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RAMIFIED GALOIS COVERS VIA MONOIDAL FUNCTORS

FABIO TONINI

Abstract. We interpret Galois covers in terms of particular monoidal functors, extending the correspon-
dence between torsors and �ber functors. As applications we characterize tame G-covers between normal
varieties for �nite and étale group schemes and we prove that, if G is a �nite, �at and �nitely presented non-
abelian and linearly reductive group scheme over a ring, then the moduli stack of G-covers is reducible.

Introduction

Let R be a base commutative ring and G be a �at, �nite and �nitely presented group scheme over R. In
[Ton13a] I introduced the notion of a rami�ed Galois cover with group G, brie�y a G-cover, and the stack
G-Cov of such objects (see 1.2 for details).�is stack is algebraic and of �nite type over R and contains BR G,
the stack of G-torsors, as an open substack. If G is diagonalizable, its nice representation theory makes
it possible to study G-covers in terms of simpli�ed data (collections of invertible sheaves and morphisms
between them) and to investigate the geometry of the moduli G-Cov (see [Ton13a]).
�e general case is much harder, even when G is a constant group over an algebraically closed �eld of

characteristic zero: a direct approach as in the diagonalizable case fails because of the complexity of the
representation theory of G.�us in order to handle general G-covers one needs a di�erent perspective and
Tannaka’s duality comes into play. �e G-torsors are very special G-covers and the solution of Tannaka’s
reconstruction problem asserts that they can be described in terms of particular strong monoidal functors
with domain LocG R, the category of G-comodules over R which are projective and �nitely generated as
R-modules. IfX is an algebraic stack, denote by LocX (resp. QCohX ) the category of locally free of �nite
rank (resp. quasi-coherent) sheaves on X , so that LocBR G ≃ LocG R. When X = SpecA we simply write
LocA and QCohA.�e result about G-torsors can be stated as follows.

�eorem. ([DM82,�eorem 3.2], [Sch13,�eorem 1.3.2]) Let SMonGR be the stack over R whose �ber over
an R-scheme T is the category of R-linear, exact (on short exact sequences) and strong monoidal functors
LocG R Ð→ Loc T.�en the functor

BR G SMonGR

(T sÐÐ→ BR G) s∗
∣ LocG R

∆

is an equivalence of stacks.

Since a G-cover is a “weak” version of a G-torsor it is natural to look at a “weak” version of a strong
monoidal functor, that is, as the words suggest, a (lax) monoidal functor. �is idea has motivated the
study in [Ton14] of more general monoidal (and non) functors and this paper is an application of it. We
introduce the stack MonGR (MonGR,reg) over R whose �ber over an R-scheme T is the groupoid of R-linear,
exact monoidal functors Γ∶LocG R Ð→ Loc T (such that rk ΓV = rkV (pointwise) for all V ∈ LocG R).
We also denote by LAlgGR the stack over R whose �ber over an R-scheme T is the groupoid of locally free
sheaves of algebras on T with an action of G, or, alternatively, the stack of covers with an action of G.�e
stack LAlgGR is algebraic and locally of �nite presentation over R and G-Cov is an open substack of LAlg

G
R

(see 1.5).
1
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Recall that G is linearly reductive over R if the functor of invariants (−)G ∶QCohBR G Ð→ QCohR is
exact. We say that G has a good representation theory over R if it is linearly reductive and there exists a �nite
collection IG of sheaves in LocG R such that for all geometric points (one is enough if Spec R is connected)
Spec k Ð→ Spec R the map (− ⊗R k)∶ IG Ð→ LocG k is a bijection onto a collection of representatives
of the irreducible representations of G ×R k. Examples of groups with a good representation theory are
diagonalizable groups and linearly reductive groups over algebraically closed �elds. In general we show that
any linearly reductive group G over R has fppf locally (étale locally if G/R is étale) a good representation
theory (see 1.15).

�eorem A. �e map of stacks

∆̃∶G-CovÐ→MonGR , (X
fÐÐ→ T)z→ ( f∗OX ⊗ −)G

is an open immersion, it extends the equivalence ∆∶BR G Ð→ SMonGR and takes values inMonGR,reg.
If G is linearly reductive over R then ∆̃ extends to an equivalence ∆̃∶LAlgGR Ð→ MonGR , namely ∆̃(A ) =

(A ⊗ −)G , the stack G-Cov is an open and closed substack of LAlgGR and, if G has a good representation
theory, then ∆̃(G-Cov) =MonGR,reg.

�e equality ∆̃(G-Cov) =MonGR,reg is not true in general, even when G is linearly reductive (see 1.8).
We are going to show two applications of the above point of view. �e �rst one is about the geometry

of G-Cov (see also 3.3).

�eorem B. If G is a �nite, �at and �nitely presented nonabelian linearly reductive group scheme over R
then the stack G-Cov is reducible.

When G is a diagonalizable group the same result holds except for a few cases when G has low rank (see
[Ton13a, Corollary 4.17]). �us the bad behaviour of the moduli G-Cov is still present in the nonabelian
setting. Note that the proof of�eorem B does not use and cannot be adapted to show the reducibility
of G-Cov when G is a diagonalizable group. Moreover it requires the study of more general monoidal
functors than the ones present in MonGR,reg.�eorem B already appeared in my Ph.D. thesis [Ton13b], but
the proof we present here is slightly di�erent and relies on the following fact: if H is an open and closed
subgroup scheme of G the functor

indGH ∶LAlgHR Ð→ LAlg
G
R , A z→ (A ⊗ R[G])H

is well de�ned, quasi-a�ne and étale (see 2.1).
�e second application is a characterization of G-covers of regular in codimension 1 schemes. Let us

introduce some notation and de�nitions in order to explain the result. Let f ∶X Ð→ T be a cover with an
action of G on X. We denote by tr f ∶ f∗OX Ð→ OT the trace map, by t̃r f ∶ f∗OX Ð→ ( f∗OX)∨ the map
x z→ tr f (x ⋅ −) and by s f ∈ (det f∗OX)−2 the discriminant section, that is the section obtained by det t̃r f .
If f is a G-cover with associated monoidal functor Ω f = ( f∗OX ⊗−)G ∶LocG R Ð→ Loc T and V ∈ LocG R
consider

Ω fV ⊗Ω
f
V∨ Ð→ Ω

f
V⊗V∨ Ð→ Ω

f
R = ( f∗OX)G = OT

where the �rst map is given by monoidality, while the second is induced by the evaluation V⊗V∨ Ð→ R.
�e morphism above yields a map ξ f ,V ∶Ω fV∨ Ð→ (Ω fV)

∨

of locally free sheaves whose rank coincides with
rkV by�eorem A. Applying the determinant we obtain a section s f ,V ∈ (detΩ fV ⊗detΩ

f
V∨)−1. If q ∈ T is

a point and V ∈ LocG T we denote by rkq V the rank of V ⊗OT,q and by rkq G the rank of G over q, that
is rkqOT[G].�e result we will prove is the following.

�eorem C. Let G be a �nite and étale group scheme over R. Let also Y be an integral and Noetherian R-
scheme with dimY ≥ 1, and f ∶X Ð→ Y be a cover with an action of G on X over Y and such that X/G = Y.
Let also q ∈ Y be a codimension 1 and regular point.�en the following are equivalent:
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1) all points of X over q are regular, tame (the rami�cation index is coprime with char k(q)) and have
separable residue �elds.

2) we have vq(s f ) < rk f , where vq denotes the valuation in q;
3) there exist an étale neighborhood U Ð→ Y with a point q′ mapping to q and with G × U con-
stant, subgroups T ⊲ H < G × U with H/T cyclic of order coprime with char k(q) and SpecB ∈
(H/T)-Cov(U) such that X ×Y U = Spec(indGHB),Bq′ is a regular local ring, H is the geometric
stabilizer of a codimension 1 point of X over q, T is the geometric stabilizer of a generic point of X
and SpecB is generically an (H/T)-torsor.

If one of the above conditions is satis�ed we have that: f is generically a G-torsor if and only if rk f = rkG
and in this case the geometric stabilizers of the codimension 1 points of X over q are linearly reductive and
cyclic and there exists an open subset V ⊆ Y containing q and such that f∣ f −1(V)∶ f −1(V)Ð→ V is a G-cover;
if G is constant, G Ð→ Aut X is injective and the generic �ber of f ∶X Ð→ Y is connected then rk f = rkG.
If G is linearly reductive and rk f = rkG then the above conditions are equivalent to
4) f ∈ G-Cov and for all V ∈ RepG R (resp. V ∈ IG if G is good) we have vq(s f ,V) ≤ rkq(V/VG);
5) f ∈ G-Cov and for all V ∈ RepG R (resp. V ∈ IG if G is good) we have that Coker(ξ f ,V) ⊗ OY,q
is de�ned over k(q), that is mq(Coker(ξ f ,V) ⊗OY,q) = 0 where mq denotes the maximal ideal of
OY,q .

