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Abstract

Starting with a computational analysis of brightness matching, we develop a novel variational
framework able to model perceptual context-driven effects that may be extended to non-physical
judgments as well. The most important feature of the variational framework is the description
of these phenomena as a suitable balance between contrast and dispersion. The optimal balance
is defined through the simultaneous minimization of functionals characterized by two terms in
opposition to each other. When the minimum is reached, the equilibrium between contrast and
dispersion is attained. To show the flexibility of the proposed framework, we discuss several
examples of such functionals in the field of color perception and cognition which show adherence
between theoretical predictions and empirical results. With regard to social cognition theories,
the simultaneous occurrence of contrast and dispersion conflicts with sequential models, thus
supporting the idea of a concurrent presence of both effects in each judgment. The variational
framework can serve as a view from above on perceptual and cognitive phenomena that may help
in deriving new constraints for disambiguating alternative theories.

Keywords:
Context effects, contrast, assimilation, variational models, psychophysics.

1. Introduction and state of the art1

Context-driven effects are one of the most frequent observations in psychology. We can de-2

fine a context-driven effect as an over- or under-estimation of a stimulus embedded in a given3

context compared to the same evaluation task performed in isolated conditions. Within the field4

of visual perception, a typical example is the contrast effect observed in the brightness matching5
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experiment performed by Wallach (1948). Using Rudd and Zemach’s reinterpretation of Wal-6

lach’s experiment (Rudd & Zemach, 2004), we developed a general variational model where7

context-driven effects can be described. Formulating a problem in terms of variational prin-8

ciples is a common strategy in practically every scientific discipline. The main purpose is to9

obtain a broader view of the problem, thereby enabling us to derive a higher level explanation10

of the phenomenon and to detect its underlying functional constraints. Furthermore, by using11

this approach it is possible to highlight new constraints that may help to disambiguate alternative12

interpretations.13

When the brightness matching experiment is seen as a calculus of variations problem, judg-14

ments of a stimulus embedded in a context can be interpreted as the result of the balancing of15

two opposing processes. The first (that we will call with the standard term contrast) tries to16

emphasize differences in the final percept, whereas the second (that we will call dispersion) tries17

to emphasize similarities. We attempt to present evidence that a variety of contextual effects18

observed in non-physical judgments (such as those of social cognition) can be analyzed using19

the same variational framework.20

1.1. Contextual effects for physical judgments21

In the domain of perception, as early as in the seventeenth century the philosopher John22

Locke (1690) had described the contrast effect by noticing that a hand’s contact with tepid water23

can produce either the sensation of cold or hot if the hand had been previously placed in hot24

or cold water, respectively. The contrast effect has been considered since the earliest days of25

psychophysics (Chevreul, 1855; Wundt, 1896) and extensively investigated for judgments in the26

context of physical dimensions, such as the loudness of a tone (Melamed, 1971), the brightness27

of light (Wallach, 1948), weight (Heintz, 1950; Sherif, Taub, & Hovland, 1958), length of lines28

(Krantz & Campbell, 1961), and so on. In parallel, since von Bezold (1876) described a phe-29

nomenon “in which a colored surface appears lighter when overlaid by thin white lines or small30

white dots and appears darker if the lines or dots are black,” assimilation effects (after the name31

given to them by Evans, 1948) were also studied (Blakeslee & McCourt, 2004; De Weert &32

Spillman, 1995; Festinger, Coren, & Rivers, 1970; Helson, 1963; Kingdom & Moulden, 1991),33

especially in visual phenomena such as the white effect (White, 1979), Bressan’s dungeon illu-34

sion (Bressan, 2001) or the cube illusion of Agostini and Galmonte (2002). Within the domain35

of brightness perception, assimilation is considered the opposite of contrast. However, given the36

variety of models, theoretical approaches, and empirical results, such a notion is rather contro-37

versial and it has been employed as a convenient catch-all in which to place anti-contrast effects38

(Gilchrist, 2006). In particular, when referring to brightness judgments, the term ‘assimilation’39

has a special and different meaning from the concept described in this paper. So, as we wrote40

before, we will employ the term dispersion instead to indicate a positive correlation between the41

judgment and the context. The use of this generic term will also be helpful because we are going42

to refer the corresponding context effects in the social cognition and cognitive psychology fields43

where the word assimilation may have different meanings.44
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The debate overt the variables (and the underlying mechanisms) that determine different con-45

text effects is still open for discussion. Indeed, there is no consensus on how surface lightness46

is processed by the brain (Gilchrist, 2015) and thus under which conditions different context ef-47

fects are observed. Within this debate, Agostini and Galmonte (2002) proposed that perceptual48

belongingness may determine the kind of context effect. According to it, gestalt laws (proximity,49

similarity, good continuation, common fate, closure, and pragnänz) (Koffka, 1935; Wertheimer,50

1923) can explain the tendency of the visual system to aggregate discrete stimuli within larger51

wholes and thus determine if a stimulus phenomenologically belongs to a larger object or not.52

The basic idea is that if two elements belong to different perceptual groups, their colors are con-53

trasted with the color of the group to which they belong (Agostini & Profitt, 1993; Agostini &54

Galmonte, 2000). On the contrary, when an element is intentionally organized into one or an-55

other of two groups, its color is assimilated to the color of the group to which it belongs (so, in56

our terminology, a dispersion effect will be observed). For the sake of simplicity, in this paper we57

will assume Agostini and Galmonte’s (2002) perspective because it is compatible with the pro-58

posed formal framework and it addresses an important open question in the literature. However,59

our analysis does not depend on this assumption and it can be compatible with other theoretical60

proposals.61

1.2. Context effects for non-physical judgments62

The results obtained for basic perceptual judgments have suggested investigating the influ-63

ence of the context for non-physical judgments as well. Within social cognition, the word con-64

trast is employed to define the case of a judgment negatively correlated with the contextual65

information, whereas the term assimilation refers to a positive correlation between the judgment66

and the contextual information. Those effects have been observed for non-physical judgments67

related to moral evaluations (Parducci, 1968; Pepitone & DiNubile, 1976), pleasantness of music68

(Parker, Bascom, Rabinovitz, & Zellner, 2008), friendliness of a person (Stapel, Koomen, & van69

der Pligt, 1997), attractiveness (Kenrick & Gutierres, 1980), prices of objects (Matthews & Stew-70

art, 2009b), and a wide variety of social judgments and evaluations (Biernat, 2005; Moskowitz,71

2005). For example, when investigating the contrast effect in moral judgment, Parducci (1968)72

asked respondents to rate the seriousness of a number of acts, such as poisoning a neighbor’s73

dog, alongside trivial acts, such as keeping a dime you find in a telephone booth, and very se-74

rious bad acts, such as murdering your mother without justification or provocation. He found75

that in the first case, the sentence poisoning a neighbor’s dog was judged as more serious when76

compared to the second case. Different terms have been employed to indicate a judgment bi-77

ased towards the context. Within cognitive psychology, Tversky and Kahneman (1974) used78

the word anchoring to indicate the bias of a numeric judgment towards a previously considered79

standard. In line with the observations made previously about physical judgments, given such80

terminological ambiguities, we employ the word dispersion to mean such kind of bias.81

Several studies have identified many factors that can induce dispersion or contrast in judg-82

ment related to person perception (Higgins & Lurie, 1983) and self-evaluation (Festinger, 1954).83

For example, broad contextual categories (such as traits) are likely to produce dispersion whereas84
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in the case of a context represented by narrow categories (such as exemplars), contrast effect will85

be observed (Stapel, Koomen, & van der Pligt, 1996). Other factors include processing goals86

(memorization vs. impression formation where the first induces assimilation and the second87

contrast, Moskowitz & Roman, 1992), distinctness of the context (in the case of high distinct-88

ness that is more likely to observe contrast, see Wedell, Parducci, & Geiselman, 1987), temporal89

distance between events (distant contextual events are more likely to induce contrast, see Strack,90

Schwarz, & Gschneidinger, 1985), and many others (Biernat, 2005).91

Given the factors that can induce cognition-related context-driven effects, several theoretical92

models have been developed to furnish parsimonious and effective predictions about how and93

when dispersion or contrast occurs in a given situation. Among them, we can cite the set-reset94

model (Martin & Achee, 1992), the inclusion-exclusion model (Schwarz & Bless, 1992), the95

flexible correction model (Petty & Wegener, 1993), the interpretation-comparison model (Stapel96

& Koomen, 1998) and the selective accessibility model (Mussweiler, 2003). Those models differ97

in terms of the assumed degree of effort involved in the effects (automatic or controlled), if the98

two effects are simultaneous or sequential, the specific variables involved in the processes, and99

the assumed default process (either contrast or dispersion). However, the majority of them agree100

with the notion that the factors that make the context less distinct from the stimulus (in other101

terms, factors suggesting an inclusion of the stimulus in the context) induce a dispersion effect,102

whereas factors that make the context distinct from the stimulus (so, suggesting an exclusion103

from the context) induce a contrast effect. Such interpretation is coherent with Agostini and Gal-104

monte’s (2002)’s perspective about the factors determining context effect in physical judgments.105

1.3. Rationale for this article106

In this paper, we develop a general, formal framework for context-driven effects in both107

perception and cognition. In the psychophysical literature about contrast, it is possible to find108

attempts that provide mathematical formalizations of this effect. The first, and still one of the109

most famous, is provided by Fechner’s formalization (Fechner, 1860) of Weber’s findings about110

the differential threshold of sensation by sense organs (Weber, 1846). Even more remarkably, it111

is possible to find attempts to build mathematical models that try not only to formalize measure-112

ments, but also to predict new phenomena. We will present a pertinent example of such a model113

in section 2 related to visual induction (i.e., perception of light stimuli in a non-isolated context).114

Recently, this model has been embedded in a variational setting (Provenzi, 2013).115

The use of a variational principle is not yet widespread in mathematical psychology, even116

though a few examples can be found (Ehm & Wackermann, 2012; Noventa & Vidotto, 2012).117

In other disciplines (e.g., physics and signal processing), variational principles have been exten-118

sively employed. One of the main reasons for this success is that variational calculus allows119

the reinterpretation of a model in terms of the hidden basic mechanisms underlying the model120

itself. Crucially, these basic mechanisms are also shared with other models and this allows for121

a demonstration of similarities and differences that are often very difficult to discover without a122

variational approach.123
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We stress that the main purpose of variational calculus is not to provide new predictions124

compared to already existing models, but to offer a more general and profound view about the125

phenomena described by these models to possibly build bridges between different theories. Once126

the variational interpretation of a model has been established, it is possible to determine general127

constraints about the phenomena and it is also possible to slightly modify the analytical expres-128

sion of the variational model in order to generate new equations to be tested.129

To illustrate our approach, we are going to show that the variational reinterpretation of130

