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A stochastic view on surface inhomogeneity
of nanoparticles
R.A.J. Post 1,2, D. van der Zwaag1,3,6, G. Bet1,2,7, S.P.W. Wijnands 1,4, L. Albertazzi1,3,5, E.W. Meijer 1,3,4 &

R.W. van der Hofstad1,2

The interactions between and with nanostructures can only be fully understood when the

functional group distribution on their surfaces can be quantified accurately. Here we apply a

combination of direct stochastic optical reconstruction microscopy (dSTORM) imaging and

probabilistic modelling to analyse molecular distributions on spherical nanoparticles. The

properties of individual fluorophores are assessed and incorporated into a model for the

dSTORM imaging process. Using this tailored model, overcounting artefacts are greatly

reduced and the locations of dye labels can be accurately estimated, revealing their spatial

distribution. We show that standard chemical protocols for dye attachment lead to inho-

mogeneous functionalization in the case of ubiquitous polystyrene nanoparticles. Moreover,

we demonstrate that stochastic fluctuations result in large variability of the local group

density between particles. These results cast doubt on the uniform surface coverage com-

monly assumed in the creation of amorphous functional nanoparticles and expose a striking

difference between the average population and individual nanoparticle coverage.

https://doi.org/10.1038/s41467-019-09595-y OPEN

1 Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 5135600 MB Eindhoven, The Netherlands. 2 Department of
Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 5135600 MB Eindhoven, The Netherlands. 3 Department of Chemical
Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 5135600 MB Eindhoven, The Netherlands. 4 Department of Biomedical
Engineering, Eindhoven University of Technology, P.O. Box 5135600 MB Eindhoven, The Netherlands. 5 Institute for Bioengineering of Catalonia, The
Barcelona Institute of Science and Technology, 08028 Barcelona, Spain. 6Present address: DSM Coating Resins, P.O. Box 1235145 PE Waalwijk, The
Netherlands. 7Present address: Department of Mathematics and Computer Science ‘Ulisse Dini’, University of Florence, 50134 Florence, Italy. These authors
contributed equally: R.A.J. Post, D. van der Zwaag. Correspondence and requests for materials should be addressed to E.W.M. (email: e.w.meijer@tue.nl)
or to R.W.vdH. (email: r.w.v.d.hofstad@tue.nl)

NATURE COMMUNICATIONS |         (2019) 10:1663 | https://doi.org/10.1038/s41467-019-09595-y | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-6110-7467
http://orcid.org/0000-0001-6110-7467
http://orcid.org/0000-0001-6110-7467
http://orcid.org/0000-0001-6110-7467
http://orcid.org/0000-0001-6110-7467
http://orcid.org/0000-0002-9725-6170
http://orcid.org/0000-0002-9725-6170
http://orcid.org/0000-0002-9725-6170
http://orcid.org/0000-0002-9725-6170
http://orcid.org/0000-0002-9725-6170
http://orcid.org/0000-0003-4126-7492
http://orcid.org/0000-0003-4126-7492
http://orcid.org/0000-0003-4126-7492
http://orcid.org/0000-0003-4126-7492
http://orcid.org/0000-0003-4126-7492
mailto:e.w.meijer@tue.nl
mailto:r.w.v.d.hofstad@tue.nl
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Control over multivalent interactions is essential in engi-
neering various interactions between and with nano-
particles1–5. Multivalency—i.e. the simultaneous

occurrence of multiple molecular recognition events between two
entities—presents a ubiquitous principle for tuning a variety of
interactions, due to the profound thermodynamic and kinetic
consequences associated with interdependence of binding
events6–10. The prevalence of multifunctional structures in living
cells has prompted efforts to improve the understanding of
multivalency in biological interactions8,11, and synthetic multi-
functional scaffolds have attracted increasing attention as ther-
apeutic agents12,13.

Multivalent interactions are highly sensitive to the local density
and spatial arrangement of ligands11,12,14,15. As such, inadequate
characterization of multifunctional structures is a major hurdle
for the implementation of multivalency-based approaches in
nanotechnology. The average functionalization density can easily
be obtained using fluorescence assays or other ensemble methods,
but these analyses provide no spatial information16. Additionally,
the influence of stochastic variations in ligand concentrations,
which has far-reaching consequences in biochemical
signalling17,18, cannot be probed due to the averaging of signals
inherent in these approaches. Hence, the average functionaliza-
tion degree is not indicative for the surfaces of individual
nanostructures in a population, and does not provide a reliable
predictor for their properties.