In this case f ∈ ZG(Y), where ZG denotes the schematic closure of BG inside G-Cov (see 3.5).

A variant of this result already appeared in my Ph.D. thesis [Ton13b] but under stronger hypotheses
on the geometric stabilizers in codimension 1 (see [Ton13b,�eorem 4.4.7]).�e proof we present here is
di�erent and relies on [Ton15], where a non-equivariant analogue of the above theorem is proved.
We now brie�y describe the subdivision of the paper. In the �rst section we prove�eorem A, while

in the second we study the property of induction from an open and closed subgroup.�e third section is
dedicated to the proof of�eorem B and the fourth section to the proof of�eorem C.

Notation

In all the paper we �x a base ring R, so that all rings, schemes and stacks will be de�ned over R.
Consider a scheme T and a �nite, �at and �nitely presented group scheme G over R. We denote by

BR G (or simply BG) the stack over R of G-torsors, by Loc T (resp. QCohT) the category of sheaves of
OT-modules that are locally free of �nite rank (resp. quasi-coherent), by LocG T (resp. QCohG T) the
category of sheaves of OTmodules that are locally free of �nite rank (resp. quasi-coherent) together with
an action of G, and by QAlgG T the category of quasi-coherent sheaves of algebrasA on T together with
an action of G. When T = SpecA we will o�en replace T by A and write, for instance, LocG A instead of
LocG(SpecA).
If C , D are R-linear monoidal categories with unities I, J and Γ∶C Ð→ D is an R-linear functor, a

monoidal structure on Γ consists of a natural transformation ιV,W ∶ ΓV ⊗ ΓW Ð→ ΓV⊗W for V,W ∈ C and
a morphism 1∶ J Ð→ ΓI satisfying certain compatibility conditions. A monoidal structure in which those
maps are isomorphisms is called strong.We refer to [Ton14, De�nition 2.18] for the precise de�nition.
Given F ∈ QCohG T we set ΩF = (F ⊗ −)G ∶LocG R Ð→ QCohT, which is an R-linear functor. If

F ∈ QAlgG T then ΩF has a monoidal structure induced by the multiplication and the unity of F (see
[Ton14, Proposition 2.22 and Section 4]).
A map f ∶X Ð→ T of schemes is called a cover if it is a�ne and f∗OX is locally free of �nite rank or,

alternatively, if it is �nite, �at and �nitely presented. A�ne maps into a scheme T will be o�en thought of
as quasi-coherent sheaves of algebras on T, so that covers correspond to locally free sheaves of algebras of
�nite rank.
A geometric point of a scheme T is a map Spec k Ð→ T, where k is an algebraically closed �eld.
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1. Galois covers via monoidal functors

�e aim of this section is to prove�eoremA.We �x a base ring R and a �nite, �at and �nitely presented
group scheme G over R.
Taking into account [Ton14, Remark 4.3 and�eorem 4.6] we have the following result.

�eorem 1.1. �e functor Ω∗ yields an equivalence between QCohG T (QAlgG T) and the category of R-
linear (monoidal) functors LocG R Ð→ QCohT which are le� exact on short exact sequences.
De�nition 1.2. A G-cover of an R-scheme T is a cover f ∶X Ð→ T together with an action of G on X such
that f is invariant and f∗OX and R[G]⊗OT are fppf locally isomorphic as G-comodules (not as rings).
We denote by G-Cov the stack over R of G-covers.�e stack G-Cov has been introduced in [Ton13a],

it is algebraic and of �nite type over R and contains BR G as an open substack.

�e following remark (see [Jan87, Part 1, 3.4] for a proof) will be o�en used in the next pages.

Remark 1.3. If M ∈ QCohG R and ε∶R[G] Ð→ R is the counit then the evaluation in ε yields an R-linear
isomorphism

HomG(R[G]∨ , M) ≃M
or, equivalently, the composition (R[G]⊗M)G Ð→ R[G]⊗M ε⊗idMÐÐÐ→M is an R-linear isomorphism.

De�nition 1.4. Given an R-scheme Twe denote by LAlgG T the groupoid of locally free sheaves of algebras
over T with an action of G and by LAlgGR the stack over R they form. Given n ∈ Nwe also denote by LAlg

G
n T

(resp. LAlgGR,n) the subcategory of LAlg
G T (resp. substack of LAlgGR ) of sheaves of rank n.

Proposition 1.5. We have that LAlgGR = ⊔n∈N LAlgGR,n and that LAlg
G
R,n is an algebraic stack of �nite pre-

sentation over R for all n ∈ N. Moreover the map
G-CovÐ→ LAlgGR , ( f ∶X Ð→ Y)z→ f∗OX

is an open immersion.

Proof. �e �rst claim follows from the fact that the rank function for a locally free sheaf is locally constant.
For the second one, consider the forgetful functor LAlgGR,n Ð→ BGLn and call X the �ber product along
the universal torsor Spec R Ð→ BGLn . For simplicity we can assume that R[G] is free as an R-module.
�e stack X is actually a sheaf X∶ (Sch/R)op Ð→ (Sets) and it maps a scheme T to the set of all possible ring
structures togetherwith an action of G onOnT . Since a ring structure is given bymapsOnT⊗OnT Ð→ OnT (the
multiplication) andOT Ð→ OnT(the unity), while a R[G]-comodule structure by amapOnT Ð→ OnT⊗R[G]
(the comodule structure), we can embed X into an a�ne space AN . �e compatibility conditions among
the previous maps allow us to conclude that X is the zero locus in ANof �nitely many polynomials, as
required.
Wenowdealwith the last claim. Clearly themap in the statement is fully faithful. Wehave to prove that if

A ∈ LAlgG B, where B is a ring, then the locus in Spec B whereA is fppf locally the regular representation
is open. Concretely, if ξ∶ Spec k Ð→ Spec B is a geometric point andA ⊗ k ∈ G-Cov(k) we will prove that
there exists a �at and �nitely presented map Spec B′ Ð→ Spec B through which ξ factors and such that
A ⊗B′ ≃ B′[G]. Denote by p ∈ Spec B the image of ξ. Both the stack G-Cov and LAlgGR are locally of �nite
type over R and therefore also themap G-CovÐ→ LAlgGR is so, which in particular implies thatA ⊗k(p) ∈
G-Cov(k(p)). �us we can assume k = k(p). Since k is algebraically closed we have that A ⊗ k is the
regular representation and thus we have a G-equivariant isomorphism ω∶ k[G]∨ Ð→ (A ⊗ k)∨. By 1.3 the
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map ω is completely determined by a ϕ ∈ A ∨ ⊗ k.�ere exists a �nite �eld extension L/k(p) such that ϕ
comes from some element inA ∨⊗L and it is a general fact that we can �nd an fppf neighborhood Spec B′
of p in Spec B with a point p′ ∈ Spec B′ over p such that k(p′) = L. Up to shrinking Spec B′ around p′ we
can assume we have ϕ ∈ A ∨ inducing ϕ. �e element ϕ de�nes a G-equivariant map ω∶B[G]∨ Ð→ A ∨

of locally free sheaves on A inducing ω. Since ω is an isomorphism it follows that ω is an isomorphism in
a Zariski open neighborhood of p as required. �

Proof of�eorem A, �rst sentence. Let A be an R-algebra. By 1.3 we have

ΩA[G]V = (A[G]⊗ (V ⊗ A))G ≃ V ⊗ A for V ∈ LocG R
More precisely ΩA[G] is isomorphic to the forgetful functor (− ⊗R A)∶LocG R Ð→ LocA as monoidal
functor. In particular ifA ∈ QAlgG A is fppf locally isomorphic to A[G] (without ring structure) then the
functor ΩA = (A ⊗−)G ∶LocG R Ð→ QCohA is fppf locally R-linearly isomorphic to the forgetful functor
(− ⊗R A)∶LocG R Ð→ LocA (without monoidal structure).�is easily implies that ∆̃ is well de�ned and
takes values inMonGR,reg. It is fully faithful thanks to 1.1. It extends the functor ∆ because if f ∶X Ð→ SpecA
is a G-torsor corresponding to s∶ SpecA Ð→ BR G then s∗OA ≃ f∗OX as sheaves of algebras on BR G and

(s∗OA ⊗R V)G ≃ HomBR G(V∨ , s∗OA) ≃ HomA(s∗V∨ , A) ≃ s∗V for V ∈ Loc(BR G) = LocG R
We now prove that it is an open immersion. Let Γ ∈MonGR (A). By 1.1 there existsA ∈ QAlgG A such that
Γ ≃ ΩA . By de�nition of MonGR and taking into account 1.3 we also have that ΩA

R[G] = (A ⊗R[G])G ≃ A

is a locally free sheaf on A, that isA ∈ LAlgG A.�e result then follows because, by 1.5, the locus in SpecA
whereA is fppf locally the regular representation is open. �

De�nition 1.6. �e group scheme G is called linearly reductive over R if the functor of invariants

(−)G ∶ModG R Ð→ModR
is exact.

