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RAMIFIED GALOIS COVERS VIA MONOIDAL FUNCTORS

FABIO TONINI

ABSTRACT. We interpret Galois covers in terms of particular monoidal functors, extending the correspon-
dence between torsors and fiber functors. As applications we characterize tame G-covers between normal
varieties for finite and étale group schemes and we prove that, if G is a finite, flat and finitely presented non-
abelian and linearly reductive group scheme over a ring, then the moduli stack of G-covers is reducible.

INTRODUCTION

Let R be a base commutative ring and G be a flat, finite and finitely presented group scheme over R. In
[ ] I introduced the notion of a ramified Galois cover with group G, briefly a G-cover, and the stack
G-Cov of such objects (see 1.2 for details). This stack is algebraic and of finite type over R and contains By G,
the stack of G-torsors, as an open substack. If G is diagonalizable, its nice representation theory makes
it possible to study G-covers in terms of simplified data (collections of invertible sheaves and morphisms
between them) and to investigate the geometry of the moduli G-Cov (see [ D.

The general case is much harder, even when G is a constant group over an algebraically closed field of
characteristic zero: a direct approach as in the diagonalizable case fails because of the complexity of the
representation theory of G. Thus in order to handle general G-covers one needs a different perspective and
Tannaka’s duality comes into play. The G-torsors are very special G-covers and the solution of Tannaka’s
reconstruction problem asserts that they can be described in terms of particular strong monoidal functors
with domain Loc® R, the category of G-comodules over R which are projective and finitely generated as
R-modules. If X is an algebraic stack, denote by Loc & (resp. QCoh X) the category of locally free of finite
rank (resp. quasi-coherent) sheaves on X, so that Loc Bx G =~ Loc® R. When X’ = Spec A we simply write
Loc A and QCoh A. The result about G-torsors can be stated as follows.

Theorem. ([ , Theorem 3.2], [ , Theorem 1.3.2]) Let SMong be the stack over R whose fiber over
an R-scheme T is the category of R-linear, exact (on short exact sequences) and strong monoidal functors
Loc® R — Loc T. Then the functor

G

By G ———— SMon$

(T = Br G) — S|*LocGR

is an equivalence of stacks.

Since a G-cover is a “weak” version of a G-torsor it is natural to look at a “weak” version of a strong
monoidal functor, that is, as the words suggest, a (lax) monoidal functor. This idea has motivated the
study in [ ] of more general monoidal (and non) functors and this paper is an application of it. We
introduce the stack Mong (Mong,reg) over R whose fiber over an R-scheme T is the groupoid of R-linear,
exact monoidal functors I:Loc® R —> Loc T (such that rk Iy = rkV (pointwise) for all V e Loc® R).
We also denote by LAlgg the stack over R whose fiber over an R-scheme T is the groupoid of locally free
sheaves of algebras on T with an action of G, or, alternatively, the stack of covers with an action of G. The

stack LAlgg is algebraic and locally of finite presentation over R and G-Cov is an open substack of LAlgg
(see 1.5).
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Recall that G is linearly reductive over R if the functor of invariants (-)¢:QCohBr G —> QCohR is
exact. We say that G has a good representation theory over R if it is linearly reductive and there exists a finite
collection I of sheaves in Loc® R such that for all geometric points (one is enough if Spec R is connected)
Speck —> SpecR the map (- ®g k):Ig —> Loc® k is a bijection onto a collection of representatives
of the irreducible representations of G xg k. Examples of groups with a good representation theory are
diagonalizable groups and linearly reductive groups over algebraically closed fields. In general we show that
any linearly reductive group G over R has fppf locally (étale locally if G/R is étale) a good representation
theory (see 1.15).

Theorem A. The map of stacks

A:G-Cov — Mong, (X N T) — (f.Ox ® —)°
is an open immersion, it extends the equivalence A:Br G —> SMony; and takes values in Mong,,eg.
If G is linearly reductive over R then A extends to an equivalence A: LAlgg —> Mon§, namely A(<7) =

(o7 ® =), the stack G-Cov is an open and closed substack of LAlgg and, if G has a good representation
theory, then A(G-Cov) = Mong)reg.

The equality A(G-Cov) = Mong,reg is not true in general, even when G is linearly reductive (see 1.8).
We are going to show two applications of the above point of view. The first one is about the geometry
of G-Cov (see also 3.3).

Theorem B. If G is a finite, flat and finitely presented nonabelian linearly reductive group scheme over R
then the stack G-Cov is reducible.

When G is a diagonalizable group the same result holds except for a few cases when G has low rank (see
[ , Corollary 4.17]). Thus the bad behaviour of the moduli G-Cov is still present in the nonabelian
setting. Note that the proof of Theorem B does not use and cannot be adapted to show the reducibility
of G-Cov when G is a diagonalizable group. Moreover it requires the study of more general monoidal
functors than the ones present in Mong)reg. Theorem B already appeared in my Ph.D. thesis | ], but
the proof we present here is slightly different and relies on the following fact: if H is an open and closed
subgroup scheme of G the functor

indfj: LAlgh — LAlgS, o — (& ® R[G])"
is well defined, quasi-affine and étale (see 2.1).

The second application is a characterization of G-covers of regular in codimension 1 schemes. Let us
introduce some notation and definitions in order to explain the result. Let f: X — T be a cover with an
action of G on X. We denote by trs: f,Ox —> Or the trace map, by try: f,Ox — (f. Ox)" the map
x — try(x-—) and by s; € (det f, Ox)~* the discriminant section, that is the section obtained by det tr .
If f is a G-cover with associated monoidal functor Q/ = (f,Ox ® —)%:Loc® R — Loc T and V € Loc® R
consider

ol 00, — . — QL= (£0x)¢ =01
where the first map is given by monoidality, while the second is induced by the evaluation V® V¥ — R.
The morphism above yields a map &; v: Q{,v — (Q{,)v of locally free sheaves whose rank coincides with

k' V by Theorem A. Applying the determinant we obtain a section sy,y € (det Q{, ® det Q{,v )y LIfgeTis
a point and V € Loc® T we denote by rk, V the rank of V ® O, and by rk, G the rank of G over g, that
is rky; O1[G]. The result we will prove is the following.

Theorem C. Let G be a finite and étale group scheme over R. Let also Y be an integral and Noetherian R-
scheme with dimY > 1, and f: X —> Y be a cover with an action of G on X over Y and such that X/G =Y.
Let also q € Y be a codimension 1 and regular point. Then the following are equivalent:
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1) all points of X over q are regular, tame (the ramification index is coprime with char k(q)) and have
separable residue fields.

2) we have vy(ss) < rk f, where v, denotes the valuation in g;

3) there exist an étale neighborhood U — Y with a point q' mapping to q and with G x U con-
stant, subgroups T < H < G x U with H/T cyclic of order coprime with char k(q) and Spec B ¢
(H/T)-Cov(U) such that X xy U = Spec(ind§ 2), By is a regular local ring, H is the geometric
stabilizer of a codimension 1 point of X over q, T is the geometric stabilizer of a generic point of X
and Spec A is generically an (H/T)-torsor.

If one of the above conditions is satisfied we have that: f is generically a G-torsor if and only if tk f = 1k G

and in this case the geometric stabilizers of the codimension 1 points of X over q are linearly reductive and

cyclic and there exists an open subset V € Y containing q and such that fig(vy: f'(V) — V is a G-cover;

if G is constant, G —> Aut X is injective and the generic fiber of f: X — Y is connected then rk f = rk G.
If G is linearly reductive and 1k f = rk G then the above conditions are equivalent to

4) f € G-Cov and for all V € Rep® R (resp. V € I if G is good) we have vy(sfv) < tky(V/VE);

5) f € G-Cov and for all V € Rep® R (resp. V € Ig if G is good) we have that Coker(&sv) ® Oy,
is defined over k(q), that is m,(Coker(§sv) ® Oyy) = 0 where m, denotes the maximal ideal of
Oy,q.