Rudd-Zemach’s model can also be applied to the comprehension of mechanisms underlying131

non-isolated judgments of non-physical stimuli. As stressed above, the core contribution of this132

variational framework is the possibility of describing context-driven judgments as a suitable bal-133

ance between two opposing mechanisms: contrast and dispersion. On the one side, the contrast134

mechanism tends to maximize as much as possible the difference between the stimulus and its135

surround, while on the other side, simultaneously, the dispersion mechanism tends to absorb136

this difference, integrating the stimulus into its surround. Finally, we will strengthen our hy-137

pothesis with a quantitative discussion of previous studies about context effects for non-physical138

judgments.139

The paper is organized as follows: In section 2 we introduce Rudd-Zemach’s analysis of a140

context-driven perceptual match experiment; after a brief summary of variational principles in141

section 3, we reformulate Rudd-Zemach’s model in section 4 and interpret brightness matching142

as an optimal balance between dispersion control and contrast enhancement. This concept is143

further generalized in section 5, in which a fully general variational framework for context-driven144

perceptual and cognitive phenomena is provided and discussed with examples. The simple, yet145

already significant, variational interpretation of linear equations in the linear and logarithmic146

domain is discussed in great detail. Section 6 is devoted to a thorough discussion of the proposed147

model and several case studies. The paper ends with conclusions and an appendix showing the148

proof of the variational result of section 4.149

2. A significant example of modeling of context-driven phys-150

ical judgments: Achromatic induction151

In this section, we will discuss in detail a successful model for achromatic induction. In the152

next section, we will provide a variational interpretation of this model and this will serve as a153

concrete example for the formulation, in section 5, of a more general variational model suitable154

for non-physical judgments as well.155

Human perception of a color patch is not determined by its reflectance properties alone, but156

also by those of the surrounding patches. This phenomenon is called chromatic induction, to157

stress the fact that color perception is induced (and altered) by the surround. This is also true158

for the so-called achromatic colors (i.e., perceived shades of gray), in which case one talks about159

achromatic induction. Following a common nomenclature, we will call lightness the perceived160

reflectance of a non self-luminous patch, while brightness will refer to the perceived luminance161
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emitted by a source of light. Thus, the terms lightness and brightness already incorporate the162

potential effect of induction in their definition. The most elementary example of induction is the163

simultaneous contrast phenomenon, depicted in Fig.1: The two inner squares have exactly the164

same luminance, however we perceive them very differently because we are strongly influenced165

by their distinct surrounds.166

Figure 1: Achromatic simultaneous contrast: The inner gray squares have the same luminance but the left one, surrounded by a dark gray patch,
looks lighter compared to the right one that is surrounded by a light gray patch.

Induction can be measured through psychophysical experiments. The first quantitative mea-167

sure of achromatic induction was performed by Wallach (1948). In his classical experiment168

(Fig.2), Wallach considered two disks, DT and DM for Target and Match, surrounded by two169

rings RT and RM, embedded in a uniform background B. Let us denote with LDM , LRM , LDT , LRT ,170

and LB the luminance values of DM, RM, DT , RT , and B, respectively. He showed this configu-171

ration to a set of observers adapted to the light conditions of a dimly illuminated room, keeping172

LDT and LRM fixed, using LRT as an independent variable that he could fix in every experiment,173

and LDM as a dependent variable that the observers could adjust in order to achieve a perceptual174

match between the two disks T and M. The stimuli presented to the observers did not have175

chromatic components.176

Figure 2: Wallach’s classical experiment. Over a uniform background B, there are two inner disks, DT and DM (T and D for Target and Match,
respectively), surrounded by two external rings RT and RM .

If the luminance of the surrounding rings failed to influence the perception of the achromatic177

color of the disks, then the match between the two disks would simply be the photometric one,178

i.e., LDM = LDT ; instead, Wallach found that a fairly good match among the achromatic color179

of the two disks was obtained when the ratios between the disk and the ring luminances were180
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identical on the two sides of the display, i.e.,181

LDM

LRM

=
LDT

LRT

, (1)

a formula called Wallach’s Ratio rule. By taking the logarithms at both sides and solving for LDM182

we find:183

log LDM = log LDT + log LRM − log LRT , (2)

thus, according to Wallach’s Ratio rule, the plot of the perceptual match in the plane of coordi-184

nates (x, y) = (log LRT , log LDM ) should be a straight line with slope -1, against the slope 0 that a185

photometric match would measure. More recent measures using the classical Wallach’s experi-186

ment have shown that this slope is actually between -1 and 0, as can be seen in Fig.3 (adapted187

from Rudd & Zemach, 2004).188

Figure 3: Quantitative measures of Wallach’s achromatic color induction experiment for four observers performed in Rudd & Zemach (2004).
The best-fit regression line slopes and associated 95% confidence limits observed by Rudd & Zemach (2004) for the four subjects of the
experiment are the following: -0.639±0.033, -0.791±0.034, -0.723±0.047, and -0.657±0.042.

To account for these new psychophysical data, Rudd and Zemach (2004) have proposed a189

more sophisticated model than Wallach’s. They repeated Wallach’s experiment adding a non-190

black background B. As in Wallach’s experiment, LDT and LRM are fixed and the observer’s task191

is to adjust LDM to achieve an achromatic color match to the test disk as a function of LRT . LRT192

is varied from trial to trial by sampling from a set of six luminance values spaced equally in193

RGB units from 2.54 to 6.31 cd/m2 (notice that Rudd and Zemach used the base 10 for their194

logarithmic values, so that the logarithmic range goes from 0.405 to 0.800 cd/m2).195

Rudd and Zemach also pointed out some similarities between their model of achromatic196

induction and the Retinex theory of color perception of Land and McCann (1971) without the197
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so-called threshold and reset mechanisms (see Provenzi, De Carli, Rizzi, & Marini, 2005, for198

more details). Rudd and Zemach’s model can be described as follows. Let Li and L j be the199

luminance of two points i and j in an image, the ratio Li
L j

can be decomposed as a sequential200

multiplication of the local luminance ratios at borders encountered along a path connecting j and201

i, for istance:202

Li

L j
=

j−1∏
k=i

Lk

Lk+1
, (3)

by taking the logarithm at both sides we get203

log
Li

L j
=

j−1∑
k=i

log
Lk

Lk+1
. (4)

Rudd and Zemach introduced induction strength weights wk in order to take into account the204

locality of vision, i.e., the fact that patches that lie in a nearby surround have a stronger influence205

on the induced perception than those that are far away. This point is somewhat delicate and it206

will be discussed in the next section. Notice that in the configuration shown in Fig.2, we have207

i = DM, i+1 = j−1 = RM, j = B on the left part of the visual field, and i = DT , i+1 = j−1 = RT ,208

j = B on the right part. The logarithmic brightness of i, which we denote with log Φ(i), that can209

be inferred by Rudd and Zemach’s model, is the following:210

log Φ(i) ≡
j−1∑
k=i

wk−i+1 log
Lk

Lk+1
+ µ, (5)

where µ ∈ R is an arbitrary constant that will be eliminated by the matching procedure and that211

we introduced to underline the fact that brightness perception is relative to a context and not212

absolute. It can be seen that, if the luminances Lk and Lk+1 are equal, then their ratio does not213

give any contribution to Φ(i). A meaningful contribution to Φ(i) is given only by the luminances214

of points lying at the border of an edge. So, Φ(i) represents the summed influence of all the edges215

present within the spatial surround of the target point, suitably weighted. The weights index is216

k − i + 1, which means that small values of the index refer to patches close to i, and vice versa.217

With this convention, and invoking the fact that induction strength decreases with the distance,218

as proven by Wallach (1963), we have that w1 > w2 > . . ., i.e., w2
w1
< 1, and so on.219

Rudd and Zemach called their model of achromatic induction ‘Weighted Log Luminance220

Ratio’, or WLLR for short. WLLR predicts that the brightness match between LDM and LDT is221

attained when Φ(DM) = Φ(DT ), i.e.,222

w1 log
LMatch

DM

LRM

+ w2 log
LRM

LB
+ µ = w1 log

LDT

LRT

+ w2 log
LRT

LB
+ µ, (6)

solving this equation w.r.t. log LDM we have223

log LMatch
DM

= log LDT +

(
1 −

w2

w1

)
log LRM −

(
1 −

w2

w1

)
log LRT , (7)
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LMatch
DM

is the luminance value of DM selected by the observer to match LDT . If we set u =224

log LMatch
DM

, α = log LDT +
(
1 − w2

w1

)
log LRM , β = −

(
1 − w2

w1

)
and v = log LRT , then the WLLR model225

predicts the following linear behavior in the logarithmic domain:226

u = α + βv, (8)

with a slope β = −
(
1 − w2

w1

)
∈ (−1, 0), which is coherent with Rudd and Zemach’s empirical227

observations. In fact, the estimations of the ratio w2
w1

from their interpolated data for the four228

observers are: 0.361, 0.209, 0.277, and 0.343. A key assumption of edge integration models, like229

WLLR, is that the total achromatic color induction produced by a complex surround is the sum230

of the individual induction effects produced by the luminance borders comprising that surround.231

Rudd and Zemach performed experiments to directly test this assumption by predicting and232

then measuring the magnitude of the total induction effect produced by combining three circular233

edges located at different distances from the test disk. This was done after first measuring the234

magnitudes of the induction effects produced by the individual edges. Results were in accordance235

with the predictions of the model.236

In section 4, we will re-interpret the WLLR model in terms of variational principles; this will237

give us the possibility of introducing in a clearer way the more general variational framework238

of section 5. For the sake of clarity, and to introduce the usual nomenclature and notation of239

variational calculus, we summarize the basic information about variational principles in the next240

section.241

3. Overview of variational principles242

Calculus of variations is a generalization of ordinary calculus in Rn. In the latter, we deal243

with functions f : D ⊆ Rn
→ Rm, n,m integers ≥ 1, while in variational calculus we work with244

functions acting on functional spaces. More precisely, a functional space is a vector space whose245

elements are functions having some specified features. To provide a concrete example, let us246

consider two very well-known and useful functional spaces:247

• Cn(D), D ⊆ Rn, D open, is the space of functions f : D → R which are n-times differen-248

tiable, with continuous derivatives on the whole D, the case n = 0 corresponds simply to249

continuous functions on D;250

• L2(R) is the space of square-integrable functions on R, i.e., f : R→ R such that
∫
R f (x)2 dx <251

+∞. These functions are also said to be finite-energy functions.252

Given an abstract functional space F over the field K (in general K = R or C), the linear253

operations in F are defined point-wise, i.e., given f , g ∈ F and α, β ∈ K, the function h ∈ F254

defined by the linear combination h = α f + βg ∈ F acts as follows on the arguments x of f and255

g: h(x) = α f (x)+βg(x). A functional ϕ acting on the abstract functional space F is a linear form256
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over F , i.e., a linear function from F to the field K:257

ϕ : F −→ K
f 7−→ ϕ( f ).