Fromnow until the end of the sectionwewill assume that G is linearly reductive over R. Remember that
this condition is stable under base change, is local in the fppf topology and that G is fppf locally well-split,
which means isomorphic to a semidirect product of a diagonalizable group scheme and a constant group
whose order is invertible in the base ring (see [AOV08, Proposition 2.6,�eorem 2.19]). We summarize
some properties of linearly reductive groups we are going to use.

Proposition 1.7. Let T be an R-scheme and A be an R-algebra.�en
1) If F ∈ QCohG T andH ∈ QCohT then the natural map

FG ⊗H Ð→ (F ⊗H)G

where the action ofG onH is trivial, is an isomorphism. In particular taking invariants (−)G ∶QCohG T Ð→
QCohT commutes with arbitrary base changes.

2) If F ∈ QCohG T is locally free of �nite rank then the map FG Ð→ F locally splits. In particular FG
is locally free of �nite rank.

3) Every short exact sequence inQCohG A of sheaves inLocG A splits. In particular anyR-linear functor
from LocG R to an R-linear category is automatically exact.

4) If R is a �eld any �nite-dimensional representation of G is a direct sum of irreducible representations.

Proof. We can assume T a�ne, say T = SpecA and replace F ,H with modules F, H respectively. Point
1) follows because the map in the statement is an isomorphism when H is free and, in general, using a
presentation of H and using the exactness of (−)G . Point 1) implies that FG Ð→ F is universally injective,
so that point 2) follows from [Mat89, �eorem 7.14] a�er reducing to a Noetherian base (for instance
assuming that G is well-split and, thus, de�ned over Z). For 3), if 0Ð→ V Ð→W Ð→ Z Ð→ 0 is an exact
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sequence of sheaves in LocG A, then Hom(W,V) Ð→ Hom(V, V) is surjective and, taking invariants, we
can �nd an equivariant splitting. Point 4) follows easily from 3). �

We now show an example of a �nite, étale and linearly reductive group G over Q with ∆̃(G-Cov) ≠
MonGR,reg (see�eorem A).

Example 1.8. Consider R = Q, G = Z/3Z, A = Q[x , y]/(x , y)2 with the action of G × Q ≃ µ3 given
by deg x = deg y = 1 and Γ = ΩA = (A ⊗Q −)G ∶LocGQ Ð→ LocQ. We have that A ∉ G-Cov(Q) =
µ3-Cov(Q)becauseA is not isomorphic to the regular representation (it does not contain the µ3-representation
corresponding to the character 2 ∈ Z/3Z). On the other hand we have Γ ∈ MonGQ,reg(Q): the rank condi-
tion can be easily checked on the two irreducible representations of G overQ. By 1.1 we can conclude that
Γ is not in the essential image of the functor ∆̃∶G-CovÐ→MonGR .
�e problem in the above example is that the group Z/3Z has a two-dimensional irreducible represen-

tation over Q which splits over Q. We want therefore to �nd a class of linearly reductive groups whose
“irreducible” representations are also geometrically irreducible.

Lemma 1.9. Let I be a �nite collection of sheaves in LocG R which have positive rank in all points of Spec R.
�e following are equivalent:

1) the natural maps

ηM ∶⊕
V∈I
V ⊗R HomGR (V,M)Ð→M forM ∈ModG R

are isomorphisms.

2) for all geometric points Spec k ξÐÐ→ Spec R the set {V ⊗R k}V∈I is a set of representatives of the
irreducible representations of G × k and V ⊗R k ≃W ⊗R k if and only if V =W.

3) (assuming Spec R connected) there exists a geometric point Spec k ξÐÐ→ Spec R for which the set
{V⊗R k}V∈I is a set of representatives of the irreducible representations ofG×k andV⊗R k ≃W⊗R k
if and only if V =W.

In the above cases we have thatHomG(V,W) = 0 if V ≠W ∈ I andHomG(V, V) = RidV if V ∈ I.
Proof. Weare going to use that taking invariants commuteswith arbitrary base changes (see 1.7). If Spec k Ð→
Spec R is a geometric point we set Gk = G × k.
1) Ô⇒ 2). If Spec k Ð→ Spec R is a geometric point and M ∈ ModGk k then HomGR (V,M) ≃

HomGkk (V ⊗ k, M) and ηM ≃ (ηM) ⊗ k. �us we can assume that R is an algebraically closed �eld. In
this case the result follows by decomposing representations into irreducible ones.
2), 3) Ô⇒ 1). If V,W ∈ LocG R then HomG(V,W) is locally free by 1.7, 2). �us, checking the

rank on the geometric points (on the given geometric point if Spec R is connected), if V,W ∈ I then
HomG(V,W) = 0 for V ≠ W and HomG(V, V) = RidV . In particular if Spec k

ξÐÐ→ Spec R is any geo-
metric point then ξ∗∶ IG Ð→ LocG k is injective onto a subset of representatives of the irreducible repre-
sentations of G × k. Given M ∈ ModG R we therefore have that ξ∗ηM is injective and, if ξ∗(IG) is a full
set of representatives of irreducible representations of G × k, an isomorphism. If Spec R is connected, so
that R[G] has constant rank, applying this consideration to M = R[G] and using 1.3 we can conclude that
3) Ô⇒ 2) by dimension. In particular ηM is an isomorphism on all geometric points of Spec R. If M
is an arbitrary direct sum of locally free G-comodules of �nite rank it follows that ηM is an isomorphism.
In general, using 1.3, we can �nd an exact sequence of G-comodules V1 Ð→ V0 Ð→ M Ð→ 0 where the
Vi are sum of copies of R[G]∨. Since ηV0 , ηV1 are isomorphisms, by functoriality it follows that ηM is an
isomorphism as well. �

Remark 1.10. If I is a collection of sheaves satisfying the conditions in 1.9, then there exists another col-
lection I′ satisfying the same conditions and such that R ∈ I. Indeed notice �rst that, if R = R1 × R2
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and we are able to replace the collections I∣ Spec R1 and I∣ Spec R2 then we can easily replace the collection
I. In particular, since the map ηR in 1.9 is an isomorphism, we can assume there exists V ∈ I such that
V ⊗ HomG(V, R) Ð→ R is an isomorphism, which means that V is an invertible sheaf with the trivial
action of G. If we replace V by R in I we �nd the desired collection.

De�nition 1.11. We will say that G has a good representation theory over R if it admits a collection I as in
1.9. A good linearly reductive group is a pair (G, IG)where G is a �nite, �at, �nitely presented and linearly
reductive group scheme over R and IG is a collection as in 1.9. We will simply write G if this will not lead
to confusion. For simplicity we will also assume that R ∈ IG (see 1.10).

If R Ð→ R′ is a morphism and G is a good linearly reductive group, then G × R′ is naturally a good
linearly reductive group with the collection of the pullbacks of the modules in IG .

Remark 1.12. All diagonalizable group schemes are good over the integers, while if R is a �eld, then G is
good if and only if its irreducible representations are geometrically irreducible.

We are going to prove that any linearly reductive group is fppf locally good.

Lemma 1.13. Let X be a proper and �at algebraic stack over a Noetherian local ring R. Denote by k the
residue �eld of R and consider a locally free sheaf V0 of rank n over X × k. IfH2(X × k, End(V0)) = 0, then
there exists a locally free sheaf of rank n over X × R̂ li�ing V0, where R̂ is the completion of R.

Proof. Taking into account Grothendieck’s existence theorem for proper stacks, we can assume that R is
an Artinian ring (so that R̂ ≃ R) and that we have a li�ing V of V0 over X × (R/I), where I an ideal of R
such that I2 = 0. De�ne the stack Y over the small fppf site Xfppf of X whose objects over Spec B Ð→ X
are locally free sheaves N of rank n over B with an isomorphism ϕ∶N⊗(B/IB)Ð→ V⊗(B/IB). A section
of Y Ð→ Xfppf yields a li�ing of V on X . We are going to prove that Y is a gerbe over Xfppf banded by
the sheaf of abelian groups π∗ End(V0), where π∶X × k Ð→ X is the obvious closed immersion. Since
H2(X , π∗ End(V0)) = H2(X × k, End(V0)) = 0 parametrizes those gerbes (see [Gir71, Chapter IV, §3,
Section 3.4]), we can then conclude that Y Ð→ Xfppf is a trivial gerbe, which means that it has a section as
required.
I claim that V is trivial in the fppf topology of X , which implies that Y Ð→ Xfppf has local sections.