In this case f € Z5(Y), where Zg denotes the schematic closure of B G inside G-Cov (see 3.5).

A variant of this result already appeared in my Ph.D. thesis [ ] but under stronger hypotheses
on the geometric stabilizers in codimension 1 (see [ , Theorem 4.4.7]). The proof we present here is
different and relies on [ ], where a non-equivariant analogue of the above theorem is proved.

We now briefly describe the subdivision of the paper. In the first section we prove Theorem A, while
in the second we study the property of induction from an open and closed subgroup. The third section is
dedicated to the proof of Theorem B and the fourth section to the proof of Theorem C.

NOTATION

In all the paper we fix a base ring R, so that all rings, schemes and stacks will be defined over R.

Consider a scheme T and a finite, flat and finitely presented group scheme G over R. We denote by
Br G (or simply B G) the stack over R of G-torsors, by Loc T (resp. QCoh T) the category of sheaves of
Or-modules that are locally free of finite rank (resp. quasi-coherent), by LocC T (resp. QCoh® T) the
category of sheaves of Ormodules that are locally free of finite rank (resp. quasi-coherent) together with
an action of G, and by QAIg® T the category of quasi-coherent sheaves of algebras . on T together with
an action of G. When T = Spec A we will often replace T by A and write, for instance, Loc® A instead of
Loc®(Spec A).

If €, 2 are R-linear monoidal categories with unities I, ] and I 4 — 2 is an R-linear functor, a
monoidal structure on T consists of a natural transformation yw:I'v ® I'w — Tygw for V, W € € and
a morphism 1: ] — I satisfying certain compatibility conditions. A monoidal structure in which those
maps are isomorphisms is called strong. We refer to [ , Definition 2.18] for the precise definition.

Given F € QCoh® T we set QF = (F& —)G: Loc® R —> QCoh T, which is an R-linear functor. If
F € QAIg® T then Q7 has a monoidal structure induced by the multiplication and the unity of F (see
[ , Proposition 2.22 and Section 4]).

A map f:X — T of schemes is called a cover if it is affine and f, O is locally free of finite rank or,
alternatively, if it is finite, flat and finitely presented. Affine maps into a scheme T will be often thought of
as quasi-coherent sheaves of algebras on T, so that covers correspond to locally free sheaves of algebras of
finite rank.

A geometric point of a scheme T is a map Spec k — T, where k is an algebraically closed field.
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1. GALOIS COVERS VIA MONOIDAL FUNCTORS

The aim of this section is to prove Theorem A. We fix a base ring R and a finite, flat and finitely presented
group scheme G over R.
Taking into account [ , Remark 4.3 and Theorem 4.6] we have the following result.

Theorem 1.1. The functor QO yields an equivalence between QCth T (QAlgG T) and the category of R-
linear (monoidal) functors Loc® R —> QCoh T which are left exact on short exact sequences.

Definition 1.2. A G-cover of an R-scheme T is a cover f: X — T together with an action of G on X such
that f is invariant and f.Ox and R[G] ® O are fppf locally isomorphic as G-comodules (not as rings).

We denote by G-Cov the stack over R of G-covers. The stack G-Cov has been introduced in [ 1,
it is algebraic and of finite type over R and contains Br G as an open substack.

The following remark (see [ , Part 1, 3.4] for a proof) will be often used in the next pages.

Remark 1.3. If M € QCoh® R and &: R[G] —> R is the counit then the evaluation in ¢ yields an R-linear
isomorphism

Hom®(R[G]",M) = M
or, equivalently, the composition (R[G] ® M)® — R[G] ® M B M is an R-linear isomorphism.
Definition 1.4. Given an R-scheme T we denote by LAlg® T the groupoid of locally free sheaves of algebras
over T with an action of G and by LAlgg the stack over R they form. Given n € N we also denote by LAlgS T
(resp. LAlgg)n) the subcategory of LAIg® T (resp. substack of LAlgg) of sheaves of rank #.

Proposition 1.5. We have that LAlgg = UpeN LAlgg,n and that LAlgg’n is an algebraic stack of finite pre-
sentation over R for all n € N. Moreover the map

G-Cov — LAlg(R}, (ffX—Y)— f.0x
is an open immersion.

Proof. The first claim follows from the fact that the rank function for a locally free sheaf is locally constant.
For the second one, consider the forgetful functor LAlgg’n — BGL, and call X the fiber product along
the universal torsor Spec R — B GL,,. For simplicity we can assume that R[G] is free as an R-module.
The stack X is actually a sheaf X: (Sch/R)°P — (Sets) and it maps a scheme T to the set of all possible ring
structures together with an action of G on Of. Since a ring structure is given by maps O} ® O — O (the
multiplication) and O — O (the unity), while a R[G]-comodule structure by a map Of — O} ®R[G]
(the comodule structure), we can embed X into an affine space AY. The compatibility conditions among
the previous maps allow us to conclude that X is the zero locus in ANof finitely many polynomials, as
required.

We now deal with the last claim. Clearly the map in the statement is fully faithful. We have to prove that if
o/ € LAIg® B, where B is a ring, then the locus in Spec B where .« is fppflocally the regular representation
is open. Concretely, if & Spec k — Spec B is a geometric point and &7 ® k € G-Cov(k) we will prove that
there exists a flat and finitely presented map Spec B’ — Spec B through which £ factors and such that
o/ ®B' = B'[G]. Denote by p € Spec B the image of £. Both the stack G-Cov and LAlgY; are locally of finite
type over R and therefore also the map G-Cov — LAlgg is s0, which in particular implies that & ® k(p) €

G-Cov(k(p)). Thus we can assume k = k(p). Since k is algebraically closed we have that &7 ® k is the
regular representation and thus we have a G-equivariant isomorphism @: k[G]" — (& ® k)". By 1.3 the
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map w is completely determined by a ¢ € &7 ® k. There exists a finite field extension L/k(p) such that ¢
comes from some element in «7¥ ® L and it is a general fact that we can find an fppf neighborhood Spec B’
of p in Spec B with a point p’ € Spec B’ over p such that k(p") = L. Up to shrinking Spec B” around p’ we
can assume we have ¢ € .7V inducing ¢. The element ¢ defines a G-equivariant map w: B[G]" — &7V
of locally free sheaves on A inducing w. Since w is an isomorphism it follows that w is an isomorphism in
a Zariski open neighborhood of p as required. O

Proof of Theorem A, first sentence. Let A be an R-algebra. By 1.3 we have
041% = (A[G]® (V8 A))® ~ V@ A for V e Loc® R

More precisely Q*[C] is isomorphic to the forgetful functor (- ®g A):Loc® R —> Loc A as monoidal
functor. In particular if 7 € QAIg® A is fppflocally isomorphic to A[G] (without ring structure) then the
functor O = (&7 ®-)%:Loc® R —> QCoh A is fppflocally R-linearly isomorphic to the forgetful functor
(- ®g A):Loc® R — Loc A (without monoidal structure). This easily implies that A is well defined and
takes values in Mong,reg. It is fully faithful thanks to 1.1. It extends the functor A because if f: X — Spec A
is a G-torsor corresponding to s: Spec A —> Br G then s, Oy =~ f.Ox as sheaves of algebras on Bx G and

(5,04 ®r V)€ 2 Homp, G(V",5.04) ~ Homu (s*VY, A) ~ s*V for V € Loc(Bg G) = Loc® R

We now prove that it is an open immersion. Let I' € Mon§ (A). By L1 there exists <7 ¢ QAlg® A such that
I'~ Q9. By definition of Mon§ and taking into account 1.3 we also have that Q}%G] = (#/®R[G])¢ ~ o

is a locally free sheaf on A, that is <7 € LAlg® A. The result then follows because, by 1.5, the locus in Spec A
where 7 is fppf locally the regular representation is open. O

Definition 1.6. The group scheme G is called linearly reductive over R if the functor of invariants
(-)%:Mod® R — Mod R
is exact.