Let us also recall that, in ordinary calculus, a great deal of effort is dedicated to finding the258

extrema of functions. To fix ideas, let us consider a function f ∈ Cn(D), ~x ∈ D, then:259

• we call ~x = argmin
D

f , if f
(
~x
)

= min
~x∈D

f (~x);260

• we call ~x = argmax
D

f , if f
(
~x
)

= max
~x∈D

f (~x).261

We recall that, given a function f : D ⊆ Rn
→ R, f ∈ Cn(D) and any unit vector ~v ∈ D, the262

directional derivative of f along ~v, calculated in ~x, is defined by:263

D~v f (~x) = lim
ε→0

f (~x + ε~v) − f (~x)
ε

, (9)

the partial derivatives ∂i f (x), i = 1, . . . , n, of f are simply the n directional derivatives computed264

by choosing ~v = ~ei, the i-th unit vectors of the canonical basis of Rn. Finally, the gradient ~∇ f (x)265

is the n-dimensional vector whose components are the partial derivatives of f in x.266

By virtue of Fermat’s interior extrema theorem, the gradient of f (and its directional deriva-267

tives in every direction) must be null when computed in the argmin or argmax of f . This neces-268

sary condition also becomes sufficient when D and the function f are convex. The computation,269

either analytical or approximated, of the extrema of a function f ∈ Cn(D) belongs to a field called270

optimization in Rn. Contrary to ordinary calculus, in variational calculus the argmin and argmax271

of a functional are functions, more precisely, for an arbitrary functional E : F → K:272

• we call f = argmin
F

E, if E
(

f
)

= min
f∈F

E( f );273

• we call f = argmax
F

E, if E
(

f
)

= max
f∈F

E( f ).274

The possibility of progressing from an extrema of functions, represented by points of Rn, to275

extrema of functionals, represented by functions allows us to examine, in variational calculus,276

much more general problems than in ordinary calculus. Of course, this comes at the expense of a277

greater mathematical difficulty. The computation (in some cases analytical but, most of the time,278

approximated) of the extrema of a functional E is called variational (or functional) optimization279

and it has been the subject of research by many mathematicians, physicists, and engineers in the280

past two centuries (Boyd & Vandenberghe, 2004). Later in this section, we will provide some281

justification for the name ‘optimization.’282

A basic tool in variational optimization is the concept of the first variation of a functional,283

which is a direct generalization of the directional derivative of a function. More precisely, given284
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a functional E : F → R and any function g ∈ F , called perturbation, the first variation (or285

Gâteaux derivative) of E along g, calculated in f , is defined by286

δE( f , g) = lim
ε→0

E( f + εg) − E( f )
ε

, (10)

here, the perturbation g plays the role of the vector ~v in the definition of directional derivative.287

The generalization of Fermat’s interior extrema theorem to variational calculus states that the288

first variation of a functional computed in any extreme (argmin or argmax) must be null for289

every perturbation. Moreover, this necessary condition also becomes sufficient under suitable290

convexity hypotheses or when it is associated with some properties of the second variation, i.e.,291

the first variation of the first variation interpreted as a functional.292

The equations293

δE( f , g) = 0 ∀g ∈ F , (11)

are called Euler-Lagrange equations. For a better comprehension of the variational framework294

that we will develop in sections 4 and 5, it is worthwhile to complete this overview by showing295

explicit examples of functionals given by one or two terms and by explaining why the search296

for their extrema is called optimization. Let us start with the problem of finding the extremal297

function y = f (x) whose graph gives the shortest curve that connects two points (x1, y1) and298

(x2, y2) in R2. To find the variational principle associated with this problem, let us recall that the299

arc length A of the curve represented by the graph of a differentiable function y = f (x) between300

the points (x1, y1 ≡ f (x1)) and (x2, y2 ≡ f (x2)) is given by the integral
∫ x2

x1

√
1 + [y′(x)]2 dx. The301

solution to our problem will therefore be the argmin of the functional302

A : C([x1, x2]) −→ R
f 7−→ A( f ) =

∫ x2

x1

√
1 + [ f ′(x)]2 dx.

It can be easily proven that, as expected, the argmin of A( f ) is given by the straight line function303

f (x) = mx + b, where m = (y2 − y1)/(x2 − x1) and b = (x2y1 − x1y2)/(x2 − x1).304

In this case, it is very easy to understand why the argmin of A( f ) represents the optimal305

solution to the problem of finding the shortest curve, because of the direct interpretation of A( f )306

as the arc length functional. It is more difficult to understand what optimality means when the307

functional associated with a problem is given by two or more terms. To help understand this, let308

us consider the problem of determining, with a variational principle, the trajectory of a particle309

moving into space between time t0 and time t1 in a conservative physical system1. The Italian-310

French mathematician and physicist Lagrange solved this problem by considering the following311

functional, that nowadays we call Lagrangian in his honor:312

L(~q) =

∫ t1

t0
L(~q(t)) dt (12)

1A physical system is called conservative if the forces acting on it can be expressed as minus the gradient of a
potential energy function V .
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where L(~q) = T (~q) − V(~q), ~q : [t0, t1] → R3 being the time-dependent position function of313

a moving particle in R3 and T,V being the kinetic and the potential energy functions of the314

physical system, respectively.315

Lagrange’s outstanding achievement is that the argmin of the functional in (12) is the function316

~q(t) which solves Newton’s equation of motion ~F(t) = m~̈q(t), ∀t ∈ [t0, t1], where ~F is the result of317

forces acting on the particle and ~̈q(t) is the second temporal derivative of ~q (i.e., its acceleration).318

Since it is well-known that the trajectory of a particle in a (non-relativistic) physical system sat-319

isfies Newton’s second law of dynamics, Lagrange proved that this is equivalent to searching for320

the argmin of the functional (12). In other words, the minimization of functional (12) gives the321

optimal result because it coincides with the solution of Newton’s second law of dynamics. Since322

L(~q(t)), the integrand function of (12) is given by two terms with opposite signs, i.e., the kinetic323

energy T (~q(t)) = 1
2m‖~̇q(t)‖2 and the potential energy V(~q(t)), we can interpret Lagrange’s result324

by saying that in every instant t ∈ [t0, t1], the particle moves along a trajectory which minimizes325

the difference between the energy that the particle actually has due to its motion (i.e., T ) and326

the energy that the particle could potentially attain (i.e., V). This interpretation is commonly327

summarized by saying that the trajectory of motion of a particle is given by the optimal balance328

between its kinetic and potential energy in every instant. The balance between them is always329

present, but it is optimal to describe the trajectory of motion only for the argmin of the functional330

(12). Of course, when we deal with another problem, not necessarily related to motion of parti-331

cles or length of curves, optimality will refer, more generally, to the match between the argmin332

of the functional with an empirical or theoretical law describing a phenomenon or a property.333

Consistent with the nomenclature just recalled, also in those cases we will say that the argmin is334

characterized by the optimal balance between the functional terms.335

An illuminating example in this sense is the very deep variational interpretation of the his-336

togram equalization of digital images provided in Sapiro and Caselles (1997) that we will discuss337

in section 5.1. We will see that a digital image with an equalized histogram2 can be interpreted338

as the argmin of a functional characterized by the difference between a functional term that de-339

scribes adjustment to the middle gray-level of the image and another that gives a global measure340

of contrast carried by the image. Coherently with the considerations above, we will say that341

histogram equalization is given by the optimal balance between control of the dispersion around342

the middle gray and contrast intensification.343

The possibility of arriving at these highly non-intuitive interpretations of known phenomena344

and also to predict new ones is what makes the use of variational calculus so prevalent among345

many different disciplines as a sort of unifying principle. This is one of the main reasons why,346

in this paper, we analyze the possibility of using variational principles as a bridge between the347

description of perceptual and non-physical judgments.348

Remark 1: Optimization of functionals is conventionally associated with the search for their349

2We recall that the intensity of a digital image is quantized and bounded in the set of values {0, 1, . . . , 255}. A
digital image is said to be equalized if each intensity level has the same occurrence probability in the image.
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minima. Of course, a minimization problem can be transformed into a maximization one simply350

by changing the sign of the functional under analysis.351

Remark 2: When parameters are involved in the definition of a functional, the interpretation352

of optimality can be a little more difficult. In fact, functional minimization in this case generates353

a whole family of optimal solutions that depend on the selection of the parameters appearing354

in the equations. In these cases, a suitable tuning procedure that may vary from case to case,355

must be used to set the parameters once and for all, thus providing the (only) optimal solution to356

the problem under consideration. We will return to this subtle matter in section 5.1 during the357

variational analysis of histogram equalization.358

4. Variational interpretation of brightness matching359

In this section, we will discuss an alternative version of the Rudd-Zemach model which360

leads to analogous predictions and that has the advantage of being understandable in terms of361

variational principles. As underlined in section 2, the choice made by Rudd and Zemach to pass362

from eq. (4) to eq. (5) during the description of their WLLR model is questionable. The reason is363

that the weights of spatially local induction w1,w2, . . . should decrease with the distance between364

two point of the visual scene; however, in the decomposition of the chain of ratios in eq. (3),365

the points corresponding to the indexes k − 1 and k and those corresponding to k and k + 1 have366

exactly the same distance. Instead, if we keep fixed the target point i and consider points at an367

increasing distance from it, then it is perfectly correct to consider weights of decreasing strength.368

These considerations have been thoroughly analyzed in previous works on the interpretation369

of Retinex (Bertalmı́o, Caselles, & Provenzi, 2009; Provenzi et al., 2005, 2007; Provenzi, Gatta,370

Fierro, & Rizzi, 2008). Starting from this more coherent Retinex interpretation, we propose the371

following alternative definition of logarithmic brightness of i, denoted with log Ψ(i):372

log Ψ(i) ≡
j−1∑
k=i

wk−i+1 log
Li

Lk+1
+ µ, (13)

where, as for log Ψ(i), µ ∈ R is an arbitrary constant. If we compare the formulae of log Φ(i) and373

log Ψ(i), we see that in the latter the numerator of each ratio is Li, this means that the contribution374

to Ψ(i) is given by the logarithmic ratios between L(i) and the luminance of all the other patches375

in the visual field, weighted by the distance between i and the patches.376

It is easy to see that this model also predicts a linear relationship between log LMatch
DM

and377

log LRT with slopes in (−1, 0) for the visual match in Wallach’s experiment. In fact, developing378

eq. (13) for both sides of the visual field and matching the brightness, we get:379

w1 log
LMatch

DM

LRM

+ w2 log
LMatch

DM

LB
+ µ = w1 log

LDT

LRT

+ w2 log
LDT

LB
+ µ, (14)
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solving this equation w.r.t. log LMatch
DM

we have380

log LMatch
DM

= log LDT +
w1

w1 + w2
log LRM −

w1

w1 + w2
log LRT . (15)

We stress that the absolute value of the slope w1/(w1 + w2) = β1 is naturally bounded between381

-1 and 0, so it also accounts for Rudd-Zemach’s observations, even without the hypothesis that382

w2 < w1. The weight w2 can be expressed in terms of the measured value of β1 as follows:383

w2 =
1 − β1

β1
w1. (16)

If we now add two other rings in both the match and target bipartite field, and again use the384

outermost ring in the target field as an independent variable, then, by direct computation, it can385

be proven that expression of the induction weight w3 corresponding to this new, and more distant,386

ring predicted by our model is the following:387

w3 =
1 − β2

β2
w2 − w1, (17)

where β2 ∈ (0, 1) is the absolute value of the measured slope of the linear relationship in the388

logarithmic domain between the LMatch
DM

and the logarithmic luminance of the new outermost389

target ring. By iterating the process we find the following formula for the n-th induction weight390

(corresponding to the configuration given by one disk and n − 1 rings):391 
w2 =

1−β1
β1

w1

wn =
1−βn−1
βn−1

wn−1 −
n−2∑
k=1

wk n ≥ 3,
(18)

βn−1 ∈ (0, 1) is the absolute value of the measured slope of the linear relationship in the logarith-392

mic domain between the LMatch
DM

and the logarithmic luminance of the outermost (n − 1)-th target393

ring.394

It is natural to search for a generalization of Rudd-Zemach’s model that is valid for arbitrary395

spatial configurations and not just for the special one discussed in their experiments. To do that,396

we will distinguish between a discrete and a continuous context. In a discrete context, we will397

denote the discrete visual field with the lattice Ω ⊂ Z2, the coordinates of two arbitrary points398

in Ω as x = (x1, x2), y = (y1, y2), and the corresponding luminance values as L(x) and L(y),399

respectively. The equivalent of the logarithmic brightness of x defined in eq. (13) in this case is:400

log Ψ(x) =
∑
y∈Ω

w(‖x − y‖) log
L(x)
L(y)