Microscopic methods seem most suitable for providing a
detailed representation of functional group topology on the
single-scaffold level. For instance, the binding events in cellular
interactions are separated on the nanoscale, and only few tech-
niques can provide the spatial resolution required. Scanning
probe microscopies (i.e. atomic force microscopy and scanning
tunneling microscopy) provide very high resolution and have
been applied in the study of nanoscale structures19,20. Progress
has also been reported by using electron microscopy, in studies of
epitope distributions in protein complexes21 and nanoparticles22.
However, these approaches are generally invasive and lack che-
mical specificity, especially when multiple labels are required.

Super-resolution optical microscopy combines benign sample
preparation with high sensitivity and specificity23–26, and as such
provides perfect complementarity with the aforementioned
microscopic techniques. Localization-based implementations
provide high versatility and nanometre spatial resolution, and
thereby present a unique capability to distinguish complex che-
mical features in a crowded molecular environment. Super-
resolution images of biological and synthetic nanostructures have
already facilitated several ground-breaking studies27–32, but pro-
vide intriguing challenges in terms of quantification33–35. For
example, the finite localization precision combined with the
reversible blinking of fluorescent dyes result in overcounting
errors that have been approached using specific experimental
methods (e.g. quantitative points accumulation in nanoscale
topography (qPAINT)36,37) or using computational tools38. For
photoactivatable dyes with short-lived dark states, time-
correlation of individual localizations has been applied to
diminish overcounting artefacts39,40. More generally, correlative
approaches also reduce overcounting and provide an accurate
indication of dye density, at the cost of local averaging of
localizations41,42. As an alternative, probabilistic approaches can
be used to address the challenge of fluorophore counting43, and
several recent papers discuss the application of these methods in
the context of direct stochastic optical reconstruction microscopy
(dSTORM) and photo-activated localization microscopy ima-
ging44–47.

The focus of existing literature is on quantifying dye (copy)
numbers in well-separated clusters, thereby decoupling

quantification and spatial analysis. Nevertheless, accurate esti-
mation of both numerical and geometric factors is required to
study realistic nanostructures with a range of interfluorophore
distances, prompting a more thorough evaluation of spatial dis-
tributions based on the precision of individual localizations. A
recently developed Bayesian clustering method has demonstrated
the robust identification of localization clusters in a range of
sample conditions, in both 2D and 3D48,49. However, this work
focuses on separating molecule clusters from background noise,
rather than on the structure of the molecular clusters, and
the occurrence of multiple blinking in dSTORM hinders the
application of these methods for quantitative dye location
estimation.

In this work, we quantitatively analyse the functional group
distribution on the surface of a multifunctional synthetic nano-
particle, using a combination of tailored photophysical modelling
of the dye behaviour and Maximum Likelihood Estimation
(MLE) of localization patterns in dSTORM. We assess the
number of dyes in line with existing probabilistic approaches43,
subsequently apply this information to estimate the dye locations
based on the spatial modelling, and validate this approach using
simulated datasets. The methodology is compatible with long-
lived dark states common in dSTORM and PAINT microscopies,
and fully exploits the high photon budget and repeated blinking
inherent to these techniques. For prevalent amorphous poly-
styrene nanoparticles, we demonstrate large stochastic fluctuation
in the quantities of functional groups attached to different par-
ticles in a population. Moreover, we establish spatial inhomo-
geneity of the attached moieties on individual nanostructures,
representing an even larger variation in local dye density than can
be explained by “random” attachment. Finally, we provide an
empirical measure to quantify dye clustering on nanoparticles,
allowing the customized prediction of interaction efficiency in a
heterogeneous population.

Results
Addressing stochastic effects. The number of functional groups
on a nanostructure cannot be observed directly from localization-
based super-resolution images due to overcounting artefacts.
Figure 1a schematically illustrates the dSTORM imaging proce-
dure. First, reactive handles on the surface of a nanostructure are
functionalized with photoswitchable dyes. During dSTORM
acquisition, these dyes switch between short-lived fluorescent and
long-lived dark states, and the emitted photons are captured by
the camera. The centroids of the resulting diffraction-limited
spots are fitted to obtain localizations, and a large collection of
such localizations forms the dSTORM image. This fitting proce-
dure has a finite resolution limited mostly by the brightness of the
observed spot, resulting in an error in the calculated location of
the centroid (I in Fig. 1a). Additionally, photoswitching of the
fluorescent dyes occurs repeatedly and thus a single dye may yield
multiple localizations over the course of an acquisition period (II
in Fig. 1a). Hence, it is increasingly difficult to assign localizations
to particular dyes in case multiple fluorophores are emitting in
close proximity (III in Fig. 1a). The random nature of these
photophysical processes represents an important obstacle in the
determination of ligand densities.