From now until the end of the section we will assume that G is linearly reductive over R. Remember that
this condition is stable under base change, is local in the fppf topology and that G is fppf locally well-split,
which means isomorphic to a semidirect product of a diagonalizable group scheme and a constant group
whose order is invertible in the base ring (see [ , Proposition 2.6, Theorem 2.19]). We summarize
some properties of linearly reductive groups we are going to use.

Proposition 1.7. Let T be an R-scheme and A be an R-algebra. Then
1) IfFe QCoh® T and H € QCoh T then the natural map

FS@H — (FoH)®

where the action of G on H is trivial, is an isomorphism. In particular taking invariants (-)¢: QCoh® T —
QCoh T commutes with arbitrary base changes.
2) If F € QCoh® T is locally free of finite rank then the map F9 — F locally splits. In particular FS
is locally free of finite rank.
3) Everyshort exact sequence in QCoh® A of sheaves in LocC A splits. In particular any R-linear functor
from LocS R to an R-linear category is automatically exact.
4) IfRis afield any finite-dimensional representation of G is a direct sum of irreducible representations.

Proof. We can assume T affine, say T = Spec A and replace F, H with modules F, H respectively. Point
1) follows because the map in the statement is an isomorphism when H is free and, in general, using a
presentation of H and using the exactness of (~)©. Point 1) implies that F¢ — F is universally injective,
so that point 2) follows from [ , Theorem 714] after reducing to a Noetherian base (for instance
assuming that G is well-split and, thus, defined over Z). For 3),if0 — V — W — Z — 0 is an exact
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sequence of sheaves in Loc® A, then Hom(W, V) — Hom(V, V) is surjective and, taking invariants, we
can find an equivariant splitting. Point 4) follows easily from 3). d

We now show an example of a finite, étale and linearly reductive group G over QQ with A(G-Cov) #
Mong)reg (see Theorem A).

Example 1.8. Consider R = Q, G = Z/3Z, o/ = Q[x, y]/(x, y)* with the action of G x Q = p; given

by degx = degy =1and T = Q7 = (& ®g —)%:Loc® Q — LocQ. We have that &7 ¢ G-Cov(Q) =
13-Cov(Q) because <7 is not isomorphic to the regular representation (it does not contain the p;-representation
corresponding to the character 2 € Z/3Z). On the other hand we have T ¢ Mon(g)reg (Q): the rank condi-

tion can be easily checked on the two irreducible representations of G over Q. By 1.1 we can conclude that

I is not in the essential image of the functor A: G-Cov —> Mon§.

The problem in the above example is that the group Z/3Z has a two-dimensional irreducible represen-
tation over Q which splits over Q. We want therefore to find a class of linearly reductive groups whose
“irreducible” representations are also geometrically irreducible.

Lemma 1.9. Let I be a finite collection of sheaves in Loc® R which have positive rank in all points of Spec R.
The following are equivalent:

1) the natural maps
nv: @DV ®g Hom§ (V, M) — M for M € Mod® R
Vel
are isomorphisms.

2) for all geometric points Spec k N SpecR the set {V ®g k}ver is a set of representatives of the
irreducible representations of G x k and V ®r k ~ W ®x k if and only if V.= W.

3) (assuming Spec R connected) there exists a geometric point Spec k R SpecR for which the set
{V®grk}ver is a set of representatives of the irreducible representations of Gx k and V@g k ~ Werk
ifand only if V.= W.
In the above cases we have that Hom®(V, W) = 0if V # W € I and Hom®(V, V) = Ridy if V e L.

Proof. We are going to use that taking invariants commutes with arbitrary base changes (see 1.7). If Spec k —>
SpecR is a geometric point we set Gx = G x k.

1) = 2). If Speck — SpecR is a geometric point and M € Mod®* k then Hom§(V, M) =
Homkc"‘ (V& k,M) and ny ~ (nm) ® k. Thus we can assume that R is an algebraically closed field. In
this case the result follows by decomposing representations into irreducible ones.

2),3) = 1). If V; W € Loc® R then Hom®(V, W) is locally free by 1.7, 2). Thus, checking the
rank on the geometric points (on the given geometric point if SpecR is connected), if V, W € I then

Hom®(V,W) = 0 for V. # W and Hom®(V, V) = Ridy. In particular if Spec k = SpecR is any geo-
metric point then £*: I —> Loc® k is injective onto a subset of representatives of the irreducible repre-
sentations of G x k. Given M € Mod® R we therefore have that £ is injective and, if £*(Ig) is a full
set of representatives of irreducible representations of G x k, an isomorphism. If Spec R is connected, so
that R[G] has constant rank, applying this consideration to M = R[G] and using 1.3 we can conclude that
3) == 2) by dimension. In particular ny is an isomorphism on all geometric points of SpecR. If M
is an arbitrary direct sum of locally free G-comodules of finite rank it follows that ny is an isomorphism.
In general, using 1.3, we can find an exact sequence of G-comodules V; — V; — M — 0 where the
V; are sum of copies of R[G]". Since ny,, Ny, are isomorphisms, by functoriality it follows that 1 is an
isomorphism as well. O

Remark 1.10. If I is a collection of sheaves satisfying the conditions in 1.9, then there exists another col-
lection I’ satisfying the same conditions and such that R € 1. Indeed notice first that, if R = Ry x R,
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and we are able to replace the collections Ijspecr, and Ijsyecr, then we can easily replace the collection
I. In particular, since the map ng in 1.9 is an isomorphism, we can assume there exists V € I such that
V ® Hom®(V,R) — R is an isomorphism, which means that V is an invertible sheaf with the trivial
action of G. If we replace V by R in I we find the desired collection.

Definition 1.11. We will say that G has a good representation theory over R if it admits a collection I as in
1.9. A good linearly reductive group is a pair (G, I ) where G is a finite, flat, finitely presented and linearly
reductive group scheme over R and Ig is a collection as in 1.9. We will simply write G if this will not lead
to confusion. For simplicity we will also assume that R € I (see 1.10).

If R — R’ is a morphism and G is a good linearly reductive group, then G x R’ is naturally a good
linearly reductive group with the collection of the pullbacks of the modules in I.

Remark 1.12. All diagonalizable group schemes are good over the integers, while if R is a field, then G is
good if and only if its irreducible representations are geometrically irreducible.

We are going to prove that any linearly reductive group is fppf locally good.

Lemma 1.13. Let X be a proper and flat algebraic stack over a Noetherian local ring R. Denote by k the
residue field of R and consider a locally free sheaf Vi of rank n over X x k. IfH*(X x k,End(Vy)) = 0, then
there exists a locally free sheaf of rank n over X x R lifting Vi, where R is the completion of R.

Proof. Taking into account GrothendiecK’s existence theorem for proper stacks, we can assume that R is
an Artinian ring (so that R ~ R) and that we have a lifting V of V, over X' x (R/I), where I an ideal of R
such that I? = 0. Define the stack ) over the small fppf site Xfppr of X whose objects over Spec B — X
are locally free sheaves N of rank n over B with an isomorphism ¢: N ® (B/IB) —> V ® (B/IB). A section
of Y — Afppr yields a lifting of V on X. We are going to prove that V is a gerbe over Afp,pr banded by
the sheaf of abelian groups n. End(Vy), where m: X x k — X is the obvious closed immersion. Since
H?(X,n, End(Vy)) = H*(X x k,End(Vy)) = 0 parametrizes those gerbes (see [ , Chapter 1V, §3,
Section 3.4]), we can then conclude that J) — Af,r is a trivial gerbe, which means that it has a section as
required.