+ µ, Discrete context, (19)

w(‖x− y‖) being a weight function which decreases with the distance ‖x− y‖ and µ is an arbitrary401

constant. In a continuous context, Ω is a subset of R2, and of course the discrete sum must be402

replaced by an integral:403

log Ψ(x) =

∫
Ω

w(‖x − y‖) log
L(x)
L(y)

dy + µ, Continuous context. (20)
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The advantage of this formulation, over that of Rudd and Zemach, is that it is possible to provide404

a variational interpretation of formulae (19), (20), as the following proposition states.405

Proposition 4.1. The achromatic logarithmic brightness Ψ(x) of an arbitrary point x ∈ Ω is the406

argmin of the functional407

Ew(log L) =
1
2

∑
x∈Ω

(
log

L(x)
µ

)2

−
1
4

∑
x∈Ω

∑
y∈Ω

w(‖x − y‖)
(
log

L(x)
L(y)

)2

, (21)

in the discrete scenario, and of the functional408

Ew(log L) =
1
2

∫
Ω

(
log

L(x)
µ

)2

dx −
1
4

∫∫
Ω2

w(‖x − y‖)
(
log

L(x)
L(y)

)2

dxdy. (22)

in the continuous scenario.409

The proof of this proposition is provided in the Appendix. Here, we are more interested in410

its interpretation. To this aim it is convenient to write the terms appearing in the functional as411

follows:412

• D(log L) ≡ 1
2

∑
x∈Ω

(
log L(x)

µ

)2
: discrete quadratic dispersion term,413

• Cw(log L) ≡ 1
4

∑
x∈Ω

∑
y∈Ω

w(‖x − y‖)
(
log L(x)

L(y)

)2
dxdy: discrete local quadratic contrast term,414

in the discrete domain, and415

• D(log L) ≡ 1
2

∫
Ω

(
log L(x)

µ

)2
dx: continuous quadratic dispersion term,416

• Cw(log L) ≡ 1
4

∫∫
Ω2

w(‖x − y‖)
(
log L(x)

L(y)

)2
dxdy: continuous local quadratic contrast term,417

in the continuous domain.418

As we specified in the introduction, in order to avoid confusion, we chose to use the word419

dispersion instead of assimilation because of the different meanings that the latter term can have420

in perception research (in particular brightness perception) and in the cognition field. From421

a general point of view, in our work the term ‘dispersion’ is employed to mean a tendency422

that simply weakens contrast (as it happens in the Rudd-Zemach induction model) and makes423

the target appear more like the other members of its contextual set. The key observation is424

that the minimization of Ew(log L) = D(log L) − Cw(log L) is reached through the simultaneous425

minimization of D(log L) and maximization of Cw(log L) (because of the minus sign appearing in426

front of the contrast term). D(log L) is minimized for values of L(x) close to µ, and this holds for427
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all x ∈ Ω. The numerical value of µ is not important; what really matters is that µ is a constant,428

thus we infer that minimizing D(log L) corresponds to inducing a uniform stimulus, which has429

the same value in every point x. This is the reason why we called D(log L) the dispersion term:430

If only this term existed, then all the stimuli coming from different points of the scene would431

be blended into a unique stimulus, uniform across the visual field. Of course, this is not what432

happens when we look at a scene, so there must be an opposing mechanism to dispersion, which433

is defined precisely by the action of maximizing Cw(log L). In fact, Cw(log L) is maximized434

when the terms of the integral, i.e.,
(
log L(x)

L(y)

)2
= (log L(x) − log L(y))2 are intensified, but that435

means that the differences log L(x) − log L(y) must be amplified as much as possible, which, in436

turn, corresponds to maximizing the contrast of the image content. The presence of the weight437

function w(‖x−y‖) guarantees that contrast amplification respects the locality of visual perception438

in the sense discussed above, which is a context-driven effect. All these considerations explain439

why we named Cw(log L) local contrast.440

To summarize, the logarithmic brightness values Ψ(x) can be interpreted as being the optimal441

balance between two opposite mechanisms: one that tends to adjust all stimuli to a constant,442

uniform value, and the other that tends to do the opposite, i.e., to amplify as much as possible the443

differences among all stimuli in a local, or context-driven, way. The results just obtained have444

many similarities with the theory of perceptually-inspired color correction (Bertalmı́o, Caselles,445

Provenzi, & Rizzi, 2007; Bertalmı́o, Caselles, & Provenzi, 2009; Palma-Amestoy, Provenzi,446

Bertalmı́o, & Caselles, 2009; Provenzi & Caselles 2014). The functionals considered in these447

papers balance dispersion and local contrast enhancement to perform perceptual color correction,448

i.e., to modify the intensities of pixels in digital images to approach the sensation produced by449

the real-world scene.450

5. A general variational framework for context-driven effects451

In this section, we generalize the concepts introduced in the previous section. The varia-452

tional interpretation of brightness matching refers to the simultaneous contrast phenomenon as453

initially investigated by Wallach. Until now, we have taken into account the influence of con-454

text on psychological judgments along the physical dimension of luminance and for matching455

experiments. However, we think that the same analysis may also hold for judgments along non-456

physical dimensions, such as beauty or morality, and not necessarily for matching experiments.457

The aim of this section is to provide an abstract framework that can be adapted to specific ex-458

periments through an appropriate specification of parameters. To guarantee a sufficient degree of459

abstraction and versatility of the setting, we introduce the following nomenclature:460

• (Ω, ‖ ‖): normed space describing the context. The norm ‖ ‖ : Ω → R+ is needed to461

measure distances between elements of Ω, and thus to handle local phenomena. Typically462

Ω is a subset of Zn in the discrete case, and of Rn, n ≥ 1, for continuous contexts, and ‖ ‖463

is the discrete or Euclidean norm, respectively, but nothing prevents Ω and ‖ ‖ from being464

a more complicated space and norm. We denote by x, y, . . . the elements of Ω and with465
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|Ω| its cardinality, area, volume, or hyper-volume, depending on its discrete or continuous466

structure and mathematical dimension, respectively;467

• S : Ω → R: stimulus function, such that S(x) represents the stimulus coming from the468

element x ∈ Ω;469

• F (Ω): functional space where S belongs. It can be, e.g., C(Ω), the space of scalar-valued470

continuous functions on Ω, L2(Ω), the square integrable (or finite energy) of scalar-valued471

functions on Ω, and so on, depending on the problem under analysis;472

• w : Ω × Ω → R+: induction weight function, w(x, y) and w(y, x) represent the strength of473

the influence of x on y and of y on x. If these strengths are equal, then we also require474

w to be a symmetrical function, i.e., w(x, y) = w(y, x) for all x, y ∈ Ω. w is typically a475

decreasing function of the distance ‖x− y‖, to keep into account the fact that closer stimuli476

(with respect to the norm ‖ ‖) influence each other more strongly than distant ones.477

Table 1 provides the identification of the objects of the variational framework just defined in478

the concrete case of two psychological experiments concerning judgments along physical and479

non-physical dimensions.480

Physical judgment
(Brightness matching)

Non-physical judgment
(Seriousness of an action)

x Pixel position on the screen Time at which a question is formulated
Ω Screen where stimuli are presented Real line R of instants of time

‖ ‖
Euclidean norm
between pixels

Absolute value of the difference
between two temporal moments

S(x)
Luminous intensity of

the stimulus in x
Question about seriousness

of an action asked at the time x

F (Ω) Space of all possible luminous stimuli
Space of all possible questions

about moral seriousness

Table 1: Identification of the objects defined in the variational framework in the case of a psychological experiment along a physical (left) and a
non-physical (right) dimension.

As discussed in the previous section, the general functional associated with a context-driven481

effect must be characterized by the balance between two opposing mechanisms: dispersion and482

contrast. In the case studied in the previous section, the dispersion is global, i.e., the weight483

function w is constant for every couple of points x, y ∈ Ω but, for the sake of a more general484

framework, we will also allow the dispersion term to be local, i.e., to have a weight function485

w which decreases with the distance between x and y. As shown in previous works (Palma-486

Amestoy et al., 2009), one must also add an attachment-to-original-data constraint that consists487

of an adjustment to the original stimuli values. This helps to guarantee that the context-driven488
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perceptual or cognitive values of the stimuli do not excessively depart from the original ones, and489

it also helps the convergence of iterative numerical schemes for the approximation of the argmin490

of the functional. To better understand the exigence of an attachment-to-original-data constraint,491

we can think about the case of color perception of a surface under different light conditions,492

e.g., neon and tungsten lamp. While the human visual system is able to partially discount the493

noticeable spectral difference between these two illuminants, we still perceive a dominant bluish494

color under neon light and a reddish color under the tungsten light, which is symptomatic of an495

attachment to the original stimuli.496

We thus introduce in our framework the three following functionals:497

• B : F (Ω) → R: attachment-to-original-stimuli functional. The effect of its minimization498

is to preserve the original values of the stimuli;499

• Cwc : F (Ω) → R: contrast amplification functional. The effect of its minimization is to500

enhance the differences between any two stimuli S(x), S(y), with x , y. The presence of501

the weight function wc allows contrast amplification to be context-dependent;502

• Dwd : F (Ω) → R: dispersion functional. The effect of its minimization is to adjust the503

values of the stimuli in the direction of the average value of the context, which can be504

global µ (and in this case wd is constant), or local µ(x) (and in this case the weight function505

wd is not constant);506

• Moreover, we require the minimization of these functionals to give rise to dimensionally507

coherent equations, where ‘dimension’ here means the unity of measurement associated508

with stimuli.509

The simultaneous presence of the three effects discussed above can be represented by the follow-510

ing functional, given by a linear combination of the three previous ones:511

Ewc,wd ,b,c,d(S) = bB(S) + cCwc(S) + dDwd (S) b, c, d ∈ R, (23)

b is the attachment-to-original-data strength, c is the contrast strength, and d is the dispersion512

strength. It is important to stress that the argmin of Ewc,wd ,b,c,d(S) can directly represent the per-513

ceived stimulus but it can also be used for brightness matching experiments, as discussed in514

section 4. In this last case, once the stimulus to be matched is identified, the Euler-Lagrange515

equations corresponding to the argmin must be matched and solved with respect to the perceived516

quantity that one wants to measure. We also stress that the simultaneous presence of disper-517

sion and contrast is essential: without the dispersion term, the contrast process would increase518

without boundaries and vice-versa, if only the dispersion term were allowed to work without the519

compensation of the contrast one, then the stimulus would be absorbed in the context and the520

final percept would become trivial.521

In the perception and social cognition literature there is no consensus on circumstances that522

lead to either one of the two effects (Gilchrist, 2015). Many variables can affect the resulting523
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percept, as described previously in section 1. By changing parameters and the form of the func-524

tional, our approach is able to incorporate different assumptions about the variables involved in a525

particular experiment. Among the various theoretical ideas within perception, gestalt laws may526

provide (at least) some clues about how and when an observer will experience dispersion or con-527

trast (Agostini & Galmonte, 2002; Koffka, 1935; Wertheimer, 1923). According to Agostini and528