In order to accurately analyse dye locations on densely
functionalized nanoparticles, our analysis will rely on three
properties: (i) the dye photophysics, including overcounting, need
to be quantitatively described; (ii) the variability in the number of
dyes attached to individual nanoparticles needs to be accurately
captured; (iii) the spatial estimation algorithm must reliably
reproduce the underlying (random, 3D and relatively dense) dye
distribution from localization collections using (i) and (ii).
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If properties (i), (ii), and (iii) are verified, and the dye dynamics
are assumed not to change in the presence of other dyes, then the
experimental distribution of dye labels on nanoparticles can be
determined from dSTORM images. In this experiment, we apply
an MLE procedure (vide infra) incorporating blinking behaviour
and the uncertainties associated with individual localizations.
Property (i) is validated by comparing the model fit with data
from beads with a single-dye label attached (see section
Photophysical modelling). Given (i), property (ii) is validated
using data on the number of localizations on experimental beads
(see section Nanoparticle functionalization). Lastly, property (iii)
is validated using simulations, as illustrated in Fig. 1b (see section
Spatial distribution of functional groups). In these simulations,
fluorescent emitters are distributed over the surface of a sphere,
the dSTORM imaging and localization process is mimicked, and
the MLE procedure is applied to the resulting localizations. Since
the underlying distribution of the emitters is known, the
performance of the estimation procedure can be assessed, thus
benchmarking our method.

Photophysical modelling. The single-molecule dynamics of the
Alexa647 fluorophore on a nanoparticle surface have been char-
acterized to quantify the relevant photophysical processes.
Carboxyl-functional polystyrene nanoparticles (diameter 330 nm)
functionalized with a single Alexa647 moiety (Fig. 2a, experi-
mental details are described in the Methods section) have been
immobilized to a glass coverslip, and imaged using astigmatism-
based 3D-dSTORM (Fig. 2b). The resulting localization clusters
correspond to a single fluorophore photoswitching over the

course of a dSTORM acquisition, providing a suitable dataset to
verify property (i).

Inspired by existing models for photoactivatable dyes39, we
apply a three-state model for photoswitchable dyes (Fig. 2c). Such
a competition between processes with constant transition
probabilities results in a geometric distribution for the number
of active periods (i.e. a complete period between thiol-mediated
or irreversible dark states) before bleaching, experimentally
equating the number of localizations per dye. Indeed, the
observed localizations can be adequately fit using a geometric
distribution, as shown in Fig. 2c.

Since the number of photons in a localization determines the
accuracy of its centroid fit50,51, this is a crucial parameter to
quantify the spatial aspects of fluorophore distribution. Previous
single-molecule studies have shown that fluorophores do not emit
constantly over an active period, but alternate short-lived
emissive and non-emissive states within this period52–54.
Assuming exponential residence times in the emissive state, the
total number of photons emitted is well approximated by a
gamma distribution, which can indeed adequately fit the data
(Fig. 2d).

Individual localizations are modelled as a 3D Gaussian
distribution around the real location of the dye, with variances
depending on the number of photons. Hence, the 3D spread of
localizations that originate from a single fluorophore is used as an
experimental measure of localization uncertainty (Fig. 2e).
Figure 2f shows an overlay of the experimental localization
uncertainty (solid points) with different variance expressions. We
extended the theoretical expressions derived by Mortenson
et al.55 for the estimation errors of a 2D Gaussian mask estimator

Functionalization dSTORM
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Fig. 1 Creating a model for dSTORM-mediated analysis of functional group distribution. a Schematic depiction of the steps involved in the observation of
fluorophore patterns on a spherical nanoparticle. Fluorescent dyes (red spheres) are, either chemically or physically, grafted to the nanoparticle (grey
sphere) according to an unknown spatial distribution. The collection of localizations (red crosses) acquired during subsequent dSTORM imaging does not
yield this spatial distribution exactly, due to a finite localization accuracy (I) and blinking of the dyes (II), leading to overcounting artefacts (III). b In our
model, the steps mentioned in a can be mimicked in a fully controlled computational environment. The nanoparticle is functionalized with fluorescent
emitters (red spheres) following an arbitrary spatial distribution. Subsequently, the dSTORM imaging process is simulated, leading to a collection of
localizations (red crosses) with known sources. From these localizations, the positions of the emitters are estimated (blue pyramids). By comparing emitter
locations and the corresponding estimates, the performance of the estimation procedure is assessed
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for the centroid location to astigmatic 3D-imaging (red surface).
The considerable deviation to the experimental data indicates that
this basic framework fails to capture all relevant processes. If the
expression is extended to include the effects of drift correction, a
better approximation is obtained (blue surface). Further enhanced
prediction of experimental data is provided by incorporating
variability related to optical effects—for example, coupling of the
fluorophore excitation dipole to nearby interfaces56. The resulting
localization-dependent distortion of the PSF may be captured by

replacing the Gaussian distribution by a normal-normal mixture
model, and the complete model provides a further improved
estimate of localization errors in three dimensions (green
surface).