I claim that V is trivial in the tppf topology of X', which implies that J — Af,,¢ has local sections.
Indeed if B is aring and P — Spec B/IB is a Gl,,-torsor then by standard deformation theory it extends to
a smooth map Q — Spec B. In particular, if we base change to Q, we can conclude that P over Q x (B/IB)
has a section, which means that it is trivial.

I also claim that two objects of JV over the same object of A’ ¢ are locally isomorphic. Replacing again
locally free sheaves by Gl, -torsors, given Gl,,-torsors P, Q over Spec B, we have to show that an equivariant
isomorphism P x (B/IB) — Q x (B/IB) locally extends to an equivariant isomorphism P — Q. In
particular we can assume that P and Q are both trivial and in this case the above property follows because
Gl,(B) — Gl,,(B/IB) is surjective, since Gl, is smooth.

The previous two claims show that ) — Xf,,¢ is a gerbe. We have now to check the banding and
therefore to compute the automorphism group of an object (N, ¢) € Y over a ring B. The group Aut(x)

consists of the automorphism N 2N inducing the identity on N/IN. It is easy to check that the map
Homp(N,IN) — Auty, 6 — idy + 8
is an isomorphism of groups. Since IN =1 ®g N and N ® (B/mgB) ~ V; ® (B/mgB) we have
Homg (N, IN) = 1® Endg(N) ~ I/I” ® Endg (N) ~ Endg, 5(Vo ® (B/mgB))
O

Lemmal.14. Assume that R is a Henselian ring with residue field k. The any finite dimensional representation
of G over k lifts to R.
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Proof. Since G is finitely presented, we can assume that R is the Henselization of a scheme of finite type
over Z. Since G is linearly reductive, we have that H*(B(G x k), —) = 0 and, viewing G-representations as
sheaves over B G and using 1.13, we obtain a lifting of V to a representation over the completion R. We can
then conclude using Artin’s approximation theorem over R. O

Proposition 1.15. There exists an fppf coveringUd = {U; —> SpecR};e1 such that G xs U; has a good
representation theory over U, for all i. If G is étale over R there exists an étale covering with the same property.

Proof. We start with the case when R = k is a field. The group G is good after a finite extension of k because
an irreducible representation of G over the algebraic closure of k is always defined over a finite extension
of k. Now assume that G is étale. If k is perfect there is nothing to prove. So assume char k = p > 0. After
passing to a separable extension of k we can assume that G is constant of order prime to p. So G is defined
over I, which is perfect and again we have our claim.

Now return to the general case. Since G is finitely presented, we can assume that R is of finite type over
Z. Let p € SpecR and L/k(p) an extension such that G;, = G x L is good, with L/k(p) separable if G is
étale. There exists a flat finitely presented map h: Spec R’ — Spec R such that h™(p) ~ SpecL. If L/k is
separable we can even assume that / is étale. This shows that we can assume that Gy(,) = G x k(p) is good.
From 1.14 any Gy (,) representation lifts to R%, the Henselization of R, and, since this ring is a direct limit
of algebras étale over R, we get the required result. O

Putting together 1.14 and 1.15 we get:

Theorem 1.16. A constant linearly reductive group over a strictly Henselian ring has a good representation
theory.

Remark 1.17. 1f (G, Ig) is a good linearly reductive group there is an explicit way to map linear functors to
sheaves, which may be useful in concrete examples. Let T be an R-scheme, set Lg (T) for the category of
R-linear functors Loc® R —> QCoh T and define

F:L§(T) — QCoh®T, Fr= P V¥ eIy

Velg

where the action of G on the T is trivial. Using 1.9 it is easy to see that F, is a quasi-inverse of Q*: QCoh® T —
LS (T), QY = (G ® -)5, the other natural isomorphism being

Bu: Q7T = (U Fr)¢ ~ @ Hom®(V,U) @ Iy — Ty for [ € L{(T), U € Loc® R
VGIG

The map B: Ty — (U ® Fr)© is uniquely determined by a map ay: UY ® Iy — Fr. It is easy to see
that:

1) if U € Ig then ay is the inclusion;

2) if U=U, ® U, then ay is zero on U;” ® Ty for i # j € {1,2} and coincides with ay, on U;¥ ® Iy,
foralli=1,2

3) if U=H ® U’ for H € LocR and U’ € Loc® R then ay is

evy @ays

UV®FU2HV®H®U,®FU/

Fr

where evy: HY ® H — R is the evaluation;
4) if y:V —> U is a G-equivariant isomorphism then ay = ay o [(y*) ' ® I, ].

Using the maps a, (and by going through the definitions) if T is a monoidal functor the associated ring
structure on JFr is given by

VVeIy @ W @y — (VO W)" ® Ivgw —= Fr for V, W € Ig
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Proof of Theorem A, last sentence. The functor A: LAlgg — Mon§ is well defined thanks to 1.7. It is an
equivalence thanks to 1.1 and the fact that if &/ ¢ QAlg® T and QO € Mon$(T) then, using 1.3, & =
(o ® R[G])€ = QRﬁG] is locally free of finite rank.

We now show the last equality in the statement. Using notation from 117, if T € Mong)reg(T) then
o =Fre QAlgG T is such that T ~ Q. We can assume that Ty is free of rank rk V for all V € I5. In this
case R[G] ® Ot and &7 have the same decomposition in terms of the representations in I and thus they
are isomorphic.

We finally show that G-Cov is open and closed in LAlgg. This problem is fppf local in the base, thus
we can assume that G is a good linearly reductive group thanks to 1.15. In this case G-Cov (resp. LAlgg)
corresponds to Mong)reg (resp. Mon§) via A and Mong)reg is the locus in Mon§ of functors T such that
rkTy =rkV for all V € I. Since I is finite, this is an open and closed condition, as required. [l

2. INDUCTION FROM A SUBGROUP FOR EQUIVARIANT ALGEBRAS.

As in the previous section we fix a base ring R and a flat, finite and finitely presented group scheme G
over R.

Let H be an open and closed subgroup scheme of G. If F ¢ QCoh™ T we define the induction from H to
G of , denoted by indy; F, as (F®R[G])™ € QCoh® T. For details and properties we refer to [ , Part
I, Section 3]. If F is also a quasi-coherent sheaf of algebras, that is F € QAlg™ T, then indf; F € QAlg® T,
that is it inherits a natural structure of sheaf of algebras with an action of G. The aim of this section is to
prove the following.

Theorem 2.1. IfH is an open and closed subgroup scheme of G the functor
indfj: LAlgh — LAlgy, o — (& ® R[G])"

is well defined, quasi-affine and étale. The (open) image consists of those </ € LAlgg T such that, for all
geometric points Spec k — T, there exists a subset of points of Spec(&/ ® k) whose geometric stabilizers are
contained in H x k and whose G(k)-orbits cover the whole Spec(</ ® k).

Lemma 2.2. Assume that R is a strictly Henselian ring. If A, B are local R-algebras such that A is finite over
R and the maximal ideal of B lies over the maximal ideal of R, then A ®x B is local.

Proof. Set k,, kg for their residue fields. Since A ®g B is finite over B it is enough to note that ky ®, kg
is local since ka /kg is purely inseparable. g

Lemma 2.3. Assume that R is a strictly Henselian ring and let X —> Spec R be a cover with an action of G.
Consider the decomposition into connected components

G=|]GiandX=|]X;
i<G jeX

Given i € G and j € X the restriction of the action X; x G; — X factors through a unique component X
with j x i € X. The operation — x —G x G —> G obtained when X = G with the right action of G by
multiplication makes G into a group, whose unity 1 € G is the connected component containing the identity.
In general the association X x G — X defines a right action of G on the set X. Moreover Gy is a subgroup
scheme of G and the map G; x Gy — G; makes G; into a G;-torsor for all i € G.