Galmonte (2002), when two items belong to different perceptual groups, a contrast effect will529

be observed. On the contrary, when an item is organized into one or the other of two perceptual530

groups, a dispersion effect will be observed. Such a mechanism is (at least partially) in line with531

social cognition studies about variables that affect context effects.532

There are reasons to believe that the equilibrium between dispersion and contrast is also533

involved in non-physical judgments. One example is given by the judgment of attractiveness:534

an observer is exposed to a face that is considered average-looking in isolated conditions, then535

he/she has to judge the face again in the presence of either an attractive or an unattractive face536

that plays the role of the context effect. Both dispersion and contrast effects have been reported537

(Kenrick & Gutierres, 1980). The same happens for a single attractive or unattractive face acting538

as context. For example, in the appearance of a face there can be some attractive traits (e.g.,539

the eyes, the form of the face and so on), some average-looking traits (e.g., the lips), and some540

unattractive characteristics (e.g., a scar, or other imperfections). The dispersion term indicates541

the tendency to create a holistic and uniform perception of face attractiveness, reducing the differ-542

ences that may be present. At the same time, contrast maximization implies that the differences543

in attractiveness of the different features of a face are enhanced. Social cognition literature about544

contrast and dispersion effects (Biernat, 2005; Stapel & Koomen, 1998) underlines the role of the545

context as the backdrop against which the stimuli is experienced. More specifically, the impor-546

tance of reducing the within-stimulus and the within-context differences is often stressed in order547

to make the comparison. Stereotypes (Biernat & Kobrynowicz, 1997; Stapel & Koomen, 1998)548

as well as social standards (Higgins, 1987, 1990) are unidimensional and uniform representa-549

tions of attitudes and traits of a given person or a group. Famous effects such as the halo effect550

(Nisbett & Wilson, 1977), the focusing effect (Schkade & Kahneman, 1998), and anchoring bi-551

ases (Tversky & Kahneman, 1974) are based on the tendency to rely very strongly on a single552

piece of information at the expense of other elements. Again, such effects rely on the idea that553

the within-differences of the single piece of information used as a criterion are minimized. Such554

considerations testify to the importance of the dispersion term in our variational model in order555

to perceive stimuli as uniform as possible to make a comparison; concurrently, this comparison556

is enhanced by the contrast effect.557

To summarize, the proposed setting provides a view from above that helps put into evidence558

and formalize the two conflicting actions of dispersion and contrast in each judgment (either559

psychophysical measures in physical domains or non-physical judgments) whose balance deter-560

mines the final percept. In the following subsections, we will provide significant examples of561

functionals of the kind just described.562
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5.1. Examples of functionals Ewc,wd,b,c,d(S) already present in the litera-563

ture564

We start the description of a functional of the type (23) already present in the literature with565

an important example of a functional that mixes dispersion and contrast. Even though it does not566

represent a context-driven effect, we have chosen to begin with it because it is the starting point567

for the development of the context-driven functionals that we will discuss afterwards.568

The so-called Caselles-Sapiro functional, proposed by Sapiro and Caselles (1997), provides569

a highly non-intuitive variational interpretation of histogram equalization. Whenever we have570

the histogram of a variable, its equalization forces the histogram to be flat, so that all the realiza-571

tions of that variable have the same probability of occurrence. The very remarkable finding of572

these authors was that, using the notations introduced above, and considering normalized stimuli573

S(x) ∈ [0, 1], the argmin of the following functional574

EHist. Eq. = 2
∑
x∈Ω

(
S(x) −

1
2

)2

−
1
|Ω|

∑
x∈Ω

∑
y∈Ω

|S(x) − S(y)| (24)

in the discrete setting, and575

EHist. Eq. = 2
∫

Ω

(
S(x) −

1
2

)2

dx −
1
|Ω|

∫∫
Ω2
|S(x) − S(y)| dxdy (25)

in the continuous setting, has an equalized histogram. To understand this result, notice that the576

first term of EHist. Eq. can be interpreted as a dispersion functional with respect to the average value577

between the extremes 0 and 1 taken by S(x), while the second term can be interpreted as a (non578

context-dependent) contrast functional. In fact, the first term is clearly minimized by a constant579

stimulus equal to 1/2, while the second term, due to the presence of the minus sign in front of580

it, is minimized when the absolute value of the differences between two stimuli are maximized.581

In light of this result, an equalized stimulus is characterized by the equilibrium between being582

uniform and having as much diversity as possible, which is a highly non-trivial result.3583

This profound finding has been used in previous works (Bertalmı́o et al., 2007, 2009; Palma-584

Amestoy et al., 2009) to model context-driven effects in color vision and it has been applied to585

the enhancement of color digital images. In this case, S is the intensity function of an image586

in each separated chromatic channel RGB, I : Ω → [0, 1], where Ω is the spatial support of587

the image and [0, 1] is the normalized dynamic range of pixel intensities. The first functional588

inspired by the results of Caselles and Sapiro appeared in Bertalmı́o et al. (2007) and can be589

written as follows:590

E1(I) = d
∑
x∈Ω

(
I(x) −

1
2

)2

+
∑
x∈Ω

(I(x) − I0(x))2
− c

∑
x∈Ω

∑
y∈Ω

w(x, y)S (I(x) − I(y)), (26)

3We stress that in Sapiro and Caselles (1997) the authors show that the factor 2 in front of the dispersion term
is the only choice of the weight parameter that gives rise to histogram equalization. When we deal with function-
als relative to perceptual or cognitive experiments, the parameters setting must be performed by a suitable tuning
procedure that may vary from case to case in order to find the optimal solution to our problem.
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in the discrete setting, and591

E1(I) = d
∫

Ω

(
I(x) −

1
2

)2

dx +

∫
Ω

(I(x) − I0(x))2 dx − c
∫∫

Ω2
w(x, y)S (I(x) − I(y)) dxdy. (27)

in the continuous setting, where the function S an antiderivative for a sigmoid. It can be seen592

that all the functional terms mentioned above appear in E1(I): The first term is the dispersion to593

the average intensity level between 0 and 1, the second is the adjustment to the original intensity594

values I0(x), and the third is a nonlinear and context-driven contrast term. The nonlinearity is595

due to the presence of S , which is introduced to mimic some peculiar properties of the human596

visual system (see Bertalmı́o et al., 2007 for more detail).597

One of the most important characteristics of human vision is its robustness with respect to598

changes of illumination4 (Fairchild, 2005; Land & McCann, 1971); this property is not reflected599

by the analytical expression of the functional E1(I), which is not invariant with respect to trans-600

formations such as I 7→ λI. To remedy this problem, in Palma-Amestoy et al. (2009), another601

kind of functional was considered, namely:602

E2(I) = d
∑
x∈Ω

(
µ log

µ

I(x)
− (µ − I(x))

)
+

∑
x∈Ω

(
I0(x) log

I0(x)
I(x)

− (I0(x) − I(x))
)

+ c
∑
x∈Ω

∑
y∈Ω

w(x, y)ϕ
(

min(I(x), I(y))
max(I(x), I(y))

) (28)

in the discrete setting, and603

E2(I) = d
∫

Ω

(
µ log

µ

I(x)
− (µ − I(x))

)
dx +

∫
Ω

(
I0(x) log

I0(x)
I(x)

− (I0(x) − I(x))
)

dx

+ c
∫∫

Ω2
w(x, y)ϕ

(
min(I(x), I(y))
max(I(x), I(y))

)
dxdy

(29)

in the continuous setting, where the functional parameter ϕ is a strictly increasing positive func-604

tion.605

4Taking into account the cognitive domain, it is possible to draw a parallel between such robustness to changes
of illumination with the well-known hedonic treadmill theory (Brickman & Campbell, 1971; Eysenck, 1990). This
theory is based on the observed tendency of a quick restoration to a relatively stable level of happiness after the
experience of major positive or negative life events (Brickman & Campbell, 1971; Diener, Lucas, & Scollon, 2006;
Fujita & Diener, 2005; Lykken & Tellegen,1996; Silver, 1982; Wildeman, Turney, & Schnittker 2014). For example,
interviewing lottery winners and paraplegics in order to assess their happiness levels due to the positive (winning
the lottery) or negative (becoming paralyzed) event, it was observed that after a few years, both groups returned to
their baseline level of happiness (Brickman & Campbell, 1971). As a matter of fact, the hedonic treadmill metaphor
explicitly refers to adaptation processes in sensory domains. Although much evidence supports this theory, there is
an ongoing debate about how to measure happiness, the role of individual differences, and the differential impact of
particular events on happiness (Frederick, 2007).
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Let us discuss the meaning of the terms in E2, starting with the last one. First of all, notice that606

the ratio defined by min(I(x), I(y))/max(I(x), I(y)) is minimized when the minimum decreases607

and the maximum increases, which of course corresponds to a contrast amplification. Moreover,608

the fraction is invariant with respect to transformations like I 7→ λI. In order to be dimensionally609

coherent, the quadratic dispersion and attachment can no longer be used here, thus the authors610

selected the so-called entropic dispersion and attachment terms; the first and the second appear-611

ing in (29), respectively. Given the statistical interpretation of entropy, minimizing the first terms612

amounts to minimizing the variability of intensity levels around the average µ and around the613

original data I0(x), which is what is expected from the dispersion and attachment terms. The614

advantage, with respect to the quadratic terms, is that the first derivatives of the entropic func-615

tionals are dimensionally coherent with those coming from the contrast term. We refer again to616

Palma-Amestoy et al. (2009) for more details. We hope that these examples may help the reader617

understand how the contrast and dispersion terms can vary according to the particular features618

exhibited by a problem.619

5.2. Variational interpretation of linear relationships in the linear and620

logarithmic scale for physical and non-physical dimensions621

The argmin of functionals of the type (23), in the majority of cases, is expressed via an622

implicit equation that cannot be solved analytically. However, for some particularly simple,623

yet already significant, expressions of the functional terms, the argmin can be expressed via a624

linear equation that can be directly compared with actual observations through a linear fit. It is625

particularly important to analyze these situations, because they are, by far, the most common in626

psychology. In particular, let us distinguish between linear behavior in the linear and logarithmic627

scale. A linear behavior in the linear scale is simply expressed by the law: u = α + β v, where u628

and v are abstract variables and α and β are coefficients. Linear relationships like the previous one629

are in general associated with quadratic functionals. To avoid repeating functional expressions,630

we will consider only the discrete formulation, as the continuous version can be easily obtained631

by replacing sums with integrals.632

Let us start by considering the following functional:633

Ea,b,c(S) =
d
2

∑
x∈Ω

(S(x) − µ)2 +
b
2

∑
x∈Ω

(S(x) − S0(x))2
−

c
2

∑
x∈Ω

(S(x) − µ)2 , (30)

where S(x) is an abstract stimulus, S0(x) is the actual stimulus and634

µ =
1
|Ω|

∑
x∈Ω

S (x), (31)

is the constant value of an average background in which S0(x) is embedded. A practical example635

of such a configuration is when S is a visual stimulus and x ∈ Ω is a time variable, if the636

intervals xn, xn+1 between the n-th and the (n + 1)-th presentations of the visual stimuli are long637

enough, then no interaction between S(xn) and S(xn+1) is expected. Thus, only the interaction638
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between S(x), x ∈ Ω and the background µ is expected. Notice that in this particular case, the639

difference between dispersion and contrast is represented simply by the opposite sign in front of640

the corresponding terms and by the two strengths a , c, which must be different to avoid the641

trivial functional represented only by the attachment-to-data term.642

The basic variable in this configuration is the difference S(x) − µ, which can express either643

dispersion or contrast. Thus, as we have done in section 4, if we compute the Euler-Lagrange644

equations of the functional (30) and express the argmin S(x) in terms of S(x) − µ as follows:645