Nanoparticle functionalization. For the purpose of analysing the
distribution of functional groups on the surface of a nanoparticle,
and in particular the influence of stochastic variability,
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Fig. 2 Analysis of dye photophysics through single-molecule experiments. a Schematic depiction of a mono-functional nanoparticle, obtained by reacting a
large excess of carboxyl-functional polystyrene beads (diameter 330 nm) with a dilute solution of Alexa647 fluorophore. Experimental details can be found
in the Methods section. b dSTORM image of mono-functional nanoparticles. Nanoparticles were immobilized on a glass coverslip and imaged using
astigmatic 3D-dSTORM. c Probability distribution of the number of blinks per dye (grey bars), ndyes ¼ 2206. The probability distribution has been fit using a
conditional geometric distribution (blue line), Geometric p̂bleach ¼ 0:21ð Þ; corresponding to a three-state model. Inset: three-state model for reversible
photoswitching in dSTORM imaging, including active (A), dark (D), and bleached (B) states and the corresponding transitions. d Probability density
distribution of the number of photons per blink, i.e. period in the active state, (grey bars), nblinks ¼ 2:6 ´ 106. The probability density distribution has been fit
using a conditional gamma distribution (blue line), Gamma k̂ ¼ 1:62; θ̂ ¼ 3:84 ´ 10�3

� �
. Details of the distributions used in c and d can be found in

the Supplementary Methods. e Determination of experimental localization accuracy. Localizations corresponding to a single dye are indicated as green
points, and the localization errors σx, σy, σz of a particular centroid are the distances (in the x, y, z dimensions, respectively) between this centroid and the
average of all centroids corresponding to the same dye (black point). f Dependence of the experimental localization error σx on the number of photons of
the localization and the estimated z-position of the dye. Black points indicate the average estimated absolute error (i.e. a measure for the experimental
error of the localization process) for all localizations combined in 75 nm ×75 photon bins. Transparent surfaces indicate the localization errors predicted by
different photophysical models: a basic model of the 3D fitting error (red), an extended model including fiducial marker-based drift correction (blue), and a
complete normal-normal mixed model further accounting for point spread function (PSF) deformation (green). Similar graphs for the localization error in
the y and z dimensions, and the width error in the x and y dimensions, are shown in Supplementary Figs. 7–9
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multifunctional dye-appended 330 nm polystyrene beads have
been created (Fig. 3a). Functionalization has been performed
using amine-NHS chemistry in dilute solution (nanoparticle and
experimental details can be found in the Methods section), a
common procedure for creating therapeutically active nano-
particles. By adjusting the reaction conditions, nanoparticles with
different average degrees of functionalization (low, medium,
high) could be generated in a simple manner. Medium-density
particles have been imaged using astigmatic 3D-dSTORM (vide
supra), resulting in well-reconstructed spherical clusters of loca-
lizations (Fig. 3b).

A measure of the variability between nanoparticles in a
population can be obtained by investigating the distribution of
the number of localizations per bead. In Fig. 3c, the probability
mass function for this number of localizations is depicted (grey
bars). This distribution is determined by the interplay between
two properties: the number of fluorophore molecules attached to
a nanoparticle, and the number of localizations per fluorophore.
The latter is geometrically distributed with known parametriza-
tion (Fig. 2c). For fully random attachment processes, in which
fluorophore molecules in the reacting solution have an equal
probability to attach to any nanoparticle, the former property is
expected to follow a Poisson distribution. Combining these
distributions results in a compound Poisson distribution, which
has been fit to the probability mass function in Fig. 3c (red solid
line). As can be clearly seen, a compound Poisson distribution
does not provide an appropriate fit. However, when the
functionalization process is not Poissonian, but is characterized

by additional dispersion instead, the number of dyes per
nanoparticle can be captured by a negative binomial distribution.
Then, the observed number of localizations per nanoparticle
equals a random sum of negative binomial random variables,
referred to as a compound negative binomial. This tailored
distribution successfully captures the width and asymmetry of the
data (Fig. 3c, solid green line) and thus verifies property (ii). The
improved quality of the fit can be clearly seen in the cumulative
distribution functions (Fig. 3d), demonstrating larger variability
than expected by traditional count statistics. This overdispersion
may indicate dispersity on the bead level or dependence between
the reactions of different fluorophore molecules on a particular
bead, thus casting doubt on the assumption of fully random
functionalization that is almost universally adopted in the field.