Indeed if B is a ring and P Ð→ Spec B/IB is a Gln-torsor then by standard deformation theory it extends to
a smoothmap Q Ð→ Spec B. In particular, if we base change to Q, we can conclude that P over Q×(B/IB)
has a section, which means that it is trivial.
I also claim that two objects of Y over the same object of Xfppf are locally isomorphic. Replacing again

locally free sheaves by Gln-torsors, given Gln-torsors P, Q over Spec B, we have to show that an equivariant
isomorphism P × (B/IB) Ð→ Q × (B/IB) locally extends to an equivariant isomorphism P Ð→ Q. In
particular we can assume that P and Q are both trivial and in this case the above property follows because
Gln(B)Ð→ Gln(B/IB) is surjective, since Gln is smooth.
�e previous two claims show that Y Ð→ Xfppf is a gerbe. We have now to check the banding and

therefore to compute the automorphism group of an object (N, ϕ) ∈ Y over a ring B. �e group Aut(χ)
consists of the automorphism N λÐÐ→ N inducing the identity on N/IN. It is easy to check that the map

HomB(N, IN)Ð→ Aut χ, δ z→ idN + δ

is an isomorphism of groups. Since IN = I ⊗R N and N ⊗ (B/mRB) ≃ V0 ⊗ (B/mRB) we have
HomB(N, IN) = I ⊗ EndB(N) ≃ I/I2 ⊗ EndB(N) ≃ EndB/mRB(V0 ⊗ (B/mRB))

�

Lemma 1.14. Assume thatR is aHenselian ringwith residue �eld k.�e any �nite dimensional representation
of G over k li�s to R.
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Proof. Since G is �nitely presented, we can assume that R is the Henselization of a scheme of �nite type
over Z. Since G is linearly reductive, we have that H2(B(G × k),−) = 0 and, viewing G-representations as
sheaves over BG and using 1.13, we obtain a li�ing of V to a representation over the completion R̂. We can
then conclude using Artin’s approximation theorem over R. �

Proposition 1.15. �ere exists an fppf covering U = {U i Ð→ Spec R}i∈I such that G ×S U i has a good
representation theory overU i for all i. IfG is étale over R there exists an étale covering with the same property.

Proof. We start with the case when R = k is a �eld.�e group G is good a�er a �nite extension of k because
an irreducible representation of G over the algebraic closure of k is always de�ned over a �nite extension
of k. Now assume that G is étale. If k is perfect there is nothing to prove. So assume char k = p > 0. A�er
passing to a separable extension of k we can assume that G is constant of order prime to p. So G is de�ned
over Fp , which is perfect and again we have our claim.
Now return to the general case. Since G is �nitely presented, we can assume that R is of �nite type over

Z. Let p ∈ Spec R and L/k(p) an extension such that GL = G × L is good, with L/k(p) separable if G is
étale. �ere exists a �at �nitely presented map h∶ Spec R′ Ð→ Spec R such that h−1(p) ≃ Spec L. If L/k is
separable we can even assume that h is étale.�is shows that we can assume that Gk(p) = G×k(p) is good.
From 1.14 any Gk(p) representation li�s to Rhp , the Henselization of Rp , and, since this ring is a direct limit
of algebras étale over R, we get the required result. �

Putting together 1.14 and 1.15 we get:

�eorem 1.16. A constant linearly reductive group over a strictly Henselian ring has a good representation
theory.

Remark 1.17. If (G, IG) is a good linearly reductive group there is an explicit way to map linear functors to
sheaves, which may be useful in concrete examples. Let T be an R-scheme, set LGR (T) for the category of
R-linear functors LocG R Ð→ QCohT and de�ne

F∗∶LGR (T)Ð→ QCohG T, FΓ = ⊕
V∈IG

V∨ ⊗ ΓV

where the action of G on the ΓV is trivial. Using 1.9 it is easy to see thatF∗ is a quasi-inverse of Ω∗∶QCohG T Ð→
LGR (T), ΩG = (G ⊗ −)G , the other natural isomorphism being

βU ∶ΩFΓU ≃ (U ⊗FΓ)G ≃ ⊕
V∈IG

HomG(V, U)⊗ ΓV Ð→ ΓU for Γ ∈ LGR (T), U ∈ LocG R

�e map β−1U ∶ ΓU Ð→ (U ⊗ FΓ)G is uniquely determined by a map αU ∶U∨ ⊗ ΓU Ð→ FΓ . It is easy to see
that:

1) if U ∈ IG then αU is the inclusion;
2) if U = U1 ⊕U2 then αU is zero on U i∨ ⊗ ΓU j for i ≠ j ∈ {1, 2} and coincides with αU i on U i

∨ ⊗ ΓU i
for all i = 1, 2;

3) if U =H⊗U′ forH ∈ Loc R and U′ ∈ LocG R then αU is

U∨ ⊗ ΓU ≃H∨ ⊗H⊗U′ ⊗ ΓU′
evH⊗αU′ÐÐÐÐÐ→ FΓ

where evH∶H∨ ⊗H Ð→ R is the evaluation;
4) if γ∶V Ð→ U is a G-equivariant isomorphism then αV = αU ○ [(γ∨)−1 ⊗ Γγ].

Using the maps α∗ (and by going through the de�nitions) if Γ is a monoidal functor the associated ring
structure on FΓ is given by

V∨ ⊗ ΓV ⊗W∨ ⊗ ΓW Ð→ (V ⊗W)∨ ⊗ ΓV⊗W
αV⊗WÐÐÐ→ FΓ for V,W ∈ IG
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Proof of�eorem A, last sentence. �e functor ∆̃∶LAlgGR Ð→ MonGR is well de�ned thanks to 1.7. It is an
equivalence thanks to 1.1 and the fact that if A ∈ QAlgG T and ΩA ∈ MonGR (T) then, using 1.3, A ≃
(A ⊗ R[G])G = ΩA

R[G] is locally free of �nite rank.
We now show the last equality in the statement. Using notation from 1.17, if Γ ∈ MonGR,reg(T) then

A = FΓ ∈ QAlgG T is such that Γ ≃ ΩA . We can assume that ΓV is free of rank rkV for all V ∈ IG . In this
case R[G]⊗OT andA have the same decomposition in terms of the representations in IG and thus they
are isomorphic.
We �nally show that G-Cov is open and closed in LAlgGR . �is problem is fppf local in the base, thus

we can assume that G is a good linearly reductive group thanks to 1.15. In this case G-Cov (resp. LAlgGR )
corresponds to MonGR,reg (resp. MonGR ) via ∆̃ and MonGR,reg is the locus in MonGR of functors Γ such that
rk ΓV = rkV for all V ∈ IG . Since IG is �nite, this is an open and closed condition, as required. �

2. Induction from a subgroup for equivariant algebras.

As in the previous section we �x a base ring R and a �at, �nite and �nitely presented group scheme G
over R.
Let H be an open and closed subgroup scheme of G. IfF ∈ QCohH T we de�ne the induction fromH to

G ofF , denoted by indGH F , as (F⊗R[G])H ∈ QCohG T. For details and properties we refer to [Jan87, Part
I, Section 3]. If F is also a quasi-coherent sheaf of algebras, that is F ∈ QAlgH T, then indGH F ∈ QAlgG T,
that is it inherits a natural structure of sheaf of algebras with an action of G. �e aim of this section is to
prove the following.

�eorem 2.1. If H is an open and closed subgroup scheme of G the functor

indGH ∶LAlgHR Ð→ LAlg
G
R , A z→ (A ⊗ R[G])H

is well de�ned, quasi-a�ne and étale. �e (open) image consists of those A ∈ LAlgGR T such that, for all
geometric points Spec k Ð→ T, there exists a subset of points of Spec(A ⊗ k) whose geometric stabilizers are
contained in H × k and whose G(k)-orbits cover the whole Spec(A ⊗ k).

Lemma 2.2. Assume that R is a strictly Henselian ring. If A, B are local R-algebras such that A is �nite over
R and the maximal ideal of B lies over the maximal ideal of R, then A ⊗R B is local.

Proof. Set kA , kB for their residue �elds. Since A ⊗R B is �nite over B it is enough to note that kA ⊗kR kB
is local since kA/kR is purely inseparable. �

Lemma 2.3. Assume that R is a strictly Henselian ring and let X Ð→ Spec R be a cover with an action of G.
Consider the decomposition into connected components

G = ⊔
i∈G
G i and X = ⊔

j∈X
X j

Given i ∈ G and j ∈ X the restriction of the action X j × G i Ð→ X factors through a unique component X j⋆i
with j ⋆ i ∈ X. �e operation − ⋆ −∶G × G Ð→ G obtained when X = G with the right action of G by
multiplication makes G into a group, whose unity 1 ∈ G is the connected component containing the identity.
In general the association X × G Ð→ X de�nes a right action of G on the set X. Moreover G1 is a subgroup
scheme of G and the map G i × G1 Ð→ G i makes G i into a G1-torsor for all i ∈ G.