Proof. Finite algebras over Henselian rings are products of their localizations. In particular the G; and
X are the spectrum of the localizations of H°(Og) and H’(Ox) respectively. All the conclusions follow
easily from 2.2. O
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Lemma 2.4. Let H be an open and closed subgroup scheme of G and let B be a local ring with residue field
k, o/ € LAIg® B, Z = Spec./ € Spec .o/ be an H-equivariant open and closed subscheme. Then the map
o/ —> indy; o induced by the projection o/ —> o is an isomorphism if and only if

(Zxk)gnZxk+@ = geH(k)  VgeG(k)

and the G(k)-orbits of Z x k cover the whole Spec(./ ® k). In this case </ € LAlg" B and the geometric
stabilizers of Z for the action of H or G coincide. If in addition G is étale over B, then we can replace k with
the separable closure of k in the formula above.

Proof. 1t is easy to see that there exists a (étale if G/R is étale) cover Spec R” — Spec R such that G x R’
splits as disjoint union of copies of H x R, that is the right cosets of H x R’. Localizing in a maximal
ideal of R” we see that we can assume this decomposition holds also for R and that R = B. In particular
R[G] ~ R[H], where R € G(R) is a set of representatives of the right cosets of H, and therefore, using
1.3, we have

ind§; & = (# @ RIG))! = (& ® R[H]®)! ~ (7 @ R[H])T)® ~ 77
In particular ind$ 7 is flat over B and, if &7 ~ ind; <7, then <7 is locally free and therefore o/ € LAlg" B.
Since the map 7 — ind$; ¢/ is an isomorphism if and only if it is so after tensoring with k or the separable
closure k°, we can assume that R = B = Lis k° if G/B is étale or k otherwise. The action of G on ind}; .7 ~
/® is induced by the right action of G(L) on R and the the action of H on .. Thus the map

Spec(indf; /) = |_7|ZZ — Spec &/
g€

is the disjoint union of the g|;: Z — Spec &/ where g|; is the restriction of the action of g € G(L). Taking
into account 2.3, the above map is an isomorphism if and only if Spec &7 is the disjoint union of the Zg for
g € R, which is equivalent to the two conditions given in the statement. O

Definition 2.5. If R is a strictly Henselian ring, X — SpecR a cover with an action of G and X; a
connected component of X we call the stabilizer of X; the open and closed subgroup H of G which is the
disjoint union of the components G; of G such that X;G; ¢ X;.

Lemma 2.6. Assume that R is a strictly Henselian ring with residue field k and let <7 € LAIg® R, p € Spec o/
be a maximal ideal and denote by H,, the geometric stabilizer of p and by U, the stabilizer of the connected

component Spec <7,. Then H,, is a closed subgroup scheme of U, x k, they are topologically equal and, if
G(k) acts transitively on Spec(.o/ ® k), there exists an isomorphism

indy, ) = o/
Proof. We are going to use 2.2 several times. Set X = Spec </ and X, = Spec 7,. Notice that the closed
points of Spec .o/ correspond to Spec(/ ® k) or Spec(%Z ® k), so that we can also think p € Spec(.«/ ® k).

Moreover U, x k is the stabilizer of the connected component Spec &7, ® k of Spec o7 ® k. In particular

H, (k) = U, (k) so that H,, is a closed subgroup scheme of G x k contained in U, x k. Moreover we can
apply 2.4 with Z = Spec .27, and H = U, obtaining the desired isomorphism. O

Proof of Theorem 2.1. Arguing as in the proof of 2.4, we can assume that G is a disjoint union of copies of
H, namely its right cosets, obtaining an isomorphism

indj; Z = (Z @ R[G])" = (Z @ R[H])")* ~ BT for B € LAlgy

where R € G(R) is a set of representatives of the right cosets of H in G. This shows that indy; is well
defined. Moreover, since it is faithful, it is also representable by algebraic spaces. We are going to prove
that it is étale and separated. By [ , Appendice A, Theorem A.2] it will follow that it is quasi-affine.
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Let A be an R-algebra and &:SpecA — LAlgg be a map given by &7 € LAlg® A. The fiber product
X: (Sch/A)°P — (Sets) of £ and ind{] is given by

X(T) = {(#,v) | % € LAlg" T and y: & ® O ~ ind5; B}

Notice that the datum W can also be given as an H-equivariant map &/ ® O —> 2 which induces an
isomorphism ./ ® Oy — indg; 4 via adjunction. In particular we obtain a map X —> Hilbgpec o7/
which is a monomorphism because if (%, V) € X then the action of H on 4 is completely determined by
the action of H on &/ and by y. Since Hilbg,. v/r and monomorphisms are separated, it follows that X is
separated too.

Since LAlgg and LAlgg are locally of finite presentation by 1.5 so is X — Spec A. Thus in order to show
that X is étale over A we can assume that A is an Artinian local ring and prove that, if ] is a square zero
ideal of A, then an object (%', y') € X(A/]) extends uniquely to X(A). The map Spec ' — Spec &[]«
induced by ¢’ is an H-invariant open and closed subscheme of Spec 47 /] 7. This gives an open and closed
subscheme Spec # C Spec.o/. This is also H-invariant: if y:Spec 4 x H — Spec &/ is the restriction
of the action, then y™!(Spec & — Spec ) = @ because it is empty after tensoring by A/J. Thus we have
extended the H-equivariant map

7 ®Al] — indS B —> B’
to an H-equivariant map &/ — & and it is also clear that this extension is unique up to a unique isomor-
phism. Finally the map &/ — indg 2 is an isomorphism because it is so after tensoring by A/J.
It remains to characterize the image of indyj. Let k be an algebraically closed field and .« € LAIg® k.

Given p € Spec .o/ we denote by H, its geometric stabilizer and by U, the stabilizer of Spec 7.

Assume that o7 is in the image, that is &/ ~ indg 2. The conclusion follows applying 2.4 with o = B.
Conversely assume there is a set of points Z ¢ Spec.</ as in the statement. Set X = Spec.&/ and X, =
Spec 7, for p € Spec.o/. We can assume that the points of Z are all in different orbits, that is

X = |X,G(k)
pezZ
By 2.4 we have U, (k) = H, (k) and therefore U, ¢ H. Moroever we also have
o ITZindSP oy =~ Ilindg(indgp ) = indg(llindgp p)
pe pe pe

as required. O
We conclude with the following results that will be used in the next sections.

Corollary 2.7. Assume that G is a constant group and let </ € LAlg® B, where B is an R-algebra, such that
/S = B. If H is the geometric stabilizer of a prime ideal p of < lying over q € Spec B then there exists a
an étale morphism B — B', q' € SpecB’ over q, o7 € LAIg™ B such that «/" = B'and a G-equivariant
isomorphism

o/ ®y B ~ind§; &

Moreover we can also assume that o/ ®k(q') is local, its maximal ideal lies over p € Spec </ and has geometric
stabilizer equal to H .