Estimating fluorophore locations. Not only the number of
functional groups can vary between different nanoparticles, but
also their spatial distribution on the particle surface. A statistical
procedure has been developed to analyse the distribution of
fluorophores on a nanoparticle, based on clusters of localizations
as present in a dSTORM image. Since the actual locations of
fluorophores are unknown in an experimental setting, the per-
formance of this procedure has been verified using stochastic
simulations (Fig. 4), validating property (iii). In these simulations,
fluorophores are placed on the surface of a nanoparticle
according to a pre-defined distribution (Fig. 4a). Subsequently,
the dSTORM imaging process is mimicked, resulting in a
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Fig. 3 dSTORM imaging of dye-functionalized nanoparticles. a Schematic depiction of a spherical nanoparticle, functionalized with multiple Alexa647
fluorophores. The average density of the fluorophores can be adjusted by varying reaction conditions. b dSTORM image of multifunctional nanoparticles.
Medium-density nanoparticles were immobilized on a glass coverslip and imaged using astigmatic 3D-dSTORM. c Probability mass function of the number
of localizations per nanoparticle (grey bars), Nbeads ¼ 379. The probability mass function has been fit using a conditional compound Poisson distribution
(solid magenta line), Poisson λ̂ ¼ 46:82

� �
; representing the functionalization reaction as a completely random arrival process. An alternative fit has been

performed using a conditional compound negative binomial distribution (solid green line), NBinomialð̂r ¼ 6:54; p̂ ¼ 0:12Þ, indicating a functionalization
process with increased dispersion. d Cumulative probability distribution of the number of localizations per bead (solid points). The plot shows an improved
quality of the fit for a compound negative binomial function (solid green line) compared to a compound Poisson function (solid magenta line). Details of the
distributions used in c and d can be found in the Supplementary Methods

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09595-y ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:1663 | https://doi.org/10.1038/s41467-019-09595-y | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


localization-based image (Fig. 4b). Using this simulated image as
input, first the most likely number of dyes based on the com-
pound negative binomial distribution is calculated using the
number of localizations (vide supra).

We then approximate the locations of the source fluorophores
using MLE, a singular and essential step for the determination of
functional group distributions. In brief, the k-means algorithm57

is applied to provide an initial guess of the source locations. Based
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negative binomial distribution. The spatial locations are realizations of a uniform distribution over the surface of the sphere. b Simulated clusters of
localizations (crosses) based on the generated fluorophore locations in Fig. 4a. The simulations of the dSTORM imaging process are generated realizations
of the probabilistic model described in detail in the Supplementary Methods. c Measurement uncertainties for each localization, dependent on brightness
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localizations associated with the fluorophore colour-coded in blue are depicted. d Measurement uncertainties viewed along the z-axis. e Final MLE
estimates of the fluorophore locations (solid triangles), resulting from the EM-algorithm based on the simulated localizations and associated uncertainties.
The actual locations of simulated fluorophores are indicated for reference (solid points). f Matching of estimated and actual simulated fluorophore
locations, using the Hungarian algorithm given the real number of dyes. Matched pairs are indicated by identical colours. The average distance between
pairs is a measure of the estimation error in the MLE procedure
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on this initial estimate, the probability distribution of origination
(i.e. the chance that a localization originates from a particular
source) is derived for all localizations using MLE. Subsequently,
an improved location estimate is computed using weighted
contributions of localizations, taking into account the distribution
of origination, the nanoparticle geometry and the measurement
uncertainty (Fig. 4c, d). This last factor enables differential
appraisal of bright blinks with a high localization precision, and
localizations based on few photons with a larger error margin.
Allocation of localizations and weighted displacement of sources
are then iteratively repeated in an expectation-maximization
(EM) algorithm58, until convergence is reached and a final
estimate of the source locations is obtained (Fig. 4e). In a
simulated environment, the actual numbers and locations of the
source fluorophores are known, and can be compared to the final
estimate. After matching estimates and actual locations using the
Hungarian method59 assuming a known number of dyes (Fig. 4f),
the absolute average estimation error can be calculated. The
estimation errors in the x, y and z dimensions equal ± 21 nm (see
Supplementary Table 11), thus the actual fluorophore locations
can be approximated with high accuracy. A more detailed
explanation and mathematical derivation of the algorithm can be
found in the Supplementary Methods.