Proof. Finite algebras over Henselian rings are products of their localizations. In particular the G i and
X j are the spectrum of the localizations of H0(OG) and H0(OX) respectively. All the conclusions follow
easily from 2.2. �
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Lemma 2.4. Let H be an open and closed subgroup scheme of G and let B be a local ring with residue �eld
k, A ∈ LAlgG B, Z = Spec Ã ⊆ SpecA be an H-equivariant open and closed subscheme. �en the map
A Ð→ indGH Ã induced by the projectionA Ð→ Ã is an isomorphism if and only if

(Z × k)g ∩ Z × k ≠ ∅ Ô⇒ g ∈ H(k) ∀g ∈ G(k)

and the G(k)-orbits of Z × k cover the whole Spec(A ⊗ k). In this case Ã ∈ LAlgH B and the geometric
stabilizers of Z for the action of H or G coincide. If in addition G is étale over B, then we can replace k with
the separable closure of k in the formula above.

Proof. It is easy to see that there exists a (étale if G/R is étale) cover Spec R′ Ð→ Spec R such that G × R′
splits as disjoint union of copies of H × R′, that is the right cosets of H × R′. Localizing in a maximal
ideal of R′ we see that we can assume this decomposition holds also for R and that R = B. In particular
R[G] ≃ R[H]R, whereR ⊆ G(R) is a set of representatives of the right cosets of H, and therefore, using
1.3, we have

indGH Ã = (Ã ⊗ R[G])H ≃ (Ã ⊗ R[H]R)H ≃ ((Ã ⊗ R[H])H)R ≃ Ã R

In particular indGH Ã is �at over B and, ifA ≃ indGH Ã , then Ã is locally free and therefore Ã ∈ LAlgH B.
Since themapA Ð→ indGH Ã is an isomorphism if and only if it is so a�er tensoringwith k or the separable
closure ks , we can assume that R = B = L is ks if G/B is étale or k otherwise.�e action of G on indGH Ã ≃
Ã R is induced by the right action of G(L) onR and the the action of H on Ã .�us the map

Spec(indGH Ã ) = ⊔
g∈R
Z Ð→ SpecA

is the disjoint union of the g∣Z ∶Z Ð→ SpecA where g∣Z is the restriction of the action of g ∈ G(L). Taking
into account 2.3, the above map is an isomorphism if and only if SpecA is the disjoint union of the Zg for
g ∈R, which is equivalent to the two conditions given in the statement. �

De�nition 2.5. If R is a strictly Henselian ring, X Ð→ Spec R a cover with an action of G and X i a
connected component of X we call the stabilizer of X i the open and closed subgroup H of G which is the
disjoint union of the components G j of G such that X iG j ⊆ X i .

Lemma 2.6. Assume that R is a strictly Henselian ring with residue �eld k and letA ∈ LAlgG R, p ∈ SpecA
be a maximal ideal and denote by Hp the geometric stabilizer of p and by Up the stabilizer of the connected
component SpecAp . �en Hp is a closed subgroup scheme of Up × k, they are topologically equal and, if
G(k) acts transitively on Spec(A ⊗ k), there exists an isomorphism

indGUp Ap ≃ A

Proof. We are going to use 2.2 several times. Set X = SpecA and Xp = SpecAp . Notice that the closed
points of SpecA correspond to Spec(A ⊗ k) or Spec(A ⊗ k), so that we can also think p ∈ Spec(A ⊗ k).
Moreover Up × k is the stabilizer of the connected component SpecAp ⊗ k of SpecA ⊗ k. In particular
Hp(k) = Up(k) so that Hp is a closed subgroup scheme of G × k contained in Up × k. Moreover we can
apply 2.4 with Z = SpecAp and H = Up obtaining the desired isomorphism. �

Proof of�eorem 2.1. Arguing as in the proof of 2.4, we can assume that G is a disjoint union of copies of
H, namely its right cosets, obtaining an isomorphism

indGHB = (B ⊗ R[G])H ≃ ((B ⊗ R[H])H)R ≃ BR forB ∈ LAlgHR
where R ⊆ G(R) is a set of representatives of the right cosets of H in G. �is shows that indGH is well
de�ned. Moreover, since it is faithful, it is also representable by algebraic spaces. We are going to prove
that it is étale and separated. By [MBL99, Appendice A,�eorem A.2] it will follow that it is quasi-a�ne.
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Let A be an R-algebra and ξ∶ SpecA Ð→ LAlgGR be a map given by A ∈ LAlgG A. �e �ber product
X∶ (Sch/A)op Ð→ (Sets) of ξ and indGH is given by

X(T) = {(B, ψ) ∣ B ∈ LAlgH T and ψ∶A ⊗OT ≃ indGHB}
Notice that the datum ψ can also be given as an H-equivariant map A ⊗ OT Ð→ B which induces an
isomorphism A ⊗ OT Ð→ indGHB via adjunction. In particular we obtain a map X Ð→ HilbSpecA /A
which is a monomorphism because if (B, ψ) ∈ X then the action of H onB is completely determined by
the action of H onA and by ψ. Since HilbSpecA /R and monomorphisms are separated, it follows that X is
separated too.
Since LAlgHR and LAlg

G
R are locally of �nite presentation by 1.5 so is X Ð→ SpecA.�us in order to show

that X is étale over A we can assume that A is an Artinian local ring and prove that, if J is a square zero
ideal of A, then an object (B′ , ψ′) ∈ X(A/J) extends uniquely to X(A).�emap SpecB′ Ð→ SpecA /JA
induced by ψ′ is an H-invariant open and closed subscheme of SpecA /JA .�is gives an open and closed
subscheme SpecB ⊆ SpecA . �is is also H-invariant: if γ∶ SpecB × H Ð→ SpecA is the restriction
of the action, then γ−1(SpecA − SpecB) = ∅ because it is empty a�er tensoring by A/J. �us we have
extended the H-equivariant map

A ⊗ A/J ψÐÐ→ indGHB′ Ð→B′

to an H-equivariant mapA Ð→B and it is also clear that this extension is unique up to a unique isomor-
phism. Finally the mapA Ð→ indGHB is an isomorphism because it is so a�er tensoring by A/J.
It remains to characterize the image of indGH . Let k be an algebraically closed �eld and A ∈ LAlgG k.

Given p ∈ SpecA we denote by Hp its geometric stabilizer and by Up the stabilizer of SpecAp .
Assume thatA is in the image, that isA ≃ indGHB.�e conclusion follows applying 2.4 with Ã = B.

Conversely assume there is a set of points Z ⊆ SpecA as in the statement. Set X = SpecA and Xp =
SpecAp for p ∈ SpecA . We can assume that the points of Z are all in di�erent orbits, that is

X = ⊔
p∈Z
XpG(k)

By 2.4 we have Up(k) = Hp(k) and therefore Up ⊆ H. Moroever we also have

A ≃∏
p∈Z
indGUp Ap ≃∏

p∈Z
indGH(indHUp Ap) ≃ indGH(∏

p∈Z
indHUp Ap)

as required. �

We conclude with the following results that will be used in the next sections.

Corollary 2.7. Assume that G is a constant group and letA ∈ LAlgG B, where B is an R-algebra, such that
A G = B. If H is the geometric stabilizer of a prime ideal p of A lying over q ∈ Spec B then there exists a
an étale morphism B Ð→ B′, q′ ∈ Spec B′ over q, Ã ∈ LAlgH B′ such that Ã H = B′and a G-equivariant
isomorphism

A ⊗B B′ ≃ indGH Ã

Moreoverwe can also assume that Ã ⊗k(q′) is local, itsmaximal ideal lies over p ∈ SpecA and has geometric
stabilizer equal to H .

Proof. We are going to prove that G(k(q)) acts transitively on Spec(A ⊗ k(q)). Using 2.2, we can �nd a
separable �nite extension L/k such that Spec(A ⊗ k(q)) Ð→ Spec(A ⊗ L) is bijective. Moreover there
exists a �at and local B-algebra B′ with residue �eld L. Since (A ⊗ B′)G = B′, by standard arguments it
follows that G (as constant group) acts transitively on the set of maximal ideals of A ⊗ B′ and thus on
Spec(A ⊗ L) as required. Now let p ∈ Spec(A ⊗ k(q)) lying over p ∈ SpecA . Since G is constant,



RAMIFIED GALOIS COVERS VIA MONOIDAL FUNCTORS 12

the geometric stabilizer H of p (that is of p) coincides with the stabilizer of the connected component
Spec((A ⊗ k(q))p) and, if we setB = (A ⊗ k(q))p , by 2.6 we get an isomorphism

A ⊗ k(q) ≃ indGHB

Since indGH ∶LAlgHR Ð→ LAlg
G
R is étale, there exists an étale morphism Spec B

′ Ð→ Spec B, q′ ∈ Spec B′
over q,B ∈ LAlgH B′ such thatA ⊗ B′ ≃ indGHB andB ⊗ k(q′) ≃ B. Moreover we have isomorphisms

B′ ≃ (A ⊗ B′)G ≃ (indGHB)G ≃ BH

�us Ã = B satis�es the desired conditions. �

Lemma 2.8. Let H be an open and closed subgroup of G, T an R-scheme and F ∈ QAlgH T.�en

Ωind
G
H F ≃ ΩF ○ RH ∶LocG R Ð→ QCohT

where RH ∶LocG R Ð→ LocH R is the restriction.