S(x) = S0(x) +
d
b

(S(x) − µ) −
c
b

(S(x) − µ) , (32)

then we can interpret S(x) as the stimulus corresponding to the optimal balance between contrast,646

dispersion, and attachment to the original stimulus S0(x). S(x) can be rearranged as follows:647

S(x) = S0(x) +
c − d

b
µ −

c − d
b
S(x). (33)

Eq. (33) expresses a linear relationship, as much as eq. (15). However, in eq. (33) it is clear that648

the slope of the linear relationship, i.e., −(c − d)/b is negative if the contrast between S(x) and649

background prevails over the adjustment, i.e., c > d, whereas the slope is positive when d > c,650

i.e., if adjustment between S(x) and the background overcomes the contrast effect.651

The great generality of variational principles allows us to easily extend the previous configu-652

ration to a new one, where we allow an interaction, global or local, among the S(x)s. Let us start653

by adding a global quadratic interaction:654

Ẽb,c1,c2,d(S) =
d
2

∑
x∈Ω

(S(x) − µ)2 +
b
2

∑
x∈Ω

(S(x) − S0(x))2

−
c1

2

∑
x∈Ω

(S(x) − µ)2
−

c2

4

∑
x∈Ω

∑
y∈Ω

(S(x) − S(y))2,
(34)

where the contrast strengths c1, c2 can be equal or different. The argmin of this functional is655

given by the following equation:656

S(x) = S0(x) +
d
b

(S(x) − µ) −
c1

b
(S(x) − µ) −

c2

b

∑
y∈Ω

(S(x) − S(y)) (35)

which, taking into consideration eq. (31), can be rearranged in this way:657

S(x) = S0(x) +
c1 − d + c2|Ω|

b
µ −

c1 − d + c2|Ω|

b
S(x). (36)

The generalization, which takes into account a local quadratic interaction, is provided by these658

functionals:659

Ẽb,c1,c2,d,w(S) =
d
2

∑
x∈Ω

(S(x) − µ)2 +
b
2

∑
x∈Ω

(S(x) − S0(x))2

−
c1

2

∑
x∈Ω

(S(x) − µ)2
−

c2

4

∑
x∈Ω

∑
y∈Ω

w(‖x − y‖)(S(x) − S(y))2.
(37)
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The argmin equation in this case is:660

S(x) = S0(x) +
d
b

(S(x) − µ) −
c1

b
(S(x) − µ) −

c2

b

∑
y∈Ω

w(‖x − y‖)(S(x) − S(y)) (38)

which, again, can be re-arranged as follows:661

S(x) = S0(x) +
c1 − d + c2

b
µ +

c2

b

∑
y∈Ω

S(y) −
c1 − d + c2

∑
y∈Ω w(‖x − y‖)
b

S(x). (39)

For the sake of completeness, let us observe that interaction among stimuli can also be more662

complicated than the quadratic one: A common example is given by the so-called logistic or663

sigmoid-like interaction, in which the basic contrast variable is represented by σ(S(x) − S(y)),664

where σ is a sigmoid. If S is an antiderivative of σ, then the functional corresponding to a665

sigmoid-like interaction is the following:666

Ẽb,c1,c2,d,S(S) =
d
2

∑
x∈Ω

(S(x) − µ)2 +
b
2

∑
x∈Ω

(S(x) − S0(x))2

−
c1

2

∑
x∈Ω

(S(x) − µ)2
−

c2

4

∑
x∈Ω

∑
y∈Ω

S(S(x) − S(y)),
(40)

in the case of global interaction, and667

Ẽb,c1,c2,d,w,S(S) =
d
2

∑
x∈Ω

(S(x) − µ)2 +
b
2

∑
x∈Ω

(S(x) − S0(x))2

−
c1

2

∑
x∈Ω

(S(x) − µ)2
−

c2

4

∑
x∈Ω

∑
y∈Ω

w(‖x − y‖)S(S(x) − S(y)),
(41)

in the case of a local interaction. The analysis of the Euler-Lagrange equations in this case is668

more involved than in the previous case.669

The second type of linear behavior that we want to model with variational principles is the670

one in the logarithmic scale, expressed by the law: ln u = α+ β log v. This relationship expresses671

a power law in the linear scale; in fact, the exponentiation of both sides of the previous equation672

gives u = eαeβ log v ≡ αelog vβ = αvβ. To write the functionals from (30) to (37) in the logarithmic673

domain, one simply has to perform the change of variable S 7→ S̃ ≡ logS and solve the corre-674

sponding Euler-Lagrange equations with respect to the logarithmic variables. In particular, it is675

interesting to re-write the functional (37) in the logarithmic domain:676

Ẽb,c1,c2,d,w(S̃) =
d
2

∑
x∈Ω

(
log
S(x)
µ

)2

+
b
2

∑
x∈Ω

(
log
S(x)
S0(x)

)2

−
c1

2

∑
x∈Ω

(
log
S(x)
µ

)2

−
c2

4

∑
x∈Ω

∑
y∈Ω

w(‖x − y‖)
(
log
S(x)
S(y)

)2

,

(42)
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if we set d = c2 ≡ 1, b = c1 ≡ 0 and we use the functional for a matching experiment, then677

we obtain exactly the same variational framework used to interpret Rudd-Zemach’s model of678

brightness induction.679

We conclude by noting that the ability to interpret linear equations in the linear and logarith-680

mic domain via variational principles is of paramount importance; in fact, as we have seen in this681

section, the linear coefficients can be directly interpreted as the difference between the strength682

of dispersion and contrast in the particular phenomenon under analysis. Moreover, possible devi-683

ations from linear behavior can easily be integrated in the variational model with the introduction684

of nonlinear perturbation terms in the analytical expression of the functional. Finally, let us no-685

tice that, if we deal with a nonphysical dimension, all the previous considerations still work by686

replacing the stimulus S with a judgment function and the average value of the background µ687

with a context K. Thus, in this case, a linear relationship between the judgment function J and688

the context K can be written as follows:689

J(x) = α + βK. (43)

As we have seen above, depending on the analytical expression of the functional terms, we can690

predict the sign and the bound the value of the slope of the linear relationship. In fact, if the691

empirical measurements of a direct judgment experiment fit with eq. (33) with µ replaced by692

K, then a measured negative slope means that contrast enhancement prevails with respect to693

dispersion control, while a measured positive slope means the opposite. Furthermore, if the694

empirical measurements of a matching judgment experiment can be described by the argmin of695

functionals of the type (37) or (42), with d = c2 ≡ 1, b = c1 ≡ 0, then we can predict that the696

absolute value of the slope will be bounded between 0 and 1, as discussed in section 4. Notice697

that a null value for the coefficient in front of a functional term means that the term does not have698

an influence on the global functional, and hence on the final percept; instead, a unitary value for699

the coefficient means that the term is accounted for its intrinsic strength, without being weighted.700

The great versatility of variational principles allows, in any case, the possibility of changing these701

coefficients to account for different theoretical proposals.702

6. The empirical case for the contextual variational frame-703

work704

In this section, we provide a preliminary validation of the predictions of our variational frame-705

work with respect to the balance between dispersion and contrast. We will particularly focus on706

eq. (33) and we will assume that functionals of the type (37), with d = c2 ≡ 1, b = c1 ≡ 0,707

can be used for a variational description of the experiment under analysis. Two issues that need708

to be addressed are: (i) contextual phenomena can be modeled by a linear relationship even for709

non-physical judgments; (ii) the slope of the linear relationship is bounded between 0 and 1 when710

dispersion control prevails and between -1 and 0 when contrast enhancement is stronger.711
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6.1. Constraints about the slope of the linear relationship between con-712

text and judgment713

The literature on context effects related to non-physical dimensions judgments is vast (Bier-714

nat, 2005; Kenrick & Gutierres, 1980; Matthews & Stewart, 2009b; Moskowitz, 2005; Parducci,715

1968; Parker et al., 2008; Pepitone & DiNubile, 1976; Stapel et al., 1997). A review of the716

literature on context effects in social cognition or cognitive psychology is beyond the scope of717

this article. Moreover, an actual check of the predictions is not always feasible because in many718

papers there are not enough data to verify such predictions. Indeed, only a limited number of pa-719

pers, which deal with a linear model, reported the slope of the contextual effect or, alternatively,720

at least two points related to the same judgments in different contexts (usually mean values mea-721

sured on the same scale). In the last case, of course, the presence of an actual linear relationship722

is questionable. Despite these difficulties, an unsystematic and limited check of the literature723

tends to support the variational framework. Papers that allow us to verify wheter the constraints724

previously discussed related to eq. (43) hold have usually measured a particular dimension on a725

Likert scale of a stimulus S.726

Disclaimer: the application of statistical or mathematical models to the responses collected727

on a Likert scale is a common but flawed procedure in the social sciences. For the sake of728

completeness, in this section we will provide several quantitative examples in line with this729

procedure. However, we stress that the comparison between the ordinal values that constitute730

the Likert scale and the numerical discrete or continuous values of a mathematical model is731

still an open problem in the social sciences (Camparo, 2013; Carifio & Perla, 2007; Casacci &732

Pareto, 2015; Wegener, 1982; Young, 1975). Future works should address explicitly the problem733

of how a monotone transformation of the non-physical judgments could affect the comparison734

with the variational model predictions; among the different strategies, a possible solution can be735

to employ the optimal scaling approach to change the distances between the categories until a736

particular optimum is reached (Takane, 2005). In order to provide a validation that is free from737

the Likert scale issue, we will describe the study of Matthews and Stewart (2009b) which deals738

with the psychophysics of an object’s prices (White & Vilmain, 1986). In this case, even if the739

participants are called to produce a non-physical judgment, the responses are not collected by740

means of a Likert scale.741

Let us start our analysis by considering a hypothetical example: The stimulus S could be the742

picture of a person and the dimension could be the attractiveness of the person. Taking the mean743

(or median) value of the observed responses in a sample, it is possible to obtain the judgment J (in744

isolation or in different contexts). Contextual information K consists of stimuli belonging to the745

same class of S, but characterized by larger or smaller values of the same dimension (e.g., a very746

beautiful person or a very ugly person). So, in a non-physical judgment experiment, participants747

are asked to judge a stimulus S and a corresponding context K.5 Usually, there are only two748

5It is important to note that, in non-physical judgments, the context K must also be judged in order to be defined.
This is not the case for psychophysical experiments, where the context can be measured through a physical device.
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different context configurations, K1,K2, which are judged and are considered stable with respect749

to the introduction of a further stimulus. With J1 and J2, we will indicate the judgment of the750

stimulus S in the contexts K1 and K2, respectively. For the sake of simplicity, let us keep the751

same symbols J1, J2,K1,K2 for their mean or median values in the Likert scale rating. If a linear752

relationship is found between the stimulus judgments J1 and J2 and the context judgments K1753

and K2, then the slope of the linear relationship will be:754

β =
J2 − J1

K2 − K1
. (44)

Table 2 reports K and J values found in three studies; two about contrast effect (Leding, Hor-755

ton, & Wootan, 2015; Parducci, 1968), and one about dispersion effect (Tversky & Kahneman,756