Spatial distribution of functional groups. To elucidate the
functional group distribution on individual nanoparticles,
Alexa647-appended particles have been investigated using the
EM-estimation algorithm (Fig. 5a). The most common assump-
tion for the functionalization process is for the fluorophore
molecules to attach “fully randomly”, i.e. independently of other

dyes or particle orientation. It is necessary to stress that even for
fully random functionalization, stochastic variability in functional
group densities along the bead is to be expected. This stochastic
clustering can be conveniently quantified using the distribution of
nearest-neighbour distances (NNDs)58. When the likelihood for a
fluorophore to attach is constant over the surface of a nano-
particle, and thus independent of other bound dyes, the func-
tionalization procedure can be represented as a homogeneous
negative binomial point process. Thus, we have simulated a large
population of beads using this “stochastically homogeneous”
(from here on termed “homogeneous” for clarity) process at the
appropriate average functionalization density, and have calculated
the NND distribution of the functional groups (Fig. 5b, blue
bars). The localization lists from these simulated beads have been
subjected to the EM-algorithm, and the NND distribution for the
location estimates has also been calculated (Fig. 5b, red bars).
Comparison of these two distributions shows some flattening of
the features below ±50 nm (the residual effect of overcounting),
but the main characteristics of the NND distribution are pre-
served. This confirms property (iii), enabling us to draw valid
inference on the NND distribution of the experimental beads.

Compared to the estimation based on the simulated dye
distribution, the NND distribution for fluorophore locations
obtained from the experimental images using the EM-algorithm
(Fig. 5b, yellow bars) is rather different, also clearly visible in the
cumulative distribution plots (Fig. 5c). One can already
qualitatively conclude that the experimental data are more
clustered (smaller NND) than would be expected when assuming
homogeneity in the functionalization. In order to quantitatively
confirm the observed deviation from homogeneity at the
population level, we have performed statistical significance testing
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Fig. 5 Analysis of the functional group distribution on the surface of nanoparticles. a 3D-dSTORM image of a multifunctional nanoparticle is analysed using
an EM routine, to obtain the MLE estimate of the functional group locations (solid points). Transparent circles indicate the average estimation error.
b Probability density function of NNDs. Plot includes NND distributions for the actual fluorophore locations in a stochastically homogeneous simulation
(dashed blue, NNND;sim ¼ 4:2 ´ 104), for the estimated locations in a stochastically homogeneous simulation (dashed red, NNND;est ¼ 4:2 ´ 104) and the
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Distribution analysis of low- and high-density beads are presented as Supplementary Figs. 14 and 16
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of the average NND per nanoparticle. Based on the estimated dye
positions of a population of particles simulated under the
homogeneity assumption (Nbeads,sim/est= 937), we have con-
structed an empirical distribution of the average NND per bead.
For each experimentally observed particle (Nbeads,exp= 379), we
have calculated the average NND of its estimated dye locations.
These values are compared to the 2.5% and 97.5% quantiles of the
estimated simulated (homogeneous) average NND distribution,
which correspond to values that are very rare under the
homogeneity assumption, and the number of observed values
outside these boundaries is counted. If the homogeneous model
describes the data accurately, this sum is Binomialðn ¼ 379; p ¼
0:05Þ distributed. Using α= 0.05, the threshold value for
accepting homogeneity is 26 observed values outside the specified
boundaries. Experimentally, we find a value of 82 (P < 0.001,
tailored test, see Supplementary Table 13), leading to the
rejection of homogeneity in our experimental population. The
low average NND found among these outliers indicates the
presence of pronounced fluctuations in functional group density,
resulting in a higher degree of clustering than the stochastic
clustering that might be expected for a homogeneously
functionalized bead.

Effects of heterogeneity. In addition to the population-level
analysis, dSTORM provides insight into the particle-to-particle
variability of functional group distributions (Supplementary
Figure 13). Since functionalization of nanoparticles does not take
place homogeneously over the surface, finding a closed expression
for the prediction of local functional group density is problematic.
The exact form of the heterogeneity is unknown, may be variable
with nanoparticle composition, size or functionalization chem-
istry, and is difficult to determine experimentally. Rather, a
dSTORM-based approach can be applied to estimate fluorophore
locations and empirically determine their arrangement, capturing
bead-to-bead stochastic variability in the number of functional
groups and their spatial distribution. As an example relevant to
multivalent interactions, we quantify the presence of high-density
regions on the surface of our experimental nanoparticles. Such a
patch might elicit a biochemical response in a therapeutic setting
or might allow displacement in competitive interactions7,41.
Moreover, patchy particles may yield emergent properties and
display interesting colloidal behaviour60,61. As an arbitrary
threshold, we define a high-density region as the presence of five
functional groups within a 50 nm arclength radius (Fig. 6a). The
occurrence of these patches on the experimental nanoparticles