Proof. Given V ∈ LocG R we have

Ωind
G
H F

V = HomG(V∨ , indGH F) ≃ HomH(RH(V)∨ ,F) = ΩFRH(V)
�

3. Reducibility of G-Cov for nonabelian linearly reductive groups.

�e aim of this section is to prove the reducibility of G-Cov when G is a nonabelian linearly reductive
group, that is�eorem B. We �x a base ring R and a �nite, �at, �nitely presented and linearly reductive
group scheme G over R.

De�nition 3.1. Let S be a scheme and X be an algebraic stack over S. �e stack X is called universally
reducible over S if, for all base changes S′ Ð→ S, the stack X ×S S′ is reducible.

Remark 3.2. It is easy to check that X is universally reducible over S if and only if for all �elds k and maps
Spec k Ð→ S the �ber is reducible.

We start by stating the generalization of�eorem B we are going to prove at the end of this section.

�eorem 3.3. If G is a �nite, �at and �nitely presented nonabelian and linearly reductive group scheme over
R thenG-Cov is reducible. If, moreover, G is de�ned over a connected scheme, thenG-Cov is also universally
reducible.

Note that, if we do not assume that the base Spec R is connected, we can not conclude that G-Cov is
universally reducible, since one can always take G as disjoint union of µ2 and S3 over SpecQ⊔SpecQ. On
the other hand what happens when the base is not connected is clear from the following Proposition.

Proposition 3.4. �e locus of Spec R where G is abelian is open and closed in Spec R.

Proof. Denote by Z this locus and set S = Spec R. Topologically, ∣Z∣ is closed in S, because it is the locus
where the maps G ×G Ð→ G given by (g , h)z→ gh and (g , h)z→ hg coincide and G is �at and proper.
We have to prove that, given an algebraically closed �eld k and a map Spec k

pÐÐ→ S such that Gk = G × k
is abelian, there exists a fppf neighborhood of S around p where G is abelian. By [AOV08,�eorem 2.19],
we can assume that G = ∆ ⋉ H, where ∆ is diagonalizable and H is constant. If Gk is abelian, then H is
abelian, the map H Ð→ Aut ∆ ≃ Aut(Hom(∆,Gm))op is trivial and therefore G ≃ ∆ ×H is abelian. �
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De�nition 3.5. We say that an open substack U of an algebraic stack X is schematically dense if X is the
only closed substack of X containing U . If U is a quasi-compact open substack of X its schematic closure
is the minimum of the closed substacks of X containing U or, alternatively, the (unique) closed substack
Z of X such that U ⊆ Z and U is schematically dense in Z .
We denote by ZG the schematic closure of BG inside G-Cov and we call it the main irreducible com-

ponent of G-Cov.

�e existence of the schematic closure as stated above and the fact that it is stable by �at base changes
follows from [Gro66,�eorem 11.10.5]. Although we have called ZG the main irreducible component of
G-Cov, the stackZG is irreducible if and only if Spec R is irreducible, because this is the only case in which
BG is irreducible.

Lemma 3.6. Let H be an open and closed subgroup scheme of G andB ∈ LAlgHR .�en
indGHB ∈ BG ⇐⇒ B ∈ BH, indGHB ∈ ZG ⇐⇒ B ∈ ZH

Proof. �e fact that B ∈ BH Ô⇒ indGHB ∈ BG is well known. For the converse set P = SpecB and
consider it as a sheaf of sets over Sch/T with a right action of H, where T is the R-scheme over whichB

is de�ned.�en Q = Spec(indGHB) is by de�nition (P × G)/H, where the H action on P × G is given by
(p, g)h = (ph, h−1g) and the G-action is on the right. It is easy to check that the natural map P Ð→ Q,
p z→ (p, 1) is an H-equivariant monomorphism. Assume that Q is a G-torsor. It follows that H acts
freely on P, so that sheaf quotient P/H and stack quotient [P/H] coincide. Moreover P/H Ð→ Q/G is
an isomorphism, so that P/H ≃ Q/G ≃ T because Q is a G-torsor. In conclusion P Ð→ [P/H] ≃ T is an
H-torsor.
Since H-Cov (resp. G-Cov) is closed in LAlgHR (resp. LAlg

G
R ) by�eorem A, it follows that ZH (resp.

ZG) is the schematic closure of BH (resp. BG) inside LAlgHR (resp. LAlg
G
R ). �e second equivalence

therefore follows because �at maps preserve schematic closures and indGH ∶LAlgHR Ð→ LAlg
G
R is étale by

2.1. �

De�nition 3.7. Assume that G is a good linearly reductive group and that Spec R is connected. Given a
schemeT, wewill say that a functorΩ∶LocG R Ð→ Loc T (a sheaf of algebrasA ∈ LAlgG T)has equivariant
constant rank (or is of equivariant constant rank) if for all V ∈ LocG R the locally free sheaf ΩV (ΩA

V =
(V ⊗A )G) has constant rank. In this case we de�ne the rank function rkΩ ∶ IG Ð→ N (rkA ∶ IG Ð→ N) as

rkΩV = rkΩV , (rkAV = rkΩ
A

V = rk(V ⊗A )G)
Given f ∶ IG Ð→ N we will still call f the extension f ∶LocG R Ð→ N given by

fU = ∑
V∈IG

rk(HomG(V, U)) fV

so that if Ω∶LocG R Ð→ Loc T is an R-linear functor then rkΩV = rkΩV for all V ∈ LocG R.
Lemma 3.8. [MM03] A constant group whose proper subgroups are abelian is solvable.

We are ready for the proof of�eorem 3.3.

Proof of�eorem 3.3. If the base scheme is not connected, then clearly G-Cov is reducible. By 3.2 and 3.4,
we can assume that S = Spec k, where k is a �eld. Notice that G-Cov is reducible if and only if ZG(k) ⊊
G-Cov(k), where k is the algebraic closure of k. Moreover ZG×k ≃ ZG × k. �us, taking into account
3.4, we can assume that k is algebraically closed, so that G is a good linearly reductive nonabelian group
scheme.
Let H be an open and closed subgroup of G. We claim that if one of the following statement holds then

G-Cov is reducible:
1) H-Cov is reducible
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2) there exists f ∶ IH Ð→ N whose extension f ∶LocH k Ð→ N is such that fRH V = rkV for any V ∈ IG
and there exists ∆ ∈ IH such that f∆ ≠ rk ∆

Assume that H-Cov is reducible and, by contradiction, that G-Cov is irreducible. If B ∈ H-Cov(k) then
indGH B ∈ G-Cov(k) = ZG(k) and so B ∈ ZH(k) by 3.6.�erefore H-Cov is irreducible.
Now let f ∶ IH Ð→ N as in 2) and de�ne

F = ⊕
R≠∆∈IH

∆∨ ⊗ k f∆ , B = k ⊕ F

so that f = rkB (note that by hypothesis we have fR = 1). Setting F2 = 0 we obtain a structure of algebra on
B such that B ∈ LAlgH k. We claim that A = indGH B ∈ (G-Cov(k)−ZG(k)). Indeed we have ΩA = ΩB ○RH
by 2.8, so that

rkΩAV = rkΩBRH V = fRH V = rkV for all V ∈ RepG R

�us ΩA ∈ MonGR,reg and, since G is good, by�eorem A we can conclude that A ∈ G-Cov. If by contra-
diction A ∈ ZG(k), by 3.6 we have B ∈ ZH(k) ⊆ H-Cov(k) so that, by�eorem A, rkΩB∆ = f∆ = rk ∆ for
all ∆ ∈ IH , which is not the case.
We return now to the original statement. We are going to use notation from 2.3. By [AOV08,�eorem

2.19] we have G = G1 ⋉ G with G1 diagonalizable. In particular G cannot be trivial. If G is not solvable
take a minimal nonabelian subgroup K of G. All the proper subgroups of K are abelian and therefore K is
solvable thanks to 3.8. If we call ϕ∶G Ð→ G the natural projection, then G′ = ϕ−1(K) is a nonabelian open
and closed subgroup of G such that G′ ≃ K is solvable. Using situation 1) above we can replace G by G′,
that is assume that G is solvable. In particular there exists a surjective homomorphism α∶G Ð→ Z/pZ for
some prime p. Set H = Ker α, which is an open and closed subgroup of G. If H is nonabelian, using again
situation 1) we can replace G by H. Proceeding by induction we can �nally assume to have a surjection
G Ð→ Z/pZwhose kernel H is abelian. Since H is linearly reductive and k is algebraically closed the group
H is diagonalizable. Set N = Hom(H,Gm). We will construct an f ∶ IH Ð→ N as in situation 2) above.�is
will conclude the proof.
Since H is commutative, the group G/H ≃ Z/pZ acts on H and on N = Hom(H,Gm) by conjugation.