1974), along with the slope β computed by using the formula (44). With regard to the contrast757

effect, Parducci (1968) reported the rating of the seriousness (on a 5-point Likert scale) of the758

same set of acts (the stimulus S ) when they were considered together with trivial or very bad759

actions (the context K). The mean values of the contextual sentences were, respectively, 1.97 for760

K1, mild context, and 4.06 for K2, bad context. The mean values of the stimulus judgments in761

the two previous contexts were 3.21 for J1 and 2.69 for J2, respectively, thereby highlighting a762

contrast effect. In line with our framework, the slope β of equation (43) is equal to -0.25. A more763

recent study (Leding et al., 2015) has investigated contrast effects in judging attractiveness. There764

is a substantial amount of psychological literature on attractiveness ratings, as well. For example,765

Kenrick and Gutierres (1980) found that exposure to attractive women caused a contrast effect766

in attractiveness judgments about photographs of average-looking women. Moreover, given the767

increasing access to the Internet and the importance of visual representations of individuals in768

virtual environments, Leding et al. (2015) have investigated whether exposure to avatars with769

different levels of attractiveness (the context K) may influence judgments of the attractiveness770

of real people (J). Judgments were made on a 5-point Likert scale (from -2 to 2). In their first771

study (Leding et al., 2015, experiment 1), the authors found that, when the attractiveness of the772

avatars was high (K1 = 0.88), observers rated the photo of a person as less attractive (J1 = -0.87).773

By contrast, when the attractiveness of the avatars was low (K2 = -1.24), the same person was774

judged as being more attractive (J2 = -.30). Furthermore, in experiment 2, they also investigated775

the order of presentation (the rating of the three avatars and then the evaluation of the photo and776

vice versa). When the avatars were presented first, the contrast effect was replicated; in the case777

of high attractiveness avatars (K1 = 0.80), observers rated the photo of the person as less attrac-778

tive (J1 = -0.68), whereas in the case of low attractiveness (K2 = -1.65), the photo was rated as779

more attractive (J2 = 0.007). In both cases, the slope β was comprised between 0 and -1 (-0.27780

and -0.28, respectively).781

Switching to the dispersion effect, anchoring6 provides a well-known example of such a782

cognitive mechanism. For example, Tversky and Kahneman (1974) described an experiment783

6Anchoring occurs when individuals use a piece of information to make subsequent judgments. Given an anchor
value, subsequent judgments are biased toward such value (Tversky & Kahneman, 1974).
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Study Context Ki Judgment Ji β

Parducci (1968)
1.97 3.21

-.25
4.06 2.69

Leding et al. (2015) Exp 1
-1.24 -0.30

-.27
0.88 -0.87

Leding et al. (2015) Exp 2
-1.65 0.007

-.28
0.80 -0.68

Tversky & Kahneman (1974)
10 25

.36
65 45

Table 2: Contextual and stimulus values for three studies (Leding et al., 2015; Parducci, 1968; Tversky & Kahneman, 1974) and corresponding
slopes. It could be noted that slopes are always constrained between -1 and 1.

in which participants were asked to estimate the percentage of African countries in the United784

Nations. Before answering, they were requested to state whether the estimate was higher than785

the low anchor K1 = 10% or lower than the high anchor K2 = 65%. Results indicated a strong786

dispersion effect; in fact, they found a value of J1 = 25% for the low anchor and J2 = 45% for the787

high anchor. Taking into account these points, in line with our predictions, the slope β is equal788

to .36. We also evaluated a more recent study by Mussweiler and Strack (2000) based on the789

same kind of task (not reported in Table 2). This study investigated the different magnitudes of790

the dispersion due to anchoring as a function of previous knowledge and perceived plausibility791

of the anchors. The slopes β of the reported data are always bounded between 0 and 1 (minimum792

0.04 - maximum 0.73).793

All the previous cases are based on the unverified assumption of the presence of a linear794

relationship because the slopes are computed by using only two points. In order to overcome795

such a limitation, we performed an experiment aimed at evaluating (i) a contrast effect in a796

manner similar to that used by Parducci (1968), and (ii) a dispersion effect based on anchoring,797

following Tversky and Kahneman (1974). However, unlike the previous examples, we took798

into account several values of the context in order to check the presence of an actual linear799

relationship. Given the validity of such an assumption, it is possible to check if the slope of800

the linear relation is constrained according to the variational framework. We will also describe801

in more detail Matthews and Stewart’s (2009b) paper. This is a relatively recent paper that802

reported both dispersion and contrast effects for non-physical judgments taking into account a803

high number of different values for contextual information. The authors reported the slopes of804

such effects for the whole sample but also for each participant. Importantly, in this work contrast805

and dispersion effects are measured without relying on a Likert scale. For these reasons, it806

represents a good example of a case study for the variational framework predictions.807

6.1.1. Experiment808

In order to verify the prediction of our variational framework, we assumed a linear rela-809

tionship between context and judgment. The studies on context effects taken into account in810

the previous section evaluated such effects for only two different levels of contextual informa-811
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tion. Thus, we performed an experiment aimed at verifying the linearity assumption taking into812

account several contextual values. We employed two classical experimental paradigms previ-813

ously described: The Parducci (1968) paradigm about the moral evaluation of sentences, and814

the anchoring effect of Tversky and Kahneman (1974), inducing contrast and dispersion effects,815

respectively. Therefore, we considered two scenarios: the moral evaluation scenario in which816

people had to rate the moral seriousness of different actions, and the Kant’s date of birth scenario817

in which people had to guess when Immanuel Kant was born with different anchors. In both818

cases, we expected to find a linear relationship. If the linearity assumption is met, according to819

the constraints of the proposed framework, we predict a slope between -1 and 0 for the contrast820

effect and a slope between 0 and 1 for the dispersion effect.821

822

Participants. Three hundred and ninety subjects (285 female) participated voluntarily. Their823

mean age was 20.19 (sd = 3.91), with a range of 18 to 54 years. Participants were recruited824

in classroom settings in the University of Florence. The experimental task was part of other825

tasks connected to unrelated experiments. In each scenario (moral evaluation and Kant’s date of826

birth), participants were randomly assigned to a single context condition (out of seven, including827

no context).828

829

Materials. In the moral evaluation scenario, participants were asked to evaluate (on a Likert830

scale) the morality of one target sentence. Such a task could be preceded by the evaluation of831

a contextual sentence or it could be performed in isolation. The target sentence was Borrowing832

a small amount of money from friends without repaying. The six possible contextual sentences833

were: Exceeding the speed limit by about 10 km/h in safe conditions when driving on a highway;834

Stealing a towel from a hotel; Bringing a dog on the beach where it is forbidden; Selling spoiled835

milk to a hospital; Giving false testimony at a criminal trial in exchange for a sum of money; and836

Murdering a relative. Every sentence shown had to be evaluated on a scale from 1 (absolutely837

trivial) to ten (absolutely serious). In the Kant’s date of birth scenario, participants were asked to838

estimate the year of birth of the philosopher Immanuel Kant. Such a task could be preceded by an839

anchor question or it could be performed in isolation. The anchor question was ‘Was Immanuel840

Kant born before or after anchor year?’ Anchor years were: 1574, 1624, 1674, 1774, 1824, and841

1874.842

843

Results. With regard to the moral evaluation scenario, the mean judgment given for the target844

sentence in isolation was 8.05 (sd = 1.99). In Table 3 the mean judgments given to each contex-845

tual sentences with the corresponding judgments given to the target sentence are reported. The846

scatterplot (Figure 4) shows a rather weak correlation between context and judgments (r = −.17,847

p = .002) with possibly six outlier points corresponding to judgments of 4 or less for the target848

sentence. Excluding such points, the Pearson’s correlation becomes weaker but it is still statisti-849

cally significant (r = −.14, p = .014); in this case, the regression equation is y = 8.66 − 0.07x.850

The residual plot for the moral evaluation scenario (Figure 5) was patternless and it showed851

no clear trend, suggesting a linear relationship between the context and moral judgments. By us-852

29



Figure 4: Morality of the target sentence as a function of the morality of the contextual sentence. Noise was added for better visibility. Regression
equation is y = 8.77 − 0.1x (blue line) where the shadowed area corresponds to the confidence interval.

ing an ANOVA to verify the linearity between the context and the judgments, the linear compo-853

nent was statistically significant (F (1,325) = 9.67, p = .002), whereas the deviation from linearity854

component was not (F (4,325) = 1.02, p = .365). The linear relationship between the context and855

the moral judgments was confirmed by means of a Ramsey RESET test (Ramsey, 1969) against856

a quadratic (RESET(1,328) = 0.62, p = .431), cubic (RESET(1,328) = 1.11, p = .292) and quartic857

(RESET(1,328) = 1.67, p = .198) power effect as well as the square root (RESET(1,328) = 0.23, p =858

.626).859

With regard to the Kant scenario, the mean estimated year in isolation was 1768 (sd = 81).860

Table 4 shows the relationship between anchor years and the mean estimated year of Kant’s birth.861

The scatterplot (Figure 6) shows a positive and statistically significant relationship (r = .46, p <862

.001) between the anchor and the estimated values. Also for the Kant scenario, the residual plot863

(Figure 7) was patternless, suggesting a linear relationship between the anchor and the estimated864

year of birth. Indeed, the linear component of the ANOVA was statistically significant (F (1,294)865

30



Figure 5: The residual plot shows the relation between standardized residuals and predicted values for the moral evaluation scenario. Noise was
added for better visibility. Other than a few outliers, residuals are randomly distributed around the horizontal line corresponding to zero mean.

= 77.48, p < .001) whereas the deviation from linearity was not (F (4,294) = 0.33, p = .857). The866

Ramsey RESET test was not statistically significant for the quadratic (RESET(1,297) = 0.82, p =867

.365), cubic (RESET(1,297) = 0.80, p = .371) and quartic (RESET(1,297) = 0.78, p = .377) power868

effect or as a square root function (RESET(1,297) = 0.85, p = .357).869

For both the moral and the Kant scenarios, the relationship between context values and judg-870

ments was linear and constrained between 0 and 1 or -1 and 0 for contrast and dispersion effects,871

respectively, in line with the constraints predicted by the proposed variational framework. It must872

be underlined that only in the moral scenario were data collected by means of a Likert scale (and873

thus with the consequent limitations associated with the use of an ordinal scale).874

6.1.2. The Matthews & Stewart (2009b) study875

The Matthews and Stewart (2009b) paper is focused on how the context influences the judg-876

ment of non-physical dimensions. In particular, they investigated judgments of objects’ prices in877

a sequential decision making paradigm. Within the study of basic perceptual properties, as we878

have seen before, it has been observed that psychophysical judgments are strongly influenced by879

the local context: In particular, in sequential decision making tasks, the stimuli and the responses880

given in previous trials may influence the response of the current trial. Matthews and Stewart881

(2009b) cite Jesteadt, Luce, and Green (1977) who propose a linear regression model to account882

for context effects that arise in sequential decisional making experiments, based on the following883

equation:884

Jn = γ + α0Pn + α1Pn−1 + β1Jn−1 + ε, (45)

where Jn is the current judgment at trial n, which is a function of Pn, Pn−1, the objective mag-885

nitude of the stimuli presented in the current trial n and in the previous trial n − 1, respectively,886
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Context Target Sentence
Sentence Mean sd Mean sd

Exceeding the speed limit
by about 10 km/h in safe conditions

when driving on a highway
2.92 1.66 8.49 1.52

Stealing a towel from a hotel 4.15 2.02 8.38 1.40
Bringing a dog on the beach where it is forbidden 4.25 2.26 8.24 1.52

Giving false testimony at a criminal trial
in exchange for a sum of money

9.02 1.23 8.07 1.73

Selling spoiled milk to a hospital 9.10 1.55 7.97 1.82
Murdering a relative 9.83 0.68 7.41 1.45

Table 3: Results of the moral evaluation experiment. There is a contrast effect between the judgments given to the contextual sentences and the
corresponding judgments related to the target sentence.