Proof. We are going to prove that G(k(q)) acts transitively on Spec(.«/ ® k(q)). Using 2.2, we can find a
separable finite extension L/k such that Spec(« ® k(q)) — Spec(«/ ® L) is bijective. Moreover there
exists a flat and local B-algebra B’ with residue field L. Since (&7 ® B’)® = B’, by standard arguments it
follows that G (as constant group) acts transitively on the set of maximal ideals of &/ ® B’ and thus on
Spec(«/ ® L) as required. Now let p € Spec(«Z ® k(gq)) lying over p € Spec.oZ. Since G is constant,
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the geometric stabilizer H of p (that is of p) coincides with the stabilizer of the connected component
Spec((«/ ® k(q))5) and, if we set B=(d® k(q))> by 2.6 we get an isomorphism

o ®k(q) = indS
Since indj;: LAlgy — LAlgy is étale, there exists an étale morphism Spec B’ —> SpecB, q' € Spec B’
over g, % € LAlg" B such that &7 ® B/ ~ ind$; % and 2 ® k(q') ~ %. Moreover we have isomorphisms
B’ ~ (o ® B')C =~ (ind§; )¢ ~ 2"
Thus &7 = 2 satisfies the desired conditions. O
Lemma 2.8. Let H be an open and closed subgroup of G, T an R-scheme and F € QAlg" T. Then
QM T« OF 6 Ry:Loc® R —> QCoh T
where Rip: Loc® R —> Loc! R is the restriction.

Proof. Given V € Loc® R we have

ind§ F

Qy

= Hom®(V",ind; F) = Hom" (Ry(V)", F) = QF v,

3. REDUCIBILITY OF G-COV FOR NONABELIAN LINEARLY REDUCTIVE GROUPS.

The aim of this section is to prove the reducibility of G-Cov when G is a nonabelian linearly reductive
group, that is Theorem B. We fix a base ring R and a finite, flat, finitely presented and linearly reductive
group scheme G over R.

Definition 3.1. Let S be a scheme and X’ be an algebraic stack over S. The stack & is called universally
reducible over § if, for all base changes S’ — S, the stack X’ xg §' is reducible.

Remark 3.2. It is easy to check that X is universally reducible over S if and only if for all fields k and maps
Spec k — S the fiber is reducible.

We start by stating the generalization of Theorem B we are going to prove at the end of this section.

Theorem 3.3. If G is a finite, flat and finitely presented nonabelian and linearly reductive group scheme over
R then G-Cov is reducible. If, moreover, G is defined over a connected scheme, then G-Cov is also universally
reducible.

Note that, if we do not assume that the base SpecR is connected, we can not conclude that G-Cov is
universally reducible, since one can always take G as disjoint union of u, and S; over Spec Q u Spec Q. On
the other hand what happens when the base is not connected is clear from the following Proposition.

Proposition 3.4. The locus of Spec R where G is abelian is open and closed in Spec R.

Proof. Denote by Z this locus and set S = Spec R. Topologically, |Z| is closed in S, because it is the locus
where the maps G x G — G given by (g, h) — gh and (g, h) — hg coincide and G is flat and proper.

We have to prove that, given an algebraically closed field k and a map Spec k 2, Ssuch that G k=Gxk
is abelian, there exists a fppf neighborhood of S around p where G is abelian. By [ , Theorem 2.19],
we can assume that G = A x H, where A is diagonalizable and H is constant. If Gy is abelian, then H is
abelian, the map H — Aut A ~ Aut(Hom(A, G,,))°? is trivial and therefore G ~ A x H is abelian. ~ [J
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Definition 3.5. We say that an open substack U of an algebraic stack X is schematically dense if X is the
only closed substack of X' containing I/. If I is a quasi-compact open substack of X its schematic closure
is the minimum of the closed substacks of X’ containing I/ or, alternatively, the (unique) closed substack
Z of X such that i € Z and U is schematically dense in Z.

We denote by Z¢ the schematic closure of B G inside G-Cov and we call it the main irreducible com-
ponent of G-Cov.

The existence of the schematic closure as stated above and the fact that it is stable by flat base changes
follows from [ , Theorem 11.10.5]. Although we have called Z the main irreducible component of
G-Cov, the stack Zg is irreducible if and only if Spec R is irreducible, because this is the only case in which
B G is irreducible.

Lemma 3.6. Let H be an open and closed subgroup scheme of G and 2 € LAlgI};I. Then
ind; ZeBG < ZcBH, ind§; B e Z5 — HBeZy

Proof. The fact that Z ¢ BH — ind§; # € BG is well known. For the converse set P = Spec % and
consider it as a sheaf of sets over Sch/T with a right action of H, where T is the R-scheme over which %
is defined. Then Q = Spec(inds; %) is by definition (P x G)/H, where the H action on P x G is given by
(p,g)h = (ph,h™'g) and the G-action is on the right. It is easy to check that the natural map P — Q,
p —> (p,1) is an H-equivariant monomorphism. Assume that Q is a G-torsor. It follows that H acts
freely on P, so that sheaf quotient P/H and stack quotient [P/H] coincide. Moreover P/H — Q/G is
an isomorphism, so that P/H ~ Q/G ~ T because Q is a G-torsor. In conclusion P — [P/H] ~ T is an
H-torsor.

Since H-Cov (resp. G-Cov) is closed in LAIg{;I (resp. LAlgg) by Theorem A, it follows that Zy (resp.
Zg) is the schematic closure of BH (resp. BG) inside LAlg§I (resp. LAlgg). The second equivalence
therefore follows because flat maps preserve schematic closures and inds;: LAlgE — LAlgg is étale by
2.1 ]

Definition 3.7. Assume that G is a good linearly reductive group and that SpecR is connected. Given a
scheme T, we will say that a functor Q: Loc® R — Loc T (a sheaf of algebras <7 € LAlg® T) has equivariant
constant rank (or is of equivariant constant rank) if for all V € LocS R the locally free sheaf Qy (Q =
(V ® 7)) has constant rank. In this case we define the rank function rk: Ic —N (rkd: Ic — N)as

k =tk Qy, (k& = rkgd =rk(V® &)%)
Given f:1g —> N we will still call f the extension f:Loc® R —> N given by

fu= Z rk(HomG(V,U))fV

Velg
so that if Q: Loc® R — Loc T is an R-linear functor then rk;} = rk Qy for all V € LocS R.
Lemma 3.8. | 1 A constant group whose proper subgroups are abelian is solvable.
We are ready for the proof of Theorem 3.3.

Proof of Theorem 3.3. If the base scheme is not connected, then clearly G-Cov is reducible. By 3.2 and 3.4,
we can assume that S = Spec k, where k is a field. Notice that G-Cov is reducible if and only if Zg (k) ¢
G-Cov(k), where k is the algebraic closure of k. Moreover Zo5 ¥ 2 x k. Thus, taking into account
3.4, we can assume that k is algebraically closed, so that G is a good linearly reductive nonabelian group
scheme.

Let H be an open and closed subgroup of G. We claim that if one of the following statement holds then
G-Cov is reducible:

1) H-Cov is reducible
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2) there exists f:I;; — N whose extension f:Loc" k — N is such that fg, v = rk V forany V € Ig
and there exists A € Iy such that fy # kA

Assume that H-Cov is reducible and, by contradiction, that G-Cov is irreducible. If B € H-Cov(k) then
ind$ B € G-Cov(k) = Z¢ (k) and so B € Z (k) by 3.6. Therefore H-Cov is irreducible.
Now let f: Iy — Nasin 2) and define

F= P Aok B=koF
R#Aely

so that f = rk” (note that by hypothesis we have fg = 1). Setting F? = 0 we obtain a structure of algebra on
B such that B € LAIg" k. We claim that A = ind{ B € (G-Cov(k)-Z¢(k)). Indeed we have Q* = QB oRy
by 2.8, so that

ere = erEHV :fRHV =rkVforall Ve RepG R

Thus Q4 € Mong)reg and, since G is good, by Theorem A we can conclude that A € G-Cov. If by contra-
diction A € Zg(k), by 3.6 we have B € Zy; (k) ¢ H-Cov(k) so that, by Theorem A, rk Q} = f, = rk A for
all A € Iy, which is not the case.