Given m ∈ N we are going to denote by Vm the corresponding one-dimensional representation of H. Let
R ⊆ N be a set of representatives of N/(Z/pZ). Note that, since p is prime, an element n ∈ N is �xed or
its orbit o(n) has order p. We claim that if V ∈ IG there exists a unique m ∈R such that

RH V = Vrk Vm with ∣o(m)∣ = 1 or V = indGH Vm with ∣o(m)∣ = p

Indeed there exists m ∈ N such that V ⊆ indGH Vm .Given n, n′ ∈ N we have

RH indGH Vn = ⊕
g∈Z/pZ

Vg(n) and ( indGH Vn ≃ indGH Vn′ ⇐⇒ n′ ∈ o(n))

So we can assume m ∈ R. Moreover such an m is unique since if V ⊆ indGH Vm′ , RH V contains some
Vn where n ∈ N is in the orbit of both m and m′. In particular, if ∣o(m)∣ = 1, then indGH Vm = Vpm and
therefore RH V = Vrk Vm . So assume ∣o(m)∣ = p. Given W ∈ LocG k (LocH k) and g ∈ G(k) call Wg the
representation of G (H) that has W as underlying vector space, while the action of G (H) is given by
t ⋆ x = (g−1 tg)x. Note that by de�nition (Vn)g = Vg(n). In particular the multiplication by g−1 on V
yields a G-equivariant isomorphism V ≃ Vg and therefore Vn ⊆ RH V implies that Vg(n) ⊆ RH V. Since
∣o(m)∣ = p we can conclude that V = indGH Vm . De�ne

fVn = { ∣o(n)∣ if n ∈R
0 otherwise
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We claim that f satis�es the property 2). Indeed if V ∈ IG and there existsm ∈R such that V = Vrk Vm with
∣o(m)∣ = 1 then fRH V = rkV fVm = rkV. Otherwise there exists m ∈R with ∣o(m)∣ = p such that

V = indGH Vm Ô⇒ fRH V = ∑
g∈Z/pZ

fVg(m) = p = rkV

Finally note that if n ∈ R is such that ∣o(n)∣ = p then fVn = p ≠ 1 = rkVn . So we have to show that such
an n exists. If by contradiction this is false, then the actions of Z/pZ on N and H, as well as the action of
G on H by conjugation are trivial. So H commutes with all the elements of G. Let g ∈ G(k) ≃ G not in H,
so that it lies over a generator of G/H ≃ Z/pZ. If T is a k-scheme, any element of G(T) can be written as
hg i with h ∈ H(T) and 0 ≤ i < p. It is straightforward to check that two such elements commute and that
therefore G is abelian, which is not the case.

�

4. Regularity in codimension 1

�e aim of this section is to prove�eorem C. In this section we �x a �nite and étale group scheme G
over R. We require the étaleness condition on G because we want G-torsors to be regular over a regular
base.
We start with some de�nitions and remarks. In what follows T will be an arbitrary R-scheme if not

speci�ed otherwise.

Remark 4.1. If f ∶X Ð→ T is a cover with an action of G then f is a G-torsor if and only if f is étale,
X/G = T and rk f∗OX = rkG. �e implication Ô⇒ is easy. For the converse, since the locus where f is
a G-torsor is open in T and taking invariants commutes with �at base changes of T, we can assume that
T = Spec B, where B is a local ring, that G is constant and that X is a disjoint union of rkG copies of T.
Since G acts transitively on the closed points of X because X/G = T, the orbit map G×T Ð→ X is an étale
surjective cover.�e rank condition implies that this is an isomorphism.

Remark 4.2. If G is a good linearly reductive group and V ∈ IG then rkV ∈ R∗ and the evaluation map
eV ∶V⊗V∨ Ð→ R induces an isomorphism (V⊗V∨)G Ð→ R. By a local check we see that eV is surjective
and, since G is linearly reductive, we can conclude that (V ⊗ V∨)G Ð→ R is surjective too. Moreover we
have a G-equivariant isomorphism HomR(V, V) ≃ V ⊗ V∨ and the map eV corresponds to the trace map
trV ∶HomR(V, V) Ð→ R under this isomorphism. Since HomGR (V, V) = RidV by 1.9 we can conclude that
(V ⊗ V∨)G Ð→ R is an isomorphism and, since trV(idV) = rkV, that rkV ∈ R∗.

De�nition 4.3. Let f ∶X Ð→ T be a cover.�e trace map of f will be denoted by
tr f ∶ f∗OX Ð→ OT

We also set

t̃r f ∶ f∗OX Ð→ ( f∗OX)∨ , x z→ tr f (x ⋅ −) andQ f = Coker(t̃r f ) ∈ QCoh(T)
�e discriminant section s f ∈ (det f∗OX)−2 is the section induced by the determinant of the map t̃r f .
Assume now that G acts on X over T and that X/G = T and consider V ∈ LocG R. If f is a G-cover or

G is linearly reductive we denote by

Ω f ∶LocG R Ð→ Loc T, Ω f = ( f∗OX ⊗ −)G

the associated monoidal functor (see�eorem A), by

ω f ,V ∶Ω fV ⊗Ω
f
V∨ Ð→ Ω

f
V⊗V∨ Ð→ Ω

f
R ≃ OT

where the �rst map is given by the monoidality, while the second is induced by the evaluation eV ∶V ⊗
V∨ Ð→ R, by

ξ f ,V ∶Ω fV∨ Ð→ (Ω fV)
∨
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the induced map and setQ f ,V = Coker(ξ f ,V). If f is a G-cover, then the source and target of the map ξ f ,V
are locally free sheaves of the same rank rkV by�eorem A, and we denote by

s f ,V ∈ (detΩ fV ⊗ detΩ
f
V∨)

−1

the section induced by det ξ f ,V .
WhenA ∈ LAlgG T and f ∶ SpecA Ð→ T we will use the subscript −A instead of − f .

Remark 4.4. IfA ∈ LAlgG T then trA ∶A Ð→ OT is G-equivariant. Indeed one can assume T is a�ne, G
is constant andA is free and use the invariancy of the trace map under conjugation.

Lemma 4.5. Assume that R is a local ring, that G is a good linearly reductive group and letA ∈ LAlgG T be
such thatA G = OT and rkA = rkG.�en

Ker trA ≃ ⊕
R≠V∈IG

V∨ ⊗ΩA
V andQA ≃ ⊕

V∈IG
V∨ ⊗QA ,V

Moreover ifA ∈ G-Cov then there exists an isomorphism

(det f∗OX)−2 ≃ ⊗
V∈IG

(det(Ω fV)
−1 ⊗ det(Ω fV∨)

−1)rk V such that s f z→ ⊗
V∈IG

s⊗ rk Vf ,V

Proof. Notice that, since R is local, then if V ∈ IG there exists a unique V̂ ∈ IG such that V̂ ≃ V∨. For all
V ∈ IG let us �x an equivariant isomorphism ζV ∶V∨ Ð→ V̂. For simplicity set also Ω = ΩA ∶LocG R Ð→
Loc T.
Since trA ∶A Ð→ OT is G-invariant, we have that Ker trA is G-invariant too. By 1.17 we have

Ker trA = ⊕
V∈IG

V∨ ⊗ ΓV with ΓV ⊆ ΩV

Since G is linearly reductive and rkA = rkG, we have trA (1) ∈ O∗

T and, in particular, that trA ∶A Ð→ OT
is surjective. So

OT = ⊕
V∈IG

V∨ ⊗ (ΩV/ΓV)

is a G-equivariant decomposition and therefore ΓV = ΩV for R ≠ V ∈ IG and ΓR = 0. In other words
trA = (rkG)π, where π∶A Ð→ OT is the projection according to the G-equivariant decomposition ofA .
We are going to use the description given in 1.17 of the product of

A = ⊕
V∈IG

V∨ ⊗ΩV

using themaps αU ∶U∨⊗ΩU Ð→ A for U ∈ LocG R. Notice that, given V,W ∈ IG , the product of elements
of V∨ ⊗ ΩV and W∨ ⊗ ΩW lies in Ker trA = ker π, i.e. has no component in A G ≃ R∨ ⊗ ΩR , except for
the case (V ⊗W)G ≠ 0. Since

(V ⊗W)G = HomG(V,W∨)
this is the case only when W = V̂. So the trace map t̃rA ∶A Ð→ A ∨ is the direct sum of the maps

