memristor circuits 21

0 0.5 1 1.5 2 2.5

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

X
0

M

Fig. 12 True (solid line) and predicted (dashed) bifurcation manifolds in the (X0,M) space for the symmetric PWL nonlin-
earity. Both predicted and true bifurcation manifolds are computed using a smooth approximation of the PWL functions and
are evaluated numerically.

25. A. Amador, E. Freire, E. Ponce, and J. Ros. On discon-
tinuous piecewise linear models for memristor oscillators.
Int. J. Bifurc. Chaos, 27(06):1730022, 2017.

26. E. Ponce, J. Ros, E. Freire, and A. Amador. Unravelling
the dynamical richness of 3d canonical memristor oscil-
lators. Microelectron. Eng., 182:15–24, 2017.

27. F. Corinto and M. Forti. Memristor circuits: Flux–charge
analysis method. IEEE Trans. Circuits Syst. I, Reg. Pa-

pers, 63(1):1997–2009, Nov. 2016.
28. F. Corinto and M. Forti. Memristor circuits: Bifurcations

without parameters. IEEE Trans. Circuits Syst. I, Reg.
Papers, 64(6):1540–1551, 2017.

29. F. Corinto and M. Forti. Memristor circuits: Pulse pro-
gramming via invariant manifolds. IEEE Trans. Circuits
Syst. I: Reg. Papers, 65(4):1327–1339, 2018.

30. M. Di Marco, M. Forti, G. Innocenti, and A. Tesi. Har-
monic balance method to analyze bifurcations in mem-
ristor oscillatory circuits. Int. J. Circuit Theory Appl.,
46:66–83, Jan. 2018.

31. D. P. Atherton. Nonlinear Control Engineering. Van Nos-
trand Reinhold, London, 1975.

32. A. I. Mees. Dynamics of Feedback Systems. Wiley, New
York, 1981.

33. H. K. Khalil. Nonlinear systems (3rd edition). Prentice-
Hall, Upple Saddle River, New Jersey, 2002.

34. A. I. Ahamed and M. Lakshmanan. Discontinuity in-
duced Hopf and Neimark–Sacker bifurcations in a mem-
ristive Murali–Lakshmanan–Chua circuit. Int. J. Bifurcat.
Chaos, 27(06):1730021, 2017.

35. Q. Xu, Q. Zhang, B. Bao, and Y. Hu. Non-autonomous
second-order memristive chaotic circuit. IEEE Access,
5:21039–21045, 2017.

36. B. Bao, P. Jiang, H. Wu, and F. Hu. Complex tran-
sient dynamics in periodically forced memristive Chua’s
circuit. Nonlinear Dynamics, 79(4):2333–2343, 2015.

37. A. I. Ahamed and M. Lakshmanan. Nonsmooth bifur-
cations, transient hyperchaos and hyperchaotic beats in

a memristive Murali–Lakshmanan–Chua circuit. Int. J.

Bifurcat. Chaos, 23(06):1350098, 2013.
38. A. Buscarino, L. Fortuna, M. Frasca, and L. V. Gam-

buzza. A new driven memristive chaotic circuit. In 2013

European Conference on Circuit Theory and Design (EC-
CTD), pages 1–4, 2013.

39. K. Murali, M. Lakshmanan, and L. O. Chua. The sim-
plest dissipative nonautonomous chaotic circuit. IEEE
Trans. Circuits Syst. I, 41(6):462–463, 1994.

40. R. Genesio and A. Tesi. Harmonic balance methods for
the analysis of chaotic dynamics in nonlinear systems.
Automatica, 28(3):531–548, 1992.

41. C. Piccardi. Bifurcations of limit cycles in periodi-
cally forced nonlinear systems: The harmonic balance
approach. IEEE Trans. Circuits Syst. I, 41(12):315–320,
1994.

42. A. Tesi, E. H. Abed, R. Genesio, and H. O. Wang. Har-
monic balance analysis of period-doubling bifurcations
with implications for control of nonlinear dynamics. Au-
tomatica, 32(9):1255–1271, 1996.

43. M. Basso, R. Genesio, and A. Tesi. A frequency method
or predicting limit cycle bifurcations. Nonlinear Dynam-
ics, 13:339–360, 1997.

44. F. Bonani and M. Gilli. Analysis of stability and bi-
furcations of limit cycles in Chua’s circuit through the
harmonic-balance approach. IEEE Trans. Circuits Syst. I,
46:881–890, 1999.

45. M. Di Marco, M. Forti, and A. Tesi. Harmonic bal-
ance approach to predict period-doubling bifurcations in
nearly-symmetric neural networks. J. Circuits Syst. Com-
puters, 12(4):435–460, Jul. 2003.

46. G. Innocenti, A. Tesi, and R. Genesio. Complex be-
haviour analysis in quadratic jerk systems via frequency
domain Hopf bifurcation. Int. J. Bifurc. Chaos, 20(3):657–
667, 2010.



22 Giacomo Innocenti et al.

47. Y. Lu, X. Huang, S. He, D. Wang, and B. Zhang. Memris-
tor based van der Pol oscillation circuit. Int. J. Bifurcat.

Chaos, 24(12):1450154, 2014.
48. Z. Galias. Study of amplitude control and dynamical

behaviors of a memristive band pass filter circuit. IEEE

Trans. Circuits Syst. II, 65(5):637–641, 2018.
49. K.J. Chand́ıa, M. Bologna, and B. Tellini. Multiple

scale approach to dynamics of an LC circuit with a
charge-controlled memristor. IEEE Trans. Circuits Syst.
II, 65(1):120–124, Jan 2018.

50. A. Dhooge, W. Govaerts, and Y. A. Kuznetsov. MAT-
CONT: a MATLAB package for numerical bifurcation
analysis of ODEs. ACM Trans. on Math. Software

(TOMS), 29(2):141–164, 2003.
51. V.M. Jimenez-Fernandez, M. Jimenez-Fernandez,
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