We return now to the original statement. We are going to use notation from 2.3. By [ , Theorem
2.19] we have G = G; x G with G; diagonalizable. In particular G cannot be trivial. If G is not solvable
take a minimal nonabelian subgroup K of G. All the proper subgroups of K are abelian and therefore K is
solvable thanks to 3.8. If we call ¢: G — G the natural projection, then G’ = $'(K) is a nonabelian open
and closed subgroup of G such that G’ ~ K is solvable. Using situation 1) above we can replace G by G’,
that is assume that G is solvable. In particular there exists a surjective homomorphism a: G — Z/pZ for
some prime p. Set H = Ker a, which is an open and closed subgroup of G. If H is nonabelian, using again
situation 1) we can replace G by H. Proceeding by induction we can finally assume to have a surjection
G — 7Z/pZ whose kernel H is abelian. Since H is linearly reductive and k is algebraically closed the group
H is diagonalizable. Set N = Hom(H, G,, ). We will construct an f:1;; — N as in situation 2) above. This
will conclude the proof.

Since H is commutative, the group G/H ~ Z/pZ acts on H and on N = Hom(H, G,,) by conjugation.
Given m € N we are going to denote by V,, the corresponding one-dimensional representation of H. Let
R < N be a set of representatives of N/(Z/pZ). Note that, since p is prime, an element # € N is fixed or
its orbit o(#) has order p. We claim that if V € I there exists a unique m € R such that

Ry V = VIV with |o(m)| = 1or V = ind$ V,, with |o(m)| = p
Indeed there exists m € N such that V € ind{} V,,.Given n, n’ € N we have

Ryindg V, = P Vg(n) and (ind$ V, ~ ind§ V,, < n’ € o(n))
geL[pZ

So we can assume m € R. Moreover such an m is unique since if V ¢ indg V,.7» Ry V contains some
V,, where n € N is in the orbit of both m and m’. In particular, if |o(m)| = 1, then ind$; V,, = V2 and
therefore Ry V = VIKV. So assume |o(m)| = p. Given W € Loc® k (Loc™ k) and g € G(k) call W, the
representation of G (H) that has W as underlying vector space, while the action of G (H) is given by
t » x = (g"'tg)x. Note that by definition (V,); = Vg(,. In particular the multiplication by g™' on V
yields a G-equivariant isomorphism V ~ V, and therefore V,, € Ry V implies that Ve(n) € Ru V. Since

lo(m)| = p we can conclude that V = ind$; V,,. Define

I3 _{ lo(n)] ifneR

- 0 otherwise
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We claim that f satisfies the property 2). Indeed if V € I and there exists m € R such that V = VXV with
lo(m)] = 1then fr, v =tk V fy, = rkV. Otherwise there exists m € R with |o(m)| = p such that

V=indj Vi, = fauv= . fum =p=1kV
geZ[pZ

Finally note that if n € R is such that |o(n)| = p then fy, = p # 1 = rkV,,. So we have to show that such
an n exists. If by contradiction this is false, then the actions of Z/pZ on N and H, as well as the action of
G on H by conjugation are trivial. So H commutes with all the elements of G. Let g € G(k) ~ G notin H,
so that it lies over a generator of G/H ~ Z/pZ. If T is a k-scheme, any element of G(T) can be written as
hg' with h e H(T) and 0 < i < p. It is straightforward to check that two such elements commute and that
therefore G is abelian, which is not the case.

O

4. REGULARITY IN CODIMENSION 1

The aim of this section is to prove Theorem C. In this section we fix a finite and étale group scheme G
over R. We require the étaleness condition on G because we want G-torsors to be regular over a regular
base.

We start with some definitions and remarks. In what follows T will be an arbitrary R-scheme if not
specified otherwise.

Remark 41. If f:X — T is a cover with an action of G then f is a G-torsor if and only if f is étale,
X/G = T and rk £, Ox = rk G. The implication == is easy. For the converse, since the locus where f is
a G-torsor is open in T and taking invariants commutes with flat base changes of T, we can assume that
T = Spec B, where B is a local ring, that G is constant and that X is a disjoint union of rk G copies of T.
Since G acts transitively on the closed points of X because X/G = T, the orbit map G x T — X is an étale
surjective cover. The rank condition implies that this is an isomorphism.

Remark 4.2. If G is a good linearly reductive group and V € I then rk'V € R* and the evaluation map
ey:V® VY — Rinduces an isomorphism (V ® V¥)¢ — R. By alocal check we see that ey is surjective
and, since G is linearly reductive, we can conclude that (V ® V¥)¢ — R is surjective too. Moreover we
have a G-equivariant isomorphism Homg (V, V) ~ V ® V" and the map ey corresponds to the trace map
try: Homg (V, V) — R under this isomorphism. Since Hom§ (V, V) = Ridy by 1.9 we can conclude that
(V® VY)S — Ris an isomorphism and, since try (idy) = rk V, that rk V € R*.

Definition 4.3. Let f:X — T be a cover. The trace map of f will be denoted by

tI'fI f* Ox — Or
We also set
try: fuOx — (£ Ox)", x —> try(x - —) and Q; = Coker(fry) € QCoh(T)

The discriminant section s; € (det f,Ox )~ is the section induced by the determinant of the map try.
Assume now that G acts on X over T and that X/G = T and consider V € Loc® R. If f is a G-cover or
G is linearly reductive we denote by

Q)1 Loc® R — LocT, O/ = (f.0x ® )¢
the associated monoidal functor (see Theorem A), by
— le; ~ OT

where the first map is given by the monoidality, while the second is induced by the evaluation ey:V ®
VY — R, by

wrv: Q{I ® Q{/V - Q(/@VV

Erv: 0L, — (Qf)



RAMIFIED GALOIS COVERS VIA MONOIDAL FUNCTORS 16

the induced map and set Qv = Coker(&y,v). I f is a G-cover, then the source and target of the map &,y
are locally free sheaves of the same rank rk V by Theorem A, and we denote by

sfv € (det Q{, ® det Q{,V )

the section induced by det &,y .
When 7 € LAlg® T and f:Spec &/ —> T we will use the subscript - instead of — Iz

Remark 4.4. If of € LAlgG T then tr: &/ —> O is G-equivariant. Indeed one can assume T is affine, G
is constant and &7 is free and use the invariancy of the trace map under conjugation.

Lemma 4.5. Assume that R is a local ring, that G is a good linearly reductive group and let o7 € LAIg® T be
such that /S = Ot and rk o = tk G. Then

Kertr,,~ € V'® Q\}*{ and Qur ~ P V' ® Qv
R#Velg Velg

Moreover if o/ € G-Cov then there exists an isomorphism

(det f,Ox) % = \@ (det(Q{,)’1 ® det(Q{,v)’l)rkV such that sy — \@ sj}”{,kv
elg €lg

Proof. Notice that, since R is local, then if V € I there exists a unique V € I such that V ~ VV. For all
V ¢ I let us fix an equivariant isomorphism {y: V¥ — V. For simplicity set also Q = Q“:Loc® R —
LocT.
Since tr: &/ — O is G-invariant, we have that Ker tr, is G-invariant too. By 1.17 we have
Kertr,, = @ VY ® I'y with I'y € Qy
Velg

Since G is linearly reductive and rk /' = rk G, we have tr /(1) € O} and, in particular, that tr: & — Or
is surjective. So
Or = @ VVe (Qv/rv)

Velg
is a G-equivariant decomposition and therefore I'y = Qy for R # V € Ig and Ik = 0. In other words
trgy = (rk G)m, where : & — Or is the projection according to the G-equivariant decomposition of 7.
We are going to use the description given in 1.17 of the product of

JZ{: @VV®QV

Velg

using the maps ay: UY ® Quy — &7 for U € Loc® R. Notice that, given V, W ¢ I, the product of elements
of V¥V ® Qv and WY ® Qyy lies in Kertr,, = kerm, i.e. has no component in .&7¢ ~ R ® Qg, except for
the case (V ® W)© # 0. Since

(Ve W) = Hom®(V,W")

this is the case only when W = V. So the trace map tr.,:.«7 —> o7V is the direct sum of the maps
- N \%
LV ey — (V) ®0Qy)

induced by §v: V¥ ® Qv ® (V)v 0y — A QA — o 2, Or, which is also the composition

Ayeyv rk Gm

VV®Q\/®(V)V®QV2(V®V)V®Qv®ﬂ\7—>(V®V)V®QV®\7—>JZ{—>OT

Denote by ey: V®VY — R the evaluation map. By replacing V by V" using the given isomorphism, we are
going to check that the composition of the last two maps above is the evaluation (V®VY)" ~ VY@V —% R
tensor Q.. up to an invertible element. This will imply that &, is isomorphic to the map

idvv ® Ed,vvivv ROy — VY e® (QVV)V
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and, from this, the claimed result easily follow.