Anchor Estimated year
Mean sd

1574 1704 92
1624 1713 90
1674 1720 76
1774 1763 46
1824 1784 69
1874 1802 69

Table 4: Results of the Kant’s date of birth experiment. There is a dispersion effect between the years that play the role of the anchor and the
estimation of the year in which Kant was born.
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Figure 6: Estimated year of Kant’s birth as a function of the anchor year. Noise was added for better visibility. Regression equation is
y = 1164 + 0.33x (blue line) where the shadowed area corresponds to the confidence interval.

Figure 7: The residual plot shows the relation between standardized residuals and predicted values for the Kant scenario. Noise was added for
better visibility. Other than a few outliers, residuals are randomly distributed around the horizontal line corresponding to zero mean.

and of Jn−1, which is the judgment relative to the trial n − 1. Apart from the error ε, the other887

constants appearing in the previous formula are the regression coefficients relative to the current888

and previous objective stimulus (α0 and α1), and to the previous judgment (β1). The key obser-889

vation is that there is a contrast effect between Jn and Pn−1 expressed by α1 and, at the same890

time, there is a dispersion effect between Jn and Jn−1 expressed by β1 (DeCarlo & Cross, 1990;891
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Experiment 1 Experiment 2a Experiment 2b
Total participants 25 28 28
Positive values 23 26 14
Significant positive values 9 12 5
Maximum and minimum of positive values 0.032, 0.475 0.027, 0.465 0.052, 0.311
Mean 0.163 0.162 0.046

Table 5: Dispersion effects in the Matthews & Stewart (2009b) study. For each experiment, the table reports the total number of participants,
how many unstandardized β1 were positive, positive and significant, the maximum and minimum values, and the mean across the whole sample.
Experiment 1 did not include particular manipulations, whereas experiment 2 provided two conditions: (a) no feedback and fixed time of
presentation (b) feedback after each judgment and a fixed presentation time of each item.

Experiment 1 Experiment 2a Experiment 2b
Total participants 25 28 28
Negative values 19 17 11
Significant negative values 2 4 2
Maximum and minimum of negative values -0.017, -0.188 -0.014, -0.278 -0.008, -0.226
Mean -0.034 -0.049 0.058

Table 6: Contrast effects in the Matthews & Stewart (2009b) study. For each experiment, the table reports the total number of participants,
how many unstandardized α1 were negative, negative and significant, the maximum and minimum values, and the mean across the whole
sample. Experiment 1 did not include particular manipulations, whereas experiment 2 provided two conditions: (a) no feedback and fixed time
of presentation (b) feedback after each judgment and a fixed presentation time of each item.

Jesteadt et al., 1977; Matthews & Stewart, 2009a; Mori, 1998).892

Matthews and Stewart (2009b) investigated such sequential effects in the domain of non-893

physical dimensions asking for judgments related to the prices of various items (such as chairs894

and shoes). In the first experiment, participants rated the price of a set of 100 chairs where895

each item was shown until a response was given. They then employed the regression model of896

Jesteadt et al. (1977) to evaluate the influence of context on the judgment of price (after a log897

transformation of each variable). The authors performed three experiments: A preliminary study898

with free presentation time and no particular manipulation, and a second experiment with two899

conditions. The first one was without feedback and with the presentation of each item for a fixed900

amount of time, whereas in the second condition, there was feedback given after each judgment901

and a fixed presentation time of each item. In Table 5, we report some statistics related to the902

estimation of the unstandardized coefficient β1 obtained in the three experiments. Crucially for903

our framework, all coefficients related to the dispersion effect were constrained between 0 and 1.904

With regard to the contrast effect, Table 6 summarized the findings related to the unstandardized905

coefficients α1. Although in experiment 2b contrast effect was not observed, in line with our906

predictions, no coefficient lower than -1 was observed. Therefore, the empirical cases reported907

testify to the overall accuracy of the variational framework predictions. Naturally, future studies908

are needed to further empirically validate the predictions of the variational framework proposed909

in this paper.910
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7. Discussion and conclusions911

Starting with the variational interpretation of brightness matching, we have proposed a gen-912

eral variational framework for context effects that may hold both for physical and non-physical913

judgments. Our variational interpretation indicates that contrast and dispersion effects may oc-914

cur simultaneously in every judgment, the final percept being the balance between the opposing915

actions of contrast (the tendency to maximize the differences among the dimensions that charac-916

terize the object to be judged) and dispersion (the tendency to minimize the differences among917

the dimensions).918

In the first part of the paper, we showed how the variational interpretation of brightness919

matching represents an alternative version of Rudd and Zemach’s model (Rudd & Zemach, 2004)920

that makes the same predictions but has the added advantage of being able to explain brightness921

matching in terms of a balance between contrast and dispersion, and also able to be directly922

generalizable to physical configurations that are much more complex than those considered in923

Rudd and Zemach’s experiments. Within perception studies, there are many different quantitative924

models and theoretical approaches to context effects (Gilchrist, 2006). We have shown that our925

framework can describe existing theories through the specification of suitable functional terms926

and parameters. We expect that future works will apply the proposed variational techniques to927

derive new constraints and, hopefully, disambiguate different theoretical proposals.928

In the second part of the paper, we advocated the plausibility of the proposed framework929

for non-physical judgments as well, such as those observed in social cognition or cognitive psy-930

chology. Several case studies drawn from the existing literature, along with new empirical data,931

are in line with the constraints set by our variational approach. In particular, we performed an932

experiment aimed at observing classic dispersion and contrast effects. Crucially, the relation-933

ship between context and judgments was in line with the predictions of the variational model.934

Although this evidence tend to support our framework, it is necessary to stress some of its lim-935

itations. First, since non-physical judgments are usually collected by means of a Likert scale,936

the applicability of our variational approach to ordinal data it is not straightforward (Camparo,937

2013; Carifio & Perla, 2007; Wegener, 1982). Thus, this issue requires a systematic investigation938

in order to understand the extent to which a variational solution may be applied to Likert scale939

data. In any case, we deem it important to stress that the study of Matthews and Stewart (2009b)940

on context effects in non-physical judgments supports our proposal without using a Likert scale.941

Second, in order to further confirm our view, a complete meta-analysis is needed, along with a di-942

rect empirical investigation into the predictions related to the constraints of the proposed model.943

If our variational approach will prove its validity in non-physical judgments domains also, then944

this work may represent a first step toward a formal analysis of psychological mechanisms able945

to account for perceptual and cognitive phenomena with similar characteristics. The Kahneman946

and Tversky research program began as the study of the statistical intuitions of experts (Tversky947

& Kahneman, 1971) where intuitive judgments were considered as extensions of perception to948

judgments about objects that are not currently present (Kahneman & Frederick, 2005). Since949

then, psychological literature often draws a parallel between intuitive non-physical judgments950
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and the mechanisms of perception (Kahneman, 2011; Thaler & Sunstein, 2008). However, this951

parallelism is sometimes superficially stated and not fully investigated, especially from a formal952

point of view. Our work tries to fill this gap, representing an attempt to use a common framework953

to account for context-driven effects both in perception and cognition. Moreover, we hope that954

our proposal will stimulate the mathematical modeling of context-driven effects in fields such as955

social cognition where these kinds of approaches are seldom employed (Biernat, 2005). Given956

that our analysis emphasizes the concurrent presence of contrast and dispersion effects in every957

judgment, the proposed variational framework supports the theoretical accounts that hypothe-958

size the simultaneous occurrence of the two effects at the expense of sequential models (Biernat,959

2005). Future research about context-driven effects in social cognition and cognitive psychology960

could also use our framework to devise new experiments and disambiguate different theoretical961

positions.962

In general terms, the proposed variational framework does not address the question about963

under which conditions we observe either a prevalence of contrast or dispersion (both within964

perception or cognition fields). The main aim of our approach is not to solve these kinds of open965

problems, rather to help understand in a more profound way the interpretation of observations in966

psychology. We consider this to be as important as making new predictions. In fact, being able967

to predict a phenomenon does not necessarily mean understanding it, as the renowned example968

of Ptolemaic orbital system shows: planetary orbits, as predicted by Ptolemy, were accurate, but969

his geocentric interpretation of planetary movement was totally wrong, showing that description970

and comprehension can be separated in a scientific theory. One of the powerful advantages of971

a variational approach is that it allows for conjugating description and comprehension simulta-972

neously. Consequently, we hope that this work (and especially the included tutorial) will also973

stimulate further application of variational methods in mathematical psychology beyond the is-974

sue of context-driven effects.975
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Appendix: Proof of Proposition 4.11179

We will perform the proof only in the continuous case, since the one in the discrete scenario1180

is analogous. Let us compute the variation of the functional Ew(log L) = A(log L) − Cw(log L)1181

with respect to log L. To do this, it is convenient to write log L(x) ≡ L̃(x). The variation of the1182

first term of the functional is trivial to compute and gives:1183

δA(L̃, J̃) =

∫
Ω

(L̃(x) − µ̃)J̃(x) dx (46)

J̃(x) being a generic functional perturbation of L̃(x). The variation of the second term instead1184

can be written as follows1185

δCw(L̃, J̃) =
1
2

∫∫
Ω2

w(‖x − y‖)
[
L̃(x) − L̃(y)

]
J̃(x) dxdy

−
1
2

∫∫
Ω2

w(‖x − y‖)
[
L̃(y) − L̃(x)

]
J̃(y) dxdy.

(47)

Now, interchanging the role of the ‘mute’ variables x and y in the second integral, and thanks to1186

the symmetry of the induction weight, i.e., w(‖x − y‖) = w(‖y − x‖), we can write1187

δCw(L̃, J̃) =

∫∫
Ω2

w(‖x − y‖)
[
L̃(x) − L̃(y)

]
J̃(x) dxdy. (48)

Since δE(L̃, J̃) = δA(L̃, J̃) − δCw(L̃, J̃), thanks to Fubini’s theorem, we have1188

δEw(L̃, J̃) =

∫
Ω

(
L̃(x) −

∫
Ω

w(‖x − y‖)
[
L̃(x) − L̃(y)

]
dy

)
J̃(x) dx, (49)

The argmin of Ew(L̃, J̃) satisfies the Euler-Lagrange equation δEw(L̃, J̃) = 0 for all perturbations1189

J̃. Thanks to the fundamental lemma of variational calculus (Gelfand & Fomin, 1963), this is1190

possible if and only if L̃(x) satisfies1191

L̃(x) − µ̃ −
∫

Ω

w(‖x − y‖)
[
L̃(x) − L̃(y)

]
dy = 0, (50)

i.e.,1192

L̃(x) = µ̃ +

∫
Ω

w(‖x − y‖)
[
L̃(x) − L̃(y)

]
dy. (51)

Turning back to the original variables, we have1193

log L(x) = µ +

∫
Ω

w(‖x − y‖) log
L(x)
L(y)

dy, (52)

so we see that the argmin of Ew satisfies eq. (13) that defines the logarithmic brightness, and thus1194

proposition 4.1 is proven. 21195

1196
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