has been quantified using our MLE procedure, showing a quan-
titatively different distribution and a higher average number of
patches compared to the homogeneous case (Fig. 6b). Notice that
the distribution for the simulated dyes (blue) illustrates the
enhanced stochastic clustering of the real beads compared to their
simulated counterparts. Let us assume that the presence of at least
three patches results in an effective interaction. Now, based on the
estimations, the probability that an arbitrary bead cannot effec-
tively interact, PðNclusters<3Þ, equals 0.90 for the (homogeneously)
simulated beads (which is close to the probability of 0.91
underlying the simulations) and 0.60 for the experimental beads
(Fig. 6b). As a consequence, on average, more than 28 homo-
geneously functionalized beads are required to achieve 95%
probability of successful signalling 1� 0:928 ¼ 0:948ð Þ, as
opposed to only 6 based on the empirical distribution
1� 0:66 ¼ 0:953ð Þ. When more patches are needed for effective
interaction, this difference is exacerbated. Hence, these results
show that the multivalent action of nanoparticles prepared
through such covalent functionalization cannot be predicted
correctly by assuming homogeneously reacted species, and effi-
cacy will be likewise affected.

Discussion
An approach combining super-resolution microscopy with sto-
chastic modelling and statistical estimation has been outlined, in
which we demonstrate improved interpretation of nanoparticle
surface functionality. We have verified its ability to capture the
dye photophysics (i), incorporate functional group quantities (ii)
and reconstruct spatial patterns (iii), and have thus proven the
accurate estimation of fluorophore locations on the nanoscale.
Functionalization of nanostructures is generally performed with
the (implicit) aim of creating a uniform functional group pattern,
but we have identified various sources of variability when
applying common protocols. Stochastic fluctuations proved
insufficient to explain the experimentally observed variability in
dye-labelled polystyrene nanoparticles, and the common
hypothesis of stochastically homogeneous (“fully random”)
attachment of functionalities was rejected.

The large particle-to-particle variation in the number of
functional groups and the clear heterogeneity of their distribution
on the nanoparticle surface imply some measure of association
between attachment events. This heterogeneity may be related to
the distribution of reactive sites on the beads, to the functiona-
lization chemistry or other factors. While its exact origin is
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currently unclear, it is likely prevalent in synthetic nanoparticles
customized for various applications, taking into account the
ubiquity and robustness of the functionalization procedures
applied here. Considering the growing relevance of controlling
the surface topology of functional nanoparticles in both materials
science and biomedical developments62,63, elucidation of the
cause and form of the heterogeneity are priorities for future
research.

Of course, inhomogeneous distributions of moieties over sur-
faces and volumes are consequential in a wider range of artificial,
as well as biological, nanosystems. The MLE based analysis of
such distributions can be generalized for different probes, den-
sities and scales, although the requirements for the algorithm may
be different and hence call for optimization. Validation may be
performed in silico as demonstrated here or might be accom-
plished using discrete reference structures with well-defined
fluorophore locations (e.g. DNA origami47). Especially when the
underlying molecular distribution is inaccessible, our approach is
suitable for measuring probe locations and separation. In this
way, it might function similarly to other clustering methods, and
benchmarking relative performance and location precision might
be worthwhile.

Variation in surface functionality affects multivalent interac-
tions in therapeutic, nanotechnological and biochemical appli-
cations. It is crucial to be aware of the difference between average
functionalization densities and the real, highly variable, coverage
of individual nanoparticles. Controlling and harnessing this
interparticle variability requires single-particle analysis of func-
tional group densities, of which the dSTORM-based empirical
analysis of high-valency regions on synthetic nanoparticles
described in this work is an example. We expect that improved
accessibility of such approaches will contribute to significant
improvements in the design of novel functional nanostructures.