ξV ∶V∨ ⊗ΩV Ð→ ((V̂)∨ ⊗ΩV̂)
∨

induced by δV ∶V∨ ⊗ΩV ⊗ (V̂)∨ ⊗ΩV̂ Ð→ A ⊗A Ð→ A
trAÐÐ→ OT , which is also the composition

V∨ ⊗ΩV ⊗ (V̂)∨ ⊗ΩV̂ ≃ (V ⊗ V̂)∨ ⊗ΩV ⊗ΩV̂ Ð→ (V ⊗ V̂)∨ ⊗ΩV⊗V̂
αV⊗V̂ÐÐÐ→ A

rk GπÐÐÐ→ OT
Denote by eV ∶V⊗V∨ Ð→ R the evaluationmap. By replacing V̂ by V∨ using the given isomorphism, we are
going to check that the composition of the last twomaps above is the evaluation (V⊗V∨)∨ ≃ V∨⊗V eVÐÐ→ R
tensor ΩeV , up to an invertible element.�is will imply that ξV is isomorphic to the map

idV∨ ⊗ ξA ,V∨ ∶V∨ ⊗ΩV Ð→ V∨ ⊗ (ΩV∨)∨
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and, from this, the claimed result easily follow.
By 4.2 the map eV ∶V ⊗ V∨ Ð→ R is surjective and it extends to a G-equivariant isomorphism γ∶V ⊗

V∨ Ð→ R⊕ Z where Z ∈ LocG R is such that ZG = 0. By 1.17 we have that αV⊗V∨ = αR⊕Z ○ ((γ∨)−1 ⊗Ωγ)
and, since ZG = 0, that π ○ αR⊕Z ∶ (R ⊕ Z)∨ ⊗ ΩR⊕Z Ð→ OT ≃ R∨ ⊗ ΩR is the tensor product of the two
natural projections. Since V ⊗ V∨ γÐÐ→ R ⊕ Z Ð→ R is eV , we can conclude that π ○ αV⊗V∨ is the tensor

product of ΩeV ∶V ⊗ V∨ Ð→ R and (V ⊗ V∨)∨ (γ∨)−1ÐÐÐ→ (R ⊕ Z)∨ Ð→ R∨. �is last map is surjective,
G-equivariant and therefore it is, up to an invertible element of R, the map (V ⊗ V∨)∨ ≃ V∨ ⊗ V eVÐÐ→ R
by 4.2. �

Proof of�eorem C. Recall that the loci in Y where f ∶ X Ð→ Y is a G-torsor or a G-cover are open thanks
to 1.5 and that, when G is constant, it acts transitively on the set of points of X over a given point of Y
because X/G = Y. In particular the geometric stabilizers of two points of X over a given point of Y are
conjugates in G and therefore isomorphic. We start by proving how to deduce the two claims a�er 3). For
the �rst claim, by 3) we have rk f = rkG/rkT, so that f is generically a G-torsor (that is T = 0) if and
only if rk f = rkG. Moreover when T = 0 the description of the geometric stabilizers of the codimension
1 points of X over q is contained in 3). For the second claim it is enough to note that the generic �ber of
X is Spec L, where L/k(R) is a �nite �eld extension with LG = k(R) and the action of G on L is faithful
because AutY X Ð→ Autk(R) L is injective: it follows that L/k(R) is a Galois extension with group G and
therefore rk f = dimk(R) L = rkG.
We start by showing the equivalence between 1), 2), 3) and the following condition:
2’) the module Q f ⊗ OY,q is de�ned over k(q) and the integer rkH/ rk T, where H and T are the
geometric stabilizers of a point of X over q and a generic point of X respectively, is coprime with
char k(q).

We will show that the quotient rkH/ rk T is an integer. We are going to use some results and de�nitions
from [Ton15]. In particular all points of X over q are tame with separable residue �elds if and only if the
common rank (over k(q)) of a connected component of X×Y k(q) is coprime with char k(q) (see [Ton15,
Lemma 1.6, Corollary 1.7]). In particular 3) Ô⇒ 1): this common rank is rkB = rkH/ rk T applying
2.7 toB⊗ k(q)/k(q). Moreover we can replace Y by any étale neighborhood around q and, in particular,
assume G constant and Y = Spec R.
Write X = SpecA with A ∈ LAlgG R and let H be the geometric stabilizer of a point of SpecA over

q. By 2.7 we can assume A ≃ indGH Ã with Ã ∈ LAlgH R such that Ã ⊗R k(q) is local, Ã H = R and
H is the geometric stabilizer of the maximal ideal of Ã ⊗R Rq . As rings we have A ≃ Ã (rk G/ rk H), so
that QA ≃ Q(rk G/ rk H)

Ã
, sA ≃ s(rk G/ rk H)

Ã
and A is regular in the points over q if and only if the local

ring Ã ⊗R Rq is regular. �e above discussion shows that we can assume that A ⊗R k(q) is local and
that G is its geometric stabilizer. Let G be the image of the map G Ð→ AutA and note that all the
maps AutA Ð→ Aut(A ⊗ Rq) Ð→ Aut(A ⊗ k(R)) are injective because A is a locally free R-module.
�e equivalence between 1), 2) and 2′) can be checked directly on Rq . Since being a G-cover is an open
condition, also 1) Ô⇒ 3) can be checked on Rq .�us we can assume that R is a DVR (discrete valuation
ring), so thatA is also a local ring.
Notice that 2), 3) and 2′) implies that A /R is generically étale. �is also follows from 1): if A is a

domain then A ⊗ k(R) is a �eld extension of k(R) with (A ⊗ k(R))G = k(R) and therefore separable.
�us we can assume thatA /R is generically étale so that, by [Ton15, Corollary 1.7], it follows thatA /R is
tame with separable residue �elds if and only if rkA and char k(q) are coprime. Since G acts transitively
on Z = Spec(A ⊗ k(R)), it follows that Z ≃ G/T as G-space, where T is the geometric stabilizer of a
generic point of A . In particular rkA = rkG/ rk T, which is an integer. �us [Ton15, Main�eorem]
exactly implies the equivalence between the conditions 1), 2) and 2′).
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It remains to show 1) Ô⇒ 3). Since A is a domain, A ⊗ k(R) is a �eld. Moreover G acts faithfully
onA ⊗ k(R) and (A ⊗ k(R))G = k(R). It follows thatA ⊗ k(R)/k(R) is a Galois extension with group
G and therefore a G torsor. It follows that Ker(G Ð→ G) = T is the geometric stabilizer of the generic
point of A . In particular rkG is coprime with char k(q), which implies that the map G Ð→ AutA Ð→
Aut(p/p2) ≃ k(p)∗, where p is the maximal ideal of A , is injective and therefore that G is cyclic. �us
G is linearly reductive over R and, since G-Cov ⊆ LAlgGR is closed in this case by�eorem A and A /R is
generically a G-torsor, we can conclude thatA is a G-cover over R.
We now deal with the last part of the statement. In particular we assume from now on that G is linearly

reductive and rk f = rkG. Since 1) implies that f is a G-cover, more precisely f ∈ ZG(Y), we will assume
f ∈ G-Cov(Y) in what follows.
Denote by Bq the strict Henselization of OY,q , which is an unrami�ed extension of OY,q and a DVR,

and by fq ∈ G-Cov(Bq) the base change of f . By 1.16 the group Gq = G × Bq has a good representation
theory over Bq . Moreover, if U,W ∈ RepG R, then ξ f ,U⊕W = ξ f ,U ⊕ ξ f ,W , so thatQ f ,U⊕W ≃ Q f ,U ⊕Q f ,W
and everything commutes with base change. Using 4.5 we obtain

Q f ⊗ Bq ≃ ⊕
V∈IGq

V∨ ⊗Q fq ,V ≃ Q f ,R[G] ⊗ Bq

Since for all U ∈ RepG R the representation U ⊗ Bq splits as a direct sum of representations in IGq we can
conclude that 5) ⇐⇒ 2′).
Nownotice that, for all U ∈ RepG R, the number vq(s f ,U) coincideswith the length ofQ f ,U⊗Bq over Bq .

In particular, for all U ∈ RepG R, ifQ f ,U⊗Bq is de�ned over k(q) then vq(s f ,U) ≤ rkq U becauseQ f ,U⊗Bq
is a quotient of (Ω fU)∨ ⊗ Bq which has rank rkq U. Moreover ξ f ,R is by construction an isomorphism so
that, if U ∈ LocG R, we haveQ f ,U = Q f ,U/UG and vq(s f ,U) = vq(s f ,U/UG) because U ≃ UG ⊕U/UG .�us
5) Ô⇒ 4). Since we have

vq(s f ,R[G]) = vq(s f ) = ∑
V∈IGq

rkV ⋅ vq(s fq ,V) and vq(s f ,R) = 0

we can also conclude that 4) Ô⇒ 2). �
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