By 4.2 the map ey: V ® V¥ — R is surjective and it extends to a G-equivariant isomorphism y: V ®
VY — R @ Z where Z € Loc® R is such that ZS = 0. By 117 we have that aygyv = arez © ((Y¥) ™ ® Qy)
and, since Z6 = 0, that o drez: (R® Z)" ® Qrez —> Ot = RY ® Qy is the tensor product of the two

natural projections. Since V @ VY Y, R®Z — Ris ey, we can conclude that 1t o aygyv is the tensor
viy-1

product of Q,,:V® VY — Rand (V® VY)Y o, (R® Z)¥ — RY. This last map is surjective,

G-equivariant and therefore it is, up to an invertible element of R, the map (V® V¥)" ~ V¥ @ V =% R

by 4.2. d

Proof of Theorem C. Recall that thelociin Y where f : X — Y is a G-torsor or a G-cover are open thanks
to 1.5 and that, when G is constant, it acts transitively on the set of points of X over a given point of Y
because X/G = Y. In particular the geometric stabilizers of two points of X over a given point of Y are
conjugates in G and therefore isomorphic. We start by proving how to deduce the two claims after 3). For
the first claim, by 3) we have rk f = rk G/rkT, so that f is generically a G-torsor (that is T = 0) if and
only if rk f = rk G. Moreover when T = 0 the description of the geometric stabilizers of the codimension
1 points of X over q is contained in 3). For the second claim it is enough to note that the generic fiber of
X is Spec L, where L/k(R) is a finite field extension with LS = k(R) and the action of G on L is faithful
because Auty X — Auty(g) L is injective: it follows that L/k(R) is a Galois extension with group G and
therefore rk f = dimy gy L = tk G.
We start by showing the equivalence between 1), 2), 3) and the following condition:

2’) the module Q; ® Oy, is defined over k(q) and the integer rk H/rk T, where H and T are the
geometric stabilizers of a point of X over g and a generic point of X respectively, is coprime with
chark(q).

We will show that the quotient tk H/ rk T is an integer. We are going to use some results and definitions
from [ ]. In particular all points of X over g are tame with separable residue fields if and only if the

common rank (over k(q)) of a connected component of X xy k(q) is coprime with char k(q) (see [ ,
Lemma 1.6, Corollary 1.7]). In particular 3) == 1): this common rank is rk # = rkH/ rk T applying

2.7to B ®k(q)/k(q). Moreover we can replace Y by any étale neighborhood around q and, in particular,
assume G constant and Y = SpecR.

Write X = Spec ./ with <7 € LAIg® R and let H be the geometric stabilizer of a point of Spec .« over
g. By 2.7 we can assume .7 ~ inds; & with &/ € LAlg" R such that &/ ®g k(q) is local, &/ = R and
H is the geometric stabilizer of the maximal ideal of &/ ® R;. As rings we have &7 ~ o (R G/kH) g

that Qo =~ Q;G/rkH), S sir;c’/rkH) and o7 is regular in the points over ¢ if and only if the local

ring o ®y R, is regular. The above discussion shows that we can assume that &7 ®g k(q) is local and
that G is its geometric stabilizer. Let G be the image of the map G — Aut.% and note that all the
maps Aut./ — Aut(«/ ® R;) — Aut(.&/ ® k(R)) are injective because <7 is a locally free R-module.
The equivalence between 1), 2) and 2) can be checked directly on R,. Since being a G-cover is an open
condition, also 1) == 3) can be checked on R,. Thus we can assume that R is a DVR (discrete valuation
ring), so that %7 is also a local ring.

Notice that 2), 3) and 2) implies that <7 /R is generically étale. This also follows from 1): if &7 is a
domain then &7 ® k(R) is a field extension of k(R) with (& ® k(R))® = k(R) and therefore separable.
Thus we can assume that 27 /R is generically étale so that, by [ , Corollary 1.7], it follows that <7 /R is
tame with separable residue fields if and only if rk o7 and char k(q) are coprime. Since G acts transitively
on Z = Spec(« ® k(R)), it follows that Z ~ G/T as G-space, where T is the geometric stabilizer of a
generic point of &. In particular tk.&/ = rk G/ rk T, which is an integer. Thus [ , Main Theorem]
exactly implies the equivalence between the conditions 1), 2) and 2').



RAMIFIED GALOIS COVERS VIA MONOIDAL FUNCTORS 18

It remains to show 1) == 3). Since ¢/ is a domain, &/ ® k(R) is a field. Moreover G acts faithfully

on &/ ® k(R) and (7 ® k(R))S = k(R). It follows that &7 ® k(R)/k(R) is a Galois extension with group
G and therefore a G torsor. It follows that Ker(G — G) = T is the geometric stabilizer of the generic
point of &7. In particular rk G is coprime with char k(g), which implies that the map G — Aut.&/ —
Aut(p/p?) ~ k(p)*, where p is the maximal ideal of <7, is injective and therefore that G is cyclic. Thus

G is linearly reductive over R and, since G-Cov € LAlgg is closed in this case by Theorem A and &//R is
generically a G-torsor, we can conclude that 7 is a G-cover over R.

We now deal with the last part of the statement. In particular we assume from now on that G is linearly
reductive and rk f = rk G. Since 1) implies that f is a G-cover, more precisely f € Z5(Y), we will assume
f € G-Cov(Y) in what follows.

Denote by B, the strict Henselization of Oy 4, which is an unramified extension of Oy, and a DVR,
and by f; € G-Cov(B,) the base change of f. By 1.16 the group G, = G x B, has a good representation
theory over B,. Moreover, if U, W € Rep® R, then Eruew = &ru ® &pw,sothat O yew ~ Qru ® Qfw
and everything commutes with base change. Using 4.5 we obtain

Qr®By~ P V'® Qs v=Qrric) ®By

VEIc,q

Since for all U € Rep® R the representation U ® B,, splits as a direct sum of representations in Ig, we can
conclude that 5) < 2').

Now notice that, for all U € Rep® R, the number vq(ss,u) coincides with the length of O y®B, over B,.
In particular, forall U € Rep® R, if Q5 y ® B, is defined over k(q) then v, (ss,u) < rk, Ubecause Qf y ®B,

is a quotient of (Q{J)V ® B, which has rank rk, U. Moreover & g is by construction an isomorphism so
that, if U € Loc® R, we have Qf y = Q. ue and vy(sf,u) = v4(s5,ujuc ) because U = US @ U/US. Thus
5) == 4). Since we have

va(sfriG]) = vq(sf) = Z rkV-vq(sfq,V) and vy (ssr) =0
VEIGq

we can also conclude that 4) = 2). O
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