Methods
Nanoparticle labelling. Carboxylic acid functionalized polystyrene beads (Spher-
otech CP-025, composition: polysterene (amorphous), functionality: carboxyl,
functional group content: 50 mol g−1 solid, diameter: 337 nm, zeta potential: −63.8
mV) were suspended at 0.25% w/v in phosphate-buffered saline (pH 7.2) followed
by addition of 10 eq. EDC (Sigma-Aldrich, 240 μg), 25 eq. NHS (Sigma-Aldrich,
357 μg) and Alexa647-Cadaverine (Invitrogen). Single-dye beads were created
using 10−6 eq. of Alexa647-Cadaverine (0.2 ng, added through a dilution series in
MilliQ). Multifunctional beads of different densities were created using 10−4 (L),
10−3 (M), 10−2 (H) and 10−1 (VH) eq. of Alexa647-Cadaverine, respectively.
Reactions were shaken at room temperature for 4 h. Subsequently, the beads were
iteratively centrifuged and resuspended in MilliQ (three iterations), followed by
extensive dialysis for 24 h (1 kDa MWCO; Spectrum Labs, three iterations).

dSTORM imaging. In order to perform dSTORM imaging, sample chambers were
created as follows. Glass microscope coverslips (No. 1.0, 26 ×22 mm, thickness 0.15
mm) were consecutively immersed in acetone, isopropanol and MilliQ and soni-
cated for 10 min in each solvent. Next, a fresh solution of Piranha etch was pre-
pared (3:1 v/v concentrated H2SO4:H2O2 (aq, 30%)) in which the slides were
incubated for 15 min. Finally, the slides were washed thoroughly with MilliQ and
acetone before drying under N2-flow. In order to introduce fiducial markers,
TetraSpeck™ Microspheres (solution) were diluted 50× in ethanol, and 5 μL of this
solution was placed on the coverslip. After the solution had spread over the entire
surface, the ethanol was evaporated under N2-flow. Subsequently, an imaging
chamber was constructed using a glass slide, two strips of double-sided tape and the
coverslip. The imaging chamber was incubated with 0.1% poly-L-lysine solution
(Sigma-Aldrich) for 10 min, flushed three times with MilliQ and then incubated
with a suspension of Alexa647-functional nanoparticles for 30 min. After this
incubation, the imaging chamber was flushed with MilliQ (three times) and
dSTORM buffer (three times). dSTORM buffer contains 50 mM Tris-HCl (pH 8.0),
10 mM NaCl, 5% w/v glucose, 0.1 M MEA (mercaptoethanolamine; Sigma-
Aldrich) and an oxygen scavenging system (0.5 mg per mL glucose oxidase, 40 μg
per m catalase). dSTORM images were acquired using a Nikon N-STORM
4.0 system configured for total internal reflection fluorescence imaging. Alexa647-
labelled nanoparticles were illuminated using a 647 nm laser; the fiducial markers
were illuminated using a 488 nm laser. No UV activation was employed. Fluor-
escence was captured using a Nikon ×100, 1.4 NA oil immersion objective and
passed through a quad-band pass dichroic filter (97335, Nikon). Images were

acquired using a 256 × 256 pixel region of interest (pixel size 160 nm) on a CMOS
camera. For a measurement, 50,000 frames were acquired in the 647 channel at
maximum camera speed (frametime ±4 ms for this ROI on the CMOS camera).
Sample imaging was alternated every 100 frames by a single 488 channel frame for
drift correction. Three-dimensional acquisition was performed using the astigmatic
method, calibrated by Z-stepping a sample with a high-density of fiducial markers
at optimized laser intensity. dSTORM images were analysed using the dSTORM
module of the NIS Elements software (Nikon). Preprocessing of the acquired data
is described in the Supplementary Methods.

Probabilistic model and data simulation. The probabilistic model for the dye
dynamics describes the blinking behaviour (Supplementary Figs. 2 and 3), the
number of localizations per bead (Supplementary Figs. 4–6) and the observation of
a signal given its source (Supplementary Eqs. 4–43 and Supplementary Figs. 7–9).
The details and reasoning behind the model are presented in the Supplementary
Methods. Based on this probabilistic model computer simulated beads have been
generated under the assumption of homogeneous functionalization.

Estimation of dye locations. Based on the probabilistic model the number of dyes
can be estimated from a collection of localizations (Supplementary Eqs. 44–46).
Subsequently, an EM-algorithm is used to estimate their positions on the bead
(Supplementary Eqs. 47–63). The details and reasoning behind the estimation
procedure are presented in the Supplementary Methods.

Distribution analysis. The processed dSTORM images are compared with the
processed simulated localization sets to ascertain homogeneous functionalization.
Inference is drawn based on the average NND per bead using a modified rando-
mization test (Supplementary Eqs. 64–67 and Supplementary Figs. 14–16). The
details and reasoning behind this distribution analysis are presented in the Sup-
plementary Methods.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The R code of the EM-algorithm is available from the corresponding author on
reasonable request.
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